
Scalable and Fault Tolerant Orthogonalization
Based on Randomized Distributed Data Aggregation

Wilfried N. Gansterer, Gerhard Niederbrucker, Hana Straková, Stefan Schulze Grotthoff

University of Vienna, Research Group Theory and Applications of Algorithms
Lenaugasse 2/8, A-1080 Vienna, Austria

Abstract

The construction of distributed algorithms for matrix computations built on top of distributed data aggregation algorithms with
randomized communication schedules is investigated. For this purpose, a new aggregation algorithm for summing or averaging
distributed values, the push-flow algorithm, is developed, which achieves superior resilience properties with respect to failures
compared to existing aggregation methods. It is illustrated that on a hypercube topology it asymptotically requires the same number
of iterations as the optimal all-to-all reduction operation and that it scales well with the number of nodes. Orthogonalization is
studied as a prototypical matrix computation task. A new fault tolerant distributed orthogonalization method rdmGS, which can
produce accurate results even in the presence of node failures, is built on top of distributed data aggregation algorithms.

Keywords: distributed reduction operation, push-flow algorithm, distributed orthogonalization, distributed matrix computations,
fault tolerant matrix computations

1. Introduction

Algorithms for future large-scale computer systems have to
be designed to provide resilience to various types of failures and
to require less synchronization between nodes than state-of-the-
art parallel algorithms. The basic idea underlying this paper is
to investigate the construction of suitable distributed algorithms
for matrix computations built on top of distributed data aggre-
gation algorithms (DDAAs). DDAAs can be seen as distributed
versions of all-to-all reduction operations, in particular for sum-
ming or for averaging the elements of a long vector distributed
over many nodes. Consequently, distributed versions of basi-
cally all types of Blas operations can potentially be constructed
based on DDAAs.

We first evaluate the strengths and weaknesses of existing
distributed data aggregation algorithms. Then, we present the
push-flow algorithm, a new DDAA which overcomes some draw-
backs of existing methods in terms of resilience. Finally, we
show how DDAAs can be used as building blocks for devel-
oping a scalable and fault tolerant distributed orthogonaliza-
tion/QR factorization method as a prototypical matrix compu-
tation task.

1.1. Problem Setting

We consider a large-scale computer system with N nodes
arranged in a fixed (but otherwise arbitrary) topology as target
system for the computations. Every node knows which nodes
are its neighbors, but does not need to have any global informa-
tion about the network. Our focus is on distributed algorithms
for such large-scale systems. We clearly distinguish distributed
from parallel algorithms. The latter are usually designed for

small to medium-sized static and reliable systems with regular
and globally known topology, where synchronized computation
across nodes in the network can be guaranteed. However, paral-
lel algorithms have major drawbacks in possibly decentralized
large-scale systems with arbitrary topologies and potentially
unreliable components (e. g., failing nodes or communication
links), where synchronization of the nodes may be difficult to
achieve. Distributed algorithms provide much greater flexibility
with respect to the hardware infrastructure than classical par-
allel algorithms. They neither rely on a fixed communication
schedule nor on full synchronization across the nodes. More-
over, they have the potential for producing meaningful results
even in the presence of link or node failures. More generally
speaking, distributed algorithms are attractive in all computa-
tions over large-scale computing systems where (i) the nodes do
not have complete global information about the system, but pre-
dominantly only local information about their neighborhood,
and/or (ii) the system may change dynamically (e. g., due to
hardware failures).

The algorithms we investigate are based on gossiping pro-
tocols. Such algorithms are attractive in such situations, be-
cause due to their randomized information exchange they do
not require static or reliable hardware infrastructure. If com-
munication is restricted to the local neighborhood of each node,
the number of iterations required tends to scale logarithmically
with the number of nodes in the system, which is asymptotically
the same as in optimized all-to-all reduction operations. More-
over, due to their iterative structure they can deliver results at
reduced accuracy levels for a communication cost which is pro-
portional to the target accuracy.

Preprint submitted to Journal of Computational Science March 31, 2012

1.2. Related Work

Approaches for achieving fault tolerance in parallel and dis-
tributed systems have been investigated at various levels. At the
MPI level, FT-MPI [1] provides interfaces for improving the
fault tolerance of applications. It is designed to recover from
link or node failures by continuing from consistent points which
have to be defined by the application developer.

A standard approach at the parallel application level is co-
ordinated checkpointing followed by rollback recovery in case
of a failure. However, it has been shown that—depending on
the checkpointing interval [2]—the synchronization of the pe-
riodic coordinated checkpointing limits application scalability,
and for large systems a dominating fraction of the runtime tends
to be spent on checkpointing and restarting instead of advancing
in the application [3]. Moreover, for large-scale systems it can
also become expensive to provide sufficient stable storage. Sev-
eral improvements of coordinated checkpointing have been pro-
posed. Alternatives focusing on storing the checkpoints more
efficiently are diskless checkpointing [4] and RAID-inspired
checkpointing [5] which stores checkpoints redundantly across
the nodes’ memory. Uncoordinated checkpointing [6] does not
require the synchronization of checkpointing procedures across
the nodes and in case of failure only the failed process needs
to be restarted, not the entire application. However, the restart
tends to be much more complex, since the failed processes need
to find a common checkpoint. Also, storage requirements tend
to be much higher since it is not clear which checkpoint will be
required for restart.

Different approaches have been suggested to increase the
interval between failures and thus to decrease the number of
restarts. The first approach is called redundant computing. Each
process is replicated across the system, and thus it can handle
multiple failures without recovery overhead. An example is the
rMPI library [7], where redundancy is used to increase the inter-
val between failures and thus to reduce the overhead caused by
storing checkpoints and restarting the system. In [8] the advan-
tages and limitations of double and triple redundancy are dis-
cussed. Another concept called live migration [9] is a proactive
approach, where processes are migrated away from unhealthy
nodes to healthy nodes.

