
Molecular Ecology (2011) 20, 1952–1963 doi: 10.1111/j.1365-294X.2011.05066.x
The performance of phylogenetic algorithms in
estimating haplotype genealogies with migration
WALTER SALZBURGER,*§ GREG B. EWING†§ and ARNDT V O N HAESELER‡

*Zoological Institute, University of Basel, Vesalgasse 1, 4051 Basel, Switzerland, †Mathematics and BioSciences Group, Max F.

Perutz Laboratories, University of Vienna, Medical University of Vienna, Veterinary University of Vienna, Dr.-Bohr-Gasse 9,

1030 Vienna, Austria, ‡Center for Integrative Bioinformatics Vienna, Max F. Perutz Laboratories, University of Vienna,

Medical University of Vienna, Veterinary University of Vienna, Dr.-Bohr-Gasse 9, 1030 Vienna, Austria
Corresponde

E-mail: grego

§These autho
Abstract

Genealogies estimated from haplotypic genetic data play a prominent role in various

biological disciplines in general and in phylogenetics, population genetics and

phylogeography in particular. Several software packages have specifically been devel-

oped for the purpose of reconstructing genealogies from closely related, and hence,

highly similar haplotype sequence data. Here, we use simulated data sets to test the

performance of traditional phylogenetic algorithms, neighbour-joining, maximum

parsimony and maximum likelihood in estimating genealogies from nonrecombining

haplotypic genetic data. We demonstrate that these methods are suitable for constructing

genealogies from sets of closely related DNA sequences with or without migration. As

genealogies based on phylogenetic reconstructions are fully resolved, but not necessarily

bifurcating, and without reticulations, these approaches outperform widespread ‘net-

work’ constructing methods. In our simulations of coalescent scenarios involving

panmictic, symmetric and asymmetric migration, we found that phylogenetic recon-

struction methods performed well, while the statistical parsimony approach as imple-

mented in TCS performed poorly. Overall, parsimony as implemented in the PHYLIP

package performed slightly better than other methods. We further point out that we are

not making the case that widespread ‘network’ constructing methods are bad, but that

traditional phylogenetic tree finding methods are applicable to haplotypic data and

exhibit reasonable performance with respect to accuracy and robustness. We also discuss

some of the problems of converting a tree to a haplotype genealogy, in particular that it is

nonunique.
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Introduction

Haplotypic genetic data play a prominent role in phylo-

genetic, population genetic, phylogeographic, molecular

evolutionary, systematic biological, taxonomic (e.g.

DNA barcoding), and nowadays also genomic research

(see Brown et al. 1979; Savolainen et al. 2002; Hebert

et al. 2003; Alonso & Armour 2004; The International
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rs contributed equally to this work.
HapMap Consortium, 2005, 2007; Gibb et al. 2007; Sto-

rey et al. 2007). Some fields, such as phylogeography,

predominantly rely on highly similar haplotypic data,

as the study objects are closely related and data are

often comprised of population samples within species.

But also when dealing with large data sets of closely

related species (e.g. Verheyen et al. 2003; Barluenga

et al. 2006) and when extrapolating species trees from

gene trees using more than one locus (e.g. Maddison

1997), haplotypic genetic data are processed.

A haplotype is defined as a stretch of DNA on a

single molecule, which is inherited as a single unit.
� 2011 Blackwell Publishing Ltd
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Inheritance in units is intuitive for the relatively small

haploid and usually nonrecombining cytoplasmic ge-

nomes of mitochondria and chloroplasts or for nonre-

combinant sex chromosomes such as the Y-chromosome

in e.g. mammals. However, haplotypic structures that

act as single units over longer evolutionary times are

also detected in diploid nuclear genomes (Lindblad-Toh

et al. 2005; The International HapMap Consortium 2005,

2007). These nuclear haplotypes are stable when the

stretch of DNA on a single chromosome is short

enough so that recombination is unlikely to occur. New

high-throughput sequencing techniques (e.g. Solexa,

SOLiD and 454 methods) produce such nuclear haplo-

typic data in volume, and it is obvious that these will

become increasingly important in phylogeography and

population genetics (Gompert et al. 2010; Holsinger

2010; Tautz et al. 2010). The virtually haplotypic nature

of these data eases analysis, as most commonly applied

tree reconstruction methods assume absence of recombi-

nation (Posada & Crandall 2002; Felsenstein 2003). This

is why, in phylogenetics, a suite of algorithms exists

that ultimately aim for breaking up recombinant DNA

molecules into haplotypes that can then be analysed

separately (see e.g. Stephens & Donnelly 2003; Scheet &

Stephens 2006; Sun et al. 2007). Hence, while recombi-

nation (in form of e.g. crossing over, horizontal gene

transfer, or hybridization) is a real evolutionary event

of its own significance, one seeks for nonrecombinant

DNA sequences in phylogenetic inference (Posada &

Crandall 2002; Felsenstein 2003).

Phylogeographic data sets have particular properties

compared with conventional phylogenetic ones. First,

they often contain more sequence data, as individuals

from many locations are investigated. Second, and more

importantly, genetic variation is typically rather limited

as a consequence of the young age of the study group.

Third, both ancestral and derived alleles are present in

the data set. Finally, migration of individuals between

populations may affect the composition of haplotypes

in such data sets, which has consequences on the distri-

bution of branch lengths (typically, migration leads to

long internal branches).

