
Compliance in Service-oriented Architectures:
A Model-driven and View-based Approach

Uwe Zdun, Huy Trana, Ta’id Holmes, Ernst Oberortner, Emmanuel Mulo, Schahram Dustdarb

aSoftware Architecture Research Group
University of Vienna, Austria

bDistributed Systems Group, Institute of Information Systems
Vienna University of Technology, Vienna, Austria

Abstract

Compliance in service-oriented architectures (SOA) means in general complying with laws and regulations that apply
to a distributed software system. Unfortunately, the divergence and frequent changes of different compliance sources
make it hard to systematically and quickly accommodate new compliance requirements due to the lack of an adequate
methodology for system and compliance engineering. Moreover, the difference of perception and expertise of mul-
tiple stakeholders involving in system and compliance engineering further complicates the analyzing, interpreting,
implementing, and assessing of compliance. These two issues lead in the long run to problems regarding complexity,
understandability, maintainability, changeability, and reusability of compliance concerns in a SOA. In this article, a
model-driven and view-based approach for addressing these problems will be presented. Various compliance concerns
can be modeled in separate view models. This is done using domain-specific languages that enable the non-technical
experts as well as the technical experts to model in each case only the relevant excerpt of the SOA. The compliance
implementations, reports, and documentations are generated from the models and hence become traceable, change-
able, understandable, and reusable – independently from the rest of the SOA. Our approach also enables and supports
the model-based static checking of compliance at design time and model-based compliance monitoring at runtime.

Key words: Compliance, model-driven, view-based, service-oriented architectures, process-driven SOAs,
domain-specific languages

1. Introduction

In general, compliance, in the context of information systems, means ensuring that the software and systems of an
organization comply with multiple laws, regulations, and business policies (from now on called compliance sources).
Compliance is a major issue in many organizations because any compliance violation will lead to severe financial
penalties or losses of reputation. We highlight two important issues that hinder the compliance of organizational
software and systems.

Firstly, organizations have to deal with an increasing number of diverse compliance sources, such as the Basel II
Accord [4], the International Financial Reporting Standards (IFRS) [14], the Markets in Financial Instruments Direc-
tive (MiFID) [45], the French financial security law (LSF) [27], Tabaksblat [42], or the Sarbanes-Oxley Act (SOX)
[46], to name just a few. These compliance sources generally prescribe business practices for a wide range of compli-
ance domains such as risk management, privacy, security, quality of services, intellectual property or licensing. It is
hardly to devise a one-size-fits-all representational language or model that is able to accommodate the divergence of
compliance sources in the software and systems of a certain organization. Instead, in the current practice, compliance
concerns are implemented on a per-case basis using ad-hoc, hard-coded solutions, which is undesirable because the

Email addresses: {uwe.zdun|huy.tran}@univie.ac.at (Uwe Zdun, Huy Tran),
{tholmes|e.oberortner|e.mulo|dustdar}@infosys.tuwien.ac.at (Ta’id Holmes, Ernst Oberortner, Emmanuel Mulo,
Schahram Dustdar)
Preprint submitted to International Journal of Information Systems December 19, 2013

resulting solutions are hard to maintain, hard to evolve or change, hard to reuse, and hard to understand. Moreover, this
also makes it difficult to systematically and quickly keep up with constant changes in regulations, laws, and business
policies.

Secondly, compliance cannot be implemented and enacted solely by either business experts (or compliance ex-
perts) or IT experts but rather involve an enterprise-wide scope. The fact that compliance sources are typically speci-
fied in highly abstract legal writing requires business expert (or compliance experts) to interpret and translate them into
concrete requirements. Subsequently, IT experts (e.g., software engineers or system administrators) have to ensure
that their software and systems meet these requirements. The aforementioned process of implementing compliance
must be documented and periodically reported to the executive boards or the auditors [46]. Unfortunately, each stake-
holder group has different interests, knowledge, and expertise than the other stakeholder groups, and often the work
is performed at very different abstraction levels. For instance, domain and compliance concepts and knowledge are
primarily formulated by business and compliance experts at analysis and design time. These experts are, however,
often not familiar with software and system engineering practices which are of the specialization areas of the IT
experts who involve in implementing, deploying, enacting, and maintaining organizational software, systems, and
compliance. In addition, from the managers’ or auditors’ perspectives, adequate timely reports and documentations
of the processes and internal controls that adhere to the relevant laws, regulations, and business policies are the most
important indicators.

To the best of our knowledge, none of existing approaches to business compliance have fully addressed the afore-
mentioned issues. A number of existing approaches to business compliance have been proposed but they rather focus
on particular compliance concerns and/or particular development phases (see [1–3, 6–10, 19–24, 26, 28, 36, 39, 40,
47]; discussed in detail in Section 5).

In this article we propose a model-driven development (MDD) approach [11, 18, 41] for overcoming these is-
sues. First, we support stakeholders in dealing with the divergence of compliance sources by using domain-specific
languages (DSLs) which can be tailored to directly accommodate concepts and rules from particular compliance do-
mains [18]. To support the involvement of non-technical stakeholders (like business and compliance experts) and
technical stakeholders (like software engineers and system administrators) into the software, system, and compli-
ance engineering process, a separation into high-level, domain-oriented and low-level, technical DSLs is provided.
The great advantage of this separation of abstraction levels is that, on the one hand, we can provide different stake-
holders with appropriate representations to formulate the domain problem (i.e., compliance concerns) according to
their particular expertise. On the other hand, the representations of compliance concerns in terms of DSLs can be
independently developed rather than polluting existing business functionality.

However, this raises the challenge of integrating these different compliance DSLs as well as correlating the com-
pliance DSLs with the existing business functionality. So far, Tran et al. have developed a View-based Modeling
Framework (VbMF) – a specialization of the MDD paradigm – that provides a number of view models for specifying
an SOA [13, 43, 44]. In addition, this approach offers a number of mechanisms to enable the integration of different
view models as well as generate executable code out of these models [13, 43, 44]. Thus, we exploit this important
capability of VbMF and extend VbMF with a compliance metadata model that serves as a bridge among compliance
DSLs designed by business and compliance experts, the compliance requirements and compliance sources, and the
business functionality of software and systems. Besides, we devise a number of components extending the framework:
a model validator statically validates the compliance concerns at design time, and code generators create components
for supporting runtime enactment or monitoring compliance as well as to generate reports and documentations for
auditing and compliance demonstration purposes. Our approach aims at supporting the systematic and automatic
implementation of various kinds of compliance concerns including controls in QoS policies, license policies, security
policies, and others.

In the scope of this article, we exemplify our approach for process-driven SOAs – a particular kind of SOAs
utilizing processes to orchestrate services – because enterprises increasingly use process-centric information systems
to automate their business processes and services. A more detailed discussion of this kind of SOAs is given in Section
2.1. In this article, we present VbMF as a means to tackle all kinds of compliance concerns in process-driven SOAs.
To illustrate these capabilities of VbMF we will present one central field of compliance concerns in detail: QoS-
related compliance concerns. To illustrate the involvement of the different stakeholders to model the required QoS
compliance concerns, a DSL is exemplified which was developed especially for the QoS domain. In the same way,
other DSLs have been developed for other concerns, such as licensing and security (not presented in detail in this

2

article).
The remainder of this article is organized as follows. Section 2.1 explains and illustrates process-driven SOAs

as the working context of this article. Next, Section 2.2 describes the problem of dealing with compliance in SOAs
in detail. Our view-based model-driven approach to supporting compliance in SOAs is elaborated in Section 3. A
CRM Fulfillment process with QoS compliance concerns from an industrial case study illustrates our approach and the
realization of our view-based, model-driven compliance framework in Section 4. Section 5 discusses and compares
our approach to the relevant literature. Finally, a summary and an outlook on future research are provided in Section 6.

2. Background

2.1. Process-driven SOA
SOAs are typically realized as layered architectures [12]. Based on a communication layer, which abstracts from

platform and communication protocol details, a remoting layer provides the typical functionalities of distributed ob-
ject frameworks, such as request handling, request adaptation, and invocation. Service clients invoke service providers
using this infrastructure. In a process-driven SOA, a service composition layer is provided on top of the client appli-
cation/service provider layer. This layer provides a process engine (or workflow engine) that orchestrates services to
realize individual activities in a business process.

The main goal of such process-driven SOAs is to increase the productivity, efficiency, and flexibility of an organi-
zation via process management. This is achieved by aligning the high-level business processes with the applications
supported by IT. Changes in business requirements are carried out as changes in the high-level business processes.
The processes are implemented by linking their activities to existing or new IT-supported applications. Organizational
flexibility can be achieved because explicit business process models are easier to change and evolve than hard-coded
business processes. In the long run, the goal is to enable business process improvement through IT.

Figure 1 illustrates a small-scale process-driven SOA. A single business process engine accesses a service-based
message broker, e.g., offered by an Enterprise Service Bus (ESB), via service-based process integration adapters.
Service-based business application adapters are used to access back-end components, such as databases or legacy
systems. A typical SOA in enterprise organizations today is much larger than this illustrative example. That is,
multiple process engines – e.g., one per department – are deployed, plus multiple instances of all other components.

Process
Integration

Adapter

Message Broker

Business
Application
Adapter A

Business
Application
Adapter B

Business Application A

Business Application B

Business Process Engine

S
er

vi
ce

 1

S
er

vi
ce

 2

S
er

vi
ce

 3

S
er

vi
ce

 4

Se
rv

ic
e

1

Se
rv

ic
e

2

Se
rv

ic
e

3

Se
rv

ic
e

4

S
er

vi
ce

 1

S
er

vi
ce

 2

S
er

vi
ce

 3

Figure 1: Illustrative small-scale SOA

We limit the scope of our compliance approach to these process-driven SOAs. Next we discuss the kinds of
compliance concerns that occur in a process-driven SOA.

2.2. Compliance in SOAs
The compliance laws and regulations like the Basel II Accord or SOX cover issues such as auditor independence,

corporate governance, and enhanced financial disclosure. Although these are typical cases for compliance, there are
other compliance concerns, with similar characteristics, that occur in process-driven SOAs including:

3

• Compliance to service composition policies: There might be specific service composition rules for the SOA that
must be met. For instance, a service can require a specific interface or behavior of another service so that they
can be composed, or a service collects a client’s private data for only a particular purpose, e.g., a credit card
number is collected and disclosed only to check the account solvency and for nothing else.

• Compliance to service deployment policies: The runtime composition might be governed by business rules
as well. For example, the business might require that a service can only interact with other service instances
deployed within the same geographical borders, to ensure location-based data correctness.

• Compliance to service sequencing or ordering policies: It is possible that services may be allowed to compose
only in specific orders. For instance, the business may require that a credit validation process is triggered before
a shipment process is started.

