
Robust Distributed Orthogonalization
Based on Randomized Aggregation

Wilfried N. Gansterer, Gerhard Niederbrucker, Hana Straková and Stefan Schulze Grotthoff
University of Vienna, Austria

Research Group Theory and Applications of Algorithms
wilfried.gansterer@univie.ac.at, gerhard.niederbrucker@univie.ac.at,

hana.strakova@univie.ac.at, stefan.schulzegrotthoff@gmail.com

ABSTRACT
The construction of distributed algorithms for matrix com-
putations built on top of distributed data aggregation al-
gorithms with randomized communication schedules is in-
vestigated. For this purpose, a new aggregation algorithm
for summing or averaging distributed values, the push-flow
algorithm, is developed, which achieves superior resilience
properties with respect to node failures compared to existing
aggregation methods. On a hypercube topology it asymptot-
ically requires the same number of iterations as the optimal
all-to-all reduction operation and it scales well with the num-
ber of nodes. Orthogonalization is studied as a prototypical
matrix computation task. A new fault tolerant distributed
orthogonalization method (rdmGS), which can produce ac-
curate results even in the presence of node failures, is built
on top of distributed data aggregation algorithms.

Categories and Subject Descriptors
G.1.0 [Numerical Analysis]: General—Numerical algo-
rithms, Parallel algorithms; F.2.1 [Analysis of Algorithms

and Problem Complexity]: Numerical Algorithms and
Problems—Computations on matrices

General Terms
Algorithms, Performance, Reliability

1. INTRODUCTION
Algorithms for future large-scale computer systems have

to be designed such that resilience to various types of fail-
ures is provided and that as little as possible synchroniza-
tion between nodes is required. The basic idea underlying
this paper is to investigate the construction of suitable dis-
tributed algorithms for matrix computations built on top
of distributed data aggregation algorithms (DDAAs). Such
algorithms can be seen as distributed versions of all-to-all
reduction operations, in particular for summing or for aver-
aging the elements of a long vector distributed over many

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ScalA’11, November 14, 2011, Seattle, Washington, USA.
Copyright 2011 ACM 978-1-4503-1180-9/11/11 ...$10.00.

nodes. Consequently, distributed versions of basically all
types of Blas operations can potentially be constructed
based on DDAAs.

Problem Setting
We consider a large-scale computer system with N nodes ar-
ranged in a fixed but otherwise arbitrary topology as target
system for the computations. Our focus is on distributed al-
gorithms for such large-scale systems, which we clearly dis-
tinguish from parallel algorithms. Parallel algorithms are
usually designed for small to medium-sized static and reli-
able systems, where synchronized computation across nodes
in the network can be guaranteed. However, these algo-
rithms have major drawbacks in possibly decentralized large-
scale systems with arbitrary topologies and potentially un-
reliable components (nodes or communication links), where
synchronization of the nodes may be difficult to achieve.
Distributed algorithms provide much greater flexibility with
respect to the hardware infrastructure than classical par-
allel algorithms. They neither rely on a fixed communica-
tion schedule nor on full synchronization across the nodes.
Moreover, they have the potential for producing meaning-
ful results even in the presence of link or node failures.
More generally speaking, distributed algorithms are useful in
all computations over large-scale computing systems where
(i) the nodes do not have complete global information about
the system, but predominantly only local information about
their neighborhood, and/or (ii) the system is not static, but
may change dynamically (e. g., due to hardware failures).

We investigate distributed algorithms based on gossiping
protocols. They are attractive in such situations, because
due to their randomized information exchange they do not
require static or reliable hardware infrastructure. If com-
munication is restricted to the local neighborhood of each
node, the number of iterations required tends to scale loga-
rithmically with the number of nodes in the system, which is
asymptotically the same as in optimized all-to-all reduction
operations. Moreover, due to their iterative structure they
can deliver results at reduced accuracy levels for a commu-
nication cost which is proportional to the target accuracy.

Related Work
Approaches for achieving fault tolerance in parallel and dis-
tributed systems have been investigated at various levels. At
the MPI level, fault tolerant MPI [8] has been investigated.
At the parallel application level, the standard approach is
(coordinated) checkpointing followed by rollback recovery in
case of a failure. It is unclear how to scale this method to

gansterer
Schreibmaschinentext

gansterer
Schreibmaschinentext

gansterer
Schreibmaschinentext
PREPRINT

very large systems [26]. Several alternatives have been pro-
posed [10, 21, 20], but they all have their drawbacks. In
contrast to checkpointing, redundant computing [9, 22, 6]
can handle multiple failures without recovery overhead.