On the lower level of distributed data aggregation algorithms
the algorithms discussed in this paper do not require any check-
pointing or redundant computing. On the higher level of dis-
tributed matrix computations (in this paper, distributed QR fac-
torization) our algorithms differ from the concept of check-
pointing because they react to failures whenever they occur.
They can be considered a combination of a redundant comput-
ing and a live migration approach, without assuming common
external storage or extra hardware, though. Failed nodes do not
have to be repaired or replaced, but the remaining nodes take
over their responsibilities.

A purely algorithmic way of achieving fault tolerance for
high level matrix operations is the technique of algorithm-based
fault tolerance (ABFT) [10]. The basic idea of ABFT is to
extend the input matrices by checksums and to adapt the al-
gorithms such that these checksums get updated correctly and

can consequently be used for detecting and recovering from er-
rors. Classically, ABFT was designed for handling a prescribed
amount of miscalculations with a high probability [10], whereas
more recently also fail-stop failures, where nodes entirely crash,
were considered [11]. Besides the extension to fail-stop failures
there are also efforts into methods with ABFT which make use
of the inherent redundancy of the data distribution accross the
nodes to recover from failures, which results in methods where
only failure situations lead to an overhead [12].

The available ABFT literature discusses specific numerical
linear algebra tasks, such as matrix-matrix multiplications, LU
decompositions or iterative linear solvers, but does not consider
the elementary building blocks below the Blas-level. In con-
trast to ABFT, our approach does not modify the linear algebra
algorithms themselves, but instead we focus on new distributed
data aggregation building blocks, which also improve the re-
silience of the algorithms based on them. Our methods do not
recover by an explicit (deterministic) recovery step as in ABFT,
but they rather enter a “healing” phase once the next successful
failure-free iteration can be performed (e. g., after a previously
failed link has been re-established). At the distributed data ag-
gregation algorithms-level, the overhead for higher resilience
in terms of slower convergence and extra data transmission de-
pends on the failure type and is only incurred when a failure
actually happens.

DDAAs and other simple distributed algorithms based on
randomized communication schedules have been discussed ex-
tensively in the literature. Important examples are algorithms
based on gossiping (or epidemic) protocols [13, 14]. In the ba-
sic approach each node communicates with randomly chosen
neighboring nodes [13]. In other variants the communication
partners of a node are chosen from the entire network regardless
of the distance [15] or its local value is broadcasted to all neigh-
bors [16]. Most of the existing work focuses on distributed al-
gorithms for simple network operations, such as information
dissemination (rumor mongering) [17], aggregation [18], net-
work organization (routing, load balancing, etc.) [19], or com-
puting separable functions [20].

For our objective, DDAAs for the distributed computation
of sums and averages, such as the push-sum algorithm [21], are
most relevant. The potential of DDAAs for providing a high de-
gree of resilience is mentioned in the literature at various places
(see, e. g., [22]), but we are not aware of any work which inves-
tigates the challenges arising when trying to tap the full poten-
tial. Relevant existing DDAAs are surveyed in Section 2.

Only recently, distributed algorithms for more complex ma-
trix computations based on DDAAs, such as the dmGS algo-
rithm for distributed QR factorization [23] or a distributed or-
thogonal iteration method [24, 25] (both based on the push-sum
algorithm) have been designed and compared with state-of-the-
art parallel algorithms.

1.3. Synopsis
When trying to construct fault tolerant distributed algorithms

for matrix computations based on sequences of DDAAs, re-
silience aspects first have to be addressed at the level of a single
aggregation algorithm. Consequently, in Section 2 we survey

2

relevant existing DDAAs and discuss their strengths and weak-
nesses in terms of fault tolerance. We then focus on improving
fault tolerance in Section 3. We present the new push-flow algo-
rithm, which has superior fault tolerance properties compared
to existing distributed data aggregation algorithms. As a proto-
typical example for matrix computations based on DDAAs, we
present the new distributed orthogonalization algorithm rdmGS
which is resilient to node failures. In Section 4, we discuss the
scalability of selected DDAAs and of distributed orthogonaliza-
tion methods. Section 5 concludes the paper.

2. Distributed Data Aggregation Methods

Over the last decade, several distributed data aggregation al-
gorithms based on randomized communication schedules have
been proposed. Those methods were traditionally motivated
by networks with unreliable communication links, which pre-
cludes the usage of classical parallel algorithms with fixed com-
munication schedules. Recently, there are also efforts in in-
troducing self-healing mechanisms into such algorithms. For
a structured discussion of the differences between the various
methods we distinguish henceforth the following types of fail-
ures in the system under consideration. Note that we order the
failure types according to increasing difficulty for recovering
from them at the algorithmic level.

(F1) Reported temporary unavailability of links/nodes
(F2) Unreported loss or corruption of a message
(F3) Reported permanent node or link failures
(F4) Unreported corruption of local data (e. g., bit flip)
(F5) Unreported permanent node failures

While dealing with (F1) is generally easy for any randomized
method with flexible communication schedules, the coverage
of (F2)–(F5) is a lot harder since those failures usually intro-
duce a (temporary) error from which the system has to recover
properly. In the case of (F5) one has to additionally define
whether the initial data of a failed node should be included in
the target aggregate or not, where the former is usually harder.

2.1. Existing Methods

A basic approach for the distributed computation of aggre-
gates is the push-sum algorithm [21] where each node i itera-
tively updates a local vector vi := (si, wi). The si are initialized
with the values xi to be aggregated, and the wi are weights. The
initial values of the weights wi determines the type of aggrega-
tion operation: For computing

∑N
i=1 xi, all weights have to be

either initialized identically to wi = 1/N, or to wi = 0 for all
nodes except one with weight w0 = 1. For computing the av-
erage

∑N
i=1 xi/N, all weights have to be initialized identically to

wi = 1. By consecutively sending fractions of the local vector
vi to randomly chosen neighbors (which add the received values
to their local values), all local estimates si/wi converge linearly
either to the sum or to the average of the distributed values [21].

