
WILLIE – a Web Interface for a Language

Learning and Instruction Environment

Werner Winiwarter

University of Vienna, Department of Scientific Computing,
Universitätsstraße 5, A-1010 Vienna, Austria,

werner.winiwarter@univie.ac.at

Abstract. In this paper we present WILLIE, a Web-based language
learning tool for Japanese, which provides the language students with
a comfortable interface to lexical, syntactic, and translation knowledge.
The linguistic data is derived automatically from a large parallel corpus
by using a Japanese-English machine translation system, which we devel-
oped in our previous research. The system randomly chooses translation
examples to present them to the students using JavaScript to dynami-
cally open pop-up windows with additional, clearly arranged color-coded
information. WILLIE has been implemented in Amzi! Prolog, using the
Amzi! Logic Server CGI Interface to develop the Web application.

1 Introduction

In our research work, we use the bilingual data from the JENAAD corpus [14],
which contains 150,000 Japanese-English sentence pairs from news articles. Dur-
ing previous research we had implemented WETCAT [15], a Web-based machine
translation system. It follows a rule-based transfer approach (see [12, 13, 1]) to
achieve high translation quality, however, all the transfer rules are learnt fully
automatically from the translation examples in JENAAD by using structural
matching between the parse trees for source and target language.

With WILLIE, a Web Interface for a Language Learning and Instruction
Environment, we wanted to fully exploit the linguistic knowledge derived from
JENAAD by using the generic and intuitive rule formalism developed for WET-
CAT to convey detailed information about the individual steps involved in the
translation of a Japanese sentence. The system randomly selects Japanese sen-
tences so that the students can inspect them both at the surface level as well as
regarding syntactic and transfer knowledge. All the linguistic information is only
displayed to the students on demand via dynamic pop-up windows implemented
in JavaScript. This user interface design choice was motivated by the objective
not to overload the students with too much redundant data. On the contrary,
we want to make the learning experience more interactive and interesting, e.g.
in that the students only click on an item if they do not know the answer or if
they want to verify their solutions.

It is our intention to extend WILLIE with additional functionality towards
a fully-fledged intelligent language tutoring system by building on the results

and experiences of other successful intelligent tutoring systems for Japanese,
in particular Robo-Sensei [10] (based on BANZAI [8, 9]). Especially the use of
our linguistic analysis techniques to manage sophisticated exercises by process-
ing student input and generating meaningful feedback seems a very promising
direction as indicated by several studies [4–7, 11, 17–19].

The main research issue involved in our work is thus how to bridge the gap
between machine translation and computer-assisted language learning to make
full use of the wealth of linguistic data contained in parallel corpora, to create a
lucid explanation of the translation process, and to find the best representation
format to convey this information to the language student.

The rest of the paper is organized as follows. After a brief overview of the
system architecture in Sect. 2, we describe the lexical analysis and parsing of
Japanese sentences in Sect. 3. Next, we provide a short introduction into our rule
formalism to represent the transfer knowledge, and explain the generation of the
color-coded visualization of the incremental transfer steps in Sect. 4. Finally, we
show in Sect. 5 how we compute the surface form of the sentence translation as
well as context-specific word translations.

2 System Architecture

WILLIE was implemented in Amzi! Prolog, which offers an expressive declar-
ative programming language within the Eclipse Platform, powerful unification
operations for the efficient application of the transfer rules, and full Unicode
support for Japanese characters. In addition, Amzi! Prolog comes with several
APIs, in particular the Amzi! Logic Server CGI Interface, which we used to
develop our Web interface.

WILLIE’s system architecture is outlined in Fig. 1. The modules adapted
from the WETCAT machine translation system are shaded, all the other mod-
ules have been newly implemented for WILLIE. The student’s Web browser
sends CGI calls to the Web server, which calls the CGI application to return dy-
namically generated JavaScript documents. The CGI application consists of a C
program responsible for starting the Amzi! Logic Server and loading the Prolog
CGI script. All user input and CGI variables are asserted as facts to the Prolog
logicbase before calling the Prolog part of the CGI Amzi! interface. This Prolog
wrapper performs the necessary CGI bookkeeping functions and calls predicates
defined in the Prolog script implementing the language learning tool.

