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Supertree methods are widely applied and give rise
to new conclusions about phylogenies (e.g., Bininda-
Emonds et al. 2007). Although several desiderata for su-
pertree methods exist (Wilkinson, Thorley, et al. 2004),
only few of them have been studied in greater detail,
examples include shape bias (Wilkinson et al. 2005) or
pareto properties (Wilkinson et al. 2007). Here I look
more closely at two matrix representation methods, ma-
trix representation with compatibility (MRC) and matrix
representation with parsimony (MRP). Different null
models of random data are studied and the resulting
tree shapes are investigated. Thereby I consider un-
rooted trees and a bias in tree shape is determined by
a tree balance measure. The measure for unrooted trees
is a modification of a tree balance measure for rooted
trees. I observe that depending on the underlying null
model of random data, the methods may resolve con-
flict in favor of more balanced tree shapes. The analyses

refer only to trees with the same taxon set, also known
as the consensus setting (e.g., Wilkinson et al. 2007), but
I will be able to draw conclusions on how to deal with
missing data.

BACKGROUND

In this section, the relevant terms, in particular tree
topologies and tree shapes, are introduced. A (tree) topol-
ogy for n taxa is an unrooted leaf-labeled bifurcating tree
with n leaves. The leaf labels are called taxa. A split A|B
is a bipartition of the taxon set into the two sets A and B.
It corresponds to a branch in a tree where the taxa in A
are on one side of the branch and the taxa in B are on
the other side. A split is called k-split if k=min{|A|, |B|}.
A bifurcating topology for n taxa has n 1-splits and n−3
k-splits with k>2. From now on, only splits with k>2
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are considered, and they are called inner splits or simply
splits. Overall, there exist 2n−1 − n − 1 different inner
splits for n taxa. Only compatible splits can be arranged
in a tree, and two splits A1|B1 and A2|B2 are compatible
if and only if at least one of the following sets is empty:
A1∩A2, A1∩B2, B1∩A2 or B1∩B2. Due to this restriction,
the number of possible trees in which a k-split can occur
depends on k (Table 1).

A (tree) shape is obtained from a topology by ignoring
the labels. Thus, a shape is an unlabeled bifurcating tree.
Note that the term k-split can also be used in the context
of a tree shape, for example, the shape S5 (Table 2) has
two 2-splits.

From six taxa on, more than one tree shape exists
(Table 2). These tree shapes differ in their balance, which
can be measured with tree balance statistics (e.g., Shao
and Sokal 1990). Because these statistics are defined for
rooted trees, the shapes here are rooted at their centroid.
A centroid of a shape is a node where none of its inci-
dent edges leads to more than half of the terminal edges
and if this holds for two nodes, the root is placed on
the edge connecting these two nodes (see also Furnas
1984). If the root is placed on an edge, then a bifurcating
rooted tree is obtained. But if the root is placed on a
node, then there is a multifurcation at the root. In this
case, I compute the mean over the tree balance statistics
for all three possible resolutions. As tree balance statis-
tic, the Colless index without any normalization is used
(Colless 1982). It sums up the absolute differences in the
number of leaves between the right and left subgraph
for each node. Thus, higher Colless indices resemble
higher imbalance. In table 2, the shape with the highest
Colless index is also the most unbalanced one. However,
the Colless index as applied here does not necessarily
coincide with the intuitive understanding of the balance
of an unrooted shape. First, for n=6, the Colless index
cannot distinguish between the two shapes (Table 2),
but in analogy to other n, I also call S6,1 unbalanced.
Second, for example, S8,2 “looks” more balanced than
S8,3 although it has a higher Colless index. However,
when comparing more complex shapes, a computable
index is necessary to assess balance, for example, one

TABLE 1. Number of different splits for each k and the number of
different trees containing a particular k-split

n k Number of splits Number of trees per split
5 2 10 3
6 2 15 15

3 10 9
Total 25

7 2 21 105
3 35 45

Total 56
8 2 28 945

3 56 315
4 35 225

Total 119
9 2 36 10,395

3 84 2835
4 126 1575

Total 246

cannot intuitively decide whether S9,4 or S9,6 is more
balanced.

There is a relationship between the kinds of splits in
the shape and their balance: Unbalanced shapes are the
ones with exactly two 2-splits (shapes S6,1, S7,1, S8,1 and
S9,1). On the other hand, the balanced shapes maximize
the number of 2-splits.