• Compliance to information sharing/exchange policies: This applies to service conversations that follow some
information sharing or exchange protocol. For instance, to get information from a service, a requestor must use
a specific message type describing the information of interest. In response to such requests, the service may
send a message to the requestor with a locator for the requested information. The requestor can subsequently
obtain the requested information.

• Compliance to security policies: The business may have specific security requirements that are also pervasive
throughout the SOA, such as the nondisclosure of personal data.

• Compliance to QoS policies: The business may require compliance of the runtime infrastructure to a certain
quality of service (QoS). For instance, a specific performance window, a maximum latency, a particular mean
downtime (i.e., availability), or a certain throughput, may be required to fulfill a service-level agreement (SLA).

• Compliance to business policies: The business side may provide specific policies for running the services,
triggered by certain business events. For instance, it might be a business policy in a company that, upon a server
failure, an SMS notification is sent to an administrator.

• Compliance with jurisdictional policies: Such policies occur in situations where a service produces a product
in location under different legal jurisdictions. For instance, selling or buying a car in different EU countries
involves different activities, taxes, and fees.

• Compliance to intellectual property and licenses: In a service composition there is the need to respect individual
services licenses and terms of use. For instance, a service could include both royalty-based operations and
freely available operations, only available for non-commercial use. A composed service has to comply with
these licensing clauses, also in a service composition created on-demand.

Clearly, all of these concerns are driven by the business requirements. The concerns arise in process-driven
SOAs, firstly, because SOA is often the integration architecture of an organization, and therefore, usually concerns
all architectural components that must comply with certain business requirements; also, process-driven SOAs include
high-level abstractions such as business processes, which implies that the concerns should be integrated in the business
process perspective offered to the business experts.

An integrated compliance framework can reduce development and maintenance costs for the IT in large compa-
nies, and enable small companies to compete. Business compliance can achieve additional goals: it can be understood
as a business and technology enabler: When tackled using a strategic implementation approach based on a sound ar-
chitecture, compliance concerns can drive a business and offer added value beyond solely meeting specific compliance
demands.

Please note that the goal of our approach is not to implement all of the compliance concerns listed above, but
rather provide the means to an organization to implement any relevant such compliance concern in process-driven
SOA in traceable, changeable, understandable, and reusable fashion.

4

3. Model-driven approach to supporting compliance in SOAs

3.1. Approach overview

Figure 2 gives – on the left hand side – a high-level overview of our approach in relation to the typical view
on compliance from an auditor’s perspective. As described before, many compliance requirements are derived from
different sources such as laws, regulations, and business policies. Such compliance sources can be realized using a
number of so-called controls. A control is any measure taken to assure a compliance requirement is met. For instance,
an intrusion detection system, a penetration test, or a business process realizing separation of duty requirements are all
controls for ensuring systems security. Most of compliance sources primarily focus on the “what” (i.e., what controls
are needed), rather than on how to realize the controls. Thus, the regulations are often mapped to established norms
and standards describing more concretely how to realize the controls for a regulation. Controls can be realized in a
number of different ways, including manual controls, reports, or automated controls.

Industry
best practices

Laws/
Regulations

Norms/
standards

Controls

Board of Directors/
Risk Management Department

Manual
Controls

Reports

Automated
Controls

Compliance
DSL Editors

Specification/Modeling

Business
Process

Model Editor

Compliance
Metadata
Editors

Code generation/Static checking

Code
Generator

Static
Compliance

Validator

Compliance
Concerns

Business
Process Models

Compliance
Metadata Model

Process Engines/
Application Servers

Executable
Processes/
Services

Monitoring
Code/Rules

View-based, Model-driven Approach

Auditor

Compliance
Reports

Compliance
Reports

Business
policies

Figure 2: Overview of the view-based, model-driven approach for supporting compliance in SOAs

Our work focuses on automated controls in the area of process-driven SOAs (mainly processes and services are
considered). Our goal is to provide a unique framework for realizing all automatic controls in this realm and support
as many automatic controls as possible (that is, potentially increase the level of automation).

This is achieved by an architecture covering the whole compliance life cycle: A view-based, model-driven frame-
work is introduced for modeling or specifying the processes, services, and compliance concerns – to realize the auto-
matic controls. In addition, metadata about the compliance controls is modeled to document the compliance controls.
Some compliance concerns can be statically checked at design time. For many compliance concerns this is not pos-
sible: it is necessary to monitor and assess them at runtime. Hence, the code for implementation and supporting
runtime monitoring the compliance concerns are generated. Besides, compliance control documentations and reports
for auditing and demonstrating purpose are also automatically generated.

3.2. Model-driven development (MDD)

To address the problems of assuring compliance sketched above, we propose to use the model-driven development
(MDD) paradigm [11, 18, 41] to enable companies to develop and then evolve and maintain a customized business
compliance framework. Domain-specific languages (DSLs) are specification languages which are tailored to be par-
ticularly expressive in a certain problem domain. In our approach, DSLs are based on the MDD paradigm to involve

5

Model Instance

DSL
Concrete Syntax

Model
(DSL Abstract Syntax) Meta-Model

based on

defined in

based on

*

Transformation

1

*

1

represents

1

*

* 1

use defined using
**

Schematic
Recurring Code

produces

1..

1..* 1..*

Individual Codeuses
* *

Figure 3: MDD artifacts overview

the different stakeholders into the SOA engineering process. Figure 3 shows an overview of the artifacts in the MDD
paradigm.

One important aspect of our MDD approach for realizing a compliance framework is that it provides one or more
DSLs on top of a model, either in textual or graphical syntax, representing the content of the abstract syntax (aka the
language models) in a user-friendly way. That is, the DSLs’ syntaxes are targeted at the end-user of the DSL. For
instance, if a business process is shown, technical experts might prefer a textual syntax that is machine-processable and
includes the more technically detailed concerns in various views (such as BPEL/WSDL-specific views). A business
expert might rather prefer a graphical syntax that omits the technical details and only shows the high-level control
flow augmented with compliance concerns.

A DSL describes knowledge via a graphical or textual syntax (called the concrete syntax of the DSL), which is tied
to the domain-specific modeling elements through a precisely specified language model (called the abstract syntax of
the DSL). The abstract syntax, which represents the language model, defines the elements of the domain and their
relationships without considering their notations. That is, the DSL elements are defined in terms of a language model
that can be instantiated in concrete model instances. The model instances are defined in the DSL’s concrete syntax.
The concrete syntax describes the representation of the domain elements and their relationships in a form suitable
for the stakeholders using the DSL. Abstract and concrete syntax enable DSL users to define model instances with a
familiar notation to represent particular problems of the domain.

An MDD tool introduces some ways to specify transformations. There are different kinds of transformations,
such as model-to-model transformations or model-to-code transformations. There are also different ways to specify
transformations, such as transformation rules, imperative transformations, or template-based transformations. In any
case, the ultimate goal of all transformations in MDD tools is to generate code in executable languages, such as
programming languages or process execution languages. The MDD tools are used to generate all those parts of the
executable code which are schematic and recurring, and hence can be automated.

3.3. View-model-based compliance framework
Our compliance framework for SOAs uses the model-driven approach to compose business processes and services

as a foundational layer. To enable reuse and integration of both the compliance concerns and service compositions,
the compliance framework shall augment business process specifications, such as the Business Process Execution
Language (BPEL), with compliance concerns. As there are multiple other, similar concerns on which compliance
concerns can be based than the process specifications, such as service specifications, collaboration specifications, data
specifications, etc., and even the process specifications can use multiple specification types (such as BPEL [16, 29],
BPMN [32], and UML activity diagrams [31]), we abstract each of these basic concerns and each of the compliance
concerns in its own model. This, however, imposes the challenge of how to integrate the various models.

We have solved this problem using a view-based approach (this is explained in detail in [13, 43, 44]). In this
approach, a view is a representation of a process from the perspective of related concerns. A view is specified using
an adequate view model. Each view model is a (semi)-formalized representation of a particular SOA or compliance
concern. Therefore, the view model specifies entities and their relationships that can appear in the corresponding view.

6

Core Model

Flow View
Model

Collaboration
View Model

Information
View Model

Intellectual property
and license

DSL

extends extends extends

BPEL
FLow View

Model

BPEL
Collaboration
View Model

BPEL
Information
View Model

extends extends extends

Business Process Modeling

QoS policy
DSL

Security policy
DSL

Compliance Modeling

annotates

Process-driven model
instances with annotated

compliance metadata

instance-of

Schematic Recurrent
Code & Configurations

generates

extends

Regulatory or
legislative

DSL

Compliance
Metadata Model

annotates

Documentation

generates

Figure 4: View-based approach for modeling processes and business compliance

As we mentioned in Section 2.2, there are many different kinds of business compliance that companies have to
consider, for instance, jurisdictional policies, business policies, QoS policies, intellectual property and licenses, and
security policies. Each of those compliance concerns embodies distinct concepts and constraints which are merely
interpreted by domain experts or compliance specialists. Therefore, our approach introduces different DSLs to support
those experts in better eliciting such compliance concepts and constraints and applying the resulting compliance
concerns in the specific context of business processes.

In Figure 4, we illustrate the modeling of process-driven systems and the compliance concerns exemplified in this
article using our view-based approach. On the left hand side, the modeling framework provides fundamental view
models for describing the functionality of software and systems in terms of business processes. As stated in [43],
three view models, the Flow, Collaboration, and Information view models, represent the basic concerns of a business
process. Other concerns, such as transactions, human integration, event handling, etc., are also developed and plugged
into VbMF accordingly thanks to its extensibility [13, 43]. For the sake of simplicity and concentration on compliance
modeling, these other view models are not presented in Figure 4.

On the right-hand side, VbMF provides capabilities for specifying compliance concerns in terms of appropriate
DSLs, such as DSLs for representing security policy, QoS policy, intellectual property and licenses, and regulatory
or legislative provisions. Each DSL is correspondent to an extension view model. That is, these DSLs represent
extensional view models for expressing compliance controls in parts of the SOA that are not directly related to pro-
cesses and services. Using extension mechanisms described in [43], the framework can be extended to other kinds of
compliance concerns. More details on extending the framework with additional compliance DSLs are elaborated in
the subsequent sections. In this article, we will illustrate these capabilities of VbMF for one of these DSLs: the DSL
for specifying QoS-related compliance concerns.

