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Abstract

Approaches to reconstruct phylogenies abound and are widely used in the study of molecular evolution. Partially through
extensive simulations, we are beginning to understand the potential pitfalls as well as the advantages of different methods.
However, little work has been done on possible biases introduced by the methods if the input data are random and do not
carry any phylogenetic signal. AlthoughTree-Puzzle (Strimmer K, vonHaeseler A. 1996. Quartet puzzling: a quartetmaximum-
likelihood method for reconstructing tree topologies.Mol Biol Evol. 13:964–969; Schmidt HA, Strimmer K, Vingron M, von
Haeseler A. 2002. Tree-Puzzle: maximum likelihood phylogenetic analysis using quartets and parallel computing. Bioinfor-
matics 18:502–504) has become common in phylogenetics, the resulting distribution of labeled unrooted bifurcating trees
when data do not carry any phylogenetic signal has not been investigated.Our note shows that the distribution converges to
the well-known Yule–Harding distribution. However, the bias of the Yule–Harding distribution will be diminished by a tiny
amount of phylogenetic information.
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Introduction
Bayesian analysis and maximum likelihood approaches are
routinely used in phylogenetic reconstruction (Nei and
Sudhir 2000; Felsenstein2003; Salemi and Vandamme 2003;
Semple and Steel 2003; Yang 2006, and references therein).
Although some publications discuss possible biases when
carrying out a Bayesian analysis (Pickett and Randle 2005;
Brandley et al. 2006), almost no work has been done for
maximum likelihoodmethods if the input data are random
and do not carry any phylogenetic signal. A fact that is cer-
tainly due to the difficulty in defining “random” data. For
Tree-Puzzle (Strimmer and vonHaeseler 1996; Schmidt et al.
2002), the term random data fits easily into an evaluable
framework. Our note discusses the resulting distribution of
labeled unrooted bifurcating trees if the tree topology of
a quartet is randomly determined and independent of the
tree topologies of other quartets.

In the following, we distinguish between tree shapes and
tree topologies. A “(tree) topology” for n taxa is an unrooted
leaf-labeledbifurcating tree with n leaves. The leaf labels are
called taxa. A “(tree) shape” can be obtained from a topol-
ogy by ignoring the labels. Thus, a shape is an unrooted
unlabeled bifurcating tree. We introduce k -tree for a tree
topologywith k labeled leaves and k -shape to denote a tree
shape with k unlabeled leaves.

The “Tree-Puzzle (TP)” (Strimmer andvonHaeseler 1996)
algorithm reconstructs a tree topology for n taxa using
the quartet trees inferred from

(
n
4

)
quartets (subsets with

four different taxa). For each quartet {A , B , C ,D}, three
topologies are possible, abbreviated as AB ||CD ,AC ||BD ,
and AD ||BC . In principle, the TP algorithm starts with an

unique 3-tree and repeatedly inserts the next taxon into
(k − 1)-tree to construct k -tree.

In our setting, we assume no phylogenetic information
in the data. This is equivalent to the assumption that each
of the three topologies for a quartet is equally likely and
that the tree topology for each quartet is independent of
the other quartets. Thus, we randomly select one quartet

tree for each of the
(
n
4

)
quartets. Hence, 3(

n
4) possible com-

binations of quartet trees will serve as input to TP. We then
ask, what is the resulting distribution on the set of n -trees.
Because we analyze all possible quartet tree combinations,
it suffices to analyze the probability of the tree shapes. We
note that from six taxa on, more than one tree shape exists.

Table 1 summarizes the results of the computation. Col-
umn random Tree-Puzzle (“rd TP”) displays the tree shape
probabilities under the TP approach and the column pro-
portional to distinguishable arrangement (“PDA”) gives the
probabilities of the shapes expected under the PDA, that
is, where each topology is equally likely (Semple and Steel
2003).

The TP algorithm results in a different probability dis-
tribution. The caterpillar tree, that is, the tree with exactly
two cherries, occurs less frequently than one would expect
under a PDA model, whereas the trees with the maximal
number of cherries occur more frequently with respect to
the PDA probabilities. Due to the complex dependencies
in the generation scheme of tree shapes, it is very difficult
to draw general conclusions. However, table 2 displays the
quick drop of insertion probabilities for internal edges un-
der TP, whereas under the uniform edge insertion model,
the probability of insertion at an internal edge equals n−3

2n−3
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Table 1. Shape Probabilities under the Uniform Tree Model (PDA),
the rd TP. The Last Column Displays the Shape Probabilities If only
External Branches Are Admissible to Add a New Taxon.