In the last few years, several approaches have been

put forward that specifically aim to reconstruct genealo-

gies from haplotypic genetic data obtained from closely

related taxa. These algorithms have been developed

because it was assumed that ‘traditional’ phylogenetic

methods such as neighbour-joining (NJ), maximum par-

simony (MP) and maximum likelihood (ML) would not

accurately reconstruct relationships between closely

related sequences or would pose analytical problems,

for example because of the presence of ancestral and

derived alleles (see e.g. Excoffier & Smouse 1994; Ban-

delt et al. 1995; Clement et al. 2000; Posada & Crandall
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2001). Three commonly applied methods in the context

of reconstructing haplotype genealogies are ‘statistical

parsimony’ (SP) (Templeton et al. 1992) as implemented

in TCS (Clement et al. 2000), the ‘median-joining net-

works’ (MJ) approach (Bandelt et al. 1999) as imple-

mented in the computer program Network and the

‘minimum-spanning network’ method (MS) as imple-

mented in Arlequin (Schneider et al. 2000; Excoffier

et al. 2005). Two of these methods, SP and MJ, are

based on MP algorithms, while MS is a distance-based

approach. More recently, Cassens et al. (2005) presented

a novel approach to unite the information provided by

all equally most parsimonious trees (obtained by a tree

search) into a single genealogy, which they termed the

‘union of maximum parsimony trees’ (UMP).

All four methods for constructing genealogies from

closely related haplotypic data, SP, MJ, MS, and UMP

may result in reticulated genealogies, which are often

referred to as networks. This terminology is misleading,

though, which is not least because of the ambivalent

interpretation of reticulations (Cassens et al. 2005).

Reticulations are typically illustrated as loops in the

genealogy and are meant to indicate ambiguities and ⁄ or

the presence of conflicting optimal topologies (e.g. in

the set of most parsimonious trees). In these cases, a

loop in a genealogy obtained from nonrecombining ha-

plotypic genetic data merely illustrates the failure of the

algorithm to decide for one of the alternative connec-

tions between haplotypes. Alternatively, a loop may

also be intended to illustrate recombination events

(which makes the data nonhaplotypic). Then, a loop

would represent a real evolutionary scenario rather

than an analytical problem. While some algorithms

have explicitly been developed for nonrecombining ha-

plotypic genetic data (e.g. MJ), others consider recombi-

nation at the population level (e.g. SP as implemented

in TCS). However, there is no statistical way to inter-

pret a reticulation, i.e. whether it is caused by recombi-

nation or migration or whether it is an analytical

artefact.

The performance of SP, MJ, MS and UMP has previ-

ously been evaluated using simulated data sets (Cas-

sens et al. 2005; Woolley et al. 2008). Cassens et al.

(2005) simulated 100 sequence data sets each along four

template topologies, which they subjected to individual

analysis. They found that SP, MJ and UMP performed

equally well, whereas MS shows poorer performance,

in particular when internal haplotypes are not present

in the data set. Woolley et al. (2008) simulated data sets

of between 10 and 50 taxa under 18 conditions (with

and without recombination), analysed them with the

above-mentioned methods plus NJ and MP, and com-

pared the outcome to the true tree. To this end, the net-

works were split into all embedded subtrees and the
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frequency of correct subtrees was compared. They

found that all methods (except MS) performed equally

well in the absence of recombination; MP and UMP

performed better at higher substitutions rates. However,

the performance of network-construction methods has

not yet been evaluated in data sets resembling those

handled by empiricists (and with migration), and it

remains unclear whether specifically designated net-

work-construction methods are at all better suited in

finding the ‘true genealogy’ than classic phylogenetic

algorithms (NJ, MP, and ML) are.

Here, we use simulated data sets with known true

genealogies to test the performance of classic phyloge-

netic algorithms such as NJ, MP and ML in the estima-

tion of genealogies from nonrecombining haplotypic

genetic data. These are widely used in phylogeographic

and population genetic studies and constitute the basis

for widely applied superimposed analyses such as the

nested clade phylogeographic analysis (NCA) (Temple-

ton et al. 1995; see Knowles & Maddison 2002; Knowles

2008; Beaumont & Panchal 2008; Beaumont et al. 2010

for known problems with NCA). We analysed 1000 sim-

ulated data sets with the phylogenetic reconstruction

methods mentioned above and, additionally, with a

commonly used algorithm for constructing haplotype

genealogies. We mainly focus on one (TCS) out of the

suite of approaches, as it has previously been shown

that these perform equally well (see above). Still, we
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Fig. 1 Converting a tree to haplotype genealogy. The tree has Fitch b

of the haplotype nodes in the haplotype genealogy denotes relative fr
also applied MS to a representative set of simulations to

evaluate whether also in our range of parameters MS is

performing equally well or worse than TCS (Cassens

et al. 2005; Woolley et al. 2008). Other methods were

not considered for practical reasons, e.g. because they

do not have a command line mode. The resulting gene-

alogies from the different tree and network building

algorithms were then compared with the known true

trees. We tested whether classic algorithms are suited to

infer genealogies from haplotypic data and then com-

pared the performance of the different methods scoring

(i) the percentage of correctly resolved topologies and

(ii) the average number of errors introduced in the anal-

ysis. We find that, at least for the chosen set of parame-

ters and simulation conditions, phylogenetic analyses

do perform well in the re-construction of haplotype

genealogies and that these actually outperform TCS

(and MS).
Materials and methods

Definitions

We define a haplotype genealogy as a weighted acyclic

graph with labelled leaves and some labelled internal

nodes. Labels refer directly to haplotypes that have been

sampled from the population. Weights of edges are inte-

ger valued and are greater than zero. Hence, a haplo-
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Fig. 2 Illustration of the nonuniqueness of Fitch trees. Muta-

tions are denoted by the cutline on the trees on the left, while

mutations are edges in the haplotype genealogy on the right.

By making different choices with internal sequences, branches

will also have different lengths. As can be seen, the resultant

haplotype genealogy is altered. We also note the nonlocal

behaviour of some choices of internal sequences. That is, by

deciding what the internal sequence is at one location, it can

affect a large section of the tree.
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type genealogy is an unrooted tree with the difference

that internal nodes can be labelled and branch lengths

are integers to represent discrete mutational steps.