Whereas the DSLs mentioned above define compliance controls in specific areas, namely, security, QoS, intellec-
tual property and licenses, and regulatory or legislative provisions, there is another DSL that has a special purpose:
To annotate the controls defined both in the basic VbMF views as well as the controls defined in the four extensional

7

DSLs with compliance metadata. Using the Compliance Metadata model all compliance controls can be annotated
with metadata about the compliance, such as which regulation, standard, rules, compliance requirements, and so on,
have led to the design and implementation of the control. The main goal of the Compliance Metadata model is hence
to support the automatic documentation of all compliance-related concerns. In other words, the Compliance Metadata
model allows us to not only model “how” compliance is achieved, but also “why”.

Element

prefix : String
uri : String

Namespace

Service Process View* *
has

1..*
expose

require
*

*

elementname:String

Identifier

0..*
FlowView

Task

/task

CompositeTask AtomicTask

Sequence Parallel

Exclusive

1..*
task

condition : String
task : Task

Branch

task : Task

Default

1..* branch 0..1 default

a) Core model b) Flow view model

Figure 5: The Core model (left) and the Flow view model (right)

Using low-level models for describing the technology specifics of the models and the DSLs (see Section 3.4), the
process models are readied for producing schematic process code as well as configurations via code generators needed
to deploy and monitor the execution of the business process.

Our view-based approach is not limited to these above named concerns, but can be extended to cover other con-
cerns. Examples of existing extensions are views for data object access [25] and human interactions [13]. An extension
is accomplished using the following approach: A new concern can be integrated into VbMF by devising a new view
model that extends the basic concepts of the Core model and defines additional concepts of that concern. By adding
new view models for additional process concerns, we can extend the view-based approach along the horizontal dimen-
sion, i.e., the dimension of process concerns, to deal with the complexity caused by the tangling of process concerns
[43]. Along the vertical dimension, i.e., the dimension of abstraction, our view-based approach provides two essential
layers: the abstract layer and technology-specific layer. The abstract layer includes the views without the technical
details such that the business experts can better understand and manipulate these views. The technology-specific layer
contains the views that embody concrete information of technologies or platforms. A technology-specific model can
be either directly derived from the Core model or as an extension of an abstract view model by using the model ex-
tension mechanism provided in our view-based approach [43]. Figure 5 shows the Core model, which is the basis for
creating the other view models, and the Flow view model, which derives and extends the basic concepts of the Core
model to represent the control flows of business processes.

Figure 6 presents a small example of modeling the business process of a Travel Booking agency [15] using VbMF.
The Travel Booking process (Figure 6(a)) starts when a customer initiates an itinerary request. After updating the
customer’s profile for later promotions or advertisements, the process invokes three other services for booking airline
tickets, hotels, and cars, respectively. Finally, the process sends back an itinerary confirmation to the customer.

The aforementioned description of the Travel Booking process is modeled by using VbMF’s views. The Travel
Booking Flow view (Figure 6(b)) specifies necessary tasks to fulfill the customer’s request and the execution order of
these tasks. The details of each task are not embodied in the Travel Booking Flow view, but represented in other views
of the process concerns. For instance, the task Receive Itinerary waits for the customer’s request, and therefore,
is described in the Travel Booking Collaboration view (Figure 6(c)).

3.4. DSLs for compliance concerns
To offer expressive and convenient languages for the different stakeholders, our approach provides a separation

of DSLs into multiple sub-languages, where each sub-language is tailored for the appropriate stakeholders – see
8

Travel Booking Agency

C
u
s
to
m
er

Receive
Itinerary

Book
Hotel

Send
Confirmation

Book
Airline

Book
Car

Update
Customer

Profile

b) Travel Booking Flow view c) Travel Booking Collaboration viewa) Travel Booking Process

Figure 6: Modeling business process with VbMF: A Travel Booking process example

[30] for further details. Hence, it is possible to provide multiple different levels of abstractions where each level of
abstraction is tailored for the designated stakeholders. The number of different levels of abstractions depends on the
problem domain, as well as on the number of the different stakeholders. Hence, we can better provide tailored and
user-friendly representations for each group of the stakeholders.

The following Sections 3.4.1 and 3.4.2 exemplify our approach of providing high-level and low-level DSLs by
an example. The example illustrates (1) how compliance concerns – especially QoS compliance concerns – can be
integrated into VbMF, (2) how the low-level DSL extends the high-level DSL with the additionally needed technical
aspects for expressing QoS compliance concerns of business processes, and (3) how domain and technical experts can
use the high-level and low-level DSLs, respectively.

3.4.1. The high-level QoS DSL
The high-level QoS DSL has the requirement that domain experts should be able to model which QoS compliance

concerns have to be measured for a certain business process to fulfill some Service-Level Agreements (SLAs), as well
as the actions to be taken when the SLAs are violated. The high-level DSL should provide expressive notations for
representing concepts and terminologies of the QoS and SLA domains.

The scope of the high-level QoS DSL covers the annotation of services and processes with QoS measurements.
Each QoS measurement is defined in an SLA between the service provider and the service consumer. In this work
we concentrate on the specification of runtime and performance related QoS measurements as specified in [35].
Furthermore, it should be possible to define actions which should be performed if an SLA is violated. An example of
a high-level specification of the QoS compliance concerns is: “In case the availability of a service is less than 99%,
an e-mail should be sent to the system administrator”.

The language model of the high-level QoS DSL.
Figure 7 illustrates VbMF’s Core model and demonstrate how QoS compliance concerns can be correlated with VbMF
process models. In the same way, other compliance concerns can be woven into the view-model-based compliance
framework as illustrated in Figure 4.

Identifiers – Services or Processes – of the VbMF Core model can be augmented with QoSMeasurements.
The model provides the possibilities for specifying Performance and Runtime related QoS measurements. Each

9

Element

prefix : String
uri : String

Namespace

Service Process View
**

has

*

1..*
expose

require

0..*

elementname:String

Identifier

Core model

QoSMeasurement

ServiceLevelAgreement

value: double
unit: String
Predicate: String

RuntimeQoS

*

*

0..*
qosConcerns1..*

SMS

*

*

sendTo: String

Action
Mail

QoS High-Level Language Model

Performance
QoS

Figure 7: An example of annotating processes or services with QoS compliance concerns

QoS measurement has relations to contractually negotiated ServiceLevelAgreements which are in relation with
different Actions that should be performed if an SLA is violated. In future works we have planned to extend the
modeling of SLAs, such as the modeling of the involved parties.

An example of using the high-level QoS DSL.
To demonstrate an example of the high-level QoS DSL, let us consider that the task Receive Itinerary of the
Travel Booking process example in Figure 6 must have a latency of less than 4 days and an availability of more than
99%. Figure 8 illustrates how the high-level QoS DSL can be used for annotating processes and services with QoS
compliance concerns.

define a required latency
PerformanceQoS create ItineraryLatency -superclasses Latency \

-predicate LESSTHAN -value 4 -unit DAYS

define a required availability
RuntimeQoS create ItineraryAvailability -superclasses Availability \

-predicate GREATERTHAN -value 99 -unit PERCENT

assign the QoS compliance concerns to the service
ReceiveItinerary qosConcerns {ItineraryLatency IniteraryAvailability}

Figure 8: An example of using the high-level QoS DSL

First, the user of the high-level DSL – the domain expert – has to specify the required QoS compliance concern. As
illustrated, a required latency and a required availability are specified. The ItineraryLatency instance is specified
as an instance of the PerformanceQoS class. Then, the values of the attributes, such as the predicate attribute,
are set. We can do the same for the availability. An instance of the RuntimeQoS class – ItineraryAvailability

instance – is created and the attributes are set. Afterwards, the defined QoS requirements are assigned to the ser-
vices. In this case, the ReceiveItineraryAvailability and ItineraryLatency instances are assigned to the
ReceiveItinerary service of the Travel Booking process.

3.4.2. The low-level QoS DSL
Technical experts need a language for specifying how the different QoS values are measured in the used Web

service framework, as well as how the defined actions are executed or performed. We decided to use the open-source
Apache CXF Web service framework1 in our prototype.

1http://cxf.apache.org
10

The language model of the low-level DSL extends the high-level language model for modeling the technological
aspects to generate a running system from the model instances described by using the DSLs. Similar to the high-level
DSLs, the provided constructs and expressions of the low-level DSL are named similar to the appropriate technology
to enable technical experts to easily make the link to the technology. The expressions of the low-level QoS DSL
depend on the technology on which the DSL is based.

The technical requirements on the low-level QoS DSL are as follows: The message-flows between the service
client and the service provider are based on chains. Each service client and service provider has two chains. An
incoming chain is responsible for incoming messages, and an outgoing chain is responsible for outgoing messages.
Each chain – incoming or outgoing – consists of a number of phases, in which the QoS values can be measured. Every
phase can contain one or more interceptors which are implemented in Java and are responsible for measuring the QoS
values or for performing the required actions. In this case, interceptors do not need to be specified within the models
because just by specifying the QoS measurements and the corresponding phases, the interceptors can be generated
automatically.

The language model of the low-level QoS DSL.

QoS High-Level Language Model

QoS Low-Level Language Model

QoSMeasurement

PhaseChain

1

measuredIn

*

phases
1..2

Figure 9: Extending the high-level QoS language model with additionally needed technical details

Figure 9 presents the low-level language model and how it extends the high-level language model. Following the
technical requirements mentioned above, the message-flow between the service client and the service provider is based
on Chains. Each chain – incoming and outgoing – consists of a number of Phases. Runtime QoS concerns, such as
the ResponseTime, can be measured within the corresponding phases by automatically generated interceptors.

An example of using the low-level QoS DSL.
Similar to the high-level DSL, the low-level DSL provides a textual syntax. Figure 10 depicts an example of how
technical experts can use the low-level DSL to extend the high-level domain concepts with the additionally needed
technical aspects.

define the phases
OutPhase create OutSetup
OutPhase create OutSetupEnding

define in which phases the Response Time is measrued
PerformanceQoS create Latency \

-measuredInPhases {OutSetup OutSetupEnding}

Figure 10: An example of using the low-level QoS DSL

In this example, the technical expert has to specify in which phases the QoS values should be measured. First, the
phases are defined – OutSetup and OutSetupEnding. Then, it is defined that the Latency – defined as an instance
of the high-level PerformanceQoS class – has to be measured between the two phases. This is defined by using the
measuredInPhases relationship between the QoSMeasurement and Phase classes.

11

3.5. Compliance Metadata model

In this section we propose a compliance metadata model which serves as a bridge between the compliance con-
cerns – represented in terms of aforementioned compliance DSLs and organizational functionality specified by VbMF
process view models as well as compliance sources. As described in Section 3.3, the Compliance Metadata model
correlates process view models with compliance metadata such as compliance documents, requirements, risks, and so
on. On the one hand, such annotations can be used for facilitating automatic compliance controls (cf. 3.1). That is,
services or processes are distinguished by annotation to implement and realize automatic controls. On the other hand,
the metadata serves as an information source for automatically generating reports and documentations of compliance
requirements and implementations.