I study two null models containing no phylogenetic
information. The first is the well-known distribution
that each bifurcating tree for a particular number of
taxa is equally likely (proportional to distinguishable
arrangements, PDA; Rosen 1978). See Table 2 (lines
“total”) for the possible numbers of trees for n=5, . . . , 9.
Perfect PDA denotes the data set which contains each
tree exactly once. Second, I introduce the model that
each split is equally likely (proportional to distinguish-
able splits, PDS). Analogously, perfect PDS denotes the
data set that contains each possible split exactly once. It
is possible to relate each split with a multifurcating tree
with only one inner branch and the PDS corresponds to
an equal distribution of those multifurcating trees. Note
that there is no distribution of bifurcating trees that
corresponds to the PDS model (Steel and Pickett 2006).
In particular, the PDS and PDA models are distinct
because some splits occur in more trees than others
(Table 1). For a given k-split, the number of trees contain-
ing this split is Tk+1×Tn−k+1 where Ti is the number of un-
rooted trees with i taxa (Ti = (2i−5)!!= 1×3×. . .×(2i−5)).
For example, for n= 6, there are 15 different 2-splits and
each one is present in 15 different bifurcating trees, but
there are 10 different 3-splits, and each one is present in
only nine trees. And for n = 9, the number of trees con-
taining a particular 2-split is more than six times higher
than the number of trees containing a particular 4-split.
Thus, this gap increases with n. As a consequence, two
trees generated randomly under the PDA model tend to
have no k-split with k> 3 in common, if the number of
taxa goes toward infinity (Steel and Penny 1993). Note
that the PDA model also implies a nonuniform shape
distribution. In particular, unbalanced shapes are most
likely (Table 2).

METHODS

I study the two related supertree methods MRC
(Rodrigo 1996; Ross and Rodrigo 2004) and MRP (Baum
1992; Ragan 1992; Baum and Ragan 2004). Both code the
input trees first as a binary matrix, the matrix represen-
tation (MR), and subsequently compute a supertree by
optimizing an objective function on this matrix. In the
MR, each column is a binary coding of an input tree split
A|B, with 1s corresponding to the taxa in A and 0s cor-
responding to the taxa in B. Because only unrooted trees
are considered, the direction, that is, whether A or B is
coded 0, is not important. The number of columns in an
MR is denoted as length l. This is the total number of
splits in the input trees. MRC and MRP are split-based
methods because they first extract the split information
of the input trees and subsequently compute a supertree
from this split information.
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TABLE 2. Shape probabilities and critical numbers under the uniform tree model (PDA)

n Shape Number of
trees Probability Colless

index
Critical numbers (ic)

MRC (%) MRP (%)

5 S5 15 1 2.3 1 (6.7) 1 (6.7)

6 S6,1 90 0.857 2 6 (5.7) 6 (5.7)

S6,2 15 0.143 2 1 (0.95) 1 (0.95)

Total 105

7 S7,1 630 0.667 5.7 60 (6.3) 60 (6.3)

S7,2 315 0.333 4 1 (0.11) 1 (0.11)

Total 945

8 S8,1 5040 0.485 6 720 (6.9) 900 (8.7)

S8,2 2520 0.242 5.3 270 (2.6) 540 (5.2)

S8,3 2520 0.242 3 630 (6.1) 990 (9.5)

S8,4 315 0.030 0 1 (0.01) 1 (0.01)

Total 10395

9 S9,1 45360 0.336 11 8820 (6.5) 12600 (9.3)

S9,2 45360 0.336 8.3 7560 (5.6) 13860 (10.3)

S9,3 22680 0.168 8 8820 (6.5) 13860 (10.3)

S9,4 7560 0.056 6 3150 (2.3) 7560 (5.6)

S9,5 11340 0.084 5.3 1 (0.0007) 1 (0.0007)

S9,6 2835 0.021 5 1260 (0.93) 1260 (0.93)

Total 135135

Note: Bold shapes are the optimal shapes with MRC and MRP under the PDA model. The dot marks the centroid of each shape. For each n,
the shapes are ordered by decreasing Colless index, that is, by increasing balance. The critical number is the number of trees necessary to be
added to the perfect PDA model until the true tree is in the supertree set. The fraction in parentheses is the number of trees added divided by
the number of trees in the perfect PDA model.