A purely algorithmic way of achieving fault tolerance for
high level matrix operations is the technique of algorithm-
based fault tolerance (ABFT) [11]. The basic idea of ABFT
is to extend the input matrices by checksums and to adapt
the algorithms such that these checksums get updated cor-
rectly and can consequently be used for detecting and recov-
ering from errors. Classically, ABFT was designed for han-
dling a prescribed amount of miscalculations with a high
probability [11], whereas more recently also fail-stop fail-
ures, where nodes entirely crash, were considered [4]. Beside
the extension to fail-stop failures there are also efforts into
ABFT methods which make use of the inherent redundancy
of the data distribution across the nodes to recover from fail-
ures, which results in methods where only failure situations
lead to an overhead [3].

Distributed algorithms based on gossiping (or epidemic)
protocols have been discussed extensively in the literature [2,
17, 5, 1]. However, almost all existing work focuses on very
simple operations, such as information dissemination [14],
aggregation [12], network organization [23], or computing
separable functions [18].

For our objective, DDAAs for the distributed computation
of sums and averages, such as the push-sum algorithm [15],
are most relevant. Only recently, distributed algorithms for
more complex matrix computations based on DDAAs, such
as the dmGS algorithm for distributed QR factorization [25]
or a distributed orthogonal iteration method [16, 24] (both
based on the push-sum algorithm) have been investigated.
The potential of DDAAs for providing a high degree of re-
silience is mentioned in the literature at various places (see,
e. g., [19]), but we are not aware of any work which inves-
tigates the challenges arising when trying to tap the full
potential.

2. RESILIENCE OF DISTRIBUTED DATA
AGGREGATION METHODS

For a structured discussion of the differences between the
various methods we distinguish five types of failures in the
system under consideration. Note that we order the failure
types according to increasing difficulty for recovering from
them at the algorithmic level.

(F1) Reported temporary unavailability of links/nodes

(F2) Unreported loss or corruption of a message

(F3) Reported permanent node failures

(F4) Unreported corruption of data (e. g., bit flip)

(F5) Unreported permanent node failures

While dealing with (F1) is generally easy for any randomized
method with flexible communication schedules, the coverage
of (F2)–(F5) is a lot harder since those failures usually in-
troduce a (temporary) error from which the system has to
recover properly. In the case of (F5) one has to additionally
define whether the initial data of a failed node should be
included in the target aggregate or not, where the former is
usually harder.

In the push-sum algorithm [15] each node i iteratively up-
dates a local vector vi := (si, wi). The si are initialized
with the values to be aggregated, and the wi are weights.
By consecutively sending fractions of the local vector vi to
randomly chosen neighbors (which add the received values to
their local values), all local estimates si/wi converge linearly
either to the sum or the average of the distributed values, de-
pending on how the weights have been initialized [15]. In [7]
a more robust version of the push-sum algorithm, called
LiMoSense, is derived by keeping a history (i. e., the sum)
of sent and received values along each communication link.
By always sending the full history the receiver of a message
can easily tolerate missed (or wrong) values. To keep the
steadily growing histories small, a bidirectional cancellation
operation is proposed in [7].

Another approach is flow updating [13], where the nodes
keep their initial values local and only share flows with their
neighbors. For each communication link, both attached
nodes maintain a flow variable which represents the overall
balance of communicated local values along this link. For
communicating local values along a link, the sender does not
transmit the local values directly, but instead adds them
to the corresponding flow variable and transmits the flow
variable. The receiver updates its own flow variable by the
negated received flow. Consequently, as in network flow al-
gorithms, the overall flow across each link is zero (flow con-
servation) if no failures occur. This flow conservation is the
key idea of this method for recovering from failures, since re-
covering from a failure corresponds to (re)establishing flow
conservation, which is achieved after each successful com-
munication across a link.

While the push-sum algorithm can only recover from fail-
ure type (F1), LiMoSense can recover from failure types (F1),
(F2) and (F3). Flow updating can recover from failure
types (F1)–(F4). The major drawback of flow updating is
that no formal analysis is available in [13], whereas for the
push-sum algorithm [15] and for LiMoSense [7] proofs of cor-
rectness and convergence (speed) have been given.