Probability
Number of

n Shape Tree Topologies PDA rd TP External Edge

5 S5 15 1 1 1

6 S6,1 90 0.857 0.8071 0.8000

S6,2 15 0.143 0.1929 0.2000

Total 105

7 S7,1 630 0.667 0.5393 0.5333

S7,2 315 0.333 0.4607 0.4667

Total 945

8 S8,1 5,040 0.485 0.3082 0.3048

S8,2 2,520 0.242 0.3403 0.3429

S8,4 2,520 0.242 0.2857 0.2857

S8,3 315 0.030 0.0658 0.0667

Total 10,395

9 S9,1 45,360 0.336 0.1541 0.1524

S9,3 45,360 0.336 0.3900 0.3905

S9,2 22,680 0.168 0.1485 0.1476

S9,4 7,560 0.056 0.0851 0.0857

S9,5 11,340 0.084 0.1866 0.1881

S9,6 2,835 0.021 0.0357 0.0357

Total 135,135

and approaches 1/2 for large n . Thus, the probability of a
k -shape under TP is mainly determined by the insertion
probability for an external edge. In other words, a good ap-
proximation to the tree shape distribution under TP is the
uniform external branch insertion only model. The results
are displayed in the last column of table 1. We observe that
the quality of the approximation is indeed very good.

To insert a new taxon only at the external edges of a tree
describes a model of speciation that is well known as the
Yule process (Yule 1924). Here, at any time, each species
has the same probability to split into two new species. The
resulting probability distribution on the space of n -trees
is the so-called Yule–Harding distribution (Harding 1971;
Dobson 1974). Thus, our extensive study shows that the
TP algorithm approximates the Yule–Harding distribution
on the set of k -shapes if the quartet topologies are deter-
mined randomly. The Yule model was exactly used as a
prior in Bayesian approaches toward a phylogenetic infer-
ence (Rannala and Yang 1996; Mau et al. 1999). In other
words, trees generated by random TP implicitly resemble
those generated under a model of speciation that is in wide
use. If the Yule model is, however, a good approximation to
the true mode of speciation is still an open question (Blum
and François 2006).

Table 2. Probabilities to Insert a Taxon at an Inner Branch If Each
Branch of the Tree Is Selected Uniformly (“Uniform”) or if the Tree-
Puzzle Algorithm Is Applied (rd TP).

Probability

n Shape Uniform rd TP

5 S5 2/7≈ 0.286 0.0408

6 S6,1 3/9≈ 0.333 0.0054

S6,2 0.0070

7 S7,1 4/11≈ 0.364 0.000193

S7,2 0.000276

8 S8,1 5/13≈ 0.385 0.00000022

S8,2 0.00000209

S8,3 0.00000494

S8,4 0.00000297

Properties of trees generated under the Yule speciation
model have been investigated (McKenzie and Steel 2000;
Steel andMcKenzie 2001). For example, the probability dis-
tribution for the number of cherries is asymptotically nor-
mal (McKenzie and Steel 2000). Our study revealed that the
mean and variance of the number of cherries on trees gener-
ated by rd TP lead to those under the Yule speciationmodel
(see table 3) when appropriatelycorrected for the unrooted
case.

In the following,we ask howpersistent this implicit bias is
when some phylogenetic signal is present. To elucidate the
influence of phylogenetic signals, we simulated sequence
evolutionusing Seq-Gen (Rambaut andGrassly 1997) under
a Jukes–Cantor model and a 6-taxon caterpillar tree (S61).
Branch lengthswere set to 0.1 substitutions per site.We gen-
erated 10,000 simulated alignments with a length of 10, 20,
50, and 100. Subsequently, we computed for each simulated
alignment a tree by TP where the number of puzzling steps
was set to one. Figure 1 illustrates the resulting distribution
for all 105 topologies for alignments with ten sites only.

It shows that the true topology T30 is found most often
(9.2%) and that the bias of the Yule–Harding distribu-
tion is already diminished by a tiny amount of phyloge-
netic information.As more phylogenetic signal is added, the

Table 3. TheMean and Variance of the Number of Cherries on Trees
Generated by rd TP and under Yule Speciation Model.

n TP-μ Yule-μ μ-dif TP-σ2 Yule-σ2 σ2-dif

4 2.000 2.000 0.000 0.000 0.000 0.000
5 2.000 2.000 0.000 0.000 0.000 0.000
6 2.193 2.200 0.007 0.156 0.160 0.004
7 2.461 2.467 0.006 0.249 0.249 0.000
8 2.758 2.762 0.005 0.315 0.315 0.000
9 3.068 3.071 0.003 0.372 0.371 0.001

NOTE.—μ-dif is the difference between TP-μ and Yule-μ, σ2-dif is the differ-
ence between TP-σ2 and Yule-σ2 .
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FIG. 1. Number of times one of the 105 six-trees was selected with one puzzling step. The alignment has ten sites only.

probability increases to select the true tree with TP (see
table 4). Thus, the potential bias due to the implicit prior is
diminished. As pointed out by one reviewer, this is possibly
due to the correlation among all quartets. Thus, it is an open
question if the Yule distribution is the limiting distribution
for fewer and fewer data. If this holds true, the Yule–Harding
distribution (corrected for tree shapes) may serve as the
appropriate noninformative prior (Jaynes 2003) for use in
Bayesian phylogenetics as pointed out by the second
reviewer.