In [26] a more robust version of the push-sum algorithm,
called LiMoSense, is derived by keeping a history (i. e., the
sum) of sent and received values along each communication

link. By always sending the full history the receiver of a mes-
sage can easily tolerate missed (or wrong) values. To keep
the steadily growing histories small, a bidirectional cancella-
tion operation is proposed in [26].

A third approach is flow updating [27]. The underlying idea
is that the nodes keep their initial values local and only share
flows with their neighbors. For each communication link, both
attached nodes maintain a flow variable which represents the
overall balance of communicated local values along this link.
For communicating local values along a link, the sender does
not transmit the local values directly, but instead adds them
to the corresponding flow variable and transmits the flow vari-
able. The receiver updates its own flow variable by the negated
received flow. Consequently, as in network flow algorithms,
the overall flow across each link is zero (flow conservation)
if no failures occur. This flow conservation is the key idea
of this method for recovering from failures, since recovering
from a failure corresponds to (re-)establishing flow conserva-
tion, which is achieved after each successful communication
across a link.

In flow updating, a node locally approximates the aggregate
by first subtracting the sum over all flow variables it maintains
from its initial value and then averaging this local approxima-
tion and the current local estimates of all its neighbors (which
are exchanged together with the flows). However, it has some
drawbacks in terms of convergence speed and there is no formal
analysis given in [27], whereas for the push-sum algorithm [21]
and for LiMoSense [26] proofs of correctness and convergence
(speed) have been given.

Table 1 summarizes which failure types the existing dis-
tributed data aggregation algorithms can handle.

Push-sum LiMoSense Flow updating
(F1)

√ √ √
(F2) —

√ √
(F3) —

√ √
(F4) — —

√
(F5) — — —

Table 1: Resilience properties of existing DDAAs

2.2. Strengths and Weaknesses

Thanks to their randomized communication schedules, all
these methods will always produce at least approximate results
even if hardware failures occur. The important issue in this con-
text is mass conservation, which means that distributed data ag-
gregation algorithms converge to the true aggregate only if all of
the initial information is preserved over the whole aggregation
process. Since a change of mass (usually mass loss, but also
an increase of mass is theoretically possible, e. g. in the case of
a bit flip) always results in a corresponding loss of achievable
accuracy we are interested in methods which are able to ensure
mass conservation or can recover from a change of mass even
if failures of types (F1)–(F5) occur.

Note that strict mass conservation in the sense of a network-
wide invariant seems to be impossible under our assumptions

3

since the occurrence of (F2)–(F5) will generally result in mass
loss. So the methods we aim for are designed for an autonomous
full recovery from mass loss, which we denote as weak mass
conservation since it weakens the strict (theoretical) form of
mass conservation. Accordingly, those methods ensure strict
mass conservation in failure-free scenarios and weak mass con-
servation if failures occur, i. e., they are able to recover from a
change of mass by a proper self-healing mechanism.

Although the push-sum algorithm is independent of the avail-
ability of specific communication links, it has no built-in mech-
anism for mass conservation and therefore it cannot recover
from (F2)–(F5). LiMoSense can recover from (F2)–(F3) due
to the redundancy in keeping and sending complete histories
(cf. [26]). Flow updating does not (directly) rely on the trans-
mission of redundant messages and it can also handle (F4),
because a local error like a bit flip in a flow value is simply
corrected by (re-)establishing a valid flow (cf. [27, 28]). Since
LiMoSense is a direct generalization of the push-sum algorithm,
it also delivers the same fast convergence speed, as opposed
to flow updating, which showed an uncompetitive convergence
speed in our experiments (cf. Section 4.1).

To demonstrate the strength of the flow concept, in Sec-
tion 3.1 we introduce the push-flow algorithm, which fully ex-
ploits its advantages while preserving the convergence speed of
the push-sum algorithm.

3. Improving Resilience

In the following, we present two new distributed algorithms
which are more resilient than existing algorithms in terms of
the most challenging failure types (F3)–(F5). In Section 3.1,
we concentrate on a single instance of a distributed data aggre-
gation algorithm and introduce the push-flow algorithm, which
can recover from failure types (F1)–(F4). In Section 3.2 we turn
our attention to the level of complete matrix problems and in-
troduce robust dmGS for distributed QR factorization or orthog-
onalization which can recover from failure types (F1)–(F4), and
in some scenarios even from failure type (F5).

3.1. The Push-Flow Algorithm

Despite several drawbacks of the flow updating algorithm in
terms of uncompetitive scalability and convergence speed (cf.
Section 4.1) as well as lack of formal analysis in [27], the prin-
cipal idea of keeping the initial mass locally and sharing flows
(instead of mass) is promising and has several conceptual ad-
vantages over keeping histories, as in LiMoSense. First, a valid
flow across a link can be established from any direction, while
in a history-based approach a specific direction is needed to
tolerate failures like (F2). Second, in contrast to the steadily in-
creasing history values, flow variables remain bounded by def-
inition. Third, flow-based approaches achieve higher fault tol-
erance, since history-based approaches are limited to transmis-
sion related failures (F1)–(F3), whereas a flow-based approach
can also recover from purely local failures of a node like (F4).

Motivated by this observation, we integrate the flow concept
into the push-sum algorithm by translating each transmission of

mass, i. e., the direct transmission of (fractions of) local values,
into a transmission of flow in a similar way as it is done in the
flow updating method. The result is a variant of the push-sum
algorithm, which is equivalent to the push-sum algorithm in the
absence of failures and exhibits improved resilience if failures
occur. The resulting push-flow algorithm is shown in Figure 1.
Each node i maintains a two dimensional flow vector fi, j for
every neighbor j in its neighborhood Ni whose elements can
be interpreted as the balance of mass which was communicated
between nodes i and j. Moreover, each node i maintains a two
dimentionsl vector vi = (xi,wi) which contains the local initial
value xi and the local weight wi. The initial values for the local
weights wi are the same as in the push-sum algorithm.