With MRC the optimizing function is maximizing
the number of compatible columns, that is, the cor-
responding splits can be arranged in a tree without
conflict. In the consensus setting studied here, the MRC
tree is equivalent to the tree with the maximal number
of splits in the data, that is, to the asymmetric me-
dian tree (Phillips and Warnow 1996). Equivalently,

the method can also be defined as minimizing the num-
ber of columns not present in the supertree, a notation
that is used from now on. The number of columns
not present in the supertree is called compatibility
length (CL).

MRP uses parsimony to reconstruct a tree from the
matrix representation. For a candidate supertree, the
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sum of parsimony lengths (PLs) over the columns along
that tree is computed. The optimizing function is mini-
mizing the sum of PLs. The sum over the whole MR is
called PL of the tree.

In this note, all optimal trees are found by exhaus-
tive search. Note that there can be multiple supertrees
with the same minimal CL and PL, respectively, thus I
talk about the “supertree set.” Optimal MRC trees were
found with the python script mrc.py that evaluates
all possible topologies for a particular number of taxa
(available from http://www.cibiv.at/software/mrc/).
Optimal MRP trees were computed with the branch-
and-bound option in PAUP* (Swofford 2002).

RESULTS

Perfect Distributions

First, I perfectly model the null distributions. Under
the perfect PDS model, the MR contains exactly one split
of each kind (e.g., 25 columns for n = 6, Table 1). Then
the CLs are equal for all trees. Because each tree contains
n− 3 inner splits, the CL of each tree is l−n+3. The PLs
of all trees are also equal if each possible split is given
as input (Steel 1993). Thus, for MRC and MRP, the su-
pertree set contains every tree if the perfect PDS model
is used as input.

Under the perfect PDA model, the MR is built by cod-
ing each tree once. Then the CLs are not equal for all
trees. Instead, the optimal supertrees for MRC are all
of one shape. This shape is called the optimal shape for
MRC. Because the PDA model is label invariant, the su-
pertree set contains all trees of the optimal shape. The
analog holds for MRP. For six to nine taxa the optimal
shape is the same for MRC and MRP (bold shapes in
Table 2). For example, for n=6 the supertree set contains
15 trees, all being of shape S6,2. These optimal shapes
tend to be balanced, that is, they have a low Colless
index. Note that MRC and MRP do not always result
in the same optimal shapes (Fig. 1).

In the following, I investigate MRC and MRP with de-
viations from the perfect models. Thereby, the focus is
on two special shapes for each n: the optimal shape that
was found under the perfect PDA model and the unbal-
anced shape that has exactly two 2-splits.

Resampling Randomly from the Distributions

Here, I resample a particular number of trees t
from each distribution. For the PDS model, instead of
resampling t trees, t×(n−3) splits are randomly drawn
with replacement. I evaluate the fraction of optimal
shapes among the resulting supertrees. If the supertree
set for one data set contains p trees of which q exhibit
the optimal shape, then this data set shows a fraction
of q/p of the optimal shape. The results in Figure 2 are
obtained by averaging this fraction over 100 randomly
generated data sets.

Under the PDA model, a certain fraction of the op-
timal shape is expected (Table 2). These fractions are

FIGURE 1. Optimal shapes for n=11. Note that MRC and MRP can
result in different optimal shapes.

marked dashed in Figure 2. With the PDS model, the
optimal shape occurs a bit less frequently in the su-
pertree sets than expected. In contrast, if the input trees
are generated under the PDA model, the supertrees
show the optimal shapes more often than expected.
The observed fraction of optimal shapes grows with
the number of input trees. Furthermore, the bias is
less strong for MRP, in particular for odd numbers of
taxa.

Perfect Distributions with Phylogenetic Information

Next, I ask how the methods behave in the presence
of “little” phylogenetic information disturbed by noise.
First, noise is modeled by the perfect PDA model. Note
that the supertree methods show a shape bias if the
perfect PDA model is used as input (Table 2). The lit-
tle phylogenetic information is modeled by adding the
“true” tree i times to the perfect PDA model. The critical
number ic is the smallest i such that the true tree is in
the supertree set. I observe that ic depends strongly on
the shape of the true tree (Table 2). It ranges from 1 tree
for the optimal shape up to 10%. In general, the criti-
cal numbers are lower for MRC than for MRP. If ic=1,
the true tree is the only supertree for all i. Otherwise, the
supertree set does not contain the true tree for i < ic,
the supertree set contains the true tree for i= ic, and the
true tree is the only supertree for i> ic.