A compliance requirement may directly relate to an organizational unit such as a process, a service, or a business
object. Nonetheless compliance requirements not only introduce new but also depict orthogonal concerns to these:
although usually related to process-driven SOA elements, they are often pervasive throughout the SOA and express
independent concerns. In particular, compliance requirements can be formulated independently until applied to a
SOA. As a consequence, compliance requirements can be reused, e.g., for different processes or process elements.

description: String
impact: EnumRiskCategory
likelihood: EnumRiskCategory

Risk

risks

*

*

subControls
*0..1

members

attributeGroups**

title: String
abstract: String
authors: String[]
editors: String[]
journal: String
series: String
volume: int
number: int
booktitle: String
publisher: String
pages: int[]
isbn: String
issn: String
doi: String
uri: String
date: Date
location: String

ComplianceDocument

Standard

Regulation Legislation InternalPolicy

Identifier
[core]

*

*

*

*

implementations

**

*

standardAttributes

0..1

*

section: String
conflictResolutionPriority: int

ComplianceRequirement

RegulatoryDocument

ControlAttributeGroup

fulfills
follows

contains

contains

implements

has has

maps to

type: String
value: String
description: String

ControlAttribute

isPreventiveDirective: boolean
isAutomatedManual: boolean
isStandardKey: boolean
isEventbasedPeriodic: boolean
reuccurenceInterval: int
reuccurenceIntervalUnit: Date
controlCriteria: String
controlCriteriaToleranceLevel: String
controlViolationEscalationMeasure: String

ControlStandardAttributes

description: String
objective: String

Control

Figure 11: The Compliance Metadata model

Figure 11 shows our proposed model for expressing compliance metadata. Annotation of specific SOA elements
with compliance metadata is done using compliance Controls that relate to concrete implementations such as
a process or service (cf. the Core model of Figure 5). Note, that besides processes and services also DSLs for
compliance concerns such as the QoS DSL are integrated into the framework using Identifiers (see also Figure 7).
As such they can be related to from the compliance metadata (see also Figure 4).

A Control can have subControls. This way compliance controls can be grouped and combined. Controls
fulfill ComplianceRequirements that relate to ComplianceDocuments such as a Regulation, Legislation,
or InternalPolicy. Such RegulatoryDocuments can be mapped to Standards that represent another type of
ComplianceDocument.

12

A compliance requirement often comes with risks that arise due to compliance violations. Risks have dimensions
such as likelihood or impact. In this work we provide basic support for specifying such dimensions using linear
comparable constants. Of course, these can be refined with more elaborative modeling elements that allow for non-
trivial functions and the use of parameters, e.g., for probability density functions.

One important aspect when implementing compliance for a SOA is that we want to make the relationship of a
compliance requirement derived from, e.g., a certain regulation or standard with the respective annotated SOA element
persistent. This allows for the identification and resolution of SOA elements, compliance controls, regulations, risks
and compliance documents, e.g., in the case of a root-cause analysis of a compliance violations.

For documentation purposes and for the implementation of compliance controls the ControlStandard-

Attributes help to specify general metadata for compliance controls, e.g., if the control is automated or manual
(isAutomatedManual). Besides these standard attributes, individual ControlAttributes can be defined for a
compliance control within ControlAttributeGroups.

description = „Abuse of individual-related data“
impact = HIGH
likelihood = LOW

AbuseRisk : Risk

title = „EU Directive 95/46/EC Individual Protection“
authors = „European Parliament, Council“
uri = „http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=CELEX:31995L0046:EN:NOT“
date = 1995-10-24

EU_Directive_95_46_EC : Legislation

TravelBooking
: Process

CR1: ComplianceRequirement
fulfills

follows

implements

has

description = „Secure transmission of individual-related data“

C1 : Control

Figure 12: Example for a Compliance Metadata model instance

Figure 12 shows a model instance for the compliance metadata that contains a directive from the European Union
on the protection of individuals with regard to the processing of personal data. The C1 compliance control instance
for a secure transmission of personal data annotates process TravelBooking. The fulfilled requirement CR1 follows
the legislative document and is associated with an AbuseRisk.

With the proposed compliance view, it is possible to specify compliance statements such as CR1 is a compliance
requirement that follows the EU Directive 95/46/EC on Individual Protection1 and is implemented by the Travel
Booking process within the VbMF. Other processes that implement controls for fulfilling the CR1 requirement can
easily be identified. Similarly, for a given legislation the various controls that realize derived compliance requirements
can be listed.

3.6. Model validation and generation
To ensure the correctness of the defined model instances, different kinds of design time validations can be per-

formed. Figure 13 illustrates the validation and generation process of our approach using an example. As described
in the previous sections, various DSLs exist for creating instances of the compliance concerns’ models. Also, existing
tools can be used to create process instances, such as process modeling tools. All model instances are provided to
the model validator that checks whether the models can be properly integrated and whether all static OCL-like con-
straints hold. The upper box, which is labeled with Constraints, shows some constraints which were defined using
the Frag Constraint Language (FCL) [48] – an OCL-like language for specifying static model constraints. Following
our approach, before the code generation process can start, the defined constraints have to be checked on the model
instances.

1http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=CELEX:31995L0046:EN:NOT
13

Assess
Intrusion End

yes

no

Personal info
lost or stolen?

Response Write
Form 8-K

Approve
Form 8-K

Publish
Form 8-K

!

ID = „Real time issuer disclosures“
...

: ComplianceRequirement

DSL for Regulatory/
Legilative Provisions

Compliance Metadata
DSL

formID = „Form8K“
duration = 2
unit = BusinessDays
...

: PublishDeadline

Process modeling tool

DSLs / Modeling Tools Model Instances

Model Validator

Transformation
Templates

BPEL
Code

Code Generator

ID = „SOX“
Section = „409“
...

: Regulation

ID = „Form 8-K Issuing Process“
ProcessUUID = „...“
...

: ProcessControl

ProcessUUID = „...“
...

: ProcessAnnotation

Constraints

WSDL
Code

Java
Code

Generated
Code

correlation group package must be stereotyped as CorrelationGroup
CorrelationIdentifier addInvariant {

[FCL forAll cg [self correlationGroup] {
[FCL exists cgi [FCL allInstances Correlation::CorrelationGroup] {

[$cgi basePackage] == $cg
}]

}]
}
each CorrelationGroup must have a CorrelationIdentifier
CorrelationGroup addInvariant {

[FCL exists cid [FCL allInstances Correlation::CorrelationIdentifier] {
[$cid correlationGroup] == [self basePackage]

}]
}

correlation group package must be stereotyped as CorrelationGroup
CorrelationIdentifier addInvariant {

[FCL forAll cg [self correlationGroup] {
[FCL exists cgi [FCL allInstances Correlation::CorrelationGroup] {

[$cgi basePackage] == $cg
}]

}]
}
each CorrelationGroup must have a CorrelationIdentifier
CorrelationGroup addInvariant {

[FCL exists cid [FCL allInstances Correlation::CorrelationIdentifier] {
[$cid correlationGroup] == [self basePackage]

}]
}

correlation group package must be stereotyped as CorrelationGroup
CorrelationIdentifier addInvariant {

[FCL forAll cg [self correlationGroup] {
[FCL exists cgi [FCL allInstances Correlation::CorrelationGroup] {

[$cgi basePackage] == $cg
}]

}]
}
each CorrelationGroup must have a CorrelationIdentifier
CorrelationGroup addInvariant {

[FCL exists cid [FCL allInstances Correlation::CorrelationIdentifier] {
[$cid correlationGroup] == [self basePackage]

}]
}

Generated
Documentation

PDF

#
Template for the Sequence structure
#
«DEFINE Activity(core::View iv, core::View cv, core::View hcv) FOR orchestration::Sequence»

<sequence>
«EXPAND Activity(iv, cv, hcv) FOREACH element»

</sequence>
«ENDDEFINE»
#
Template for the Flow structure
#
«DEFINE Activity(core::View iv, core::View cv, core::View hcv) FOR orchestration::Flow»

<flow>
«EXPAND Activity(iv, cv, hcv) FOREACH element»

</flow>
«ENDDEFINE»

#
Template for the Sequence structure
#
«DEFINE Activity(core::View iv, core::View cv, core::View hcv) FOR orchestration::Sequence»

<sequence>
«EXPAND Activity(iv, cv, hcv) FOREACH element»

</sequence>
«ENDDEFINE»
#
Template for the Flow structure
#
«DEFINE Activity(core::View iv, core::View cv, core::View hcv) FOR orchestration::Flow»

<flow>
«EXPAND Activity(iv, cv, hcv) FOREACH element»

</flow>
«ENDDEFINE»

#
Template for the Sequence structure
#
«DEFINE Activity(core::View iv, core::View cv, core::View hcv) FOR orchestration::Sequence»

<sequence>
«EXPAND Activity(iv, cv, hcv) FOREACH element»

</sequence>
«ENDDEFINE»
#
Template for the Flow structure
#
«DEFINE Activity(core::View iv, core::View cv, core::View hcv) FOR orchestration::Flow»

<flow>
«EXPAND Activity(iv, cv, hcv) FOREACH element»

</flow>
«ENDDEFINE»

Figure 13: Generation and validation example

After the static validation step, valid process models and compliance DSLs are handed over to the code generator.
The code generator uses transformation templates to transform the model instance into code in various executable
languages, such as BPEL, WSDL, and Java service code. The code generator also generates the compliance doc-
umentation from the Compliance Metadata models. We use the template-based transformation technique provided
by openArchitectureWare’s XPand language [34]. XPand is a powerful typed template language that can be used to
generate any kind of textual output. The generated source code can be used for checking the runtime compliance rules
or generating reports and documentations. These compliance rules are often encoded in the transformation templates,
and therefore, can be reused in other development scenarios.

Proposing a runtime infrastructure for fully deploying, enacting, and monitoring compliance is beyond the scope
of this article. Nevertheless, our approach supports compliance at runtime via model to code transformations that
translate concepts and rules described in compliance DSLs into components or directives. These components and
directives can be deployed at process engines and application servers to monitor and assess relevant compliance
requirements.

In the next section, an industrial research case study is presented. The case study was used to test and evaluate the
functioning of our approach.

4. Case study

We illustrate the realization of the aforementioned concepts using the CRM Fulfillment process adapted from
an industrial case study concerning customer care, billing, and provisioning systems of an Austrian Internet Service
Provider1. The process is designed using BPMN2 and implemented using process-driven SOA technology: BPEL3

1http://sembiz.org/attach/D4.1.pdf
2http://www.omg.org/spec/BPMN/1.1/
3http://docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.html

14

and WSDL1. BPMN, BPEL, and WSDL are used for exemplification because these are widely adopted in research
and industry today. Nevertheless, our approach is not limited to those technologies but is generally applicable for
other process-driven SOA technologies.