3. A NEW APPROACH TO DISTRIBUTED
ORTHOGONALIZATION

When constructing distributed algorithms for matrix com-
putations based on sequences of distributed data aggregation
algorithms, resilience aspects have to be addressed first at
the level of a single DDAA.We present the new push-flow al-
gorithm, which has superior fault tolerance properties com-
pared to existing distributed data aggregation algorithms.
As a prototypical example for matrix computations based
on DDAAs, we then present the new distributed orthogonal-
ization algorithm rdmGS which is resilient to node failures.

We first evaluate the strengths and weaknesses of existing
distributed data aggregation algorithms. Then, we present a
new algorithm which overcomes drawbacks of existing meth-
ods in terms of resilience. Finally, we show how DDAAs
can be used as building blocks for developing a scalable
and fault tolerant distributed orthogonalization/QR factor-
ization method as a prototypical matrix computation task.

On the lower level of distributed data aggregation algo-
rithms our approaches do not require any checkpointing or
redundant computing. On the higher level (distributed QR
factorization) our approach fits into the basic concept of re-
dundant computing (without extra hardware, though). In

contrast to checkpointing, our approaches presented in this
paper do not store data in regular intervals, but they react
on failures which occurred in the system and do not assume
any common external storage space. In our algorithms failed
nodes do not have to be repaired or replaced by spare nodes
to preserve constant number of nodes.

3.1 The Push-Flow Algorithm
Despite several drawbacks of the flow updating algorithm

in terms of uncompetitive scalability and convergence speed
as well as lack of formal analysis in [13], the principal idea of
sharing flows has several conceptual advantages over keeping
histories as in LiMoSense. First, a valid flow across a link can
be established from any direction, while in a history-based
approach a specific direction is needed to tolerate failures
like (F2). Second, in contrast to a steadily increasing history
value, flow variables remain bounded by definition. Third,
flows achieve higher fault tolerance, since history-based ap-
proaches are limited to transmission related failures (F1)–
(F3), whereas a flow-based approach can also recover from
purely local failures of a node like (F4).

Motivated by this observation, we integrated the flow con-
cept into the push-sum algorithm by translating each trans-
mission of mass, i. e., the sending of fractions of the local
values vi, into a transmission of a flow as in the flow up-
dating method. In the resulting new push-flow algorithm
each node i maintains flow vectors fi,j for the balance of
values sent to neighbor j in its neighborhood Ni. In push-
flow the local estimates for a node i are (contrary to flow
updating) computed as the initial value vi minus the sum
over all flows fi,j .

The push-flow algorithm is equivalent to the push-sum
algorithm in failure-free networks, since for identical com-
munication patterns both algorithms produce identical local
values vi. The equivalence to push-sum also highlights that
no averaging technique (which slows down convergence) like
in flow-updating is needed and that the number of iterations
to achieve an ǫ-approximate of the true aggregate is bounded
by O(logN + ǫ−1). We observe this bound empirically by
simulating systems with hypercube interconnects and up to
N = 220 nodes.

Summarizing, the push-flow algorithm achieves the best
resilience of all DDAAs so far and is particularly interesting
in cases where the local data of permanently failed nodes
can be excluded from the final aggregate and thus no redun-
dancy in storing the original data is required. In situations
where it is required that the original data of all nodes is
aggregated, redundancy in the original data has to be intro-
duced as discussed in the next section.

3.2 Robust Distributed Orthogonalization
The distributed orthogonalization of the columns of the

matrix A ∈ R
n×m over a system with N nodes is a prototypi-

cal example where the loss of original data usually resulting
from a permanent node failure cannot be tolerated. Dis-
tributed modified Gram-Schmidt orthogonalization (dmGS)
based on the push-sum algorithm for computing the QR de-
composition A = QR with Q ∈ R

n×m and R ∈ R
m×m has

been presented in [25]. It assumes that matrices A and Q
are distributed rowwise over the N nodes. If a node per-
manently fails during the execution of dmGS, its local part
of A as well as the part of Q computed so far are perma-

nently lost and as a consequence it becomes impossible to
orthogonalize all original vectors.

We present robust dmGS (rdmGS), which increases the
fault tolerance compared to dmGS and produces a complete
and accurate QR factorization of a matrix A even if one or
several nodes fail permanently during the computation.