For example, for n= 6 and S6,1, the true tree is T1
(Fig. 3a). If this tree is added once to the pefect PDA
model, the supertree for MRC and MRP, respectively, is
T2 (Fig. 3b). Thus, the supertree is balanced and includes
the two 2-splits of the true tree ({t1, t2}|{t3, t4, t5, t6}
and {t5, t6}|{t1, t2, t3, t4}). For MRC, this result is ex-
plained by the CLs: The balanced tree T2 has a length of
315−3×15+1=271 (315 splits from the PDA model, of
which the three 2-splits from T2 occur in 15 trees each
and one 3-split from T1 increases the length by one; see
also Table 1). Analogously, the unbalanced tree T1 has
a length of 315−2×15−9=276 (the two 2-splits from
T1 occur in 15 trees each and the one 3-split from T1
occurs in 9 trees). For this example, ic is computed by
315−3×15+ic=315−2×15−9, thus ic=6 and from i=7
on the true tree is the only supertree. Below the crit-
ical number the nonuniform split distribution, which
prefers 2-splits, outvotes the 3-split.

If one “true” tree is added to the perfect PDS model,
then the supertree equals the true tree for MRC and
MRP and all shapes presented in Table 2.
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FIGURE 2. Resulting supertree shapes if random input trees are given (100 rep-
etitions for each number of trees). The dashed line is the expected fraction of the
optimal shape under the PDA model (Table 2).

Legend PDS PDA
MRC + ×
MRP • ◦

Resampling Randomly from the Distributions and Adding
Phylogenetic Information

The previous section showed that 10% of phyloge-
netic information is sufficient such that the supertree
equals the true tree in a perfect setting. However, this
behavior is disturbed by noise. To show this, I add
the “true” tree with a fraction of 10% to the random
trees used for the analysis displayed in Figure 2. There-
fore, only the data sets with 10, 20, . . . , 100 trees are
taken and the true tree is added 1, 2, . . . , 10 times.
The true tree is either one topology showing the op-
timal shape or one topology showing the unbalanced
shape. The accuracy for one data set is 1/p, if p su-
pertrees are found and the true tree is among them,
and 0 otherwise. The accuracies are averaged over 100
data sets.

FIGURE 3. Example trees.

Under the PDS model (Fig. 4, left column), there is no
observable difference in accuracy between the true trees
showing different shapes. For the PDA model (Fig. 4,
right column), however, the tree with the optimal shape
is reconstructed correctly with higher probability than
the tree with the unbalanced shape. Furthermore, the
accuracies increase with the number of true trees. Ap-
parently, 10 true trees out of 110 trees provide more in-
formation compared with 1 true tree out of 11 trees. The
accuracies are higher for MRC than for MRP. This is con-
sistent with the results for the perfect setting that MRP
needs more trees until the true tree is in the supertree set
(Table 2).

CONCLUSIONS

Wilkinson et al. (2005) report a shape bias toward an
unbalanced tree for MRP which at first view contra-
dicts my result that the optimal shapes for both MRP
and MRC are more balanced. However, their setting is
different from mine. They investigate two arbitrarily
chosen input trees of different shapes and observe an
asymmetry in the PLs: the PL of a balanced input tree
on an unbalanced supertree is shorter than vice versa.
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FIGURE 4. Adding information to random trees. The random trees are taken from Figure 2 and a fraction of 10% of the true tree is added
(x-axis is labeled with the number of added true trees). Accuracy is the fraction the true tree was found by the supertree methods (average over
100 repetitions). Optimal shapes are S6,2, S7,2, S8,4 and S9,5. Unbalances shapes are S6,1, S7,1, S8,1 and S9,1 (see Table 2).

This can be explained by an inherent feature of the par-
simony score: The PL of a coded k-split does not exceed
k on any tree. More balanced trees contain more splits

with small k (Table 2), that is, where the numbers of taxa
are nonuniformly distributed. They necessarily have
lower maximal PLs. Splits with higher k do not only
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have higher maximal PLs, but in addition, the PL distri-
bution on random trees is shifted toward higher values
(Maddison and Slatkin 1991). This explains that coding
the balanced tree in the MR and evaluating it on the un-
balanced tree is favorable compared with coding the un-
balanced tree and evaluating it on the balanced tree.