Input: Local initial value xi and local weight wi for each node i
Output: Estimate ei(1)/ei(2) of global aggregate (

∑N
k=1 xk)/(

∑N
k=1 wk)

1: . . . initialization . . .
2: vi ← (xi,wi)
3: for each j ∈ Ni do
4: fi, j ← (0, 0)
5: end for
6: . . . on receive . . .
7: for each received pair f j,i do
8: fi, j ← − f j,i

9: end for
10: . . . on send . . .
11: k ← choose a random neighbor k ∈ Ni

12: ei ← vi −∑ j∈Ni
fi, j

13: fi,k ← fi,k + ei/2
14: send fi,k to node k

Figure 1: The push-flow algorithm for the local computation of a global aggre-
gate. Ni denotes node i’s neighborhood.

At every point in time, the current local mass ei at a node
i is (in contrast to flow updating) computed as the difference
between the initial vector vi and the sum over all flows fi, j, i. e.,
ei = vi − ∑ j∈Ni

fi, j. Consequently, analogously to the push-
sum algorithm, the local estimate of the global aggregate can
be computed by dividing the first component of the vector ei by
its second component, i. e., by forming ei(1)/ei(2).

It is easily verified that the push-flow algorithm is essen-
tially equivalent to the push-sum algorithm in failure-free net-
works, since for identical communication patterns both algo-
rithms produce identical local estimates of the global aggre-
gate The equivalence to push-sum also highlights that the lo-
cal estimates are not computed as average over the estimates
of the neighboring nodes like in flow updating. Consequently,
the push-flow algorithm preserves the fast convergence of the
push-sum algorithm and does not exhibit the disadvantages of
flow updating in terms of convergence speed.

In the presence of failures, the push-flow algorithm bene-
fits from the resilience and self-healing capabilities inherent in
the flow concept. In particular, recovery from failures (F3) can
be achieved if the neighbors of the failed node set the corre-

4

sponding flow variables to zero. Therefore, the push-flow al-
gorithm also excludes the local data of a failed node from the
final aggregate similar to the resilient methods discussed in Sec-
tion 2. In the case of failures (F4) where some local flow values
are corrupted, e. g., because of a bit flip, the nodes involved
will recover the next time a correct communication involving
this variable happens, like in the case of transmission related
failures (F2). A full proof of correctness and convergence of
the push-flow algorithm proceeds analogously to the ones pre-
sented in [21, 26] for the push-sum algorithm and LiMoSense,
respectively.

In conclusion, the push-flow algorithm achieves the best re-
silience among all existing DDAAs and preserves the conver-
gence speed of the push-sum algorithm.

3.2. Fault Tolerant Orthogonalization
The resilient DDAAs we discussed so far handle perma-

nently failed nodes by excluding their local data from the final
aggregate and thus no redundancy in storing the original data is
required. In situations where it is required that the original data
of all nodes is aggregated, redundancy in the original data has
to be introduced.

The distributed orthogonalization of the columns of the ma-
trix A ∈ Rn×m over a system with N nodes is a prototypical
example where the loss of original data usually resulting from
a permanent node failure cannot be tolerated. Distributed mod-
ified Gram-Schmidt orthogonalization (dmGS) for computing
the QR decomposition A = QR with Q ∈ Rn×m and R ∈ Rm×m

has been presented in [23]. It assumes that A is distributed row-
wise over the N nodes. If a node permanently fails during the
execution of dmGS, its local part of A is also permanently lost
and as a consequence it becomes impossible to orthogonalize
all original vectors. We illustrate in the following how the re-
silience of this approach can be improved by introducing re-
dundancy in storing the original data. We present robust dmGS
(rdmGS, see Fig. 2), which produces a complete and accurate
QR factorization of A even if one or several nodes fail during
the computation.

3.2.1. Introducing Redundancy
The pivotal idea of rdmGS is to maintain redundant copies

of all nodes’ relevant local data at more than one active node at
all times. By construction, dmGS automatically computes all
entries of R at all nodes of the system [23], and thus no specific
measures are needed for backing up data of R. Every node k
is responsible for a subset of the rows of A and for the parts of
the corresponding rows of Q which have been computed so far.
We call this data node k’s primary data. At every point in time,
r− 1 backup copies of node k’s primary data are stored on r− 1
distinct other active nodes which act as backup nodes for node
k. The parameter r is a measure for the resilience as well as
for the overhead of rdmGS. Larger r allows for tolerating more
simultaneous node failures, albeit at higher cost.

Node k may also act as a backup node for one or more other
nodes in the system. The corresponding local data at node k is
called node k’s backup data. We call a node k, which backs up
node l’s data, l’s guardian, and l in turn k’s protégé.

If node k fails, its primary data is still available on its r − 1
guardians. One of these guardians takes over the primary re-
sponsibility for this data, and selects another active node (usu-
ally in its neighborhood) to replace itself as guardian for the
primary data of the failed node k. As a result, again r copies of
the data of the failed node k exist in the system.

In the process of local computation in each node not only
the primary data is updated, but also all local backup data.
Since the local results of the DDAA are not necessarily identical
over all nodes, the r − 1 instances of backup data and the cor-
responding primary data may differ slightly, but no extra data
communication is needed for the backup structure as long as no
node failure occurs. Upon termination, node k considers only
its primary data as part of the final result.

