
Science of Computer Programming 77 (2012) 551–576

Contents lists available at SciVerse ScienceDirect

Science of Computer Programming

journal homepage: www.elsevier.com/locate/scico

The supportive effect of patterns in architecture decision recovery—
A controlled experiment
Uwe van Heesch a,b,∗, Paris Avgeriou a, Uwe Zdun c, Neil Harrison a,d

a University of Groningen, Groningen, The Netherlands
b Fontys University of Applied Sciences, Venlo, The Netherlands
c Faculty of Computer Science, University of Vienna, Austria
d Utah Valley University, Orem, UT, USA

a r t i c l e i n f o

Article history:
Received 29 June 2011
Received in revised form 22 November
2011
Accepted 24 November 2011
Available online 7 December 2011

Keywords:
Software architecture
Architecture decisions
Recovery
Controlled experiment

a b s t r a c t

The documentation of software architectural design decisions is important to help people
understand the system and the rationale behind architectural solutions. In practice, the
documentation of such decisions is regularly done after the fact, or skipped completely.
To support software maintenance and evolution, the decisions have to be recovered and
described. This is often hindered by the fact that the original architects are not available
any more, or they do not completely remember the reasons for making the decisions.
Additionally, the whole process is very expensive. In this paper, we hypothesize that
architecture decision recovery can be more efficient by focusing on recovering decisions
related to applying architecture patterns. To test this hypothesis, we designed a controlled
experiment that was conducted to analyze the impact of architecture patterns on the
quality and quantity of architecture decisions recovered after the fact. We are able to
provide statistical evidence that a focus on patterns significantly increases the quality of
decisions, while no conclusive evidence concerning the quantity of decisions was found.

© 2011 Elsevier B.V. All rights reserved.

1. Motivation

During the architecting phase of a software project, many decisions are made that influence the fundamental structure
and behavior of the software system to develop. The architects responsible for making these decisions have to take into
consideration the concerns of the most important stakeholders, quality attribute requirements, architecturally-significant
functional requirements and constraints that limit the potential outcome of the decisions. Architecture decisions satisfy
some of the concerns while they may potentially violate others. As a consequence, architecting involves negotiations
between stakeholders and making trade-offs between different requirements and concerns that have to be satisfied during
the software design. The perfect solution often does not exist; the rationale of architecture decisions explains the related
trade-offs and optimizations.

While architects consciously and subconsciously make these decisions, they regularly neglect to document them
appropriately [16]. In some cases, the outcome of decisions is represented in architecture documentation, various UML
design diagrams, or at the very least in the source code; however, the exact problem that is solved, the concerns that were
balanced, and the rationale behind the decision are usually omitted [37].

∗ Corresponding author at: University of Groningen, Groningen, The Netherlands.
E-mail addresses: uwe@vanheesch.net (U. van Heesch), paris@cs.rug.nl (P. Avgeriou), uwe.zdun@univie.ac.at (U. Zdun), Neil.Harrison@uvu.edu

(N. Harrison).

0167-6423/$ – see front matter© 2011 Elsevier B.V. All rights reserved.
doi:10.1016/j.scico.2011.11.008

http://dx.doi.org/10.1016/j.scico.2011.11.008
http://www.elsevier.com/locate/scico
http://www.elsevier.com/locate/scico
mailto:uwe@vanheesch.net
mailto:paris@cs.rug.nl
mailto:uwe.zdun@univie.ac.at
mailto:Neil.Harrison@uvu.edu
http://dx.doi.org/10.1016/j.scico.2011.11.008


552 U. van Heesch et al. / Science of Computer Programming 77 (2012) 551–576

After some time, when the project advances, even the architect who originally made the decisions will have difficulties
remembering all the details and eventually the knowledge gets lost to a great extent. In the literature, this problem is called
architectural knowledge vaporization [14,16,20,37].

This phenomenon becomes especially problematic when software systems are maintained or extended. During software
evolution, developers must understand the existing system well in order to make informed decisions on changes and
extensions. New requirements and changing system behaviormake it necessary to carefully review the original architecture
decisions before making additional ones. In absence of decent project documentation, the architectural knowledge and
especially the past decisions have to be recovered. Otherwise, new architecture decisions may conflict or override existing
ones, or may repeat past mistakes. Therefore, recovering architecture decisions is of paramount importance for a successful
system evolution.

Unfortunately, recovering architecture decisions presents several challenges. If the project documentation is poor, the
recovery of architecture decisions is a resource-intensive task that requires a lot of experience and has a high risk for
ambiguity and misunderstandings. If architecture decisions were not explicitly documented by the original architects,
the new software development team responsible for making changes to the system typically has to rely on the running
application, the source code, incomplete textual documentations, end-user manuals, and fragmentary or out-of-date design
diagrams (e.g., in UML).

It is often challenging enough to identify architectural solutions and the corresponding decisions on the basis of these
artifacts. Finding out why they were chosen, which requirements and concerns they satisfy, and which consequences the
implementation of the approaches has, requires vast knowledge and experience from the analysts. To make matters worse,
most approaches cannot be seen as isolated solutions; they are pieces of a larger puzzle that only make sense if they are
examined in the architecture as a whole.

One way to efficiently recover architecture decisions is to look for patterns applied in the architecture and reuse their
extensive documentation (that can be found in the pattern literature) in the context of the system under study. Patterns
typically describe the problem space, in which they are applicable and give advice for applying the solution they propose.
In that respect, architectural patterns capture many important aspects of architecture decisions [14]; the same aspects that
are subject to architectural knowledge vaporization. Once the pattern is identified, the pattern description can be used to
explore the pattern’s problem space, the consequences of applying it, related decisions, and possible trade-offs the original
architects made. Of course, not all architecture decisions are related to applying patterns; but some of the most important
ones are. We assume that architecture decision recovery based on patterns is more efficient than ad-hoc, intuitive decision
recovery.

The goal of this paper is to empirically validate whether architecture decision recovery is more efficient regarding the
quality and quantity of architecture decisions, if the recovery focuses on identifying applied patterns. Specifically, we intend
to answer the following research question: Are the quality and quantity of recovered architecture decisions higher if the
recovery focuses on identifying applied architectural patterns than in the general case?

To answer the research question, we conducted a controlled experiment during the European Conference on Patterns
Languages of Programs (EuroPLoP) [15] in July 2009 and during a software architectureworkshop for industrial practitioners
in Venlo, the Netherlands in April 2011. In total, 33 software engineering experts from academia and from the industry
took part. They were asked to recover architecture decisions on the basis of an architectural documentation of the
JBoss J2EE application server [21]. Half of the participants were explicitly asked to focus on identifying patterns in the
architecture, while the other half was told to rely on their experience and intuition when performing the recovery.
The data from the experiment was analyzed, and the quality and quantity of the recovered architecture decisions were
compared.

The results of the experiment provide strong evidence for the benefits of using patters concerning the quality of recovered
decisions. The study did not provide conclusive evidence concerning the quantity of decisions.

The rest of this paper is organized as follows: Section 2 presents related work. Section 3 explains the design of the
controlled experiment including the introduction of variables and hypotheses, while the next section presents details about
the execution of the experiment. We analyze the results of the study and present the hypotheses testing in Section 5.
Section 6 contains an interpretation of our findings, a discussion of threats to validity, and finally observations and lessons
learned. Section 7 concludes and presents future work.

2. Related work

The design of this experiment and the theoretical background of the hypotheses presented in Section 4 are related to
multiple research areas: software architecture, architecture recovery and software patterns. Within architecture recovery,
we distinguish between architectural reconstruction and architecture decision recovery.

The former concerns the reconstruction of an architecture, which was never documented by the architects, or whose
documentation is no longer synchronized with the system ‘‘as-is’’ [4]. The latter mostly focuses on recovering the decisions
regarding architectural solutions and the reasoning behind the latter; especially concerning the satisfaction of requirements.
It does not only answer the question what the architecture is like, but also why it is like that. Thus, architecture decision
recovery is complementary to architectural reconstruction. The following paragraphs discuss the related work in each of
the aforementioned areas.



U. van Heesch et al. / Science of Computer Programming 77 (2012) 551–576 553

Many definitions exist for software architecture. In ISO/IEC/IEEE 42010 [18], the international revision of IEEE Std 1471-
2000 [17], the architecture of a system is defined as ‘‘fundamental concepts or properties of a system in its environment
embodied in its elements, relationships, and in the principles of its design and evolution’’. In the software architecture
literature, it is also described as the result of making a set of design decisions that impact the overall structure and behavior
of a software system [6,19,37]. These decisions are usually called architecture decisions. While some approaches mainly
document the outcome of these architecture decisions in different architectural views (e.g. [8,18,27], others focus on
documenting the decisions themselves [34,37].

However, these approaches focus on the documentation of software architecture during the architecting process, or at
least by the architect himself. They primarily concern forward engineering scenarios and try to conserve knowledge that is
or might become useful in the future. In contrast to this, during architecture recovery, this knowledge, and often also the
people possessing it, are partially or totally unavailable.