Trees are defined in the usual manner but branch

lengths are different in the way they map to haplotype

genealogies. To avoid confusion in the following discus-

sion, we will define two specific tree types. In particu-

lar, there is a distinction between trees with natural

branch lengths and Fitch branch lengths defined below.

A tree with natural branch lengths is an undirected

acyclic graph with labelled leaves and branch lengths,

where the branch lengths are some measure of evolu-

tionary distance from the method used to reconstruct

the tree. If the tree is bifurcating, it is said to be fully

resolved, otherwise it is unresolved. Here, we are not

interested in the natural branch lengths.

In a Fitch tree, the branch lengths are given by the

Hamming distance between the two sequences at the

ends of the branch (Fitch branch lengths). That is, the

number of sites that are different between the sequences

at the ends of the branch. On a Fitch tree, all internal

nodes have ancestral sequences derived from the leaf

sequences using the Fitch algorithm (Fitch 1970). This

provides the smallest number of changes or mutations

for the given tree (where the number of changes is the

parsimony score). It is noted that the parsimony score

is unique for a given tree. But the Fitch tree is not

unique, because Fitch branch lengths are not unique

even though their sum is. For a given tree, there may

be many possible branch length ‘labellings’.

Any phylogenetic tree with sequence data can be con-

verted into a haplotype genealogy in the following way:

First, the natural branch lengths are replaced with the

Fitch branch lengths derived from the original sequence

data. Generally, there will be branches that have zero

length, which represent multifurcations in the haplo-

type genealogy. A special case occurs when a terminal

branch has a zero branch length. In this case, the leaf in

the tree represents an internal node in the haplotype

genealogy (Fig. 1). As a result, the different Fitch

branch lengths derived from a given tree lead to alter-

native haplotype genealogies (Fig. 2).

We emphasize the reason why we are interested in

the Fitch trees rather than phylogenetic trees: A plain

phylogenetic tree is estimated with a number of differ-

ent possible methods and generally gives an estimate of

branch length usually in units of expected numbers of

mutations per site. However, this is usually performed

by integrating over all internal sequences rather than a

particular subset thereof. The process of converting a

tree with Fitch branch lengths to haplotype genealogies

requires that we deal only with observable mutations.

Thus, we must consider all possible Fitch tree labels

and all the resultant haplotype genealogies. This has
� 2011 Blackwell Publishing Ltd
the important consequence that the only information

used from any tree returned by any method is the

topology, while branch length information is discarded

at this stage (but later derived from the data).

We note that out of a set of different haplotype gene-

alogies, no single genealogy offers a better description of

the ‘truth’ than any other one does without considering

external data such as the underlying DNA sequences

(this is the same when dealing with a set of different

MP trees with the same score). The question raised is

how are we better off with a group of haplotype geneal-

ogies vs. a network that may not be tree-like. The exis-

tence of many haplotype genealogies is simply another

way of representing ambiguity in the data.

However, the important difference between a net-

work and a set of trees is the lack of independence of

Fitch length labellings. We illustrate this in Fig. 2. We

have the same initial tree with the same tip sequences,

but the Fitch branch lengths and internal sequences are

different. In the top figure we see that haplotype E

connects to D, while haplotype A and B form a cherry

also connecting to D. But an alternative is that haplotype

E connects to C. This has the effect of changing the topo-

logy throughout the tree. So by making some choice in
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one part of the Fitch tree, it can have topological conse-

quences elsewhere in the tree. In the network case, each

ambiguity is represented independently of each other.

Also, it is difficult to represent the same information

in a graph compared to a set of trees. However, with

suitable constraints such networks may be constructed

and can, in fact, be informative, e.g. in cases where

there is an expectation of a non-tree-like signal (Huson

et al. 2005). Here, we are considering the case where

the true signal is tree-like and that reticulations repre-

sent reconstruction ambiguity.

The Robinson-Foulds (RF) tree distance (Robinson &

Foulds 1981) was used for comparing estimated and

true haplotype genealogies, with the allowance that

haplotype labels can be internal nodes. The RF distance

of two genealogies is the number of splits (bipartitions

of the labels induced by a branch) occurring in one tree

only. The RF distance does not take into account branch

lengths. This may seem disadvantageous, but recall that

we do not use branch length information from the tree

finding methods anyway. Rather, the branch lengths are

completely determined by the DNA sequence alignment

over an estimated tree. More importantly, the resultant

branch lengths can and do change the resultant topo-

logy when this tree is converted into a haplotype

genealogy.

The scaled mutation rate Q is defined in the normal

way as Q = 2 * Nel, where l is the mutation rate (per

site and per locus) and Ne is the effective gene copy

population size.
Simulation of data sets

A problem with regard to simulated data is: What

should be considered the true haplotype genealogy

when comparing with estimated genealogies? If one

takes the simulated coalescent tree from a program

like SIMCOAL (Excoffier et al. 2004) and then add Fitch

branch lengths (see the definitions section above) with

an alignment simulated over the same tree, we face

the problem of many haplotype genealogies because of

the nonuniqueness of Fitch branch lengths. This pro-

duces the situation that there can be multiple trees

with an identical score as the true tree (and many

inferred trees in total), which would give a false

impression of the accuracy of the method. When deal-

ing with simulations, we want the true haplotype

genealogy to be known so as to not dilute the results.