This concept operates successfully under the following as-
sumptions: (i) the topology of the system stays connected de-
spite all occurring node failures, (ii) a reliable and efficient
mechanism is available for determining whether a node (usu-
ally in the neighborhood) is alive (active) or not, and (iii) in
case of permanent failures nodes fail neatly, i. e., if a node fails
within the execution of a DDAA, this failure has to be reported
immediately, and the failing node i has to send some of its local
values at least to one of its neighbors in order to ensure mass
conservation.

3.2.2. Ensuring Mass Conservation
The concrete resilience properties of the distributed orthog-

onalization method depend on the choice of the DDAA (cf. Ta-
ble 1). If the push-sum algorithm is used as a building block for
rdmGS, reliable communication is required in order to ensure
mass conservation. Using the push-flow algorithm as underly-
ing aggregation algorithm for rdmGS instead of the push-sum
algorithm allows for recovering from mass loss caused by tem-
porary node or link failures and thus increases the resilience of
rdmGS to these types of failures.

The weights wi play an important role, since their initial
values determine the type of aggregation operation (cf. Sec-
tion 2.1). However, in the presence of node failures, both ini-
tialization variants for summing the local data across the nodes
are unsuitable, because the first initialization variant depends on
the system size N, which will not remain constant, and because
the second initialization variant introduces a single point of fail-
ure (the node with the initial value wi = 1). Consequently, in
rdmGS we initialize all wi = 1 such that the DDAA computes
the average

∑N
i=1 xi/N across the system and we distribute the

value N of the initial system size to all nodes at the beginning
of the algorithm. After termination of each DDAA, each node
scales its local result by N for computing the sum from the av-
erage.

Beyond the resilience properties of the DDAA used, we
need to ensure that none of the original data gets lost when a
node fails. For that purpose, we introduce virtual nodes. Ini-
tially, the system contains N active physical nodes, and each
of them corresponds to exactly one virtual node. Whenever
a physical node l fails during the computation, another active
physical node k has to take over all virtual nodes which physi-
cal node l was responsible for. Thus, if node failures occur in

5

the process of rdmGS, active physical nodes take over respon-
sibility for more than one virtual node. In order to ensure mass
conservation, the sum of the weights over all active physical
nodes needs to remain equal to the initial system size N. In
order to achieve this, the surviving node k from before needs
to increase its local weight by the weight of the failing node l
(wk ← wk + wl). The resulting mass conservation in the system
guarantees that the DDAA can converge to the average of the
original values of all N initially active nodes.

The resulting algorithmic structure of rdmGS is outlined
in Fig. 2. Each execution of a DDAA is preceded by a fail-
checking phase, where every node k checks whether all of its
protégés and its guardians are alive. If yes, node k can proceed.
If no, the following actions have to be taken: (i) If a protégé l of
node k has failed, node k has to take over primary responsibility
for l’s data and l’s weight has to be added to k’s local weight.
Note that l’s local weight represents for how many virtual nodes
the physical node l has been responsible for. Moreover, all up-
dates of local weight as well as the updated primary data of
node k (parts of A and Q) have to be sent to k’s guardian. (ii) If
a guardian l of node k has failed, node k has to select a new
guardian and send its local weight and primary data to it for
backup. Among other aspects, the selection process of a new
guardian should be influenced by the objective to balance the
load across the active nodes.

Input: A ∈ Rn×m, node k stores n/N rows of primary data
Output: Q ∈ Rn×m, R ∈ Rm×m

1: for i = 1 to m do (in node k)
2: . . . check for node failures, update Pk and Bk . . .
3: x(k)← ∑p∈Pk

A(p, i)2

4: sk ← DDAA(x)
5: Rk(i, i)← √sk

6: for each p ∈ Pk do
7: Q(p, i)← A(p, i)/Rk(i, i)
8: end for
9: for each b ∈ Bk do

10: Q(b, i)← A(b, i)/Rk(i, i)
11: end for
12: for j = i + 1 to m do
13: . . . check for node failures, update Pk and Bk . . .
14: x(k)← ∑p∈Pk

Q(p, i)A(p, j)
15: Rk(i, j)← DDAA(x)
16: for each p ∈ Pk do
17: A(p, j)← A(p, j) − Q(p, i)Rk(i, j)
18: end for
19: for each b ∈ Bk do
20: A(b, j)← A(b, j) − Q(b, i)Rk(i, j)
21: end for
22: end for
23: end for

Figure 2: The rdmGS algorithm: Pk denotes the set of indices for rows of A and
Q which are primary data on node k. Bk denotes the set of indices for rows of
A and Q which are backup data on node k. “DDAA(x)” denotes the execution
of a distributed data aggregation algorithm on the distributed vector x.

There are only two specific scenarios of node failures which
rdmGS cannot recover from independently of the concrete DDAA
used. On the one hand, if a node k and all of its r − 1 guardians
fail permanently before even a single of these failures is de-
tected, then rows of A and Q are lost and cannot be recovered
any more. On the other hand, if a node k fails permanently after
passing the fail-checks of all of its r − 1 guardians, but before
starting the next aggregation process, mass conservation is vio-
lated because k’s primary data is not used within that aggrega-
tion process and k’s guardians are not aware of it. Note that the
probability for these two scenarios to happen can be reduced by
increasing the overhead in terms of fail-checking frequency.

3.2.3. Simulation Results
In order to illustrate its properties, we developed a simu-

lation model for the rdmGS algorithm with r = 2 (each node
has one guardian) in the ns-3 network simulator. Simulation re-
sults are shown for an asynchronous wired network of 32 nodes
arranged in a five-dimensional hypercube. The times until fail-
ure of a node are exponentially distributed with mean λ, and
nodes fail neatly (cf. Section 3.2.1). As distributed data aggre-
gation algorithm we used the push-sum algorithm. A detailed
comparison of push-sum algorithm and push-flow algorithm as
building block for rdmGS is work in progress. We varied the
maximum numbers tmax of iterations per push-sum algorithm.
For a given λ, every value tmax ∈ [100 : 50 : 600] has been
simulated 200 times with different initializations of the random
number generator, but with the same underlying topology.