Although shape bias, however, from different perspec-
tives, has been reported occasionally in a supertree con-
text (Wilkinson et al. 2005; Kupczok, unpublished data) not
much is known about potential bias in the more conven-
tional tree reconstruction framework. The TP algorithm al-
lows such an analysis by assuming that quartet topologies
are equally likely. Under this assumption, we observe that
the distribution of reconstructed tree shapes converges to
the well-known Yule–Harding distribution (Harding 1971;
Dobson 1974). Although we cannot give a formal proof, the
exact computation of the edge insertion probabilities for
a taxon for up to eight taxa shows that the probability to
insert the taxon at an inner edge quickly drops to zero.

Table 4. Recovery Rate of Tree Shapes in Percentage If Phylogenetic
Information Is Added (measured in length of the alignment). The Last
Column Shows the Frequency of Recovering the True Topology, a
Representative of S61 .

Alignment Length S61 (%) S62 (%) True Topology (%)

0 80.71 19.29 0.95
10 83.39 16.61 9.17
20 86.60 13.40 19.15
50 91.49 8.51 52.45
100 97.40 2.60 85.77

On the other hand, we show that phylogenetic informa-
tion reduces the influence of the implicit prior as onewould
expect. The theoretical analyses discussed here, however,
are important if one studies the theoretical performance
of tree reconstruction methods. When it comes to the ac-
curacy of phylogenetic reconstruction, one has to ensure
that the simulations are not supported by the Bayesian prior
that may be explicitly or implicitly included in a reconstruc-
tion method. It will be interesting to elucidate if other tree
inference approaches also show an implicit prior.

Method
We outline the basic principles of the TP algorithm
(Strimmer and von Haeseler 1996). For n taxa, the so-called
puzzling step in TP starts with a unique 3-tree and repeats
the following procedure until the tree contains all taxa.

The core of TP takes a k -tree and inserts the next taxon
x by evaluating the quartet trees with leaf set {t1, t2, t3, x},
where the ti are leaves in the k -tree. If the tree topology
t1, t2||t3, x is given, then each edge on the path connecting t1
and t2 in the k -tree receives the penalty score 1. This proce-
dure is repeated for all quartet trees and the penalty scores
(0 or 1) are accumulated for each edge. Finally, x is inserted
at the edgewithminimal penalty score. If ties occur, then we
pick randomlyoneof the corresponding edges. In a standard
application of TP, this procedure is repeated for randomized
input orders of the taxa and a consensus tree is computed
from the collection of n -trees.

To reduce the computational complexity, we introduce a
series of simplifications.First of all we note that the stepwise
insertion of taxa in TPcan beused to iteratively compute the
exact probabilities for k -trees from (k − 1)-trees. Second,
because we analyze all possible quartet tree combinations,
it suffices to analyze the probability of the tree shapes.
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FIG. 2. Tree shape generation principle. Starting with a 5-shape (S5), the two 6-shapes (S6,1 and S6,2) are generated by inserting the sixth taxon at
an appropriate edge. From the two 6-shapes and the 7-shapes, S7,1 and S7,2 are created. The probabilities of the shapes depend on the insertion
model. The number at the arrows indicate the number of edges that lead to the next larger tree shape.

Figure 2 shows how to derive a k -shape from the (k−1)-
shapes. If the k th taxon is inserted on an edge in a (k − 1)-
shape, then this results in an uniquely defined k -shape. The
probabilities of a k -shape could be calculated if the prob-
abilities of the shapes, it could arise from are known by
weighting them with the probabilities at the corresponding
arrows. Using a branch and bound algorithm, we computed
the probability that the k th taxon is inserted on each edge
of a (k − 1)-shape. We note that the probabilities of tree
shapes under the PDAmodel can be computed from the di-
agram in figure 2 by simply assuming that the probability to
pick an edge is uniform, that is, 1

2k−3 for a k -shape. Hence,
we computed the exact probabilities of tree shapes for up
to nine taxa using random TP (see supplementary table S1,
SupplementaryMaterial online) and the PDA model.

Supplementary Material
Supplementarytable S1 is availableatMolecular Biology and
Evolution online (http://www.mbe.oxfordjournals.org/).
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