One way to do this, which is the method we have cho-

sen, is to use the sequence simulation to give the

sequences for internal nodes as well. Then, from the

internal ancestral sequences, we can get unique true

Fitch branch length labellings and a unique haplotype

genealogy.
Because of the above-mentioned problems, the simu-

lated data were generated with our own code that has

been verified using various well-known population

genetic results and against SIMCOAL (Ewing et al. 2004;

Excoffier et al. 2004). Our method uses the Kingman

coalescent (Kingman 1982a,b) with migration (Hudson

1990) to first simulate a genealogy under the given

demographic model. In this case, we considered a pan-

mictic population and a two-deme model with both

symmetric and asymmetric migration. Sequence data

were then generated over the coalescent genealogy

using standard evolutionary models (Jukes & Cantor

1969; Felsenstein 1981), and a sequence length of

300 bp. Rate heterogeneity was included by assuming

that each site has a different rate drawn from a gamma

distribution (Ota & Nei 1994) with different shape

parameters and a mean equal to 1. In practice, we simu-

lated the sequence data using either a Jukes-Cantor (JC)

(Jukes & Cantor 1969) or a GTR model (Felsenstein

1981; Lanave et al. 1984) of molecular evolution, with

different shape parameters. Simulated trees had branch

lengths measured in the number of realized mutations

after sequence simulation. This tree was then pruned to

include just one representative leaf for each haplotype

for the phylogenetic analyses, where the representative

is chosen randomly (in practice, haplotype frequency

information would be added on the resulting geneal-

ogy). In all cases Q = 0.01 for both demes (or for the

single deme in the panmictic case). The symmetric

migration rates were 10 and 100, where for asymmetric

migration one migration rate was set to zero. For exam-

ple, the migration rates were 10 from deme A to B

while it was zero from B to A.

Simulation parameters and statistics are summarized

in Table 1. For convenience and compactness, we will

denote the standard deviation of a mean value in brack-

ets immediately after the value. In all simulations we

assume the locus is 300 nucleotides long (thus resem-

bling real data as e.g. generated by next generation

sequencing). The panmictic simulations had 200 sam-

pled individuals giving an average of 21.6 (3.7) distinct

observed haplotypes. The longest branch had an aver-

age length of 5.7 (3.3) mutations, and the total average

number of mutations was 34.7 (9.0) over the tree. In the

second set of panmictic simulations, Q = 0.0166 with

500 sampled individuals. This resulted in an average

number of distinct haplotypes of 39.3 (5.5), longest

branch length of 9.2 (5.5) mutations and a total number

of mutations of 67.0 (15.0). The number of sampled

haplotypes in the first round was chosen based on the

average number of sampled taxa of 201 (152) in 58 arti-

cles that appeared in 2006 in Molecular Ecology and

were retrieved applying the search strings ‘network’

and ‘haplotype’ from the journal’s homepage. The num-
� 2011 Blackwell Publishing Ltd



Table 1 Simulation results

Simulation % Correct RF distance Ave no. mutations Ave longest branch Ave no. taxa

Q = 0.01 92 0.12 (0.43) 35.5 (9.9) 5.9 (3.7) 21.7 (3.8)

C (a = 2.5) 90.3 0.17 (0.58) 35.2 (9.8) 5.8 (3.3) 21.7 (3.9)

C (a = 0.5) 81.1 0.32 (0.76) 34.6 (9.8) 5.7 (3.4) 21.6 (4.0)

Q = 0.0166 86.2 0.22 (0.6) 57.1 (13.5) 8.7 (5.1) 30.7 (4.6)

Q = 0.0166, 500 samples 85.8 0.24 (0.7) 67.9 (15.1) 9.0 (5.3) 39.9 (5.5)

Q = 0.01, k = 10 73.3 0.41 (0.8) 102.6 (38.1) 24.4 (18.2) 35.4 (4.9)

Q = 0.01, k = 100 83.8 0.27 (0.7) 74.3 (18.1) 11.8 (7) 35.3 (4.8)

k1 fi 2 = 10, k2 fi 1 = 0 72.4 0.44 (0.82) 118.6 (49.5) 32.1 (24.4) 35.3 (4.8)

C (a = 1) 57.6 0.713 (1.0) 113.8 (43.7) 30.2 (21) 35.2 (4.0)

k1 fi 2 = 100, k2 fi 1 = 0 86.3 0.23 (0.68) 66.2 (14.3) 8.9 (4.7) 34.9 (4.9)

The perfect reconstructions were used to estimate the percentage of correct haplotype genealogies (% correct), the Robinson-Foulds

(RF) distance between perfect reconstructions and true trees (RF distance; see section Definitions), as well as the average number of

mutations (ave no. mutations), the average length of the longest branch (ave longest branch), and the average number of haplotypes

(ave no. taxa); standard deviations are given in brackets. Discrepancies between perfect reconstructions and true trees arise from

nonparsimonious truth, homoplasies, and back substitutions (see Materials and methods section). The first three rows are without

migration, the remainder are with migration, where ki fi j is the migration rate from deme i to j. Note that with low migration we

obtained very large longest branches, which is a typical migration signature. The standard parameters, unless specified, are 200

samples, Q = 0.01, and 1000 simulations for each parameter set.
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ber of 500 sampled haplotypes in the second round of

simulations reflects the average number of sampled

taxa in the 10% (N = 6) most taxon-rich studies in the

same journal and year (average number of taxa = 535,

SD = 135). Hence, our simulation conditions lie in the

range encountered by empiricists.

Migration simulations have a distinctive pattern. The

expected coalescent tree under migration tends to have

a very long branch to the final coalescent event. This is

caused by the fact that for two lineages to coalesce, they

must be in the same deme. Thus, the waiting time to

the last coalescent event is dominated by the time it

takes for the last pair of lineages to migrate to a com-

mon deme. This results in a long internal branch as can

be seen in the simulation results with a large increase

in average length of the longest branch to 24.4 (18.2)

mutations. This effect increased other internal branches

as well, but it is stronger for the last coalescent event.