Several approaches exist that mainly use source code as a basis for architecture reconstruction [23,26]. Krikhaar et al.
propose an approach that uses the source code and naming and coding conventions to extract the architecture of a system
ex post [26]. Although the original architects, if available, can make a contribution to this process, the goal is not to recover
rationale, but to expose the architecture of a system in suitable representations to allow impact analyses on quality attributes
and to incrementally improve the architecture. Kazman and Carrière present an approach to reconstruct architecture that
centers around ‘‘Dali’’, a suite that integrates multiple tools to extract and analyze software architecture [23]. Again, the
approach involves the extraction of possibly multiple models from the source code and other programming artifacts that
describe the architecture including elements, relationships, and attributes of relevant entities. These models can be seen as
different views on the architecture.

In contrast to the static source code analyzes approaches presented above, dynamic system analysis focuses on the
runtime behavior of systems. Yan et al. describe an approach called ‘‘DiscoTect’’ [39]. The architecture of a running system
is analyzed using state-machines to identify common patterns of runtime behavior in monitored system events. As a
result, DiscoTect identifies applied architectural styles, whose runtime patterns have been defined in state machines. Other
outcomes of the method are different views representing the architecture of the system at runtime.

In all aforementioned approaches, and mainly in all other architecture reconstruction approaches [25], the source code,
system events and other artifacts used to configure and run the system are automatically processed using tool support to
build different types of models that represent the architecture of the analyzed system as-is. They do not aim at recovering
the problem space of the architectural constructs or even the rationale behind them. Architecture decisions are not made
explicit.

Jansen et al. present an approach to recover architectural design decisions [20]. The described method involves
reconstructing detailed designs and several architectural views on a level of abstraction that is suitable to recover
architecture decisions. Source code and information from the original architects form the basis for the architecture
reconstruction. This approach has a different focus than the previously mentioned ones, as representations of the
architecture are solely created for the purpose of recovering architecture decisions. Depending on the purpose of themodels,
they can remain on a high level of abstraction. In contrast, this paper focuses on the recovery of architecture decisions
based on existing architecture documentation that was created manually and is not necessarily a result of source code
analysis. Additionally, the recovery of decisions is done manually and profits from interpretation skills that humans have
in contrast to machines. This makes the approach applicable for situations, in which the documentation neither involves
multiple architectural views, nor a detailed design of the whole system, but fragmentary textual descriptions that include
box-and-line diagrams and other sketches of aspects of the system. Moreover, it explicitly supports the recovery of the
problem space and the rationale behind decisions, not just the specifically applied solutions.

Software architectural patterns,1 like all patterns, capture generic solutions to recurring problems in specific
contexts [1,7,10]. They provide reusable architectural knowledge for a particular application domain [30]. Architectural
patterns reason about design alternatives, consequences, and trade-offs concerning software qualities, which are performed
when applying them [7].

Especially architectural patterns explicitly discuss the consequences of their usage concerning the quality attributes of
the target architecture and mention related patterns [7].

A comparison of patterns and architecture decisions is presented in [14]. In this paper, the advantages of documenting
patterns applied in a software architecture are explicated. Other approaches exist that alsomake use of patterns as source of
architectural knowledge [3,36,40,41]. However, all presented approaches propose to document the usage of patterns during
the architecting process, while this paper focuses on using patterns in architecture decision recovery, where large parts of
the original reasoning is not explicitly available any more.

3. Design of the experiment

For the design of the experiment, the guidelines by Kitchenham et al. [24] and Wohlin et al. [38] were used. The former
present general guidelines for software engineering experimentation andgive someadvice concerning the design, execution,

1 In the remainder of this article, for simplicity, we will use the word pattern meaning software architectural pattern.



554 U. van Heesch et al. / Science of Computer Programming 77 (2012) 551–576

Table 1
Dependent variables.
Description Scale type Unit Range

Quantity of recovered decisions Ratio Decisions Positive natural numbers including zero.
Quality of recovered decisions Interval N.A. Five point Likert-scale. One for very poor, Five for very high.

analysis, and presentation of empirical studieswithout going into detail. The latter present the phases inmore detail, discuss
statistical tests and their suitability for different types of studies. In this experiment, Kitchenham et al.’s guidelines were
primarily used in the planning phase of the experiment, whileWohlin et al.’s advice was used as a reference for the analysis
and interpretation of the results. Jedlitschka’s andPfahl’s reporting guidelines [22] are used to describe the experiment in this
paper. The following subsections of the proposed template were left out, because they were not applicable, or the content
was already presented in other sections: Inferences are discussed Section 6; relation to existing evidence is presented in
Section 2; impacts of the approach on time and quality are discussed in Section 5; interpretation and general limitations of
the study are discussed in Section 6.2. Note that the usage of this template introduces a certain level of redundancy, because
a distinction between the design and the actual execution of the experiment is made. Some subsections of the execution
phase are similar to corresponding subsections of the design phase.

3.1. Goal, hypotheses, parameters, and variables

The goal of the experiment is to find out, if architecture decision recovery that is based on systematic identification of
patterns in the architecture leads to higher quality or quantity of recovered decisions compared to architecture decision
recovery that is performed ad hoc and intuitively. Although systematic approaches for architecture decision recovery exist
(e.g. see [20]), practitioners in the industry still perform recovery in an ad-hoc, intuitive way.

The study goal led to the following null hypotheses and corresponding alternative hypotheses:

H01: Focusing on identifying patterns in architecture decision recovery leads to lower or equal quality of recovered decisions
compared to ad-hoc, intuitive recovery.

H1: The quality of recovered decisions is higher when the recovery focuses on identifying patterns in the architecture,
compared to ad-hoc, intuitive recovery.

H02: Focusing on identifying patterns in architecture decision recovery leads to lower or equal quantity of recovered
decisions compared to ad-hoc, intuitive recovery.

H2: The quantity of recovered decisions is higher when the recovery focuses on identifying patterns in the architecture,
compared to ad-hoc, intuitive recovery.

3.1.1. Dependent variables
Two dependent variables were observed during the experiment, as shown in Table 1: the quality and the quantity of

recovered architecture decisions.
The following aspects are taken into consideration to measure the quality of the recovered decisions:

• Problem/Issue: The architectural design issue that is addressed by the decision.
• Decision: The outcome or solution imposed by the decision.
• Alternatives: Possible alternative solutions addressing the design issue.
• Arguments: A justification for the chosen decision instead of the alternatives.
• Requirements: Functional and non-functional requirements that are satisfied or affected by the decision.
• Related Decisions: Decisions that are related to or imposed by the current decision.

The quality of the recovered decisions was assessed by two independent experts in the field of software architecture (later
also referred to as analysts) using a five point Likert-scale [33] that ranges from one for very poor to five for very high quality.
The ratings were left to their own experience and interpretation, but they were asked to take the aforementioned aspects
of decision quality into consideration.

Quantity of architecture decisions is defined as the number of recovered architecture decisions. Decisions that both
analysts concordantly rated as non-architectural would be excluded from the analysis. As it is hard to clearly estimate in
how far a design decision is critical to a system design and hence concerns the architecture of the system, we provided some
examples of architecture decisions and left further evaluation to the expertise of the analysts.

3.1.2. Independent variables
The goal of the experiment was to discover the influence of patterns on the quality and quantity of decisions obtained

from architectural recovery. Therefore, two different treatmentswere defined for the participants. One group of participants
was explicitly told to focus on identifying patterns in the architecture documentation; the participants in the other group
did not get any specific advice, but they were allowed to perform this task as they would normally do it. The first group is
referred to as pattern group, the latter as control group.



U. van Heesch et al. / Science of Computer Programming 77 (2012) 551–576 555

Table 2
Independent variables.
Description Scale type Unit Range

Group Nominal N.A. Possible values: Pattern group, Control group.
Affiliation Nominal N.A. Possible values: university/academia, industry, other
Programming experience Ordinal Years 4 classes: 0, 1–3, 3–7, >8
Architecture experience Ordinal Years 4 classes: 0, 1–3, 3–7, >8
Middleware experience Ordinal Years 4 classes: 0, 1–3, 3–7, >8
Frequency of pattern usage in projects Ordinal Percent 4 classes: 0%, <25%, >25%, 100%
Number of well known patterns Ordinal Patterns 4 classes: <5, 5–10, 11–20, >20

Table 2 shows other variables that could have an influence on the dependent variables. They relate to characteristics of
the participants and mainly concern previous experience. In the design of the study, these variables were eliminated by
defining blocking rules to balance the characteristics among the pattern group and the control group.

3.2. Experimental design

To test the hypotheses, we conducted two executions of a controlled experiment [5] using exactly the same study
design. The first execution took place at EuroPLoP 2009 [15]; the second execution took place during a software architecture
workshop at the Fontys University of Applied Science in Venlo, the Netherlands, in April 2011.

3.2.1. Participants
The schedule of the EuroPLoP conference, where the first execution of the study took place, had reserved time slots for

so called focus groups (FGs). Attendees were able to propose topics in advance and publish them on the conference website.
Multiple FGs were scheduled concurrently, so participants had to make a selection. We announced a focus group in advance
and stated explicitly that we were planning to do an experiment on architecture recovery based on an existing architecture
documentation. The participation in the focus groupwas voluntary, but all participants had to take part in the experiment. It
was assumed that the primary motivation for taking part in the experiment was personal interest in architecture recovery.
We expected to have 10 to 15 participants, based on experience from former focus groups. A background in at least one
software-engineering discipline was presumed.

The second execution during the software architecture workshop was announced as a practical session on architecture
decision recovery. The participation in the workshop was free. Invitations were sent to alumni students from the hosting
university of applied science, and colleagues from their companies. We assumed that the greatest part of the participants
would have a significant industrial background and expected between 15 and 30 attendees.