Whenever the student asks for a new translation example, the system ran-
domly selects a Japanese sentence from the 150,000 sentences in the JENAAD
corpus. The sentence is first analyzed by the tagging module, which produces
the correct segmentation into a list of word tokens annotated with part-of-speech
tags. Next, the token list is converted into a parse tree by the parsing module.
The transfer module traverses the parse tree top-down and applies the transfer
rules in the rule base to transform the Japanese parse tree into a corresponding
English generation tree. All intermediate trees and applied rules are stored for
the display of the incremental transfer steps to the student. The final task of the

Web browser Web server
CGI calls

Dynamically generated
JavaScript documents

CGI interface
C program with extended

predicates for Prolog
Prolog program with library of

CGI support predicates

Tagging

Japanese
lexicon

English
lexicon

Parsing

Japanese
grammar

Generation
of sentence
translation

Rule
base

Token
list

Generation
of JavaScript

document

Random
selection of
Japanese
sentence

JENAAD
corpus

Generation
of word

translations

Adding tag
descriptions

Adding Roman
transcriptions

Generation
of legend

descriptions

Applied
rules Intermediate

trees

Adding color
coding

Parse
tree

Generation
tree Transfer

Fig. 1. System architecture

translation process is the generation of the surface form of the sentence transla-
tion by flattening the structured information in the generation tree. Although we
could directly use the English translations from the JENAAD corpus, we chose
not to do so in view of a planned extension of WILLIE towards the translation
of free input entered as part of interactive student exercises.

We enhance the lexical data in the token list with context-specific word
translations derived from the generation tree and add Roman transcriptions of
Japanese words as well as plain text tag descriptions. To improve the comprehen-
sibility of the tree diagrams, we dynamically generate a legend with descriptions
of all constituent categories and feature values in both parse tree and gener-
ation tree. Finally, we apply color coding to the intermediate trees to convey
the semantics of the applied transfer rules. All the information is gathered and
combined to generate the JavaScript document to be sent back to the student.

Fig. 2. Example of lexical data

3 Lexical Data and Parse Trees

The student reaches WILLIE through a portal page, which provides instructions
about how to use the system. As described before, the system randomly selects
a translation example and returns a dynamically generated JavaScript page,
which contains the Japanese sentence at the top and a menu bar at the left. At
first, only the source sentence is visible, all lexical data is displayed in dynamic
pop-up windows when moving the curser over the individual words (see Fig. 2).
The English translation of the sentence can be toggled on or off by clicking on
“Translation” in the menu bar.

The lexical data for each word includes the Roman transcription, the context-
specific translation, and the part-of-speech tag. To compute this information, the
tagging module first has to perform the correct segmentation of the Japanese
sentence. For this purpose it accesses the Japanese lexicon, which was com-
piled automatically by applying the morphological analysis system ChaSen [3]
to the JENAAD corpus. We map the numerical part-of-speech tag codes used by
ChaSen to three letter acronyms and add textual descriptions. For conjugated
words, we also indicate the Roman transcription of the base form and tags for
conjugation type and conjugation form in parentheses (see Fig. 3). Finally, we
add context-specific word translations (see Sect. 5).

By moving the cursor over “Parse Tree” in the menu bar, the student can
open a pop-up window containing a nicely formatted display of the Japanese
parse tree (see Fig. 3). The pop-up window remains open until the student
either chooses another option from the menu bar or explicitly clicks on “Parse
Tree” to close the pop-up window again. The same functionality applies to all
the other entries in the menu bar except “Translation” and “Legend”, which are
toggled.

The parse tree is computed by the parsing module with the assistance of the
Definite Clause Grammar preprocessor of Amzi! Prolog by applying the Japanese
grammar to the token list. We model a sentence as a list of constituents, which are
defined as compound terms of arity 1 with the constituent category as principal
functor. With regard to the argument of a constituent we distinguish two cases:

– a simple constituent either represents a word with its part-of-speech tag as
atom/atom or a feature value as atom,

Fig. 3. Example of parse tree

– a complex constituent models a phrase as a list of subconstituents.