When the migration rate was increased to 100, the aver-

age of the longest branch length decreased to 11.8 (7).

Selected rate heterogeneity results are also presented

in Table 1 with a shape parameter of a = 0.5 and a = 2.5,

respectively. The number of total mutations is expected

to be the same under a gamma model. However, as some

sites have a higher mutation rate, there should be more

homoplasy. The effect was small though: For example,

the average number of segregating sites (not shown) with

no rate heterogeneity and no migration with Q = 0.01

was 33.2 sites, while with rate heterogeneity and a shape

parameter of 0.5 (denoted a = 0.5) was 29.3 sites.

We used various software for phylogenetic recon-

struction to account for the diversity of methods avail-

able for tree searches, particularly with respect to
� 2011 Blackwell Publishing Ltd
heuristic search algorithms for MP and ML. NJ trees

were reconstructed with PAUP* (Swofford 1993). PHY-

LIP (Felsenstein 1989) and PAUP* was used for MP

with default settings (see below). For phylogenetic

reconstruction using ML, the following software was

utilized: PhyML (Guindon & Gascuel 2003), IQPNNI

(Minh et al. 2005), PHYLIP and PAUP*. All were used

with default options with the following exceptions: (i)

All methods that had randomization of input options

had them enabled. (ii) We also randomly shuffled the

input with our own code to prevent any biases that

may exist. (iii) If the method had a default that disabled

global moves, these were enabled for a set of runs. That

is, the method was used both with and without the

option enabled. (iv) If we were dealing with data that

were generated with rate heterogeneity, we also

enabled estimating the shape parameter where avail-

able, using four categories. Again this was performed

as an extra run. That is, the methods were run both

with a gamma model and without a gamma model. (v)

For IQPNNI, we set the maximum number of iterations

to 20 000 to avoid excessive run times.

Generally, we tried a number of different parameters

for each ML method. However, it was observed that

different parameter settings had very little effect on the

performance of the different methods. This is not sur-

prising as we are estimating performance over an

ensemble of coalescent trees rather than a fixed data

set. In the following, we therefore present results from

the simpler models plus some results from the gamma

model of rate heterogeneity.

For comparison, we used TCS under standard param-

eters in command line mode with the gapped parame-
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ter set to false and distances set to false. A major differ-

ence to the phylogenetic methods is that TCS can return

disjoint networks. We interpreted these reticulated

graphs as a way to represent ambiguity and considered

the returned graph to be correct if at least one maximal

spanning tree is correct. A maximal spanning tree is

any embedded tree in the graph that includes all leaves.

This was performed by enumerating all spanning trees

of the graph (Shioura & Tamura 1995) and checking

each tree in turn. We considered disjoint topologies

incorrect, but we expand on this case in the results sec-

tion. For comparative reasons, we also applied MS as

implemented in Arlequin 3.0 (Excoffier et al. 2005)

using standard parameters.
Comparison of haplotype genealogies

We first considered perfect reconstructions, i.e. we eval-

uated the genealogies constructed from the true trees

using the simulation data. Possible errors (i.e. discrep-

ancies between the perfect reconstructions and the true

trees) arise from nonparsimonious truth, homoplasies

and back substitutions. Nonparsimonious truth is where

the true tree is not a parsimony tree. Simply put, there

are more mutations than one would calculate from the

data. Homoplasies, on the other hand, are when two

identical haplotype sequences have different evolution-

ary histories (i.e. convergent evolution). Finally, back

substitutions and multiple hits are where a single nucle-

otide mutates more than once and is hence not directly

observable. Perfect reconstruction results give a bound

to how good any reconstructions based on optimality

can be.

One major disadvantage of many tree distance mea-

sures is that both trees must have the same set of taxa.

That is, we cannot get a useful result if the number of
Table 2 Percentiles of true trees found

Parameters PhyML (%) IQPNNI (%) DNAML (%)

Q = 0.01 68.1 70 72.1

C (a = 2.5) 55.8 55.9 54

C (a = 0.5) 41 40.4 42

Q = 0.0166 53.7 54.9 54.4

Q = 0.0166, 500 samples 47.2 47.1 48

Q = 0.01, k = 10 36 36 35.5

Q = 0.01, k = 100 47.6 45.5 45.9

k1 fi 2 = 10, k2 fi 1 = 0 29.9 28.1 27.3

C (a = 1) 14.9 14.9 14.7

k1 fi 2 = 100, k2 fi 1 = 0 50.1 49.1 51

Unless otherwise stated Q = 0.01 and there are 200 samples (and 1000

equally well as does NJ. For parsimony we note that DNAPARS perfo

worst of all methods considered, which was due mainly to disjoint ne

difficulties for reconstruction methods, TCS in particular. ML, maxim
leaves is different in one tree compared to the other, as

can happen with TCS with disjoint graphs. A possible

way around this is to prune the trees such that the label

sets match in both. Unfortunately, this then leaves us

with the problem of how to include the missing haplo-

types in the metric. This should penalize TCS because

we know that it should join the network somewhere.

So, the normal method of pruning does not fully repre-

sent the cost of missing haplotypes. As an example, we

can leave out one label and get a distance of 1. With

the label present in the wrong place, the RF distance is

at least 1 and will generally be much higher. This is

only important when considering TCS, which can pro-

duce disjoint networks. Therefore, we pruned the larger

tree until label sets matched and then calculated the RF

distance and added the number of labels removed.