The experimental design described in the following subsections was followed in the same way in both executions of the
experiment.

3.2.2. Object
The basis for the architectural recovery was a five page document about the JBoss J2EE application server version 2.2.4,

an excerpt of a research article on the JBoss architecture written by Jenny Liu at the University of Sydney in April 2002 [28].
JBoss, in the described version, is a free open source application server implementing the J2EE specification. The

documentation does not explicitly mention the usage of any pattern, but hints exist in form of component names. The
name RequestBroker for example hints at the usage of the Broker pattern [7].

The document describes the conceptual architecture and lists technologies and frameworks used in the implementation.
Besides text, some box-and-line diagrams are used to illustrate components, and control- and data-flow in parts of the
architecture. The participants received a print-out of the document.

The architecture of the used JBoss server is dominated by a microkernel, which was implemented using the Java
Management Extension (JMX). The major JBoss services are encapsulated in so called MBeans, which are managed by an
MBean server that is part of JMX. JMX itself has a layered architecture; the agent layer contains the MBean server. The
bottom layer communicates directly with the Java virtual machine. Please refer to [28] for the detailed description of the
architecture.

3.2.3. Blocking
To be able to explicitly analyze the influence of patterns in architecture recovery, we split the participants in two groups.

One group was asked to identify and document architecture decisions related to patterns, whereas the other group did not
get corresponding advice. The goal was to reduce the effect of independent variables that might influence the results of the
analysis.

Because of the rather small sample size, we decided not to assign the participants to the groups randomly, but to balance
the groups explicitly based on affiliation (university, industry, other), programming experience (0 years, 1–3 years, 3–7
years, 8 or more years), architecture experience (0 years, 1–3 years, 3–7 years, 8 or more years) and experience with object-
oriented middleware (0 years, 1–3 years, 3–7 years, 8 or more years).



556 U. van Heesch et al. / Science of Computer Programming 77 (2012) 551–576

Table 3
Instrumentation overview.
Phase Instrument Purpose

Introduction First questionnaire Gather information needed for blocking
Example decision To explain the concept of architecture decisions

Experiment Blank decision templates Used by the participants to document the recovered decisions
Pattern catalog Provided to the pattern group as pattern reference

Wrap-up Second questionnaire Gather information needed for interpretation and validation of the results

3.2.4. Instrumentation
Table 3 shows an overview over the instruments used in the three phases of the experiment.
In the introduction phase, we asked all participants to fill in a questionnaire prior to the recovery exercise to gather

information needed to perform the blocking (affiliation, programming experience, architecture experience andmiddleware
experience). Unique random numbers were attached to the questionnaires to identify the participants throughout the
experiment. They were also mapped to every recovered architecture decision.

In the same phase, we introduced the concept of architecture decisions to all attendees and presented one elaborate
example on how to recover and document a decision based on a small part of an architecture documentation. The example
decision was handed out to all participants, so they could use it as a guideline during the experiment. The template used to
document the decision was taken from [34].

In the next phase, the participants were asked to document recovered decisions based on the same template. Therefore,
we handed out as many blank templates on paper as needed by the participants. Some fields in the template were optional,
whereas Problem/Issue, Decision, Arguments, and Related Requirementsweremarked asmandatory fields. We encouraged the
participants to provide as much information as possible regarding at least the mandatory fields.

Every member of the pattern group additionally received a printed copy of the most well-known architectural patterns
[2,7].

Using the catalog to identify patterns was optional. It was assumed that many of the participants had knowledge
about architecture patterns anyway. However, the catalog was provided to serve as a reference and as a reminder for the
participants to focus on patterns. Any patterns or architectural styles were allowed that were used to solve an architectural
problem. As described in Section 3.1.1, we left it up to the analysts to judge, whether a recovered decision was architectural,
or not.

An additional questionnaire (later also referred to as second questionnaire) was designed to gather further information
from the participants after the experiment in the wrap-up phase. It contained questions concerning previous experience
with software patterns and the usefulness of patterns during the recovery. Although this data is not needed for testing the
hypotheses, it is useful for the interpretation and validation of the results. We asked these questions after the experiment
for two reasons. First, because the questions regarding patterns could have influenced the participants of the control group
(the non-pattern group) prior to the experiment; they could have guessed that patterns play an important role in the other
group, and consciously or unconsciously also focus onpatterns. Second, becausewe are interested in theway the participants
actually performed the recovery.

3.2.5. Blinding
To eliminate subjective bias on the part of the participants and the experimenters, double-blinding was applied in the

experiment. Although the participants had to realize that there are two different groups, they were not able to understand
the purpose of the group division, the difference in treatments and if they belong to the experimental group or the control
group. To prevent the experimenters from being biased, the participants handed in the results using a participant number
that does not allow to draw conclusions on their real identity. The participant numbers were assigned to them on the first
questionnaire.

Because the experimenters necessarily know which participant number belongs to which group, the quality ratings of
the results were done by two independent experts. We asked two people from our own professional network to do the
analysis.

Table 4 summarizes the relevant experience of the analysts. The data was gathered using a web questionnaire.
These analysts did not get any specific information about the experiment. Theywere just asked to rate the quality of some

documented decisions on a scale from one to five as described in the variables section. Before handing the decisions out to
the analysts, we pseudonymized them a second time by attaching a unique random number to every decision and internally
mapping it to the participant number. That way it was impossible for the analysts to find out which decision belongs to
which participant, which decisions belong together, and which decisions belong to the pattern group. As mentioned earlier,
the fact that there were two groups was not communicated to the analysts either.

3.2.6. Data collection procedure
After 30 min. of introduction and grouping, the participants started with the recovery. The provided templates had to be

used to document the recovered architecture decisions on paper. The participants of the groups were distributed over two
separate rooms according to the group membership. Two experimenters were present in each room to answer questions



U. van Heesch et al. / Science of Computer Programming 77 (2012) 551–576 557

Table 4
Characteristics of the analysts.
Characteristic Analyst 1 Analyst 2

Working experience in the industry 9 years 33 years
Experience in the field of software architecture 9 years 12 years
Experience with object-oriented middleware like J2EE 5 years 3 years
Involved in making architecture decisions (5-point Likert-scale from very
frequently to very rarely)

very frequently frequently

Involved in documenting architecture decisions (5-point Likert-scale from
very frequently to very rarely)

very frequently frequently

Involved in the analysis of architecture decisions (5-point Likert-scale from
very frequently to very rarely)

very frequently frequently

(a) Programming experience. (b) Architecture experience. (c) Middleware experience.

(d) Affiliation.
Fig. 1. Distribution of participants.

related to the instructions and to take care that participants did not communicate. Once the session was completed, the
filled-in decision templates were collected by the experimenters and finally a wrap up session was planned to collect
comments on the experiment and to fill in the questionnaires about pattern experience and pattern usage mentioned in
Section 3.2.4. Including a 30 min. break, the experiment lasted three hours.

4. Execution

4.1. Sample and Preparation

As described in the design section, the experiment was announced as a focus group during EuroPLoP 2009 and as a
practical session on architecture decision recovery at the workshop in Venlo.

At EuroPLoP, twelve people were willing to take part in the experiment, from which one had to be rejected because of
a lack of software engineering experience. Twenty-two people took part in the practical session in Venlo, from which none
had to be rejected.

All participants filled in the first questionnaire and were afterward assigned to either the pattern group or the control
group. The blocking procedure went as expected according to the experimental design.

Fig. 1 shows previous experience and affiliation of the participants, as assigned to the pattern group and the control
group. The figures accumulate the data from all participants from the two executions of the experiment.



558 U. van Heesch et al. / Science of Computer Programming 77 (2012) 551–576

Subfigures (a) to (c) show the previous experience of the participants concerning programming, architecture and
middleware. Additional to the total numbers of participants in each class, median values are shown for each group. The
medians are aligned to the right vertical axis, whereas all other values are aligned to the left vertical axis. Medians were
calculated as follows. First, each of the year-intervals was assigned to a single value in an ordinal scale ranging from zero to
three. ‘0 years’ was assigned to the value 0, ‘1–3 years’ was assigned to 1 and so on. Then medians were calculated based
on the ordinal scale. In total, the median programming-, architecture- and middleware experience for both groups is two,
which means that the participants in the groups were balanced concerning their previous knowledge.

At the same time, the participants from both groups were introduced to the concept of architecture decisions using the
prepared recovered decision. The introduction took approximately 15 min.

4.2. Data collection performed

The data collection at the EuroPLoP execution was performed as planned in the design. No participants dropped out and
no deviations from the study design occurred.

In theworkshop execution inVenlo, one of the participants from the control groupdid not hand in the recovered decisions
after the experiment. Consequently, his data could not be taken into consideration. Other than that, everything went as
planned.

4.3. Validity procedure

The experiment took place in a controlled environment. The participants were assigned to two different rooms according
to their group (pattern, or control group). At least one experimenter was present in each room during the whole experiment
time to assure that participants did not use forbidden material and did not talk to each other. After the experiment, all
filled-in decision templates were collected by the experimenters before any of the participants left the room. There were no
situations in which participants behaved unexpectedly.