The pivotal idea of rdmGS is to maintain redundant copies
of all nodes’ relevant local data at more than one active
node at all times. Each node is responsible for several rows
of matrix A and for the parts of corresponding rows of Q
which have been computed so far, which we call the node’s
primary data. Moreover, each node also stores backup data
of other nodes’ primary data. At every point in time, r − 1
backup copies of node k’s primary data are stored on r −

1 distinct other active nodes in the network which act as
backup nodes for node k. If node k fails, its primary data
is still available on r − 1 other active nodes. One of these
nodes takes over the primary responsibility for this data,
and selects another active node (usually in its neighborhood)
which replaces himself. As a result, again r copies of the data
of the failed node k exist in the system. The parameter r
is a measure for the resilience as well as for the overhead
of rdmGS. Larger r allows for tolerating more simultaneous
node failures, albeit at higher cost.

This concept operates successfully under the following as-
sumptions: (i) the topology of the system stays connected
despite all occurring node failures, (ii) a reliable and effi-
cient mechanism is available for determining whether a node
(usually in the neighborhood) is alive or not, and (iii) the
employed distributed data aggregation algorithm has to tol-
erate at least failure types (F1)–(F3).

The main building block of our distributed orthogonaliza-
tion method is a distributed algorithm for computing the
sum of values distributed over the network. The proper-
ties of rdmGS depend strongly on the properties of the un-
derlying DDAA. Besides computing a distributed sum by a
DDAA no communication between nodes is needed since all
other computation can be done locally. Since all interac-
tion with other nodes is concentrated in the data aggrega-
tion, good scalability of the underlying DDAA also implies
good scalability of rdmGS. Therefore, an important chal-
lenge in the design of a scalable distributed orthogonaliza-
tion method which is resilient to node failures lies in the
setup of the underlying DDAA or computing the sum of
distributed values.

We developed a simulation model for rdmGS based on the
ns-3 network simulator and simulated distributed orthogo-
nalization on a network arranged in a 5-cube topology and
for exponentially distributed times until failure. The simula-
tion results showed that rdmGS can tolerate a certain extent
of node failures (on average, more than one fifth of the nodes
failed) and still compute accurate QR factorizations.

4. CONCLUSIONS
Distributed algorithms with randomized communication

can be attractive for unreliable or unstable large-scale sys-
tems in terms of fault tolerance. We have discussed resilience
of methods for distributed computation of sums or averages.
Moreover, we have investigated a distributed orthogonaliza-
tion method on top of distributed data aggregation algo-
rithms which is resilient to node failures.

Acknowledgments
The research was funded by the Austrian Science Fund (FWF)
in project S10608.

5. REFERENCES
[1] T. Aysal, M. Yildiz, A. Sarwate, and A. Scaglione.

Broadcast gossip algorithms for consensus. IEEE
Trans. Signal Processing, 57(7):2748 –2761, 2009.

[2] S. Boyd, A. Ghosh, B. Prabhakar, and D. Shah.
Randomized gossip algorithms. IEEE Transactions on
Information Theory, Special issue of IEEE
Transactions on Information Theory and IEEE ACM
Transactions on Networking, 52:2508–2530, 2006.

[3] Z. Chen. Algorithm-based recovery for iterative
methods without checkpointing. In Proceedings of the
20th international symposium on High performance
distributed computing, HPDC ’11, pages 73–84, New
York, NY, USA, 2011. ACM.

[4] Z. Chen and J. Dongarra. Algorithm-based fault
tolerance for fail-stop failures. Parallel and Distributed
Systems, IEEE Transactions on, 19(12):1628 –1641,
2008.

[5] A. Dimakis, A. Sarwate, and M. Wainwright.
Geographic gossip: Efficient averaging for sensor
networks. IEEE Trans. Signal Processing,
56(3):1205–1216, 2008.

[6] C. Engelmann, H. H. Ong, and S. L. Scott. The Case
for Modular Redundancy in Large-Scale High
Performance Computing Systems. In Proceedings of
the 27th IASTED International Conference on
Parallel and Distributed Computing and Networks
(PDCN) 2009, pages 189–194. ACTA Press, Calgary,
AB, Canada, 2009.

[7] I. Eyal, I. Keidar, and R. Rom. LiMoSense – Live
Monitoring in Dynamic Sensor Networks. In 7th Int’l
Symp. on Algorithms for Sensor Systems, Wireless Ad
Hoc Networks and Autonomous Mobile Entities
(ALGOSENSORS’11), 2011.