In the context of the CRM Fulfillment process (see Figure 14), the runtime platform provisions a wide variety of in-
house services and external services provided by various partners. For instance, the company has developed in-house
services for customer relationship information management and assigning fax numbers, SIP URLs, and mail boxes.
Banking partners provide services for verifying the customer account status and charging customer orders. Customer
premise equipment (CPE) companies supply services for ordering and shipping home modems or routers. Post-office
affiliations are responsible for sending postal invoices to the customers. These services expose their functionalities in
terms of WSDL interfaces that can be orchestrated using BPEL processes.

In the subsequent sections, we illustrate the modeling and development of the CRM Fulfillment process and the
implementation of compliance requirements step by step in our approach. First, we present the compliance require-
ments for the CRM Fulfillment process elicited by the collaboration of domain and compliance experts. Next, we
develop essential process views including the Flow view, Collaboration view, and the Information view. These views
accomplish the process modeling part of our framework. The remainder, which is compliance modeling, follows up
with the high-level and low-level DSLs that capture compliance requirements and embody monitoring directives at
runtime. The Compliance Metadata model comes to bridge the process views and the compliance DSLs. Finally, the
automatic generation of the documentation of the processes and their compliance concerns by using the Compliance
Metadata model is demonstrated.

Customer

Update
Customer Profile

Verify
Bank Account

Cancel
Customer Order

Charge
Customer Account

C
R

M
 F

ul
fil

lm
en

t P
ro

ce
ss

Receive
Customer Order

customer
data

CRM
Management

Banking
Institution

Customer
Equipment
Company

Internet
Service

Services/
Processes

cancelation

ShipCPE

Initialize
InternetService

verify
request

delivery request
service
request

charge
request

Send
Invoice

Reply
Order

Confirmation

confirmation

Post-office
Affiliation

send invoice
request

Figure 14: Case study: A CRM Fulfillment process

4.1. CRM Fulfillment process

The CRM Fulfillment process is initiated when a customer places an order for Internet services. Customer orders
are retrieved via the ReceiveCustomerOrder task. The process then invokes the customer relationship management
services to update the customer’s profile extracted from the order. After that, the banking service is invoked to validate
the customer’s account status in the VerifyBankAccount task. The banking service requires the customer’s personal
and account data such as the owner’s name, billing address, account number, and bank routing code, which are also
included in the order. The control after validating the customer’s account status is divided into two branches according
to the particular status. In case a negative confirmation is issued from the bank service, e.g., because the account

1http://www.w3.org/TR/wsdl
15

number is invalid or the owner and account do not match, the customer will receive an order cancelation response
along with an explaining message via the CancelCustomerOrder task. Otherwise, the positive confirmation triggers
the second branch in which the process continues with two major concurrent tasks to fulfill customer requests: the
Initialize InternetService task invokes an in-house service, namely, InternetService, for initializing the
mailbox and for assigning the SIP URL and the fax number, and the ShipCPE task calls an external service of the
process’s partner that asks to independently deliver home router/modem to the customer’s shipping address. As fault
handling is beyond the scope of this article, we assume that those activities finish without errors. After all of them have
finished, the next task, ChargeCustomerAccount, is activated to receive the payment from the customer’s account.
The SendInvoice task will enact the postal service affiliation for sending the customer’s invoice to the appropriate
address. The process finishes with a confirmation of success to the customer.

4.2. Compliance requirements for the CRM Fulfillment process

From the beginning of the development life cycle, business and domain experts work together with the compliance
experts in order to elicit various necessary compliance requirements for the CRM Fulfillment process. The interpreta-
tion of laws, regulations, standards, business contracts, etc., given by the business and compliance experts, according
to the context of the CRM Fulfillment process, transforms compliance requirements into corresponding controls. Be-
cause most of the laws and regulations are very vague and abstract, this kind of transformation is hardly automated,
but requires specific and deep juristic knowledge and experience of compliance experts to completely and precisely
interpret and formulate the compliance requirements. Table 1 shows an excerpt of compliance requirements used for
illustrating our approach in modeling and developing business compliance. In the subsequent sections, we present in
detail the steps of business process development along with the modeling of these compliance requirements for the
CRM Fulfillment process using our approach in this article.

Compliance Risk Control

Information Security R1: Customer data (resident address, SSN, bank ac-
count, etc.) are insecure from potential abuses (Basel
II Accord)

C1: Communicating channels of customer personal data must be adequately en-
crypted to ensure privacy

Order Approval R2: Return consignments because of wrong delivery
addresses R3: Sales to fictitious customers are not
prevented and detected

C2: Customer’s identifications are verified with respect to identification types
and information, customer’s shipping and billing addresses are checked against
some pre-defined constraints (countries, post code, phone number, etc).

Segregation of Duties
(SoD)

R4: Duties are not adequately segregated (SOX 404) C3: The status of the account verification must be checked and set by a Financial
Department staff. The customer’s invoice must be checked and signed by a Sales
Department staff.

QoS (temporal) R5: The order processing is indefinitely delayed C4: The CRM Fulfillment process must be initiated immediately after receiving
a customer order

QoS (latency) R6: The verification of bank account is indefinitely
late

C5: The verification process must be finished within a certain amount of time

QoS (latency) R7: The customer wants to cancel the order or the
ordered goods must be shipped for free

C6: The CRM Fulfillment process must finish as soon as possible

QoS (availability) R8: The verification of bank account is not available
or heavily loaded

C7: The banking service must be checked to ensure a negotiated availability

Table 1: Compliance requirements for the CRM Fulfillment process

4.3. Modeling the CRM Fulfillment process

The View-based Modeling Framework [43] supports stakeholders in modeling and developing business processes
by using the notion of views to separate the various process concerns. Figure 15 shows the Eclipse-based realization
of the View-based Modeling Framework that we use to develop the CRM Fulfillment process. From left to right of
the upper row, three basic views, namely, Flow view, Collaboration view, and Information view separately represent
the following concerns of the CRM Fulfillment process:

• The Flow view embodies the control flow of the process
• The Collaboration view captures the interactions of the CRM Fulfillment process with other services or pro-

cesses
• The Information view represents data objects and data processing of the process

16

Figure 15: Using VbMF to model the CRM Fulfillment process

The stakeholders, according to their specific needs, skills, and knowledge, can analyze and manipulate the CRM
Fulfillment process via each of those individual views or a perspective of interest which combines many, or even all,
of those views. The integration of views are accomplished by using view integration mechanisms provided in VbMF
[43]. These process views are then passed to the VbMF code generator in the last step described in Section 3.6 for
generating process executable code in BPEL and process service interface in WSDL. In the lower part of Figure 15, we
present, from left to right, an excerpt of the templates for the code generation along with an excerpt of the BPEL code
of the CRM Fulfillment process generated from the process views. After the business process has been modeled, the
appropriate compliance concerns described in terms of DSLs have to be integrated into the business process through
the Compliance Metadata model. These steps are explained in the following sections.

4.4. Modeling the QoS compliance concerns of the CRM Fulfillment process

Following the examples of Section 3.4, in this section we want to illustrate the usage of the high-level and low-level
QoS DSLs for annotating the CRM Fulfillment Process with the required QoS compliance concerns as mentioned in
Table 1.

17

4.4.1. Using the high-level QoS DSL
Figure 16 illustrates the annotation of the CRM Fulfillment process with QoS compliance concerns by using the

implemented high-level QoS DSL. The modeling of the two controls C6 and C7, described in Table 1, is shown.

import the definition of the CRM Fulfillment Process
import CRMFulfillmentProcess

C6 - the CRM Fulfillment Process must be finished within 3 hours
PerformanceQoS create CustomerOrderLatency -superclasses Latency \

-predicate LESSTHAN -value 3 -unit HOURS

assign the modeled response time to the process
CRMFulfillmentProcess qosConcerns {CustomerOrderLatency}

C7 - The banking service must be available at 99% of the time
RuntimeQoS create BankingServiceAvailability -superclasses Availability \

-predicate GREATERTHAN -value 99 -unit PERCENT

assign the modeled availability to the service
CRMFulfillmentProcess::BankingService qosConcerns {BankingServiceAvailability}

Figure 16: Specifying the required QoS compliance concerns by using the high-level QoS DSL

First, the business expert has to import the CRM Fulfillment process which was modeled in the VbMF. Now, the
QoS compliance concerns have to be specified and assigned to the process and its activities or services. As shown,
the CRM Fulfillment process must have a latency of maximum 3 hours. Also, the banking service must have an
availability of 99%.

4.4.2. Using the low-level QoS DSL
Figure 17 depicts an excerpt of using the low-level QoS DSL regarding the CRM case study. The technical expert

has to specify during which phases of the Apache CXF Web service framework the Latency has to be measured. As
shown, the low-level specifications in Figure 17 are the same as in Figure 10.

define the phases
OutPhase create OutSetup
OutPhase create OutSetupEnding

define in which phases the Response Time is measrued
PerformanceQoS create Latency \

-measuredInPhases {OutSetup OutSetupEnding}

Figure 17: Specifying the additionally needed technical aspects by using the low-level QoS DSL

Now, the advantages of our separation into high- and low-level languages can be seen. The QoS values have to
be measured always in the same phases of the Apache CXF Web service framework. Hence, the technical experts
have to specify the technological aspects just once. The requirements of the used technology do not change as often
as the compliance concerns of process-driven SOAs. That is, the low-level requirements do not change as often as
the high-level ones. In case the underlying technology changes, for instance, due to a software update, it is likely
that the technical aspects have to be re-modeled to accommodate these changes. By extending the number of QoS
measurements, such as by adding scalability and throughput measurements, the main work lies in the extension of the
code generator which generates executable code.

After all needed compliance concerns are associated with processes or services, the compliance experts can specify
the meta-data of the compliance aspects by using the Compliance Meta-data model. Afterwards, the model validation
and code generation phases can start.

4.4.3. Generated code for QoS compliance concerns
The specified QoS compliance concerns have to be measured during runtime. Now, some generated codes are

presented which is executed during the runtime of the system to measure the required QoS values. In the used
18

technology, the Apache CXF Web service framework, interceptors can be integrated into the message-flow between
service consumer and service provider. In our case, such interceptors shall be used for measuring the required QoS
concerns (cf. 3.4.2). Figure 18 illustrates excerpts of the generated interceptors for measuring the required latency of
the banking service.

public class BankingServiceLatencyInterceptor1
extends AbstractPhaseInterceptor<Message> {
public BankingServiceLatencyInterceptor1() {

super(Phase.SETUP);
}
public void handleMessage(Message msg) throws Fault {

msg.put("Latency",new Long(System.currentTimeMillis()));
}

}

public class BankingServiceLatencyInterceptor2
extends AbstractPhaseInterceptor<Message> {

public BankingServiceLatencyInterceptor2() {
super(Phase.SETUP_ENDING);

}

public void handleMessage(Message msg) throws Fault {
if(msg.get("Latency")!=null) {

long nMeasuredTime = System.currentTimeMillis() - ((Long)msg.get("Latency")).longValue();

/* send the measured response time to the QoS monitor */
...