5. Analysis

5.1. Descriptive statistics

We use descriptive statistics to visualize the collected data as a first step in the analysis. The first two subsections are
related to the hypotheses tests: Section 5.1.1 presents an analysis of the quality of documented decisions. Section 5.1.2
concerns the quantity of decisions. The last section presents an analysis of the data gathered in the second questionnaire,
in which the participants were asked about their previous experience and the usefulness of patterns during architecture
recovery. The results are compared to those of the analysis of the quality and quantity of the recovered decisions.

5.1.1. Quality of recovered decisions
As explained in the design section, the quality of knowledge in every recovered decision was rated by two independent

experts using a five point Likert-scale ranging from one for very poor quality to five for very high quality.
The level of scaling (e.g. nominal, ordinal, interval, ratio) for Likert-scales is hard to determine. It is common sense that

Likert-scales are at least ordinal in nature [12]. For the quality ratings in this experiment this is given. A decision that was
ratedwith five has a higher quality than a decision ratedwith four. However, to be able to use parametric statistical tests like
the t-test, at least an interval scale [31] character of the scalemust be assumed. This is the case if equal distances between the
points on the scale can be assumed, e.g. the difference between the ratings five and four would be the same as the distance
between ratings two and three. In our specific case we assume that this holds true.

In the analysis of the experiment, a t-test for independent variables [29] is used to calculate the significance of the found
results. Levene’s significance test is used to find out whether equal variances of the quality ratings can be assumed.

Based on the data in Table 9 in the appendix, the following descriptive statistics apply for the quality of knowledge. Fig. 2
shows the frequency of rated quality for the decisions recovered by the pattern group and the control group. From the figure,
we see that the quality of decisions in the pattern group seems to be higher than the quality of decisions in the control group.
Moreover, it is noticeable to see that the most frequent quality ratings in the pattern group are 2.5 (33.3%) and 3 (18.9%)
compared to 1 (22.0%) and 2 (22.0%) in the control group.

As argued before, we interpret the Likert-scale as an interval scale; so the mean, standard deviation, variance, and range
apply as measures. Additionally, the median value is calculated, which would also be applicable for ordinal scales. Table 5
shows a comparison between the statistics for the control group and the pattern group. Besides the fact that the average
quality of decisions in the pattern group is higher than in the control group, it is noticeable to see that the variance in the
control group is much higher than the variance in the pattern group. This means that the dispersion of quality ratings is
higher in the control group.

5.1.2. Quantity of recovered decisions
The quantity of recovered decisions is measured counting all architecture decisions that were not excluded as being non-

architectural by both analysts. One of the analysts excluded some decisions as being non-architectural, whereas the other



U. van Heesch et al. / Science of Computer Programming 77 (2012) 551–576 559

(a) Absolute distribution Control Group. (b) Absolute distribution Pattern Group.
Fig. 2. Frequency: quality of decisions.

Table 5
Additional descriptive statistics.

Control group Pattern group

N 100 90
Mean 2.185 2.611
Std Dev 1.032 0.752
Variance 1.064 0.566
Median 2.000 2.500

Table 6
Descriptive analysis of the quantity of decisions.

Control group Pattern group

N 16 15
Mean 6.25 6.0
Std Dev 4.386 3.359
Variance 19.267 11.286

(a) Howoften do you apply patterns in projects? (b) How many patterns do you know well? (c) Have you done architecture recovery
before?

Fig. 3. Pattern and architecture recovery experience.

analysts did not exclude decisions at all. Because there was no mutual agreement on any of the cases to be excluded, we
included all decisions in the quantitative analysis.

The number of participants in the two groups is shown in Table 6 together with themean values, the standard deviations,
and the variances for the respective group. The mean quantity of decisions, which is measured in terms of the number of
recovered architectural decisions, is slightly higher in the control group than in the pattern group. The standard deviation
in the control group is considerably higher than in the pattern group.

5.1.3. Analysis of second questionnaire
In this section, the results from the second questionnaire, which was filled in after the experiment took place, will be

presented.



560 U. van Heesch et al. / Science of Computer Programming 77 (2012) 551–576

Fig. 3(a) shows the frequencies of answers to the question: How often do you apply software patterns in your software
projects? Possible answerswereNever, In less than 25% of the projects, In at least 25% of the projects, In every project. Additionally
to the frequency of answers, median values are shown. They were determined by assigning each of the answers to a single
value in an ordinal scale ranging from zero to three and calculating the medians based on these numbers. While all other
values are aligned to the left vertical axis, themedians are aligned to the right vertical axis. The figures show that themedian
for the control group is higher than for the pattern group. This means that the participants had more pattern and recovery
experience than the participants in the pattern group.

The frequencies of answers to the question:Howmany software patterns do you knowwell? are shown in Fig. 3(b). Possible
answers were Less than 5 patterns, Six to ten patterns, Eleven to twenty patterns and More than 20 patterns.

The participants were also asked whether they did architectural recovery before. The results are shown in Fig. 3(c).
The next two questions from the second questionnaire concerned the usage and helpfulness of patterns and show a small

delta between the groups. First, the participants were asked to rate the helpfulness of patterns during architecture recovery
on a scale from one for not helpful to five for very helpful. The median in both groups is four. These results are subjective in
nature, as they express opinions. However, it shows that the members of both groups generally consider patterns as very
useful in architecture recovery.

In the next question the participants were asked to estimate how extensively they used patterns during the recovery.
Possible answers ranged from one for almost never to five for very often. The median answer in the pattern group is three,
the median answer in the control group is two.

We looked into the types of the recovered decisions to see if the subjective estimations of the participants reflect the
reality or not. In particular, the decisions were classified into pattern-related decisions (if the name of a pattern is literally
mentioned in the decision section of the templates that were used to document decisions) and others (i.e. non-pattern-
related). The results of this analysis can be found in Table 9 in the appendix.

The average number of pattern-related decisions per participant in the pattern group is 4.6 compared to 1.88 in the
control group. The average number of other decisions per participant in the pattern group is 2.07 compared to 4.38 in the
control group. The ratio of the pattern-related type to the other type is 2.23 in the pattern group compared to 0.43 in the
control group. This shows that the members of the pattern group clearly focused more on patterns than the members of the
control group. Independently from the group inwhich decisions were taken, themedian quality of pattern-related decisions
is 2.5, the median quality for other decisions is 2. This analysis of decision types has two results. It verifies that the pattern
group focused on identifying pattern-related decisions and it shows that the difference in quality of decisions presented
above can be ascribed to the focus on patterns.

Finally, we asked the participants to briefly describe how the recoverywas performed. Thiswas primarily done to confirm
that the pattern group followed a pattern-based approach and to find out if the control group used any other systematic
way to identify and describe decisions. Although the amount of qualitative data for this question was low (roughly one
sentence per participant), we use the constant comparative method as originally described by Glaser and Strauss [11] to
systematize the analysis of the answers. Therefore, we grouped (partial) answers to the question how the recovery was
performed (incidents in the terminology of Glaser and Strauss) into categories (coding). Each answer was compared to the
previously coded answers in the same and other categories to gain a better understanding of the decision recovery process
they describe. Finally, the categories elicited from the control groupwere compared to the categories from the pattern group.

The results imply that the control group followed an intuitive approach,whichwasmainly driven by personal experience.
Four participants answered that they searched for buzzwords that would remind them of a familiar technical solution. Three
respondents stated that they read the textual descriptions in the architecture document to mine decisions; two analyzed
the given UML diagrams. Three participants from the control group explicitly answered that they searched for patterns in
the architecture. The other answers were not assigned to a specific category. However, one of these answers extremely
represents the impression we gained during the analysis of the answers of the control group: ‘‘It looks like decision -> it is
decision’’.

The answers of the pattern group reflect the focus onpatterns. Thirteenout of 18 answers explicitly described an approach
that centers on patterns. Six participants answered that they searched the UML diagrams for potential pattern participants.
Four respondents identified candidate pattern decisions in the architecture documentation and then read up on the pattern
in the pattern catalog, before they documented the decision using the given template.

5.2. Dataset reduction

Outliers are potential candidates for dataset reduction, i.e. data points that are either much higher, or much lower than
other data points. To find potential outliers, we calculated the average quality of decisions for each participant. Fig. 4 shows
bar charts for every member of the control and the pattern groups for both executions of the experiment. The first two
figures represent the participants at EuroPLoP 2009, the latter two represent the participants from the software architecture
workshop in 2011. The numbers in the legends are the participant numbers.

It is noticeable that two participants from the control group at EuroPLoP (Fig. 4(a) reached a significantly higher quality
than the other members of this group. A closer analysis showed that most of their decisions concerned patterns. Three out
of five decisions from participant 54 were pattern decisions; six out of eight decisions from participant 53 were pattern
decisions. This could lead to the conclusion that the high decision quality of these two participants results from the focus



U. van Heesch et al. / Science of Computer Programming 77 (2012) 551–576 561

0

(a) Avg quality EuroPLoP Control Group. (b) Avg quality EuroPLoP Pattern Group.

(c) Avg quality SWAWS Control Group. (d) Avg quality SWAWS Pattern Group.
Fig. 4. Average quality per participant.

Table 7
Independent t-test for quality of decisions.
Factor Mean diff. t-value p-value

Control group vs. pattern group −0.4261 −3.222 0.001

Table 8
Independent t-test for quantity of decisions.
Factor Mean diff. t-value p-value

Pattern group vs. control group −0.250 −0.177 0.861

on patterns. However, their decisions were not excluded as outliers, because the difference to the other participants is not
strong enough. Excluding the data points would have introduced a potential vulnerability of the study results.