All the acronyms used in the parse tree and the generation tree (see Sect. 5)
are collected and annotated with plain text descriptions to generate an alpha-
betically sorted legend, which can be toggled on or off as mentioned before. For
conjugated words the lexical data is divided into the two constituents HEA (head)
and HEF (head form). The former has the argument base form/part-of-speech,
the latter conjugation type/conjugation form.

4 Transfer Rules and Steps

In our approach we have developed a very generic formalism to represent trans-
lation knowledge. We divide a translation into a sequence of translation steps,
where each step is the application of one transfer rule. There only exist three
different types of transfer rules: a word transfer rule translates the argument
of a simple constituent, a constituent transfer rule translates both the category
and the argument of a complex constituent, and a phrase transfer rule allows
to define elaborate conditions and substitutions on the argument of a complex
constituent.

All the transfer rules are actually stored as Prolog facts in the rule base. The
rule base is created automatically by using structural matching between parse

trees of translation examples from the JENAAD corpus. For that purpose we
also have to tag and parse the English sentences from the corpus. The English
lexicon used by the English tagging module has been built automatically by
applying the MontyTagger [2] to the JENAAD corpus. The grammar rules used
by the English parsing module are again written in Definite Clause Grammar
syntax.

The acquisition module traverses the Japanese and English parse tree for
a translation example and derives new transfer rules. The search for new rules
starts at the sentence level by recursively mapping the individual subconstituents
of the Japanese sentence. We also perform a consolidation run on the complete
set of rules, which generalizes rules to avoid overtraining and to increase the
coverage for new unseen data. For more details on the acquisition process and a
more formal treatment of the rule formalism we refer to [16].

In the following, we list three illustrative examples of transfer rules (using
Roman transcriptions for the ease of the reader):

1. WTR(shijō/NOU, market/NN).
2. CTR(MNO, MAJ, keizai/NOU, [HEA(keizai/NOU)], [HEA(economic/JJ)]).
3. PTR(CL, suru/VER, [APP([APO(ni totte/CPP), HEA(hatten/PNO) | X1])],

[APP([APO(for/IN), HEA(progress/NN) | X1])]).

Rule 1 is the default translation of the noun shijō as the noun market. Rule 2
changes the modifying noun (MNO) keizai into the modifying adjective phrase
(MAJ) economic. The third argument of the rule is the head condition, it is used
as an index for the fast retrieval of rule candidates during transfer.

Rule 3 states that for any clause (CL) with head verb suru, the adpositional
phrase (APP) “X1 hatten ni totte” has to be replaced by the adpositional phrase
“for X1 progress”.

The first argument is the category condition. CL is an example of a generalized
constituent category, the other one being NP (noun phrase). The rule can be
applied if the constituent category of the input is subsumed by the generalized
category. The second argument is again the head condition, for a clause it is
tested on the head of the verbal. Both constituent and phrase transfer rules
may contain shared variables for unification as shown in Rule 3. This makes it
possible to translate only certain parts of the input and to leave the rest intact.

One important requirement for the efficient and robust implementation of the
transfer module is that the argument condition in the third argument of a phrase
transfer rule has to be understood as a subset condition. For example, in Rule 3
it is necessary that the clause contains an adpositional phrase at an arbitrary
position with the adposition (APO) “ni totte” and the head noun hatten, both
again at arbitrary positions. All other elements of the clause and the adpositional
phrase are appended unchanged to the translated required elements.

The language student can inspect the transfer rules used to translate a
Japanese sentence by moving the mouse over the “Transfer Rules” entry of the
menu bar. The rules are displayed as a numbered tabular list sorted by the
sequence of their application (see Fig. 4).