In Fig. 3, the accuracy of rdmGS in terms of the relative
factorization error ||A − QR||F/||A||F is illustrated for λ = 12
[s]. With this value of λ, between zero and 17 of the 32 nodes

Figure 3: Relative factorization error of rdmGS for λ = 12 [s]. “unconnected”
refers to scenarios where node failures caused the hypercube topology to dis-
connect into two separate components.

failed per simulation run, on average 5.82 over all values of
tmax. The average number of failed nodes per simulation run
increases with the value of tmax. For tmax = 100 it is slightly
below 2, for tmax = 400 around 6.7, and for tmax = 600 almost
10 (see Fig. 4).

Fig. 3 illustrates that for small tmax the low accuracy of each
push-sum algorithm leads to low accuracy of rdmGS. As tmax
increases, the factorization error decreases and machine pre-
cision is reached in at least 88% of all runs for tmax ≥ 350.

6

Figure 4: Average number of node failures per simulation for λ = 12 [s] and
different tmax. Averaged over all simulation runs and all tmax, 5.82 nodes failed
per simulation run.

However, larger tmax leads to longer runtimes and thus also to
a higher chance of node failure constellations which rdmGS
cannot recover from (cf. Section 3.2.2). Consequently, the
fraction of simulation runs where rdmGS does not produce the
full matrix Q due to node failures slowly grows from 0.5% for
tmax = 200 to 7.5% for tmax = 600.

We observe a similar behavior for the orthogonality of Q,
measured in terms of ||I − Q>Q||F/

√
m in Fig. 5: it gets better

for larger tmax, but also the chance increases that rdmGS does
not produce the full matrix Q due to node failure constellations
which it cannot recover from. Summarizing, Figs. 3 and 5 il-

Figure 5: Orthogonality of rdmGS for λ = 12 [s]. “unconnected” refers to
scenarios where node failures caused the hypercube topology to disconnect into
two separate components.

lustrate that there is a certain range of tmax where factorization
accuracy and orthogonality achieved by rdmGS are excellent
and in most cases the rdmGS algorithm recovers successfully
from the node failures. For the simulation setup considered this
range is around tmax = 400.

4. Scalability

In this section, we discuss the scalability of the methods we
developed in this paper. For distributed data aggregation algo-
rithms, scalability in terms of number of nodes corresponds to
scalability in terms of problem size, since data from all nodes is
aggregated, whereas for the distributed orthogonalization method,

scalability in terms of number of nodes and in terms of problem
size need to be considered separately.

4.1. Distributed Data Aggregation Algorithms
Generally speaking, the convergence speed of gossip-based

algorithms depends on the size N of the system, on properties
of the topology of the system, such as diameter or expansion
(cf. [29]), and also on the approximation error ε. In a failure-
free environment, the push-sum and the push-flow algorithm
require O(log N + log ε−1) iterations for approximating the true
aggregate with an error below ε at each node if every node can
communicate with any other node in the system [21].

For more general topologies, a theoretical framework for
the analysis of distributed aggregation algorithms is developed
in [13]. It is also shown in [13] how to derive algorithms with
optimal convergence speed for arbitrary topologies. Although
those algorithms are not prepared to deal with failure types (F2)–
(F5), it is interesting to observe that for communication graphs
with good expansion the number of iterations required for con-
vergence is also O(log N + log ε−1) [13]. Hypercube topolo-
gies are examples for topologies with good expansion proper-
ties. Consequently, the results of [13] actually show that for
network topologies which allow for fast reduction operations,
e. g., k-ary n-cubes [30], randomized gossip algorithms scale
asypmptotically equally well as all-to-all reduction operations.

The system topology may have different influences on con-
vergence speed and on resilience properties, though. Since di-
ameter and expansion of a graph are related to the node degrees,
a higher average node degree tends to speed up convergence of
DDAAs. However, a higher node degree may have drawbacks
in terms of recovery from a violation of mass conservation due
to a temporary failure: Flow-based DDAAs (see Section 2) in
principle have the ability to recover from such a violation of
mass conservation at the time of the next failure-free commu-
nication along the link which was affected by the failure. Since
in gossiping algorithms each node usually selects its commu-
nication partners according to a uniform distribution, a higher
node degree increases the expected time until recovery from a
temporary failure. As a consequence, in order to combine fast
convergence with quick recovery from a violation of mass con-
servation, the network graph should have small node degrees
and good expansion properties. Examples of topologies with
these properties are k-ary n-cubes.

Fig. 6 summarizes simulation results of the scaling behavior
for increasing number of nodes on a system without failures. It
shows the number of iterations required by the distributed data
aggregation algorithms discussed in Sections 2 and 3.1 for com-
puting the average of local values with an error at the order of
machine precision. Note that without failures, the push-sum al-
gorithm, LiMoSense and our new push-flow algorithm are ba-
sically equivalent and thus their scaling behavior is identical.
These three algorithms clearly scale better than the flow updat-
ing algorithm. Besides the theoretically predicted O(log N) be-
havior on topologies where every node can communicate with
any other node (e. g., on a fully connected network), we also
see that even on the weaker connected hypercube topology the
asymptotic behavior of the push-flow algorithm is the same as

7

5 10 15 20
100

101

102

103

log2(N)

It
er

at
io

ns
to

re
ac

h
m

ac
hi

ne
pr

ec
is

io
n

Flow updating (hypercube topology)
Push-flow et al. (hypercube topology)
Push-flow et al. (fully connected)
Optimal hypercube all-to-all reduction

Figure 6: Scalability of DDAAs with the number of nodes on a hypercube
topology compared to the optimal hypercube all-to-all reduction [31] (no fail-
ures; thus push-flow, push-sum and LiMoSense are equivalent)

for the optimal all-to-all reduction operation (cf. [31]), and the
actual number of iterations required differs by about one order
of magnitude.