5.3. Hypothesis testing

The two hypotheses regarding higher quality and quantity of recovered decisions when architecture recovery is focused
on identifying patterns are evaluated using t-tests.

5.3.1. Quality of decisions
The results from the t-test (unpaired, two-tailed) are shown in Table 7. It provides strong evidence that H01 can be

rejected. There is a noticeable difference in the quality of the recovered decisions between the pattern group and the control
group. The p-value is very low, so the results are highly significant. Even if the classification of the used Likert-scale for the
quality ratings of the decisions as interval scale could not be accepted, the descriptive statistics would still strongly support
the result of the t-test, as the median value and the frequency of measured quality both support a result in favor of the
pattern group.

5.3.2. Quantity of decisions
Hypothesis H02 was also evaluated with a t-test (unpaired, two-tailed). The results are shown in Table 8. Although slight

differences in terms of the mean values can be observed, we are unable to show that this result is significant. An exclusion
of the cases that were rated as non-architectural by one of the analysts would not have had an impact on this result.



562 U. van Heesch et al. / Science of Computer Programming 77 (2012) 551–576

Fig. 5. Example 1 for pattern type decisions.

6. Interpretation

6.1. Evaluation of results and implications

6.1.1. Quality of decisions
Hypotheses H01 and H1 concern the quality of recovered decisions. As pointed out in Section 5, we are able to provide

strong evidence that the null-hypothesis H01 can be rejected.
Thus, the quality of decisions gained during architecture recovery is higher if the recovery focuses on identifying applied

patterns. Additionally to the generally higher quality, the variance in the pattern group is much lower than in the pattern
group.



U. van Heesch et al. / Science of Computer Programming 77 (2012) 551–576 563

Fig. 6. Example 2 for pattern type decisions.

We interpret our findings as follows. Patterns provide rich information about their problem- and solution spaces as well
as reasoning for applying them in a system. They contain a great part of the architectural knowledge that is relevant for the
system in which they were applied. If a pattern was identified during the recovery process, then the pattern documentation
or the personal knowledge about the pattern helps to recover the intent of the original architect who decided to apply it. Of
course, it still takes some effort to identify the pattern and customize the pattern’s documented knowledge for the system at
hand; but a large part of that high-quality knowledge is reused, not invented. The fact that the variance in the pattern group
is relatively low shows that patterns help to reduce the dependency on individual abilities of the person doing the recovery.
A certain quality level can be achieved even by people who do not have a strong background in architecture recovery. In
contrast to this, the higher variance in the control group might stem from the different abilities of the participants.

6.1.2. Quantity of decisions
Hypotheses H02 and H2 concern the quantity of recovered decisions. The results do not provide evidence to confirm or

reject the null-hypothesis H02. We are unable to show that the focus on patterns in architecture recovery has a significant
effect on the quantity of decisions, i.e. the number of recovered decisions. This result is surprising to us. As described in the
introductory section, we assumed that the quantity of recovered decisions would be higher in the pattern group. The results



564 U. van Heesch et al. / Science of Computer Programming 77 (2012) 551–576

Fig. 7. Example 3 for pattern type decisions.

might stem from the fact that the participants in the pattern group took more time to document every single decision than
the participants in the control group and thus had less time left to identify decisions. They also needed time to study the
pattern catalog. This effect could possibly be eliminated by adjusting the study design. We will discuss this in Section 6.3.

It is interesting to note that the variance of the quantity was much higher in the control group than in the pattern group
(19.267 compared to 11.286). This is another indicator for the lower dependency on the recoverer’s personal skills and
abilities as already discussed for the quality of decisions.

6.2. Limitations of the study

Several levels of validity have to be considered in this experiment. We consider the classification scheme for validity
in experiments by Cook and Campbell [9]. Internal validity concerns the cause effect relationship between the treatment
and the dependent variables measured in an experiment. External validity focuses on the generalizability of the results for
a larger population. Conclusion validity focuses on the relationship between treatment and outcome and on the ability to
draw conclusions from this relationship. Finally, construct validity is about the suitability of the study design for the theory
behind the experiment. All threats to validity are categorized according to this classification.



U. van Heesch et al. / Science of Computer Programming 77 (2012) 551–576 565

Fig. 8. Example 4 for pattern type decisions.

6.2.1. Internal validity
• The object in the experiment was a documentation of an object-oriented middleware. In this particular case, the JBoss

application server, many architectural patterns were implicitly and explicitly applied in the system, which might lead
to the conclusion that the pattern group had advantages compared to the control group. This, however, does not seem
to be the case. Both groups could have identified the architecture decisions behind the applied patterns. Also many
other architecture decisions were made by the original architects that do not concern patterns, e.g. the choice of used
frameworks or programming libraries. Finally, although many patterns were applied in the JBoss server, our results do
not confirm that a focus on patterns leads to higher quantity of decisions. Thus, the fact that the JBoss design contains a
lot patterns did not have an effect in our study.

Another potential threat related to the choice of JBoss as object of the study is the fact that many J2EE patterns exists.
The former SUN catalog of J2EE patterns is one source of such patterns [32]. However, the J2EE patterns support the
creation of applications that conform to the J2EE specification set. To the best of our knowledge, no pattern catalog or
pattern language exists that is specific to developing J2EE servers. In this case, the application analyzed by the participants
was a J2EE server, not a J2EE application. Thus, we do not consider this a threat to validity.

We conclude that the choice of the object studied in this experiment is not a threat to the internal validity of the
results.

• The outcome of the experiment could have been different for systems, in which fewer or no patterns were applied
by the designers. Normally, it is more difficult to identify pattern decisions in systems, in which not many patterns
have been applied. However, in a study of pattern usage that we conducted [13], we found that most systems have at



566 U. van Heesch et al. / Science of Computer Programming 77 (2012) 551–576

Fig. 9. Example 5 for pattern type decisions.

least two architecture patterns, some have as many as eight. Furthermore, besides architecture patterns, the pattern
community has assembled a vast body of pattern knowledge for virtually all software domains; thus several patterns can
be potentially found in any system. Moreover, even if patterns are not consciously used by designers, they can still be
applied unconsciously, as designers tend to reach common solutions. It is of course unlikely that all architecture decisions
in a system are pattern related, but even in cases where only a few patterns were used, the decisions can be an important
entry point for the recovery of the remaining decisions, because decisions are usually interrelated. The threat, however,
cannot be mitigated completely.

In a few rare cases, so many patterns could have been applied in an architecture that individual patterns are hard to
identify in the design. This, however, is a theoretical problem that is not very likely to be observed in reality. We do no
consider it a threat to validity.

• Typically, there is a variation in human performance that might influence the results of the experiments. This can distort
the results, because then the performance would not arise from the difference in treatments. We tried to minimize this
factor by balancing the two groups concerning the relevant previous experience of the participants. The groups were
well balanced in all categories, namely programming experience, middleware experience, architecture experience and
recovery experience. Thus, this factor is not seen as a threat to validity.

• The control group could theoretically have imitated the behavior of the pattern group. In this particular experiment,
the two groups performed in two different rooms at the same time. The instructions that concerned the difference in



U. van Heesch et al. / Science of Computer Programming 77 (2012) 551–576 567

Fig. 10. Example 1 for other type decisions.

treatments were given to the participants after they moved into these rooms. That way, there was no chance for the
control group to consciously or unconsciously imitate the behavior of the pattern group.

• The raters could have unconsciously ranked the pattern decisions higher than other decisions, because patterns contain
professionally edited material that is succinct and easy to comprehend. The data gathered in both executions, however,
shows that the participants used the patterns to interpret the architectural solutions found in the JBoss architecture and
documented the decisions using their own words, adapting the pattern information in the context of the JBoss system.
Therefore, decisions by and large, were not documented by copying or reusing the text from the pattern catalogs.

6.2.2. External validity
• The subject population in the experiment might not be representative for a larger population. In this case, the subjects

(participants) of the first execution of the experiment were participants of the EuroPLoP conference. They all have an
academic or industrial background in several software engineering disciplines and a strong interest in patterns. The
second execution at the software architecture workshop in Venlo was conducted mainly with industrial practitioners
from different domains.

Our results imply that the affiliation does not have an influence on the external validity of results. No correlation
between the affiliation and the quality of recovered decision could be found. Additionally, each of the two executions
analyzed in isolation would have lead to the same conclusions, namely that a focus on patterns leads to higher quality,
but not to higher quantity. Therefore, we conclude that the pattern background of the EuroPLoP participants does not
distort the study results.



568 U. van Heesch et al. / Science of Computer Programming 77 (2012) 551–576

Fig. 11. Example 2 for other type decisions.

• The instrumentation and object in the experiment might have been unrealistic or old-fashioned. In this case, the
architecture recovery was based on a printed architecture documentation. Usually different tools would be used to
support architecture recovery. Code analyzers, reverse engineering tools and dependency analysis tools are some
examples. These tools are primarily used to recover the design of a software system. In this experiment, for practical
reasons, the design of the software was readily provided in a printed document. The focus was on architecture decision
recovery, not on architecture design recovery.We assume that themeasured effect of a pattern focus during architecture
decision recovery is independent from the way, in which the design was recovered.