For more than two random input trees an optimal
shape is preferred which is more balanced (Fig. 2).
This holds for MRC as well as MRP although CLs
are not asymmetric. Furthermore, it even holds if un-
balanced and balanced shapes are not uniformly dis-
tributed among the input shapes, but when unbalanced
input tree shapes are favored (e.g., for n=6, the input
trees are drawn from a distribution that contains the un-
balanced shape in 86%; see also Table 2). This shape bias
is positively misleading, that is, it grows with the num-
ber of input trees. However, it grows more slowly for
MRP. An explanation may be that the bias toward un-
balanced shapes due to the asymmetric PLs (Wilkinson
et al. 2005) acts as counterbalance.

This shape bias is only observed for the PDA model
(all trees are equally likely), not for the PDS model (all
splits are equally likely). The two null models do also
behave differently if little phylogenetic information is
added, that is, where one or more “true” trees are added
to the perfect distributions. Only under the PDA model,
the supertree set may not contain the true tree for some
tree shapes. Instead, up to 10% of the true tree are
needed such that it is contained in the supertree set
(Table 2). When adding one true tree with an unbal-
anced tree shape, the supertree is not this tree but a
more balanced tree. This balanced supertree preserves
only some splits present in the true tree. The shape bias
is also present if not the complete list of trees but ran-
dom trees are given, and the true tree is added with
a fraction of 10% (Fig. 4). In this case, a tree with the
optimal shape is reconstructed correctly with higher
probability than a tree with the unbalanced shape. Fur-
thermore, there is a difference in the accuracy for differ-
ent n. For MRC, the accuracy is increasing with n. That
may be explained by the fact the the probability of a
particular 2-split is 1/(2n−5) and thus decreases with
n (see also McKenzie and Steel 2000). Thus, the informa-
tion added by multiple trees is more specific for higher
n. This effect is not present in MRP. It is probably coun-
terbalanced by the fact that higher n can also have splits
with higher k, which in turn can have higher PLs.

I note that the shape bias presented here is a con-
sequence of the complex space of trees. Under the
PDA model, 2-splits are more likely than other splits
(Table 1) and no distribution on bifurcationg trees
ensures that all splits are equally likely (Steel and Pickett
2006). This results in a bias toward balanced trees with
any split-based supertree reconstruction method. The
same relation causes the problem that uniform priors
on tree topologies do imply nonuniform priors on splits
in Bayesian analysis, thus posterior probabilities may
be biased (Pickett and Randle 2005). Supertree methods
that are not based on the encodings of full splits may be
less affected by the presented bias. Different matrix en-

codings are possible (e.g., Wilkinson, Cotton, et al. 2004)
for the compatibility or parsimony analyses, or a com-
pletely different class of methods could be used (e.g.,
Semple and Steel 2000, and variants thereof). Note that
the latter methods are based on rooted input trees. An
investigation of the tree shape bias in the rooted setting
would also be of interest.

In general, I do not assume that the shape bias has an
impact on usual supertree reconstruction. Here, prob-
lems occur if 90–100% are random data or for small
numbers of trees. This is not expected to be the case in
any analysis. However, in sparse data sets, only few in-
put trees may carry the information for some splits. If
they are highly conflicting, the shape bias may play a
role at least locally. Note that an implicit bias in a phy-
logeny reconstruction method also has little influence as
soon as data is present (Vinh et al. 2010).

Furthermore, I cannot make any conclusions about
whether MRC or MRP should be preferred because they
show the bias to a different extent depending on the
model. If only random trees are given as input, the bias
is less strong in MRP (Fig. 2). On the other hand, if little
information is added, MRC can better find the true tree
(Fig. 4).

These findings allow implications about the design of
supertree methods that explicitly model missing data.
I conclude that modeling missing data by generating all
possible trees may introduce a bias toward more bal-
anced tree shapes when applying split-based supertree
methods. To date, supertree methods usually do not
model missing data explicitly (but see the definition
of majority-rule(+) supertrees in Cotton and Wilkinson
2007). Instead, for MRC, treating missing taxa as gaps is
equivalent to generating all possible binary characters
by replacing the gaps with 0s and 1s (Rodrigo 1996).
This corresponds to the PDS model that is not affected
by the positively misleading tree shape bias.
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