Many programs can return more than one tree. In

these situations, we simply use the closest tree out of

the returned tree for scoring. So we counted a method

as producing the correct genealogy if one or more of

the returned results are correct.
Results and discussions

Perfect reconstruction results

First, we consider perfect reconstruction results

(Table 1). We find that reconstruction accuracy drops,

when the longest branch gets longer or the total num-

ber of mutations on the tree increases. This is shown by

the decrease in performance with migration, as the

average length of the longest branch is much longer

than without migration. This effect was expected, as the

likelihood of homoplasies and back substitutions

increases with longer branches and more mutations. We

also note that rate heterogeneity degrades performance
PAUPML (%) DNAPARS (%) PAUP* (%) NJ (%) TCS (%)

74.5 79.5 77.4 68.2 40.0

56.3 66.3 63.4 55.4 32.2

46.5 51.8 49.4 39.9 34.3

59.2 65.5 55.7 52.2 11.3

54 60.2 48 44.7 6.8

40.2 47.2 47.6 38.4 0.8

51.4 61.6 56.1 45.1 3.1

36.2 40.9 34.5 28.9 0.2

17.3 23.6 19.8 17.7 0.5

57.4 62.3 59.5 49.2 5.1

simulations for each parameter set). All ML methods perform

rms somewhat better than the base ML methods. TCS is the

tworks. As expected, larger Q and low migration rates create

um likelihood. Values in bold indicate the best-scoring method.

� 2011 Blackwell Publishing Ltd
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with a smaller shape parameter. A smaller shape

parameter results in a few sites with high mutation rate

that can result in reconstruction problems. The effect is

pronounced with the asymmetric migration case drop-

ping performance from 72.4% to 57.6% caused by the

occurrence of a long internal branch.
Estimation results without rate heterogeneity

The reconstruction results without rate heterogeneity

are summarized in Tables 2 and 3. Most methods attain

good reconstruction accuracy, and when they fail, the

RF distance is small, which indicates minor misplace-

ment errors of only one or two haplotypes. It is clear

that TCS performs considerably worse than any of the

other methods, while most of the ML, MP and NJ meth-

ods have approximately equal performance with the

exception of DNAPARS (from PHYLIP), which per-

forms slightly better than other methods (see also Wool-

ley et al. 2008 who obtained similar results in their

simulations). Also, PAUPML consistently performed

better than any other ML method used, although not as

well as DNAPARS. Just as reported in Woolley et al.

(2008), MS performed equal to or worse than TCS (data

not shown).

Increasing Q somewhat reduces accuracy across all

methods, as does increasing the number of samples.

Both raise the total haplotype count and this increases

the size of the valid tree space. So this trend is to be

expected.

One problem with parsimony methods is, however,

that these often return more than one tree, so that the

scientist is left with the decision of which tree to choose.

This renders parsimony methods impractical in some

cases. A similar problem is that a single tree can give

rise to more than one haplotype genealogy. For the basic

case of Q = 0.01 and no migration, about 40% of the
Table 3 Mean RF distance from true tree

Parameters PhyML IQPNNI DNAML P

Q = 0.01 0.7 (1.3) 0.7 (1.3) 0.6 (1.3) 0

C (a = 2.5) 1.2 (1.7) 1.2 (1.7) 1.2 (1.7) 1

C (a = 0.5) 1.7 (2.0) 1.8 (2.0) 1.7 (2.0) 1

Q = 0.0166 1.2 (1.7) 1.2 (1.7) 1.1 (1.7) 1

Q = 0.0166, 500 samples 1.6 (2) 1.6 (2) 1.5 (2) 1

Q = 0.01, k = 10 1.9 (2.2) 2.0 (2.4) 2.1 (2.4) 2

Q = 0.01, k = 100 1.4 (1.8) 1.4 (1.8) 1.4 (1.8) 1

k1 fi 2 = 10, k2 fi 1 = 0 2.48 (2.7) 2.5 (2.6) 2.7 (2.9) 2

C (a = 1) 3.7 (3.1) 4.0 (3.2) 4.0 (3.3) 3

k1 fi 2 = 100, k2 fi 1 = 0 1.4 (1.8) 1.3 (1.8) 1.3 (1.8) 1

Unless otherwise stated Q = 0.01 and there are 200 samples (and 1000

are in parenthesis. The same trends from Table 2 are apparent. Note

Definitions) because so many returned results are disjoint graphs. See

� 2011 Blackwell Publishing Ltd
returned trees result in a unique haplotype topology for

the ML methods (Table 4). Parsimony methods, in con-

trast, had a similar percentage of simulations with more

than one tree, while fewer of the returned results led to

unique haplotype genealogies. DNAPARS trees gave a

unique haplotype genealogy in <5% of the cases and

PAUP* scored 12% for the same metric. TCS had the

least number of returned spanning trees that resulted in

unique haplotype genealogies (2.4%) and the largest

average number of returned genealogies [2.7 (1.2)].

However, recall that we decompose the graph into all

possible spanning trees, and this may cause a bias.

Migration results are interesting from the point of

view that often, one is building a haplotype genealogy

as a visual aid to infer possible migration patterns. With

low migration rates the accuracy suffers. From Table 1

we see that, generally, we can determine when this

might be the case from some very long internal

branches. The general trends are the same, however,

with all methods performing approximately equally

well, except for TCS, which performed considerably

worse, and DNAPARS, which performed slightly better

than other methods.