Fig. 4. Example of transfer rules

The transfer module traverses the Japanese parse tree top-down and searches
the rule base for transfer rules that can be applied. At the top level we first
try to find suitable phrase transfer rules. To apply a phrase transfer rule, we
collect all rule candidates that satisfy the condition part and then rate each
rule and choose the one with the highest score. The most difficult subtask is the
verification of the argument condition because it involves testing for set inclusion
at the argument level as well as recursively testing for set equality of arguments
of subconstituents.

If no more rules can be applied at the sentence level, each constituent in the
sentence is examined separately. We first search for constituent transfer rules
before we perform a transfer of the argument. The latter involves the application
of word transfer rules for simple constituents, whereas the top-level procedure
is repeated recursively for complex constituents. We also perform some common
standard transformations. The two most important ones are:

– the removal of redundant Japanese particles that only indicate the relation-
ship of a phrase to the embedding phrase, which is already expressed through
the category of the complex constituent,

– the addition of the coordinating conjunction “and”, which is often not ex-
plicitly expressed in Japanese.

To give the students a better understanding of the translation process, we
provide them with the possibility to inspect the conditions and transformations
of each rule application in detail.

Fig. 5. Example of transfer step

For each transfer step we show the applied rule and, side-by-side, the inter-
mediate trees before and after the application of the rule (source tree and target
tree). There exists a menu entry for each individual transfer step in the menu
bar so that the students can slide the mouse over the entries to get an animated
view of how the Japanese parse tree gradually changes into the completely trans-
lated English parse tree, i.e. the generation tree to compute the final sentence
translation.

As can be seen in Fig. 5, we use color coding of source and target trees to
convey the semantics of a rule application to the student. We use the following
colors for this purpose:

– blue: category condition,
– green: head condition,
– violet : argument condition,
– orange: translation of required elements,
– yellow : standard transformation.

In the example in Fig. 5, one can easily see that the constituent category
SUB is subsumed by NP, the head condition wareware/PRO is satisfied, the
argument condition is identical to the head condition, and the translation of
the Japanese pronoun wareware is therefore the personal pronoun we/PRP with
an additional feature value NUM(PLU) to indicate number plural. Finally, the
modifying particle WA/MDP, marking the subject of this sentence, is eliminated.

The main problem with computing the correct color coding is to find the
exact location in the intermediate trees where to apply the coloring. The same
is true for the generation of the context-specific word translations (see Sect. 5).

Since the original intended use of the system was for machine translation,
flexibility and robustness were the two main requirements. Unfortunately, this
implied that there remained no trace of the original word order in the resulting
generation tree because the order of subconstituents in the arguments of complex
constituents could have been arbitrarily rearranged through the application of
phrase transfer rules.

We had previously added some limited position data to the generation tree to
use the information about the word order in the Japanese sentence to deal with
the translation of a sequence of several subconstituents with identical categories
(e.g. several modifying adjective phrases), however, the computation of color
coding and word translations required a more thorough redesign of all existing
modules to incorporate detailed position information.

Starting from the tagging module, we added a position index to each word
token beginning with 1 for the first word. The parsing module preserves this
position data by adding it to the argument of each simple constituent, e.g.
HEA(shijō/14/NOU). During rule acquisition, we also have to learn additional
information about the exact word mapping if we translate a phrase through the
application of a transfer rule. For example, Rule 3 is now stored as:

PTR(CL, suru/VER,
[APP([APO(ni totte/X1/CPP), HEA(hatten/X2/PNO) | X3])],
[APP([APO(for/X1/IN), HEA(progress/X2/NN) | X3])]).

This means that we use again shared variables for unification to preserve the
position data during the application of rules by the transfer module. If there is
no corresponding word in the other language, then free variables are used, i.e.
they do not affect the satisfiability of the rule. Finally, it is also possible to map
one Japanese word to several words in English by using the same variable, e.g.:

PTR(VBL, suru/VER,
[HEA(suru/X1/VER), PRN(jikkō/X2/PNO)],
[HEA(carry/X2/VB), PVP(out/X2/IN)]).