Another theoretical thread to validity is that the problem in the analysis might be unrealistic and too simple to allow
generalization. This was not the case here. The object used is an excerpt from a real documentation of the JBoss server
that was not created for the purpose of this experiment.

• Finally, the experimenters could have biased the measurements of the independent variables. We mitigated this risk by
assigning the quality ratings of the decisions to two independent experts that had no knowledge about the goals of the
experiment. Additionally, by using pseudonymization, the analysts had no chance to guess which decisions belonged to
which group. They could not even have found out which decisions belonged together (were documented by the same
participant).

6.2.3. Conclusion validity
• As discussed in the design section, there is a potential threat to validity resulting from the interpretation of the Likert-

scale, which was used to rate the quality of architecture decisions, as an interval scale. Some of the statistical tests used
to analyze the results (mean, variance, standard deviation and t-test) would not have been valid for nominal scale types.



U. van Heesch et al. / Science of Computer Programming 77 (2012) 551–576 569

Fig. 12. Example 3 for other type decisions.

We argue that in this particular situation the ratings of the Likert-scale are metrically scaled, and thus have the character
of an interval scale. Thismeans for instance that the quality rating four is actually two-times higher than the quality rating
two. Because this interpretation remains critical, we also calculate the median for the quality ratings, which would also
be applicable for nominal scales.

• Another potential threat to validity is the subjectivity of the scale used to rate the quality. We tried to mitigate this risk
by asking two independent experts in the field of software architecture to rate the quality of every recovered decision.
In the analysis, we took the arithmetic average of the two ratings per decision as a basis. However, the null-hypothesis
would also have been rejected for the results of both analysts individually. Additionally, from the fact that our result has
a very high significance, we conclude that this potential threat is mitigated.

6.2.4. Construct validity
• The fact that only one object; the JBoss documentation; was used in the experiment, introduces the risk that the cause

construct is underrepresented. Theoretically, the results could look different if multiple architecture documentations
would be used for the recovery. We assume that the used system and its documentation are representative for large and
medium-size object-oriented systems. The threat, however, cannot totally be ignored.

• Another potential threat to validity is the number of measures used to evaluate the quality of recovered decisions. In our
case we only used one variable to measure the quality of the recovered decisions. This does not allow cross-checking the
results with different measures.



570 U. van Heesch et al. / Science of Computer Programming 77 (2012) 551–576

Fig. 13. Example 4 for other type decisions.

6.3. Lessons learned

The analysis of the quantity of decisions showed that in average the control group recovered more decisions than the
pattern group. We already presumed that one of the reasons for this outcome might be that the participants in the pattern
group took more time to document every single decision than the participants in the control group and therefore had
less time left to identify decisions. Besides, they took time to study the pattern material. The latter was particularly the
case during the workshop in Venlo. The participants at EuroPLoP had presumably more knowledge about patterns and
consequently took less time to study the pattern material.

One way of eliminating this effect would have been to assign more time to the pattern group than the control group. But
as the additional time needed to document decisions can hardly be estimated or even predicted, it would have been hard to
define an adequate period of time to add it to the pattern group’s experiment run-time. Additionally, a potential threat to
validity would have been introduced.

Another possible improvement of the study design concerns the data collection. In this experiment, we could not
make use of computers or other electronic devices to collect data. This was a handicap during the analysis. Gathering
data electronically using online surveys and electronic forms would have eased the analysis. However, participants felt
comfortable with the architecture documentation on paper, because the paper form allowed them to take notes.

7. Conclusions and future work

In this paper, we describe the results of a controlled experiment that was conducted to find out if patterns are beneficial
for architecture decision recovery. Two aspects were specifically taken into consideration: the quality and the quantity of



U. van Heesch et al. / Science of Computer Programming 77 (2012) 551–576 571

Fig. 14. Example 5 for other type decisions.

recovered decisions. The evaluation of the experiment shows that a focus on patterns leads to significantly higher and stable
quality of decisions, compared to intuitive recovery, which leads to a lower quality with higher variance. We are unable to
show that the quantity of recovered decisions is also positively affected.

In the future, we plan to replicate the experiment with different types of software systems from other application
domains, which are less pattern-intensive than the object used in this study.

Another direction for future work is to find out if besides patterns, there are other forms of generic architectural
knowledge that can be beneficial in architecture decision recovery. In the context of a research project, we developed a
publicly available online repository for patterns and technologies [35]. The basis for the repository is a commonmetamodel
for patterns and technologies that allows to relate patterns, pattern variants and software technologies. We plan to use the
tool for a follow up experiment, in which we allow the treatment group to use all kinds of generic architectural knowledge,
instead of focusing on patterns.

Acknowledgements

Wewould like to thank Anton Jansen and Chuck Allison for analyzing the results of the study.We also thank themembers
of the EuroPLoP 2009 focus group and the participants of the software architecture workshop in Venlo 2011 for taking part
in the experiment.



572 U. van Heesch et al. / Science of Computer Programming 77 (2012) 551–576

Appendix

Raw data—quality ratings and decision types

See Table 9.

Table 9
Quality ratings and decision types.

Execution Group Group Participant Decision Decision Type Analyst 1 Analyst 2 Average
EuroPLoP Control 51 15639 Pattern-Type 3 1 2
EuroPLoP Control 51 31219 Other 1 2 1.5
EuroPLoP Control 51 35295 Other 2 1 1.5
EuroPLoP Control 51 57732 Other 1 1 1
EuroPLoP Control 51 58823 Pattern-Type 3 1 2
EuroPLoP Control 52 19704 Other 1 1 1
EuroPLoP Control 52 21539 Other 1 1 1
EuroPLoP Control 52 23027 Other 1 1 1
EuroPLoP Control 52 24025 Other 3 1 2
EuroPLoP Control 52 28014 Other 3 2 2.5
EuroPLoP Control 52 29573 Other 1 1 1
EuroPLoP Control 52 30292 Other 2 1 1.5
EuroPLoP Control 52 33148 Other 3 1 2
EuroPLoP Control 52 41748 Other 1 1 1
EuroPLoP Control 52 42404 Other 2 1 1.5
EuroPLoP Control 52 45167 Other 3 1 2
EuroPLoP Control 52 51001 Other 2 1 1.5
EuroPLoP Control 52 51331 Pattern-Type 2 1 1.5
EuroPLoP Control 52 55931 Other 3 1 2
EuroPLoP Control 52 56835 Other 3 1 2
EuroPLoP Control 52 63345 Other 1 1 1
EuroPLoP Control 52 63653 Other 1 2 1.5
EuroPLoP Control 52 69428 Pattern-Type 2 1 1.5
EuroPLoP Control 52 76435 Other 2 1 1.5
EuroPLoP Control 53 15154 Pattern-Type 5 3 4
EuroPLoP Control 53 23289 Pattern-Type 4 2 3
EuroPLoP Control 53 25919 Pattern-Type 5 2 3.5
EuroPLoP Control 53 35942 Other 5 2 3.5
EuroPLoP Control 53 41417 Pattern-Type 5 2 3.5
EuroPLoP Control 53 46622 Pattern-Type 4 3 3.5
EuroPLoP Control 53 51204 Pattern-Type 5 2 3.5
EuroPLoP Control 53 68678 Other 4 2 3
EuroPLoP Control 54 30924 Other 4 3 3.5
EuroPLoP Control 54 41044 Other 4 3 3.5
EuroPLoP Control 54 52975 Pattern-Type 4 3 3.5
EuroPLoP Control 54 53685 Pattern-Type 5 2 3.5
EuroPLoP Control 54 64601 Pattern-Type 5 4 4.5
EuroPLoP Control 58 13969 Other 2 1 1.5
EuroPLoP Control 58 14458 Other 2 2 2
EuroPLoP Control 58 18775 Other 3 1 2
EuroPLoP Control 58 21221 Other 2 1 1.5
EuroPLoP Control 58 26497 Other 1 2 1.5
EuroPLoP Control 58 26994 Pattern-Type 3 1 2
EuroPLoP Control 58 34902 Pattern-Type 2 1 1.5
EuroPLoP Control 58 35617 Other 1 1 1
EuroPLoP Control 58 44214 Other 1 1 1
EuroPLoP Control 58 44467 Other 1 2 1.5
EuroPLoP Control 58 47099 Other 2 2 2
EuroPLoP Control 58 54821 Pattern-Type 2 2 2
EuroPLoP Control 58 73170 Other 2 1 1.5
EuroPLoP Control 60 15787 Other 4 3 3.5

(Continued on next page)