Asymmetric migration does not change the general

trends. But for an asymmetric migration rate of 10, we

find the largest mean RF distance for all methods, and

the lowest reconstruction efficiency. With an asymmet-

ric migration rate of 100, we observe that the results are

similar to the symmetric migration case with recon-

struction efficiency improving slightly for the asymmet-

ric case. As noted above, migration gives, with high

probability, longer internal branches. Also, the perfor-

mance of reconstruction methods is highly correlated

with these long branches [i.e. the average longest

branch for asymmetric migration rate k = 10 is 24.4

(18.2)], which can be considered predominately a recon-

struction problem in the presence of long branches. This
AUPML DNAPARS PAUP* NJ TCS

.5 (1.1) 0.5 (1.0) 0.7 (1.3) 0.7 (1.3) 5.2 (5.4)

.6 (1.5) 0.5 (0.6) 0.4 (0.7) 1.2 (1.7) 3.6 (4.0)

.6 (1.9) 0.77 (1.2) 0.6 (1.1) 1.8 (2.0) 3.6 (4.2)

.1 (1.7) 0.8 (1.3) 1.1 (1.6) 1.2 (1.6) 12 (8)

.4 (1.9) 1.0 (1.6) 1.6 (2) 1.5 (1.9) 15.6 (9.4)

.1 (2.4) 1.3 (1.9) 1.7 (2.1) 1.7 (1.9) 21 (7)

.5 (1.9) 0.9 (1.5) 1.5 (1.9) 1.4 (1.8) 17 (8)

.4 (2.7) 1.7 (2.2) 2.2 (2.4) 2.1 (2.9) 22.4 (6.4)

.9 (3.4) 1.9 (2.1) 1.8 (2.1) 3.3 (2.8) 17.6 (5.3)

.2 (1.7) 0.8 (1.4) 1.4 (1.8) 1.3 (1.7) 15 (9)

simulations for each parameter set). The standard deviations

that for TCS the distance is not a pure RF distance (section

the text for details. RF, Robinson-Foulds.



Table 4 Number of haplotype genealogies per returned tree

Method % unique Average count

PhyML 38.4 1.9 (1.1)

IQPNNI 40.8 1.8 (1.1)

DNAML 41.3 1.9 (1.1)

DNAPARS 4.4 1.9 (0.4)

PAUP* 12.7 2.3 (1.1)

NJ 39.9 1.9 (1.1)

TCS 2.4 2.7 (1.2)
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conclusion is supported by a similar deterioration of

performance with increasing Q and samples. Fortu-

nately, when such a haplotype genealogy is recon-

structed, the long branches are easily observed and we

can assume that confidence may not be high. However,

we still note that even in the worst case the RF distance

has a mean of about 2, and so most of the genealogies

did indeed reflect the true genealogies.

If we consider ML methods only, we note the differ-

ences in many options on the programs used made very

little difference to the overall performance. Interestingly,

however, all programs but PAUPML perform identi-

cally, with PAUPML performing slightly better. What

could be the cause of PAUPML’s improved perfor-

mance? We propose that the heuristic search algorithm

that PAUP uses by default is more exhaustive com-

pared with other methods, therefore permitting a wider

topology search space at the expense of run time. To

test this, the wide moves for DNAML were turned on

for some parameter values (not shown) and a slight

performance increase was observed, although still lower

than PAUPML. In practice, the difference is small and

real world effects are likely to be a larger issue.
Rate heterogeneity

Although simulations for all parameter sets for a gamma

model were carried out, we only show some results for

clarity. Performance of most methods decreased slightly

for the a = 2.5 case and substantially for a shape param-

eter of a = 0.5. However, TCS was not affected as much

as other approaches, and even showed a slight

improvement in performance. This ‘enhancement’ sim-

ply reflects the greater number of spanning trees per

data set retrieved under these conditions. However,

TCS still scores lower than any other method consid-

ered. A similar increase in the number of trees returned

occurred with the parsimony methods. For example,

PAUP parsimony returns an average of 2.1 trees per

data set in the normal case, which increases to 6.8 trees

per data set with a shape parameter of a = 0.5.

When a gamma model of evolution was used for the

case of asymmetric migration (k = 10), the performance
of all methods dropped dramatically. This is because,

although the number of mutations is the same, the

number of altered sites is not. So the total number of

segregating sites is smaller, and more importantly, pair-

wise differences tend to be fewer than in the homoge-

neous mutation model. Consequently, the probability of

back mutations and other confounding factors increases

dramatically when there are some very long branches

in the tree. It should be noted that even with ‘perfect’

reconstruction the accuracy drops to 57.6% (Table 1)

and poor overall performance is to be expected.

The final observation with a gamma model is that MP

still scored better compared with ML. This is at odds with

the general view that, as models get more complicated,

parsimony should do worse. Yet, both methods are some-

what similarly affected. First, long branch attraction is

unlikely to play a role here, as all data are clocklike. The

second detail to note is that we are not dealing with spe-

cies data, but population data, and that these data are

‘oversampled’. By oversampled we mean that we expect

to see a haplotype more than once in our sample. This

tends to reduce the expected length of the longest branch

in the genealogy, as there is a high probability that a

branch will be broken up by a coalescent event. Another

consideration is that we convert a topology to a haplo-

type genealogy by using Fitch branch lengths, and that

the parsimony score is the sum of Fitch branch lengths.

Thus, the heuristic search algorithm used may favour

conversion to relevant haplotype genealogies as it uses a

more correct optimality criterion. It is also interesting to

note that the two best ML scores are provided by

DNAML and PAUPML. This gives strong evidence that

both methods use a much more exhaustive heuristic

search to finding a tree, regardless of the optimality crite-

ria used. This further benefits these methods.
Poor TCS performance and its consequences for nested
clade phylogeographic analyses

On further inspection of the results from TCS, we noted

that almost half the time for Q = 0.01 disjoint graphs

were returned. This trend gets worse for larger Q and

with migration, returning as little as 3.6% fully con-

nected graphs for k = 10. For the case of asymmetric

migration with k = 100, 5.1% returned graphs had the

true tree embedded within it. A fraction of 9.4% of the

returned results were trees, 81.5% were disjoint graphs;

the average number of spanning trees from each graph

was 8.8. The large number of disjoint graphs, which

cannot possibly give a correct result, penalizes TCS sub-

stantially. Note, however, that MS performs even worse

in most parameter sets.