} else {
throw new Fault(new Exception("Latency not found in message!"));

}
}
...

}

Figure 18: The generated interceptors for measuring the required QoS values

The first interceptor, BankingServiceLatencyInterceptor1, is responsible for storing the current timestamp
into the header of the message which flows between the service clients and the service providers. The second intercep-
tor, BankingServiceLatencyInterceptor2, retrieves the first timestamp of the message’s header and compares it
with the current timestamp. If there is no timestamp in the header of the message, an exception is thrown. Otherwise,
the actual latency of the banking service is determined by the difference between both timestamps. The measured
latency is delivered to a monitor component that monitors and stores the measured QoS values during the runtime of
the system. The phases, in which the interceptors have to be executed is specified in their constructors.

After the generation of executable code of the process and its services as well as the interceptors for measuring the
required QoS values, the compliance metadata can be specified. The following section shows the specification of the
compliance metadata and the generated compliance metadata matrix for reporting and documentation to managers or
auditors.

4.5. Compliance metadata: the coalescence of process-driven SOAs and business compliance

So far we have presented the modeling of the CRM Fulfillment process using VbMF and the expressing of concrete
compliance concerns using multiple DSLs. Now, we take the final step in which we correlate the process and its
services and compliance DSLs with compliance metadata.

Figure 19 depicts an instance of the compliance metadata model shown in Figure 11. The model instance de-
scribes the control C1 of Table 1. The CRMFulfillment Process implements the control C1 which fulfills the
ComplianceRequirement. The compliance requirements originate from the Basel II compliance document and
have an AbuseRisk. The impact and likelihood of the risk are HIGH.

Finally, let us consider that compliance stakeholders need to react to changes quickly because legislations and
policies are subject to change and hence, compliance requirements alter too. Therefore, and because such changes
often need to be implemented on time, existing processes need to be adapted. Using our approach, the stakeholders
benefit from the separation of concerns, and therefore, only have to formulate the compliance metamodel for accom-
modating a relevant control with the current requirements and compliance concerns. That is, a new requirement is

19

description = „Customer data (resident address, SSN,
bank account, etc.) are insecure from potential abuses“
impact = HIGH
likelihood = HIGH

AbuseRisk : Risk

title = „Basel II Accord“
authors = „Basel Committee on Banking Supervision“
uri = „http://www.bis.org/publ/bcbs128.pdf“
date = 2006-06

Basel_II : Standard

Verify_Bank_Account : Task

CR1: ComplianceRequirement

fulfills
follows

implements

has

description = „Communicating channels of customer personal data must be adequately encrypted to ensure privacy“

C1 : Control

Charge_Customer_Account : Task

implements

Figure 19: Compliance Metadata view for the Information Security compliance requirement

added by the compliance expert by specifying the relation to the corresponding compliance documents and associ-
ated risks. Furthermore, the compliance expert substitutes a deprecated requirement within the accordant compliance
control. Similarly, the compliance concerns are formulated and associated with the control. As a consequence, it
is not necessary to modify the, e.g., control flow, information, or collaboration model of a process when compli-
ance changes occur. Existing metadata and DSLs can be reused for annotating SOA elements and changes to the
compliance metadata can be realized in an agile way.

4.5.1. Compliance documentation
The compliance metadata not only serves for specifying the compliance aspects of a process-driven SOA but also

can be used for reporting and documentation purposes. In particular, it can be used for generating documentations.
Such documentations visualize compliance relevant information for relevant stakeholders, such as executive man-
agers and auditors, and therefore, help them to quickly gain an overview of a thorough view. Hyperlinks to other
documentation pages allow the user to navigate to related information or to request more specific details.

<h2>Risk-Control Matrix</h2>
<table>

<tr>
<th>Risks/Controls</th>

«FOREACH cv.control AS c»
<th>«c.name»</th>

«ENDFOREACH»
</tr>

«FOREACH cv.risk AS r»
<tr>

<th>«r.name»</th>
«FOREACH cv.control AS c»

<td>«IF (c.requirements.risks.contains(r))»X«ENDIF»</td>
«ENDFOREACH»
</tr>

«ENDFOREACH»
</table>

Figure 20: XPand template for generating the compliance risk-control matrix

Other generated documentation of the compliance metadata focuses on e.g., the relation of compliance require-
ments and compliance documents, such as standards or legislative documents. Also, the coverage of SOA elements
in regard to compliance aspects with their relation to compliance documents can be visualized and highlighted.

Figure 21 shows a matrix for the CRM Fulfillment process that depicts the relation of different compliance controls
with some risks. The corresponding XPand template is shown in Figure 20. Compliance controls, such as QoS or
SoD, are associated with risks of legal sanctions. In contrast, the Information Security compliance control also comes

20

with a loss of customer trust risk. If the availability of the banking service is inadequate, it may result in a loss of total
sales.

5. Related work

Assuring compliance can be broadly categorized into two main strategies: “compliance by design”, i.e., imple-
mentation of compliance through designing it into a system, and “compliance by detection”, i.e., implementation of
compliance by observing a system to ensure that its execution was compliant [38]. The different works presented in
this section address compliance from either one of or both of these perspectives. Our approach aims at supporting
both compliance strategies assuring perspectives in one integrated framework. This is necessary because these two
perspectives are not mutual alternatives for fully solving all compliance problems, but both approaches can be use-
ful in different design situations. In the subsequent paragraphs, we briefly summarize existing works relate to our
approach. Then, we clarify the crucial distinction of our approach to the related work.

REO [2] is a channel-based, formal coordination model that can be used to model compliance for behavioral
models, including business processes represented in, for instance, BPMN and BPEL. The behavior of a business
process is mapped to so-called REO circuits (the channel-based coordination models). Other types of compliance
concerns than behavioral models cannot be supported. This approach can be extended by mapping other behavioral
models to REO circuits with additional efforts. Ghose and Koliadis [6] present an approach for ensuring compliance in
which process tasks, such as atomic tasks, loops, and compensations, and sub-processes are annotated with (in)formal
annotations. Compliance violations can be detected by an exhaustive path exploration algorithm. Ly et al. [23,
24] present a semantic-based compliance verification approach in which compliance requirements are transformed
into mutual exclusion constraints and dependency constraints. These constraints are used to verify the semantic
correctness of process models, process instances, and process evolutions. Another compliance validation approach
introduced by Namiri et al. [28] is based on the assumption that process models are by default not compliant. These
non-compliant processes are enriched with controls by the compliance experts and executed with the support of a
monitoring infrastructure and a knowledge base of controls and process models to detect compliance violation at
runtime. The disadvantage of this approach is that the compliance rules that are intrusively embedded in process
descriptions can be unintentionally broken by developers due to their unawareness of those rules. The separation of
compliance concerns and process models in our approach can help the developers avoid this issue. Awad et al. [3]
present an automated approach for checking compliance of business process models based on a visual query language
BPMN-Q to describe compliance rules and model checking to assure compliance requirements are fulfilled.

Liu et al. [19] propose a framework for static checking of business processes in which BPEL processes are trans-
formed into Finite State Machine (FSM) whilst the compliance requirements are translated into Linear Temporal
Logic (LTL). Static compliance checking is accomplished by the model-checker NuSMV2 [5] that validates FSM and
LTL expressions. This framework merely supports checking behavioral compliant requirements at design time. Lotz
et al. propose a compliance framework within the scope of the EU project MASTER [20] to map abstract controls to
concrete control structures and processes, enforce the controls in business operations, and evaluate the effectiveness of
the controls. This approach merely focuses on security related control objectives, i.e., those controls that are leveraged
for protecting assets.

The conformity of processes with business contracts which are legal document and important sources of compli-
ance requirements are exploited in [10, 26]. Both approaches use the same formal representation, namely, Formal
Contract Language (FCL), for expressing the compliance constraints derived from business contracts. In [10], the
authors introduce the Ideal semantics to indicate the compliance degree ranging from no violation, some repairable
violations, non-repairable violations, and irrelevant. Execution paths of business processes represented in an event-
oriented language are checked against contract conditions, described in FCL, to determine the compatibility of busi-
ness contracts and the business processes fulfilling the contracts. The approach in [26] goes further by translating
the FCL representation of a business contract into BPMN-based abstract processes that consists of different parties
involving the contract and the message exchanges between the parties or private processes that specifies the internal
business logic of a certain party. The contract specifies legal constraints between parties, and therefore, embodies
compliance requirements that the (as-is or to-be) business process implementing the contract have to satisfy (i.e.,
WHAT) rather than the actual business logic of the process (i.e., HOW). As a consequence, the processes translated
from business contracts are far from being executable.

21

Figure 21: Compliance risk-control matrix

22

The compliance aware business process design framework proposed by Sadiq et al. [9, 21, 22, 39, 40] supports
stakeholders at design time wherein processes, represented in graph based models, are annotated with control tags
derived from FCL expressions of compliance requirements. These control tags represent control objectives and rele-
vant internal controls that enable the visualization of the controls attached to a particular process as well as support
an analysis tool that generates a quantitative measure of deviation of a process to certain compliance rules [10]. The
framework described in [17, 37] supports stakeholders in representing compliance regulations and laws using a for-
mal policy language, namely, ExPDT, which is extended to enable it to specify and validate the adherence of business
processes to compliance regulations. This approach concentrates on automatically assuring enforceable policies. Non-
enforceable policy rules are manually handled via log auditing. Giblin et al. [7, 8] propose REALM, a meta-model
for the specification of different regulation, and a compliance management framework based on REALM. REALM
provides a concept model that captures the concepts and relationships in the regulations, a compliance rule set in a
real-time temporal object logic, and a meta-data providing information of the source regulations and validity dates.
Compliance policies are then translated into monitoring rules used for runtime monitoring. The transformation from
REALM models, i.e., policy rule, into process models is an important and difficult step of the framework but has not
been fully described. The support for other compliance requirements, for example, those considered in this article,
have not been covered by this approach.