U. van Heesch et al. / Science of Computer Programming 77 (2012) 551–576 573

Execution Group Group Participant Decision Decision Type Analyst 1 Analyst 2 Average
EuroPLoP Control 60 25333 Other 2 2 2
EuroPLoP Control 60 33726 Other 3 1 2
EuroPLoP Control 60 33899 Other 4 1 2.5
EuroPLoP Control 60 53821 Other 4 1 2.5
EuroPLoP Pattern 55 21906 Pattern-Type 3 2 2.5
EuroPLoP Pattern 55 26522 Other 4 3 3.5
EuroPLoP Pattern 55 26637 Other 4 2 3
EuroPLoP Pattern 55 29399 Other 4 2 3
EuroPLoP Pattern 55 35177 Other 4 2 3
EuroPLoP Pattern 55 42037 Other 4 2 3
EuroPLoP Pattern 55 58456 Other 3 2 2.5
EuroPLoP Pattern 55 66133 Pattern-Type 4 3 3.5
EuroPLoP Pattern 55 77736 Other 5 2 3.5
EuroPLoP Pattern 56 19520 Other 5 2 3.5
EuroPLoP Pattern 56 29339 Other 4 1 2.5
EuroPLoP Pattern 56 31499 Other 4 3 3.5
EuroPLoP Pattern 56 44253 Pattern-Type 4 3 3.5
EuroPLoP Pattern 56 46178 Pattern-Type 3 3 3
EuroPLoP Pattern 56 68057 Pattern-Type 3 2 2.5
EuroPLoP Pattern 56 74785 Other 2 2 2
EuroPLoP Pattern 57 14562 Pattern-Type 1 2 1.5
EuroPLoP Pattern 57 21778 Pattern-Type 4 1 2.5
EuroPLoP Pattern 57 25077 Pattern-Type 3 2 2.5
EuroPLoP Pattern 57 31053 Pattern-Type 3 2 2.5
EuroPLoP Pattern 57 36371 Pattern-Type 4 2 3
EuroPLoP Pattern 57 47861 Pattern-Type 4 2 3
EuroPLoP Pattern 57 49896 Other 4 2 3
EuroPLoP Pattern 57 58724 Pattern-Type 4 2 3
EuroPLoP Pattern 57 59375 Pattern-Type 3 1 2
EuroPLoP Pattern 57 64255 Pattern-Type 2 2 2
EuroPLoP Pattern 57 70273 Pattern-Type 3 2 2.5
EuroPLoP Pattern 57 71108 Pattern-Type 4 1 2.5
EuroPLoP Pattern 57 71172 Pattern-Type 4 2 3
EuroPLoP Pattern 57 72293 Other 3 2 2.5
EuroPLoP Pattern 59 14001 Pattern-Type 3 2 2.5
EuroPLoP Pattern 59 16418 Pattern-Type 3 2 2.5
EuroPLoP Pattern 59 16548 Pattern-Type 4 1 2.5
EuroPLoP Pattern 59 18326 Pattern-Type 4 3 3.5
EuroPLoP Pattern 59 19641 Pattern-Type 2 2 2
EuroPLoP Pattern 59 27679 Pattern-Type 3 2 2.5
EuroPLoP Pattern 59 34381 Pattern-Type 4 2 3
EuroPLoP Pattern 59 36854 Pattern-Type 3 2 2.5
EuroPLoP Pattern 59 51205 Pattern-Type 5 2 3.5
EuroPLoP Pattern 59 70245 Pattern-Type 3 1 2
EuroPLoP Pattern 59 76602 Pattern-Type 1 2 1.5
EuroPLoP Pattern 61 22955 Pattern-Type 3 1 2
EuroPLoP Pattern 61 50589 Pattern-Type 3 2 2.5
EuroPLoP Pattern 61 50699 Pattern-Type 3 2 2.5
EuroPLoP Pattern 61 60055 Pattern-Type 2 2 2
EuroPLoP Pattern 61 62783 Pattern-Type 3 2 2.5
EuroPLoP Pattern 61 69068 Pattern-Type 2 1 1.5
SWAWorkshop Control P101 11958 Other 5 3 4
SWAWorkshop Control P101 20924 Other 4 1 2.5
SWAWorkshop Control P101 37389 Other 5 5 5
SWAWorkshop Control P101 46596 Other 4 2 3
SWAWorkshop Control P101 70401 Pattern-Type 4 3 3.5
SWAWorkshop Control P104 17130 Other 4 4 4
SWAWorkshop Control P104 53026 Other 4 2 3

(Continued on next page)



574 U. van Heesch et al. / Science of Computer Programming 77 (2012) 551–576

Execution Group Group Participant Decision Decision Type Analyst 1 Analyst 2 Average
SWAWorkshop Control P104 61606 Other 4 1 2.5
SWAWorkshop Control P104 73623 Pattern-Type 5 2 3.5
SWAWorkshop Control P104 95115 Pattern-Type 3 3 3
SWAWorkshop Control P108 26170 Other 5 2 3.5
SWAWorkshop Control P108 34797 Other 3 1 2
SWAWorkshop Control P108 48667 Other 4 2 3
SWAWorkshop Control P108 53246 Other 4 2 3
SWAWorkshop Control P108 80735 Other 5 5 5
SWAWorkshop Control P108 88971 Pattern-Type 3 3 3
SWAWorkshop Control P109 23445 Other 2 2 2
SWAWorkshop Control P109 33167 Other 3 1 2
SWAWorkshop Control P109 38131 Other 2 1 1.5
SWAWorkshop Control P109 48170 Pattern-Type 2 2 2
SWAWorkshop Control P109 79232 Pattern-Type 1 1 1
SWAWorkshop Control P109 81928 Other 2 1 1.5
SWAWorkshop Control P109 87890 Other 3 3 3
SWAWorkshop Control P109 93340 Other 1 1 1
SWAWorkshop Control P112 34730 Pattern-Type 2 2 2
SWAWorkshop Control P112 57609 Pattern-Type 3 1 2
SWAWorkshop Control P112 59805 Other 2 2 2
SWAWorkshop Control P112 68209 Other 4 2 3
SWAWorkshop Control P112 76889 Pattern-Type 3 1 2
SWAWorkshop Control P112 97764 Pattern-Type 2 1 1.5
SWAWorkshop Control P113 38562 Other 1 1 1
SWAWorkshop Control P113 51690 Pattern-Type 1 1 1
SWAWorkshop Control P113 53126 Other 1 1 1
SWAWorkshop Control P113 70648 Other 1 1 1
SWAWorkshop Control P113 81229 Pattern-Type 1 1 1
SWAWorkshop Control P116 33889 Other 1 1 1
SWAWorkshop Control P116 53663 Other 1 1 1
SWAWorkshop Control P116 64769 Other 1 1 1
SWAWorkshop Control P116 71283 Pattern-Type 1 1 1
SWAWorkshop Control P116 80071 Other 1 1 1
SWAWorkshop Control P117 66942 Pattern-Type 1 1 1
SWAWorkshop Control P117 81042 Other 3 2 2.5
SWAWorkshop Control P120 32371 Other 4 2 3
SWAWorkshop Control P120 49144 Other 2 1 1.5
SWAWorkshop Control P125 25968 Other 5 3 4
SWAWorkshop Pattern P102 14837 Pattern-Type 4 2 3
SWAWorkshop Pattern P102 47817 Pattern-Type 2 1 1.5
SWAWorkshop Pattern P102 75306 Other 2 2 2
SWAWorkshop Pattern P102 92796 Other 3 1 2
SWAWorkshop Pattern P103 21416 Pattern-Type 4 3 3.5
SWAWorkshop Pattern P103 26721 Pattern-Type 4 3 3.5
SWAWorkshop Pattern P103 53077 Pattern-Type 3 2 2.5
SWAWorkshop Pattern P103 79679 Other 3 2 2.5
SWAWorkshop Pattern P105 34596 Pattern-Type 3 1 2
SWAWorkshop Pattern P105 73625 Pattern-Type 3 2 2.5
SWAWorkshop Pattern P105 79704 Pattern-Type 4 1 2.5
SWAWorkshop Pattern P106 31527 Pattern-Type 1 1 1
SWAWorkshop Pattern P106 46146 Pattern-Type 2 2 2
SWAWorkshop Pattern P106 65149 Pattern-Type 2 1 1.5
SWAWorkshop Pattern P106 75358 Pattern-Type 2 1 1.5
SWAWorkshop Pattern P110 37008 Other 3 3 3
SWAWorkshop Pattern P110 61530 Other 5 3 4
SWAWorkshop Pattern P111 14680 Pattern-Type 3 2 2.5
SWAWorkshop Pattern P111 19077 Pattern-Type 4 3 3.5
SWAWorkshop Pattern P111 27818 Pattern-Type 3 3 3

(Continued on next page)



U. van Heesch et al. / Science of Computer Programming 77 (2012) 551–576 575

Execution Group Group Participant Decision Decision Type Analyst 1 Analyst 2 Average
SWAWorkshop Pattern P111 33776 Other 2 2 2
SWAWorkshop Pattern P111 44350 Pattern-Type 2 1 1.5
SWAWorkshop Pattern P111 67646 Other 5 5 5
SWAWorkshop Pattern P111 86855 Pattern-Type 2 1 1.5
SWAWorkshop Pattern P111 90696 Pattern-Type 2 1 1.5
SWAWorkshop Pattern P114 23961 Pattern-Type 3 2 2.5
SWAWorkshop Pattern P114 41389 Pattern-Type 3 2 2.5
SWAWorkshop Pattern P114 59052 Pattern-Type 4 2 3
SWAWorkshop Pattern P114 76798 Other 1 1 1
SWAWorkshop Pattern P115 41047 Pattern-Type 4 1 2.5
SWAWorkshop Pattern P115 57170 Pattern-Type 3 2 2.5
SWAWorkshop Pattern P115 70149 Pattern-Type 3 2 2.5
SWAWorkshop Pattern P122 14967 Pattern-Type 2 1 1.5
SWAWorkshop Pattern P122 56783 Pattern-Type 5 4 4.5
SWAWorkshop Pattern P122 80909 Pattern-Type 4 2 3
SWAWorkshop Pattern P122 90464 Pattern-Type 5 2 3.5
SWAWorkshop Pattern P123 10498 Pattern-Type 3 2 2.5
SWAWorkshop Pattern P123 16680 Pattern-Type 5 3 4
SWAWorkshop Pattern P123 22025 Pattern-Type 4 3 3.5
SWAWorkshop Pattern P123 23757 Pattern-Type 4 3 3.5
SWAWorkshop Pattern P123 57463 Pattern-Type 3 2 2.5
SWAWorkshop Pattern P123 66453 Pattern-Type 4 2 3
SWAWorkshop Pattern P123 83213 Pattern-Type 2 1 1.5

Typical decisions recovered by the participants

In the following, we present typical examples of decisions recovered by the participants. The first five decisions are
pattern decisions, the latter five are of other types (See Figs. 5–14.).