Fig. 7 illustrates the increase in the number of iterations re-
quired by LiMoSense and the push-flow algorithm due to in-
creasing node failure rate for different system sizes (numbers
of nodes). The values shown in the figure are averages over 100
simulation runs. We see that the push-flow algorithm always re-
quires fewer iterations for convergence than LiMoSense. Com-
pared to a failure free environment, (i) for lower numbers of
nodes, the push-flow algorithm hardly experiences any increase
in the number of iterations, and (ii) for higher numbers of nodes,
the increase in the number of iterations tends to be very mod-
est for low and medium failure rates and grows up to a factor
of five for the push-flow algorithm for high failure rates. The
node counts were chosen in order to allow for a rough com-
parison with an experimental case study for the overhead of
checkpointing and restarting given in [3]: In that case study,
the overhead of checkpointing and restarting was larger than a
factor of two for 216 ≈ 65 000 nodes, which corresponds to fail-
ure probabilities higher than 2−7 for the push-flow algorithm.
For 218 ≈ 260 000 nodes, the overhead of checkpointing and
restarting in the case study presented in [3] was larger than a
factor of eight, which corresponds to very high failure proba-
bilities above 2−3 for the push-flow algorithm. This indicates
advantages of the gossip-based approaches investigated in this
paper compared to classical checkpointing and restarting strate-
gies in terms of lower overhead for fault tolerance.

4.2. Distributed Orthogonalization
The scalability of rdmGS with the number of nodes is deter-

mined by the scalability of the specific DDAA used, because all
communication between nodes is concentrated in the data ag-
gregation processes. As shown before, if they are based on the

−11 −9 −7 −5 −3
0

1

2

3

4

5

6

7

log2(probability for message loss per transmission)

R
el

at
iv

e
ite

ra
tio

n
co

un
tf

or
co

nv
er

ge
nc

e

218 nodes, LiMoSense
216 nodes, LiMoSense
218 nodes, Push-flow
216 nodes, Push-flow
28 nodes, LiMoSense
28 nodes, Push-flow
28 nodes, Failure-free system

Figure 7: Resilience and scalability of LiMoSense and push-flow for averaging
on a hypercube topology relative to failure-free system with 28 nodes

push-sum algorithm or on the push-flow algorithm, the number
of iterations needed will grow like O(log N) on many topolo-
gies, which is asymptotically the same behavior as optimal par-
allel all-to-all reduction operations.

In terms of scalability with the problem size, we note the
following: Increasing the number of rows n for fixed N corre-
sponds to more rows handled per node and thus increases the
local computation cost, but does not affect the communication
cost. Since local computation is usually much faster than com-
munication, this leads to good scaling behavior and tends to
improve the convergence speed due to increased accuracy in the
data aggregation processes. Increasing the number of columns
m for fixed N is less attractive, since in the version of rdmGS
described in this paper the number of DDAAs invoked grows
quadratically with m, which can become a limiting factor for
large m. However, we are currently developing an improve-
ment of the underlying dmGS algorithm which requires only
O(m) DDAAs [25] and thus improves scalability with increas-
ing m.

5. Summary and Conclusions

We have shown that distributed algorithms based on ran-
domized communication schedules can be very attractive for
potentially unreliable or unstable large-scale systems, in par-
ticular in terms of fault tolerance and resilience. We have pre-
sented the new push-flow algorithm for distributed computation
of sums or averages, which has better resilience properties than
existing distributed data aggregation algorithms. Moreover, we
have developed the distributed orthogonalization method rd-
mGS on top of distributed data aggregation algorithms, which
is very resilient to various types of failures and capable of pro-
ducing fully accurate results even if several nodes fail perma-
nently. Simulation experiments showed that even when 30% of

8

the nodes of the system fail on average, rdmGS produces results
accurate to machine precision in at least 88% of the simulation
runs.

Investigation of remaining questions in terms of the poten-
tial of these new randomized algorithms for high performance
requirements as well as a quantitative investigation of the influ-
ence of asynchrony on their performance is work in progress.

Acknowledgment
This work was supported by the Austrian Science Fund FWF

in project S10608 (NFN SISE).

References

[1] G. E. Fagg, E. Gabriel, Z. Chen, T. Angskun, G. Bosilca, J. Pjesivac-
Grbovic, J. J. Dongarra, Process fault tolerance: Semantics, design and
applications for high performance computing, International Journal of
High Performance Computing Applications 19 (4) (2005) 465–477.

[2] J. T. Daly, A higher order estimate of the optimum checkpoint interval for
restart dumps, Future Gener. Comput. Syst. 22 (2006) 303–312.

[3] M. Varela, K. Ferreira, R. Riesen, Fault-tolerance for exascale systems,
in: Cluster Computing Workshops and Posters (CLUSTER WORK-
SHOPS), 2010 IEEE International Conference on, 2010, pp. 1–4.

[4] J. Plank, K. Li, M. Puening, Diskless checkpointing, Parallel and Dis-
tributed Systems, IEEE Transactions on 9 (10) (1998) 972 –986.

[5] J. Plank, Improving the performance of coordinated checkpointers on net-
works of workstations using raid techniques, in: Reliable Distributed Sys-
tems, 1996. Proceedings., 15th Symposium on, 1996, pp. 76 –85.

[6] A. Guermouche, T. Ropars, E. Brunet, M. Snir, F. Cappello, Uncoordi-
nated checkpointing without domino effect for send-deterministic MPI
applications, in: Parallel Distributed Processing Symposium (IPDPS),
2011 IEEE International, 2011, pp. 989 –1000.