In Japanese grammar, there exist predicative nouns (also called “sahen nouns”)
that can be used together with the verb suru (“to do”) to derive a new verb, like
“to integrate” from “integration”. In this example, the predicative noun (PRN)
jikkō is translated as “carry out”, i.e. a phrasal verb with the phrasal verb particle
(PVP) out. Therefore, in this situation, a free variable is assigned to the position
data of suru, and the position of jikkō is propagated to both carry and out so
that later the complete context-specific translation “is carrying out” is assigned
to jikkō.

During transfer we store all the intermediate trees with the position infor-
mation intact. In addition, we number the applied rules and store them together
with additional position data depending on the rule type:

– word transfer rules: the position of the simple constituent,
– constituent transfer rules: the positions of the head elements of the old and

new complex constituent,

– phrase transfer rules: the positions of the head elements of the complex
constituent before and after applying the rule to its argument.

In addition to the applied transfer rules, we also have to store the informa-
tion about which standard transformations were performed during transfer to
guarantee the correct color coding as shown before. To be able to assign each
standard transformation to the correct transfer step, we indicate the rule num-
ber and the token that has been removed or inserted. In addition, we keep track
of the position of the eliminated element, or, for inserted elements, the position
of the head of the embedding phrase.

All this information is used by the color coding module to assign the correct
color to the individual cells of the tabular display. For that purpose we perform
a top-down traversal of the source and target tree and look for the constituent
to which the rule is applied. Depending on the rule type, we have to distinguish
the following cases:

– word transfer rules: the argument of the simple constituent is painted violet
in the source tree and orange in the target tree,

– constituent transfer rules: the category is painted blue in the source tree and
orange in the target tree,

– phrase transfer rules: the category is painted blue in the source tree, except
for rules at sentence level,

– standard transformations : the category and the argument is painted yellow
in the source tree for eliminations, in the target tree for insertions.

If the anchor constituent has been found for a constituent or phrase transfer
rule, then the argument condition and its translation is analyzed recursively.
The categories and arguments of all matching subconstituents are colored violet
in the source tree and orange in the target tree, except for the argument of the
head condition, which is colored green in the source tree.

5 Translations

The final task on the way to a completely translated Japanese sentence is the
generation of the surface form of the English sentence as character string.

The input to the generation module is the generation tree, i.e. the final parse
tree after applying all transfer rules. The generation tree can be inspected side-
by-side with the original Japanese parse tree by moving the mouse over the
corresponding menu entry.

The generation module traverses the generation tree top-down and trans-
forms the argument of each complex constituent into a list of surface strings.
The list is computed recursively from the subconstituents and flattened after-
wards. The correct surface form for words with irregular inflections is computed
by accessing the English lexicon.

In addition to the sentence translation, as mentioned before, we add context-
sensitive word translations to the lexical entries in the token list. In a first

processing step, we flatten the information in the generation tree by traversing
it top-down and asserting a dynamic fact for each simple constituent indicating
the position, the constituent category, and the argument. In addition we assert
dynamic facts for complex constituents that influence the generation of word
translations, e.g. genitive noun phrases.

Next, we process the token list from left to right. The default treatment for
a lexical entry is to use the English token if a single dynamic fact exists for that
list position. Otherwise, the word translation is left empty.

If there exist several dynamic facts for a position, they are used to generate
the correct surface form of conjugated words as well as concatenate the individual
elements of phrases.

Most problems with the assignment of word translations to the correct posi-
tions in the token list have already been resolved through the extension of the
acquisition module (see Sect. 4). Therefore, there remain only few special cases
to be dealt with, e.g. for predicative nouns, the features regarding conjugation
have to be collected from the next position for the verb suru to produce the
correct surface form. Finally, we also have to ensure the correct placement of:

– words inserted through standard transformations,
– commas and other punctuation marks,
– words inserted due to complex constituents, e.g. “to” in a modifying to-

infinitive clause.

6 Conclusion

In this paper we have presented a Web-based language learning tool for Japanese,
which has been developed based on an existing machine translation system.
WILLIE randomly selects translation examples and displays detailed information
about lexical, syntactic, and translation knowledge by using dynamic JavaScript
pop-up windows and color coding. We have finished the implementation of the
system including a first local prototype configuration of the Web server to demon-
strate the feasibility of the approach.