References

[1] C. Alexander, The Timeless way of Building, Oxford University Press, USA, 1979.
[2] P. Avgeriou, U. Zdun, Architectural patterns revisited–a pattern language, in: Proceedings of the 10th European Conference on Pattern Languages of

Programs, EuroPlop, Irsee, 2005.
[3] M. Babar, I. Gorton, A tool for managing software architecture knowledge, in: Proceedings of the Second Workshop on Sharing and Reusing

Architectural Knowledge Architecture, Rationale, and Design Intent, IEEE Computer Society, 2007, p. 11.
[4] L. Bass, P. Clements, R. Kazman, Software Architecture in Practice, second edition, Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA,

2003.
[5] B. Boehm, H. Rombach, M. Zelkowitz, Foundations of Empirical Software Engineering: The Legacy of Victor R. Basili, Springer-Verlag New York, Inc.,

Secaucus, NJ, USA, 2005.
[6] J. Bosch, Software architecture: the next step, in: Lecture Notes in Computer Science, 2004, pp. 194–199.
[7] F. Buschmann, R. Meunier, H. Rohnert, P. Sommerlad, M. Stal, Pattern-Oriented Software Architecture, Volume 1: A System of Patterns, John Wiley &

Sons, Inc., New York, NY, USA, 1996.
[8] P. Clements, D. Garlan, L. Bass, J. Stafford, R. Nord, J. Ivers, R. Little, Documenting Software Architectures: Views and Beyond, Pearson Education, 2002.
[9] T. Cook, D. Campbell, Quasi-Experimentation: Design and Analysis Issues for Field Settings, Houghton Mifflin, 1979.

[10] E. Gamma, R. Helm, R. Johnson, J. Vlissides, Design Patterns: Elements of Reusable Object-Oriented Software, in: Addison-Wesley Professional
Computing Series, 1995.

[11] B. Glaser, A. Strauss, The Discovery of Grounded Theory: Strategies for Qualitative Research, AldineTransaction, 1967.
[12] G. Goldstein, M. Hersen, Handbook of Psychological Assessment, Pergamon Press, 2000.
[13] N. Harrison, P. Avgeriou, Analysis of architecture pattern usage in legacy system architecture documentation, in: Proceedings of the SeventhWorking

IEEE/IFIP Conference on Software Architecture, WICSA 2008, IEEE Computer Society, 2008, pp. 147–156.
[14] N. Harrison, P. Avgeriou, U. Zdun, Using patterns to capture architectural decisions, IEEE software (2007) 38–45.
[15] Hillside Europe e.V., European Conference on Pattern Languages of Programs, http://hillside.net/europlop/, 2009.
[16] J.F. Hoorn, R. Farenhorst, P. Lago, H. van Vliet, The lonesome architect, Journal of Systems and Software 84 (9) (2011) 1424–1435.
[17] IEEE, IEEE Std 1471–2000, IEEE Recommended Practice for Architectural Description of Software-Intensive Systems, October 2000.
[18] ISO, Systems and software engineering — Architecture description, ISO/IEC/IEEE 42010, May 2011, pp. 1–46.
[19] A. Jansen, J. Bosch, Software architecture as a set of architectural design decisions, in: Proceedings of the 5thWorking IEEE/IFIP Conference on Software

Architecture, IEEE Computer Society, 2005, pp. 109–120.
[20] A. Jansen, J. Bosch, P. Avgeriou, Documenting after the fact: recovering architectural design decisions, Journal of Systems and Software 81 (4) (2008)

536–557.
[21] JBoss.org., Community driven open source middleware, http://www.jboss.org/, Feb. 2011.
[22] A. Jedlitschka, D. Pfahl, Reporting guidelines for controlled experiments in software engineering, in: International Symposium on Empirical Software

Engineering, IEEE, 2005, pp. 92–101.
[23] R. Kazman, S. Carrière, Playing detective: Reconstructing software architecture from available evidence, Automated Software Engineering 6 (2) (1999)

107–138.

http://hillside.net/europlop/
http://www.jboss.org/


576 U. van Heesch et al. / Science of Computer Programming 77 (2012) 551–576

[24] B. Kitchenham, S. Pfleeger, L. Pickard, P. Jones, D. Hoaglin, K. El Emam, J. Rosenberg, Preliminary guidelines for empirical research in software
engineering, in: IEEE Transactions on Software Engineering, 2002, pp. 721–734.

[25] R. Koschke, Architecture reconstruction, in: Software Engineering, Springer-Verlag, 2009, pp. 140–173.
[26] R. Krikhaar, A. Postma, A. Sellink, M. Stroucken, C. Verhoef, A two-phase process for software architecture improvement, in: Proceedings of the IEEE

International Conference on Software Maintenance, IEEE Computer Society, 1999, p. 371.
[27] P. Kruchten, The 4 + 1 view model of architecture, IEEE Software 12 (6) (1995) 42–50.
[28] J. Liu, Research Project: An Analysis of JBoss Architecture. http://www.huihoo.org/jboss/jboss.html, 2002.
[29] T. O’Gorman, Applied Adaptive Statistical Methods: Tests of Significance and Confidence Intervals, Society for Industrial Mathematics, 2004.
[30] D. Schmidt, F. Buschmann, Patterns, frameworks, andmiddleware: their synergistic relationships, in: Proceedings of the 25th International Conference

on Software Engineering, IEEE Computer Society Washington, DC, USA, 2003, pp. 694–704.
[31] S. Stevens, On the theory of scales of measurement, Science 103 (2684) (1946) 677–680.
[32] Sun Microsystems, Core J2EE patterns, http://java.sun.com/blueprints/corej2eepatterns/, 2011.
[33] W. Trochim, J. Donnelly, The Research Methods Knowledge Base, Atomic Dog Publishing, Mason, OH, 2007.
[34] J. Tyree, A. Akerman, Architecture decisions: demystifying architecture, IEEE Software 22 (2) (2005) 19–27.
[35] University ofGroningen, Software Engineering andArchitectureGroup, TheOpenPatternRepository, http://code.google.com/p/openpatternrepository/,

Feb. 2011.
[36] U. van Heesch, P. Avgeriou, A pattern driven approach against architectural knowledge vaporization, in: Proceedings of the 14th European Conference

on Pattern Languages of Programs, EuroPLoP, Irsee, 2009.
[37] J. Ven, A. Jansen, J. Nijhuis, J. Bosch, Design Decisions: The Bridge between Rationale and Architecture, Springer, 2006, pp. 329– 348.
[38] C. Wohlin, M. Hoest, P. Runeson, M. Ohlsson, B. Regnell, A. Wesslén, Experimentation in Software Engineering: An Introduction, Kluwer Academic

Pub., 2000.
[39] H. Yan, D. Garlan, B. Schmerl, J. Aldrich, R. Kazman, Discotect: a system for discovering architectures from running systems, in: Proceedings of the

26th International Conference on Software Engineering, IEEE Computer Society, 2004, p. 479.
[40] O. Zimmermann, J. Grundler, S. Tai, F. Leymann, Architectural decisions and patterns for transactional workflows in soa, in: Proceedings of the 5th

International Conference on Service-Oriented Computing, Springer-Verlag, 2007, pp. 81–93.
[41] O. Zimmermann, U. Zdun, T. Gschwind, Combining pattern languages and reusable architectural decision models into a comprehensive and

comprehensible design method, in: Proceedings of the SeventhWorking IEEE/IFIP Conference on Software Architecture, WICSA 2008, IEEE Computer
Society, 2008, pp. 157–166.

http://www.huihoo.org/jboss/jboss.html
http://java.sun.com/blueprints/corej2eepatterns/
http://code.google.com/p/openpatternrepository/

	The supportive effect of patterns in architecture decision recovery---A controlled experiment
	Motivation
	Related work
	Design of the experiment
	Goal, hypotheses, parameters, and variables
	Dependent variables
	Independent variables

	Experimental design
	Participants
	Object
	Blocking
	Instrumentation
	Blinding
	Data collection procedure


	Execution
	Sample and Preparation
	Data collection performed
	Validity procedure

	Analysis
	Descriptive statistics
	Quality of recovered decisions
	Quantity of recovered decisions
	Analysis of second questionnaire

	Dataset reduction
	Hypothesis testing
	Quality of decisions
	Quantity of decisions


	Interpretation
	Evaluation of results and implications
	Quality of decisions
	Quantity of decisions

	Limitations of the study
	Internal validity
	External validity
	Conclusion validity
	Construct validity

	Lessons learned

	Conclusions and future work
	Acknowledgements
	Appendix
	References