[8] G. E. Fagg, E. Gabriel, Z. Chen, T. Angskun,
G. Bosilca, J. Pjesivac-Grbovic, and J. J. Dongarra.
Process fault tolerance: Semantics, design and
applications for high performance computing.
International Journal of High Performance Computing
Applications, 19(4):465–477, 2005.

[9] K. Ferreira, R. Riesen, R. Oldfield, J. Stearley,
J. Laros, K. Pedretti, and T. Brightwell. rMPI:
increasing fault resiliency in a message-passing
environment. Technical report, no. SAND2011-2488.

[10] A. Guermouche, T. Ropars, E. Brunet, M. Snir, and
F. Cappello. Uncoordinated checkpointing without
domino effect for send-deterministic mpi applications.
In Parallel Distributed Processing Symposium
(IPDPS), 2011 IEEE International, pages 989 –1000,
2011.

[11] K.-H. Huang and J. Abraham. Algorithm-based fault
tolerance for matrix operations. Computers, IEEE
Transactions on, C-33(6):518 –528, 1984.

[12] M. Jelasity, A. Montresor, and O. Babaoglu.
Gossip-based aggregation in large dynamic networks.
ACM Trans. Comput. Syst., 23:219–252, 2005.

[13] P. Jesus, C. Baquero, and P. S. Almeida.
Fault-tolerant aggregation by flow updating. In

Proceedings of the 9th IFIP WG 6.1 International
Conference on Distributed Applications and
Interoperable Systems, DAIS ’09, pages 73–86, Berlin,
Heidelberg, 2009. Springer-Verlag.

[14] R. Karp, C. Schindelhauer, S. Shenker, and
B. Vocking. Randomized rumor spreading. In
Proceedings of the 41st Annual Symposium on
Foundations of Computer Science, pages 565–,
Washington, DC, USA, 2000. IEEE Computer Society.

[15] D. Kempe, A. Dobra, and J. Gehrke. Gossip-based
computation of aggregate information. In FOCS ’03:
Proceedings of the 44th Annual IEEE Symposium on
Foundations of Computer Science, pages 482–491.
IEEE Computer Society, 2003.

[16] D. Kempe and F. McSherry. A decentralized
algorithm for spectral analysis. Journal of Computer
and System Sciences, 74(1):70 – 83, 2008.

[17] A.-M. Kermarrec and M. van Steen. Gossiping in
distributed systems. SIGOPS Oper. Syst. Rev., 41:2–7,
2007.

[18] D. Mosk-Aoyama and D. Shah. Computing separable
functions via gossip. In Proceedings of the twenty-fifth
annual ACM symposium on Principles of distributed
computing, PODC ’06, pages 113–122, New York, NY,
USA, 2006. ACM.

[19] A. Olshevsky and J. N. Tsitsiklis. Convergence speed
in distributed consensus and averaging. SIAM J.
Control Optim., 48:33–55, 2009.

[20] J. Plank. Improving the performance of coordinated
checkpointers on networks of workstations using raid
techniques. In Reliable Distributed Systems, 1996.
Proceedings., 15th Symposium on, pages 76 –85, 1996.

[21] J. Plank, K. Li, and M. Puening. Diskless
checkpointing. Parallel and Distributed Systems, IEEE
Transactions on, 9(10):972 –986, 1998.

[22] B. Schroeder and G. A. Gibson. Understanding
failures in petascale computers. Journal of Physics:
Conference Series, 78(1):012022+, 2007.

[23] D. Shah. Gossip algorithms. Found. Trends Netw.,
3:1–125, 2009.

[24] H. Strakova and W. N. Gansterer. A distributed
eigensolver based on randomized communication.
Technical Report RLCTA-2011-1, University of
Vienna, Research Group Theory and Applications of
Algorithms, 2011. (submitted).

[25] H. Strakova, W. N. Gansterer, and T. Zemen.
Distributed QR factorization based on randomized
algorithms. In Proceedings of the 9th International
Conference on Parallel Processing and Applied
Mathematics, 2011. to appear.

[26] M. Varela, K. Ferreira, and R. Riesen. Fault-tolerance
for exascale systems. In Cluster Computing Workshops
and Posters (CLUSTER WORKSHOPS), 2010 IEEE
International Conference on, pages 1–4, 2010.