One consideration is that the incomplete graph com-

ponents may contain a pruned true tree. It was found
� 2011 Blackwell Publishing Ltd
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that for no migration and Q = 0.01 61.2% of the

returned incomplete graphs contained the pruned true

tree, 4.0 (4.4) haplotypes were pruned on average, and

there were 2.4 spanning trees per component. This com-

pares to 68.1% of correctly resolved haplotype genealo-

gies for the next worse method, PhyML (Table 2). For

asymmetric migration with k = 100, 22.9% of the

incomplete graphs contained the pruned true tree with

an average of 2.5 (5.5) labels pruned, and an average of

7.7 (49) spanning trees found per graph. Again the next

worse method, IQPNNI in this case, performs consider-

ably better with 49.1% of returned results giving the

correct haplotype genealogy without the complications

of incomplete haplotype labels and networks. Other

parameter values had similar results and do not

improve TCS results compared to other methods.

One possible criticism of the current study is that we

are looking at a parameter region where TCS will per-

form very poorly. TCS performs better for data sets

with much higher sequence similarity. To rule this out,

we performed simulations with much smaller Q values:

in particular Q = 0.005 and Q = 0.002. With a small Q
and the same number of samples (200), the number of

observed haplotypes falls to small values, for example

when Q = 0.002 the average number of haplotypes is

only 6.5. Under these conditions, TCS performance

improves considerably as do the other methods, but

TCS is never better than any other method (data not

shown). If we change any parameter to increase the

number of observed haplotypes, the performance

degrades as shown above.

This has implications on an ongoing debate about the

validity of some of the standard approaches used by

many researchers in the field of phylogeography and

population genetics (see commentary by Knowles 2008).

Using simulated data sets, it has been shown that the

widely applied nested clade phylogeographic analysis

(NCPA) (Templeton et al. 1995; Templeton 2004, 2008)

fails to infer the correct historical processes in about

three quarters of the cases (Knowles & Maddison 2002;

Panchal & Beaumont 2007). Here we show that already

the standard input for NCPA networks derived from

e.g. TCS are somewhat problematic and more error-

prone than genealogies reconstructed with phylogenetic

algorithms. Thus, our results seem to support the view

that phylogeography’s standard repertoire of methods

are not accurate and that a more thorough evaluation of

widely applied analyses is needed (Petit 2007; Knowles

2008).
Open questions and problems

A series of problems remain when reconstructing gene-

alogies from closely related haplotypic sequence data,
� 2011 Blackwell Publishing Ltd
which should be addressed in future studies. The first

problem is the evaluation of the reliability of connec-

tions in haplotype genealogies. Bootstrapping methods

and posterior probabilities are highly inefficient when

dealing with closely related taxa and hence highly simi-

lar sequence data. Standard methods for comparing

alternative topologies, such as the Shimodaira–Hasega-

wa test (Shimodaira & Hasegawa 1999), are similarly

impractical. To apply at least some quality criterion on

branches in a haplotype genealogy, Salzburger et al.

(2003) have mapped the consistency index (Kluge &

Farris 1969) for each mutation responsible for a connec-

tion in the genealogy. By doing so, diagnostic mutations

occurring only once can be highlighted. The branches

defined by such diagnostic mutations should be consid-

ered more reliable compared to branches defined by ho-

moplasious mutations. Other diagnostic characters,

such as insertions or deletions, might also be informa-

tive at the intraspecific level (in particular when using

noncoding haplotype sequences such as the mitochon-

drial control region). Yet, algorithms are lacking that

would adequately take into account the phylogenetic

information provided by ‘gaps’. With growing numbers

of taxa sampled and haplotypes sequenced, the graphi-

cal representation of haplotype genealogies also

becomes problematic. Finally, much more effort should

be devoted to hypothesis testing approaches and the

modelling of phylogenetic, population genetic and phy-

logeographic scenarios on the basis of haplotype geneal-

ogies (Knowles & Maddison 2002).
Conclusion and outlook

Our comparative phylogenetic analysis of simulated

data sets with known genealogies revealed that tradi-

tional phylogenetic algorithms perform well in estimat-

ing haplotype genealogies, and that the DNAPARS

phylogeny most often leads to the correct tree. In cases

where these methods failed, the RF distance was small,

indicating only small errors. All ML methods worked

approximately equally, with PAUPML performing

slightly better in all cases. Surprisingly, the ML meth-

ods had similar performance to NJ. MP did perform

better than ML methods in general, although the differ-

ence was not large. The good performance of parsi-

mony in situations with low mutation count has been

reported previously by DeBry & Abele (1995). In this

regime, there is actually some equivalence between ML

and MP (see Steel & Penny 2000 and references

therein). The disadvantage of MP is that it suffers from

the sometimes large amounts of equally good optimal

trees, making practical application of these methods

more difficult. Most importantly, we find that all tradi-

tional phylogenetic methods outperform TCS in recon-
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structing the true haplotype genealogy. A main problem

with TCS is that it frequently produces disjoint graphs.

Even allowing for incomplete trees, TCS still did not

perform as well as any other method tested. Although

we have primarily considered SP as implemented in

TCS here, we do not expect other network methods

such as MS or MJ to perform significantly better, as it

has previously been shown that these perform similarly

(Cassens et al. 2005). This poses questions about empiri-

cal studies that employ TCS (Knowles 2008).

We have implemented a small program that creates

high-quality haplotype geneologies from tree data and

runs on Mac, Linux and Windows. It has a wide range

of options and can output publication quality figures.

The program is freely available at http://www.cibiv.

at/~greg/haploviewer with instructions. This software

is still under development.
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