Future work will focus on making WILLIE available to students of Japanese
studies at our university to receive valuable feedback from practical use, in par-
ticular regarding usability. In addition, we are planning to make a demo version
of WILLIE publicly available in the near future.

Although WILLIE is already a very useful tool for language students, we
also see it only as a first step towards the larger aim of developing an intelligent
language tutoring system. We want to extend WILLIE so that it is possible for
the student to enter free input to be analyzed. This should then be embedded
into interactive exercises with meaningful feedback.

Acknowledgements

We are deeply grateful to Amzi! inc. for supporting our research with a compli-
mentary Professional Edition of Amzi! Prolog + Logic Server.

References

1. Hutchins, J.: Machine translation and computer-based translation tools: What’s
available and how it’s used. In: Bravo, J. M., ed.: A New Spectrum of Translation
Studies, University of Valladolid (2004) 13–48

2. Liu, H.: MontyLingua: An End-to-End Natural Language Processor with Common
Sense. MIT Media Lab (2004)

3. Matsumoto, M. et al.: Japanese Morphological Analysis System ChaSen Version
2.0 Manual. NAIST Technical Report, NAIST-IS-TR99009 (1999)

4. Nagata, N.: Intelligent computer feedback for second language instruction. Modern
Language Journal 77(3) (1993) 330–338

5. Nagata, N.: An effective application of natural language processing in second lan-
guage instruction. CALICO Journal 13(1) (1995) 47–67

6. Nagata, N.: Computer vs. workbook instruction in second language acquisition.
CALICO Journal 14(1) (1996) 53–75

7. Nagata, N.: An experimental comparison of deductive and inductive feedback gen-
erated by a simple parser. System 25(4) (1997) 515–534

8. Nagata, N.: BANZAI: An application of natural language processing to Web based
language learning. CALICO Journal 18(4) (2002) 583–599

9. Nagata, N.: BANZAI: Computer assisted sentence production practice with in-
telligent feedback. Proc. of the 3rd Intl. Conf. on Computer-Assisted Systems for
Teaching and Learning Japanese, San Diego, USA (2002)

10. Nagata, N.: Robo-Sensei: Personal Japanese Tutor. Cheng & Tsui (2003)
11. Nagata, N., Swisher M. V.: A study of consciousness-raising by computer: The

effect of metalinguistic feedback on second language learning. Foreign Language
Annals 28(3) (1995) 337–347

12. Newton, J., ed.: Computers in Translation: A Practical Appraisal. Routledge (1992)
13. Somers, H., ed.: Computers and Translation: A Translator’s Guide. John Benjamins

(2003)
14. Utiyama, M., Isahara, H.: Reliable measures for aligning Japanese-English news

articles and sentences. Proc. of the 41st Annual Meeting of the ACL, Barcelona,
Spain (2003) 72–79

15. Winiwarter, W.: WETCAT – Web-enabled translation using corpus-based acqui-
sition of transfer rules. Proc. of the 3rd IEEE Intl. Conf. on Innovations in Infor-
mation Technology, Dubai, United Arab Emirates (2006)

16. Winiwarter, W.: Automatic acquisition of translation knowledge using structural
matching between parse trees. Proc. of the First Intl. Conf. on the Digital Society,
Guadeloupe, French Carribean (2007)

17. Yang, J., Akahori, K.: Development of computer assisted language learning systems
for Japanese writing using natural language processing techniques: A study on
passive voice. Proc. of the AIED-Workshop on Intelligent Educational Systems on
the World Wide Web, Kobe, Japan (1997)

18. Yang, J., Akahori, K.: An evaluation of Japanese CALL systems on the WWW.
Comparing a freely input approach with multiple selection. Computer Assisted
Language Learning 12(1) (1998) 59–79

19. Yang, J., Akahori, K.: Error analysis in Japanese writing and its implementation in
a computer assisted language learning system on the World Wide Web. CALICO
Journal 15(1-3) (1998) 47–66

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