These aforementioned approaches mostly focus on the design time. However, some compliance concerns, for
instance, QoS latency or availability, can not be verified at design time but runtime. Van der Aalst et al. [47] pro-
posed an approach for checking compliance at runtime wherein an extended LTL is used for formalizing the dynamic
properties of the running systems. These properties then can be checked against the events mined from log files. Roz-
inat et al. [36] presented another approach focusing on conformance checking of processes at runtime. Processes are
formalized using Petri-net and an event log is represented by a set of event sequences. Validations are performed to
answer whether the real processes behaviors, recorded in the event logs, actually comply with the specified behaviors
in the process models. In his dissertation work [1], Accorsi tackles the shortcomings of existing posteriori auditing
systems by using a policy language to describe policies and automatically examine selected system log records against
the corresponding policy and generate evidence. The examination is supported by a falsification method which re-
trieves counterexamples of adherence to the policy from the log records in order to refute compliance violations of
the corresponding system.

In summary, we discuss the distinct characteristics of our view-based model-driven approach for business compli-
ance with respect to the aforementioned work. Firstly, most of these approaches concentrate on control-flow related
aspects, which is called behavioral compliance in these approaches. Our approach aims at supporting a wider range of
compliance concerns as mentioned in Section 2.2 by adequately using different DSLs which are tailored for particular
business and compliance domains.

Secondly, these approaches (except those of [19, 40]) are still very distant from the perception of an important
stakeholder: the business analyst (or the compliance expert) due to the lack of suitable and tailorable languages with
respect to his/her knowledge and expertise. We address this issue by the separation of high level and low level DSLs
as well as the separation of DSLs into sub-languages which are appropriately tailored for particular stakeholders. Fur-
thermore, the separation of abstraction levels along with the separation of process concerns and compliance concerns
enhances the extensibility of our approach into both vertical and horizontal dimensions.

Thirdly, these approaches (except [20]), support business compliance at a certain phase, for instance, either de-
sign time or runtime. On the contrary, our approach is a fully integrated approach aiming at supporting stakeholders
in achieving compliance by design, statically assessing compliance at design time (cf. Section 4.4) as well as au-
tomatically generating of processes, services, monitoring directives, etc., that define rules for runtime checks (cf.
Section 4.4.3).

Last but not least, documentations of the implementation of relevant compliance requirements in business pro-
cesses are crucial evidence for compliance auditing. Moreover, the documentations are important for stakeholders to
better understand and analyze processes and the associated compliances. This aspect has not been considered in any
of above literatures yet. In our approach, the Compliance Metadata model, which is the bridge between compliance
sources and requirements and the realization of compliance in terms of compliance DSLs and process models (see Fig-
ure 4), can be used to generate documentations for the processes and relevant business compliance (cf. Section 4.5.1).

Table 2 and 3 summarize these distinctions in details through a qualitative comparison of the state-of-the art and
our approach.

23

Support for compliance by design Support for compliance by detection at design
time

Support for compliance by detection at run-
time

Awad et al. [3]
Not supported External model checking validates queried pro-

cess models against compliance constraints n
PLTL expressions

Not supported

ExPDT [17, 37] Compliance concerns are interpreted
by domain experts and partially
translated into policy rules which are
inputs for automatic validation

Potentially but not mentioned Policy rules derived from compliance require-
ments can be inputs for runtime checking doned
by other works, e.g., REALM [8]

Contract compli-
ance [10, 26]

Business contracts are translated into
formal representations (deontic logic
and FCL), then mapped to event-
based BPMN processes

Model-checking via formal representations of
business contracts represented by FCL expres-
sions and business processes mapped into event-
oriented languages

Not supported

Ghose et al. [6] Not supported Exhaustive path explorations for detecting com-
pliance violations on the BPMN models anno-
tated with effect annotations in formal languages,
e.g., FCL or informal, e.g., Controlled Natural
Languages(CNLs)

Not supported

Liu et al. [19] Not supported Process models in BPELs are mapped into Pi-
calculus, then, into Finite State Machine, and
checked against compliance rules being repre-
sented in Business Property Specification Lan-
guage (BPSL) and translated into Linear Tempo-
ral Logic (LTL)

Not supported

Ly et al. [23, 24] Not supported Process models are verified against semantic con-
straints for their correctnesses

Not supported

MASTER [20] Introduce a full life cycle for model-
ing, assessment, monitoring, etc., for
security related compliance concerns

Compliance detection at design time is per-
formed within the assessment infrastructure
and/or with the feedback from the online enforce-
ment infrastructure

The observation layer that includes monitoring
infrastructure on top of an event-based signal-
ing infrastructure for collecting and processing
events generated by underlying services

Namiri et al. [28] Compliance experts add control pat-
terns to the process models to make
processes compliant

Not supported Unintentional removing of controls in the anno-
tated processes by process developers can be de-
tected at runtime. Events emitting during the ex-
ecution of annotated processes are monitored and
validated in the SemanticMirror detecting viola-
tions and firing relevant recovery actions

REALM [7, 8] Not supported Not supported Regulations are interpreted and translated into
REALM policy rules and relevant correlation
rules. The runtime monitoring is enacted by IBM
Active Correlation Technology.

REO [2] Modeling compliance in BPMN pro-
cess models and mapping them to
REO circuits.

Model verification of the REO circuit via con-
straint automata and other formalisms

Not supported.

Run-time valida-
tion approaches
[1, 36, 47]

Not supported Not supported Process models formalized and verified against
the events producing during process executions
to detect the non-compliant behaviors

Sadiq et al. [9,
21, 22, 39, 40]

Regulatory compliances are described using FCL
rules whilst process models are graph-based rep-
resentations wherein each node has semantic an-
notations. These formalizations are compared to
measure the deviations of compliance that lead to
the reparation of process models

Not supported

SoaML [33] Support for defining service con-
tracts, such as QoS agreements

[Not supported] [Not supported]

VbMF Supported through view-based mod-
els in various compliance concerns.

Support via model validation. Supported via code generation of processes, ser-
vices, monitoring directives, etc. that define rules
for runtime checks.

Table 2: Comparing compliance solutions

Supported compliance concerns Extensibility options Support for involving domain ex-
perts

Documentation of compliance

Awad et al. [3]
Mainly support the control flow re-
lated compliance rules

Not supported The query language based on
BPMN is intuitive for domain ex-
perts

Not supported

Contract compli-
ance [10, 26]

Formal languages for representing
compliances (FCL, deontic) solely
cover behavioral compliance con-
cerns

Based on FCL and deontic logic,
this approach hardly support other
compliance concerns which are
not mappable to deontic logic and
FCL, for instance, temporal and li-
censing requirements, etc.

Formal languages used in this ap-
proach have friendly syntax and se-
mantics for domain experts whilst
process models are supposed to be
BPMN alike

Not supported

(Continued on next page)

24

Supported compliance concerns Extensibility options Support for involving domain ex-
perts

Documentation of compliance

ExPDT [17, 37] Supported privacy related concerns Not supported ExPDT is the formal language aim-
ing at supporting domain experts
in translating compliance require-
ments into policy rules

Potentially supported, es-
pecially on privacy based
compliance concerns, but not
mentioned

Ghose et al. [6] Control flow-based concerns akin
to BPMN process models which
are then mapped to Semantic Pro-
cess Networks (SPNets)

(1) Merely focuses on the con-
trol flow; (2) Mapping of compli-
ance requirements from CNLs to
effect annotations leads to the fact
that only the compliance concerns
which are able to be described in
CNLs akin are supported.

(1) High-level process models,
such as BPMN diagrams alike, are
supported; (2) Compliance require-
ments are encoded using CNLs
which are close to domain experts

Not supported

Liu et al. [19] Mainly dealing with the compli-
ant requirements which can be de-
scribed by temporal logics. Other
concerns, such as those considering
in this article, are not mentioned

There is no support for the other
formalisms which are different
from those using in this approach,
i.e., Pi-calulus, FSM, LTL, and
BPSL

BPSL is an intuitive formalism
for business experts, but BPEL
is much more technology-specific.
High level languages, for instance,
BPMN, are often hardly leveraged
due to the difference of formalisms

Compliance checking reports

Ly et al. [23, 24] Semantic constraints are used to
describe the mutual exclusion and
dependency of process tasks

Semantic constraints aren’t rich
enough for other kinds of compli-
ance concerns, such as obligations,
locative, QoS, licensing, etc.

Semantic constraints and graph-
based process models are suitable
for domain experts

Not supported

MASTER [20] Solely focus on security related
compliance concerns

Not supported Introduce two level of abstractions:
business models for domain ex-
perts, and technical models for IT
experts

Potentially supported but not
mentioned

Namiri et al. [28] Mainly focus on behavioral com-
pliance concerns that can impact
the process execution

Some other concerns exist in the
high level control patterns, but are
not mentioned how to apply those
patterns in business processes

Compliance representations (i.e.,
control patterns) and the graph-
based process model are suitable
for compliance experts

Not supported

REALM [7, 8] REALM is intentionally designed
to support the formalization of reg-
ulations

Supporting other compliance con-
cerns, such as those mentioned in
this article, are not mentioned

REALM provides adequate repre-
sentations and tool supports for do-
main experts

REALM potentially provides
documentations for regulatory
associated with policy rules via
the metadata

REO [2] Behavioral concerns akin to
BPMN process models (other
process models such as UML
activity diagrams can be mapped
to REO circuits, too).

REO is extensible with new chan-
nels, new import mappings, and
additional formal semantics and
model checkers.

High-level model such as BPMN
models can be mapped to REO.

Not supported.

Run-time valida-
tion approaches
[1, 36, 47]

Mainly focus on the behavioral
concerns

Not supported Process models are represented in
high level and intuitive formalisms,
e.g., Petri-net

Not supported

Sadiq et al. [9, 21,
22, 39, 40]

Based on FCL, same as [10, 26] Same as [10, 26] [40] provides annotated process vi-
sualizations for domain experts

Potentially supported but not
mentioned

SoaML [33] Provides modeling of service con-
tracts between service provider and
service client, such as require-
ments, service interactions, QoS
agreements, interface and choreog-
raphy agreements, and commercial
agreements

SoaML is implemented as a UML2
profile and hence can be extended
easily

domain experts must have UML2
knowledge

[Not supported]

VbMF Views for compliance in process
models, compliance in services,
QoS policies, licenses, regula-
tory provisions, compliance in data
models, security policies

View models are extensible with
any new kind of view

Support for high-level/low-level
DSLs; reports, visualizations, and
documentations can be generated

Compliance Metadata model:
reports, visualizations, and doc-
umentations can be generated

Table 3: Comparing compliance solutions (cont’d)

6. Conclusions

In this article, we have presented a novel approach and associated architecture for dealing with compliance in
process-driven SOAs. In contrast to the related work, our approach can support stakeholders to deal with the di-
vergence of multiple compliance sources realized using all possible kinds of automatic controls, including, but not
limited to, controls in processes, services, QoS policies, license policies, security policies, and so on. This includes
both design time and runtime controls. The control code, as well as the compliance control documentation, can be
automatically generated from the models. Due to the generated documentation that is associated with the models, the
compliance information cannot get lost during the evolution of the architecture. DSLs and view models can be used to
present compliance concerns to each stakeholder in a view that is most appropriate for the stakeholder’s current work
task.