[7] K. Ferreira, R. Riesen, R. Oldfield, J. Stearley, J. Laros, K. Pedretti,
T. Brightwell, rMPI: increasing fault resiliency in a message-passing envi-
ronment, Tech. rep., no. SAND2011-2488, Sandia National Laboratories
(2011).

[8] C. Engelmann, H. H. Ong, S. L. Scott, The Case for Modular Redun-
dancy in Large-Scale High Performance Computing Systems, in: Pro-
ceedings of the 27th IASTED International Conference on Parallel and
Distributed Computing and Networks (PDCN) 2009, ACTA Press, Cal-
gary, AB, Canada, 2009, pp. 189–194.

[9] C. Wang, F. Mueller, C. Engelmann, S. L. Scott, Proactive process-
level live migration in hpc environments, in: Proceedings of the 2008
ACM/IEEE conference on Supercomputing, SC ’08, IEEE Press, Piscat-
away, NJ, USA, 2008, pp. 43:1–43:12.

[10] K.-H. Huang, J. Abraham, Algorithm-based fault tolerance for matrix op-
erations, Computers, IEEE Transactions on C-33 (6) (1984) 518 –528.

[11] Z. Chen, J. Dongarra, Algorithm-based fault tolerance for fail-stop fail-
ures, Parallel and Distributed Systems, IEEE Transactions on 19 (12)
(2008) 1628 –1641.

[12] Z. Chen, Algorithm-based recovery for iterative methods without check-
pointing, in: Proceedings of the 20th international symposium on High
performance distributed computing, HPDC ’11, ACM, New York, NY,
USA, 2011, pp. 73–84.

[13] S. Boyd, A. Ghosh, B. Prabhakar, D. Shah, Randomized gossip algo-
rithms, IEEE Transactions on Information Theory, Special issue of IEEE
Transactions on Information Theory and IEEE ACM Transactions on Net-
working 52 (2006) 2508–2530.

[14] A.-M. Kermarrec, M. van Steen, Gossiping in distributed systems,
SIGOPS Oper. Syst. Rev. 41 (2007) 2–7.

[15] A. Dimakis, A. Sarwate, M. Wainwright, Geographic gossip: Efficient av-
eraging for sensor networks, IEEE Trans. Signal Processing 56 (3) (2008)
1205–1216.

[16] T. Aysal, M. Yildiz, A. Sarwate, A. Scaglione, Broadcast gossip algo-
rithms for consensus, IEEE Trans. Signal Processing 57 (7) (2009) 2748
–2761.

[17] R. Karp, C. Schindelhauer, S. Shenker, B. Vocking, Randomized rumor
spreading, in: Proceedings of the 41st Annual Symposium on Founda-
tions of Computer Science, IEEE Computer Society, Washington, DC,
USA, 2000, pp. 565–574.

[18] M. Jelasity, A. Montresor, O. Babaoglu, Gossip-based aggregation in
large dynamic networks, ACM Trans. Comput. Syst. 23 (2005) 219–252.

[19] D. Shah, Gossip algorithms, Found. Trends Netw. 3 (2009) 1–125.
[20] D. Mosk-Aoyama, D. Shah, Computing separable functions via gossip,

in: Proceedings of the twenty-fifth annual ACM symposium on Principles
of distributed computing, PODC ’06, ACM, New York, NY, USA, 2006,
pp. 113–122.

[21] D. Kempe, A. Dobra, J. Gehrke, Gossip-based computation of aggregate
information, in: FOCS ’03: Proceedings of the 44th Annual IEEE Sym-
posium on Foundations of Computer Science, IEEE Computer Society,
2003, pp. 482–491.

[22] A. Olshevsky, J. N. Tsitsiklis, Convergence speed in distributed consensus
and averaging, SIAM J. Control Optim. 48 (2009) 33–55.

[23] H. Straková, W. N. Gansterer, T. Zemen, Distributed QR factorization
based on randomized algorithms, in: Proceedings of the 9th International
Conference on Parallel Processing and Applied Mathematics, Part I, Vol.
7203 of Lecture Notes in Computer Science, 2012, pp. 235–244.

[24] D. Kempe, F. McSherry, A decentralized algorithm for spectral analysis,
Journal of Computer and System Sciences 74 (1) (2008) 70 – 83.

[25] H. Straková, W. N. Gansterer, A distributed eigensolver based on ran-
domized communication, Technical Report RLCTA-2012-1, University
of Vienna, Research Group Theory and Applications of Algorithms, sub-
mitted (2012).

[26] I. Eyal, I. Keidar, R. Rom, LiMoSense – Live Monitoring in Dynamic
Sensor Networks, in: 7th Int’l Symp. on Algorithms for Sensor Systems,
Wireless Ad Hoc Networks and Autonomous Mobile Entities (ALGO-
SENSORS’11), 2011.

[27] P. Jesus, C. Baquero, P. S. Almeida, Fault-tolerant aggregation by flow
updating, in: Proceedings of the 9th IFIP WG 6.1 International Confer-
ence on Distributed Applications and Interoperable Systems, DAIS ’09,
Springer-Verlag, Berlin, Heidelberg, 2009, pp. 73–86.

[28] P. Jesus, C. Baquero, P. Almeida, Fault-tolerant aggregation for dynamic
networks, in: 29th IEEE Symposium on Reliable Distributed Systems,
2010, pp. 37 – 43.

[29] S. Hoory, N. Linial, A. Wigderson, Expander graphs and their applica-
tions, Bull. Amer. Math. Soc. 43 (2006) 439–561.

[30] W. J. Dally, Performance analysis of k-ary n-cube interconnection net-
works, IEEE Trans. Comput. 39 (1990) 775–785.

[31] A. Grama, G. Karypis, V. Kumar, A. Gupta, Introduction to Parallel Com-
puting, 2nd Edition, Addison Wesley, 2003.

9