25

The view-based, model-driven framework for compliance in SOAs presented in this article lays a solid foundation
for compliance engineering. Our ongoing work is to complement this framework with an integrated development
environment that facilitates collaborative model-driven design with different stakeholders as well as a runtime gover-
nance infrastructure that enacts the detection of compliance violations and compliance enforcement according to the
monitoring directives generated from compliance DSLs and the Compliance Metadata model.

Acknowledgment
This work was supported by the European Union FP7 project COMPAS, grant no. 215175.

References

[1] R. Accorsi. Automated Counterexample-Driven Audits of Authentic System Records. PhD thesis, University of Freiburg, Germany, 2008.
[2] F. Arbab, N. Kokash, and S. Meng. Towards using reo for compliance-aware business process modeling. In T. Margaria and B. Steffen,

editors, Proc. of the Third Intl. Sym. on Leveraging Applications of Formal Methods, Verification and Validation (ISoLA 2008), volume 17 of
CCIS, pages 108–123. Springer, 2008.

[3] A. Awad,, G. Decker,, and M. Weske,. Efficient Compliance Checking Using BPMN-Q and Temporal Logic. In BPM ’08: 6th Intl. Conf.
Business Process Management, pages 326–341, Berlin, Heidelberg, 2008. Springer-Verlag.

[4] Basel Committee on Banking Supervision. Basel II: International Convergence of Capital Measurement and Capital Standards: a Revised
Framework. http://www.bis.org/publ/bcbs107.htm, June 2004. [Accessed 2009/02/01].

[5] A. Cimatti, E. Clarke, E. Giunchiglia, F. Giunchiglia, M. Pistore, M. Roveri, R. Sebastiani, and A. Tacchella. NuSMV 2: An opensource tool
for symbolic model checking. In 14th Intl. Conf. Computer Aided Verification (CAV’02), volume LNCS 2404, pages 241–268. Springer, July
2002.

[6] A. Ghose, and G. Koliadis,. Auditing business process compliance. In ICSOC ’07: 5th Intl. Conf. on Service-Oriented Computing, pages
169–180, Berlin, Heidelberg, 2007. Springer-Verlag.

[7] C. Giblin, A. Y. Liu, and X. Zhou. Regulations expressed as logical models (REALM). In A. I. O. S. Press, editor, Proc. of the 18th Annual
Conference on Legal Knowledge and Information Systems (JURIX 2005), pages 37–48, 2005.

[8] C. Giblin, S. Müller, and B. Pfitzmann. From regulatory policies to event monitoring rules: Towards model-driven compliance automation.
Technical Report RZ 3662, IBM Research, 2006.

[9] G. Governatori, J. Hoffmann, S. Sadiq, and I. Weber. Detecting regulatory compliance for business process models through semantic annota-
tions. In BPD-08: 4th Intl. Workshop on Business Process Design, Sept. 2008.

[10] G. Governatori, Z. Milosevic, and S. W. Sadiq. Compliance checking between business processes and business contracts. In EDOC, pages
221–232, 2006.

[11] J. Greenfield, K. Short, S. Cook, and S. Kent. Software Factories: Assembling Applications with Patterns, Frameworks, Models & Tools. J.
Wiley and Sons Ltd., 2004.

[12] C. Hentrich and U. Zdun. Patterns for process-oriented integration in service-oriented architectures. In Proceedings of 11th European
Conference on Pattern Languages of Programs (EuroPLoP 2006), Irsee, Germany, July 2006.

[13] T. Holmes, H. Tran, U. Zdun, and S. Dustdar. Modeling human aspects of business processes – A view-based, model-driven approach. In
Fourth European Conference on Model Driven Architecture Foundations and Applications (ECMDA’08). Springer LNCS, June 2008.

[14] IASB. International Financial Reporting Standards (IFRSs). http://www.iasb.org/IFRS+Summaries/, 2007. [Accessed 2009/02/01].
[15] IBM. Travel Booking Process. http://publib.boulder.ibm.com/bpcsamp/scenarios/travelBooking.html, 2006. (accessed 2009/01/05).
[16] IBM, BEA Systems, Microsoft, SAP AG, and Siebel Systems. Business Process Execution Language for Web Services. ftp://

www6.software.ibm.com/software/developer/library/ws-bpel.pdf, May 2003.
[17] M. Kähmer, M. Gilliot, and G. Muller. Automating Privacy Compliance with ExPDT. In CEC/EEE, pages 87–94, 2008.
[18] S. Kelly and J. P. Tolvanen. Domain-Specific Modeling: Enabling Full Code Generation. John Wiley & Sons, 2008.
[19] Y. Liu,, S. Müller,, and K. Xu,. A static compliance-checking framework for business process models. IBM Syst. J., 46(2):335–361, 2007.
[20] V. Lotz, E. Pigout, P. M. Fischer, D. Kossmann, F. Massacci, and A. Pretschner. Towards systematic achievement of compliance in service-

oriented architectures: The MASTER approach. WIRTSCHAFTSINFORMATIK, 50(5):383–391, Oct. 2008.
[21] R. Lu, S. W. Sadiq, and G. Governatori. Compliance aware business process design. In Business Process Management Workshops, pages

120–131, 2007.
[22] R. Lu, S. W. Sadiq, and G. Governatori. Measurement of compliance distance in business processes. IS Management, 25(4):344–355, 2008.
[23] L. T. Ly, K. Gser, S. Rinderle-Ma, and P. Dadam. Compliance of semantic constraints - A requirements analysis for process management

systems. In 1st Int’l Workshop on Governance, Risk and Compliance - Applications in Information Systems (GRCIS’08), 2008.
[24] L. T. Ly, S. Rinderle, and P. Dadam. Integration and verification of semantic constraints in adaptive process management systems. Data

Knowl. Eng., 64(1):3–23, 2008.
[25] C. Mayr, U. Zdun, and S. Dustdar. Model-Driven Integration and Management of Data Access Objects in Process-Driven SOAs. In Service-

Wave ’08: Proc. of the 1st European Conf. on Towards a Service-Based Internet, pages 62–73, 2008.
[26] Z. Milosevic, S. W. Sadiq, and M. E. Orlowska. Translating business contract into compliant business processes. In EDOC, pages 211–220,

2006.
[27] Ministre de l’conomie, des finances et de l’industrie. Loi de Sécurité Financière (LSF). http://www.senat.fr/leg/pjl02-166.html, Aug. 2003.

[Accessed 2009/02/01].
[28] K. Namiri and N. Stojanovic. Pattern-Based Design and Validation of Business Process Compliance. In OTM Conferences (1), pages 59–76,

2007.

26

[29] OASIS. Business Process Execution Language (WSBPEL) 2.0. http://docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.pdf, May 2007.
[30] E. Oberortner, U. Zdun, and S. Dustdar. Tailoring a model-driven Quality-of-Service DSL for various stakeholders. In MISE ’09: Proceedings

of the 2009 ICSE Workshop on Modeling in Software Engineering, pages 20–25, Vancouver, BC, Canada, 2009.
[31] OMG. Unified Modelling Language (UML) 2.0. http://www.omg.org/spec/UML/2.0/, July 2005. [Accessed 2009/02/01].
[32] OMG. Business Process Modeling Notation (BPMN) 1.1. http://www.omg.org/spec/BPMN/1.1/, Jan. 2008.
[33] OMG. Service-Oriented Architecture Modeling Language (SoaML) - Specification for the UML Profile and Metamodel for Services. Tech-

nical report, OMG, 2008.
[34] openArchitectureWare.org. openArchitecture Model-driven Framework. http://www.openarchitectureware.org, Aug. 2002. [Accessed

2009/02/01].
[35] S. Ran. A model for web services discovery with qoS. SIGecom Exch., 4(1):1–10, 2003.
[36] A. Rozinat, and W. M. P. van der Aalst,. Conformance checking of processes based on monitoring real behavior. Inf. Syst., 33(1):64–95,

2008.
[37] S. Sackmann and M. Kähmer. ExPDT: A Policy-based Approach for Automating Compliance. WIRTSCHAFTSINFORMATIK, 50(5):366–

374, Oct. 2008.
[38] S. Sackmann, M. Kahmer, M. Gilliot, and L. Lowis. A classification model for automating compliance. In 10th IEEE Conf. EEE/CEC, pages

79–86, July 2008.
[39] S. Sadiq and G. Governatori. A methodological framework for aligning business processes and regulatory compliance. Springer, Handbook

of Business Process Management edition, 2009.
[40] S. W. Sadiq, G. Governatori, and K. Namiri. Modeling control objectives for business process compliance. In BPM, pages 149–164, 2007.
[41] T. Stahl and M. Völter. Model-Driven Software Development. John Wiley & Sons, 2006.
[42] The Netherlands Corporate Governance Committee. The Dutch corporate governance code. http://www.commissiecorporategovernance.nl/

page/downloads/CODE DEF ENGELS COMPLEET II.pdf, Dec. 2003. [Accessed 2009/02/01].
[43] H. Tran, U. Zdun, and S. Dustdar. View-based and Model-driven Approach for Reducing the Development Complexity in Process-Driven

SOA. In Intl. Working Conf. on Business Process and Services Computing (BPSC’07), volume 116 of LNI, pages 105–124, Sept. 2007.
[44] H. Tran, U. Zdun, and S. Dustdar. View-Based Reverse Engineering Approach for Enhancing Model Interoperability and Reusability in

Process-Driven SOAs. In H. Mei, editor, 10th Intl. Conf. on Software Reuse (ICSR’08), LNCS, pages 233–244. Springer, May 2008.
[45] U.K. Financial Services Authority. Markets in Financial Instruments Directive (MiFID), Nov. 2007. [Accessed 2009/02/01].
[46] U.S. Congress. Sarbanes-Oxley Act of 2002. http://frwebgate.access.gpo.gov/cgi-bin/getdoc.cgi?dbname=107 cong bills&docid=f:h3763enr.tst.pdf,

Jan. 2002. [Accessed 2009/02/01].
[47] W. M. P. van der Aalst, H. T. de Beer, and B. F. van Dongen. Process mining and verification of properties: An approach based on temporal

logic. In On the Move to Meaningful Internet Systems 2005: CoopIS, DOA, and ODBAS, pages 130–147. Springer, 2005.
[48] U. Zdun. Frag. http://frag.sourceforge.net/, 2005.

27

