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A lower bound of 1 + ϕ for truthful scheduling
mechanisms

Elias Koutsoupias · Angelina Vidali

Abstract We study the mechanism design version of the unrelated machines
scheduling problem, which is at the core of Algorithmic Game Theory and
was first proposed and studied in a seminal paper of Nisan and Ronen. We
give an improved lower bound of 1 + ϕ ≈ 2.618 on the approximation ratio
of deterministic truthful mechanisms for the makespan. The proof is based on
a recursive preprocessing argument which yields a strictly increasing series of
new lower bounds for each fixed number of machines n ≥ 4.

1 Introduction

We study the classical scheduling problem on unrelated machines [1–3] from
the mechanism-design point of view. There are n machines and m tasks each
with different execution time on each machine. The objective of the mechanism
is to choose an allocation of the tasks to the machines that minimizes the
makespan, i.e. that minimizes the time we have to wait until all tasks have
been executed.

Mechanism-design recasts optimization problems, such as the scheduling
problem, by adding an additional requirement: besides the objective of the
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algorithm designer (here to minimize the makespan) each one of the individ-
uals involved in the solution of the problem (here each machine) has his own
objective, namely to maximize selfishly his utility. Each one of the individ-
uals involved has a private value, and the collection of these private values
comprises the input to the problem. In order to compute or approximate the
optimal solution, the mechanism designer needs to elicit the true input of the
problem from the players. For this, the mechanism designer uses payments
with the goal of changing the utility of the players to have no incentive to lie.
The most typical example of mechanism design is auctions, where the most
common objectives of the algorithm designer is either to allocate items to
players in order to maximize the total welfare of the players or to maximize
the revenue of the auctioneer.

The mechanism-design version of the scheduling problem, is essentially an
auction for allocating jobs. The machines are selfish players and would refuse
to process tasks without payment. With the payments, the objective of each
player is to minimize the time of its own tasks minus the payment. Each
one of the players has a private type, here the vector of execution times on
the particular machine. A mechanism is called truthful when telling the truth
(i.e. revealing his true type) is a dominant strategy for each player: for all
declarations of the other players, an optimal strategy of the player is to tell
the truth.

A central question in the area of Algorithmic Mechanism Design is to deter-
mine the best approximation ratio of mechanisms for scheduling. This question
was raised by Nisan and Ronen in their seminal work [4] and remains wide
open today. The current work improves the lower bound on the approximation
to 1+ϕ ≈ 2.618, where ϕ is the golden ratio. A preliminary version of this pa-
per appeared in [5], and although at that time, it seemed to be a result which
will be soon subsumed by a better bound, no improvement has appeared yet,
despite the fact that the problem has received a lot of attention.

A lower bound on the approximation ratio can be of either computational
or game-theoretic nature. A lower bound is computational when it is based on
some assumption about the computational resources of the algorithm, most
commonly that the algorithm is polynomial-time. It is of game-theoretic na-
ture when the source of difficulty is not computational but is imposed by
the restrictions of the mechanism framework and more specifically by the
truthfulness condition. Our lower bound is entirely game-theoretic: No (truth-
ful) mechanism—including exponential and even recursive algorithms—can
achieve approximation ratio better than 2.618.

When we consider the approximation ratio of a mechanism, we ignore the
payments and care only about the allocation part of the mechanism. A natu-
ral question then arises: Which scheduling (allocation) algorithms are part of
truthful mechanisms? There is an elegant and seemingly simple characteriza-
tion of these mechanisms: Monotone Algorithms. The characterizing property
of these algorithms, the Monotonicity Property (Definition 2), implies that,
given the allocation of a player for a specific input, if this player becomes
slower in the tasks that were not assigned to him, the player will not get
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any new tasks. Similarly when the player becomes faster in the tasks that he
was already assigned, the player can only get more tasks. In a loose sense,
the Monotonicity Property is a combination of these two facts and can be
expressed very succinctly.

1.1 Our techniques and related work

There are basically two approaches to obtain lower bounds for this problem.
The first approach is to provide a good characterization of all possible mecha-
nisms. With an appropriate characterization, it is usually easy to determine the
mechanism with the best approximation ratio. This approach however solves a
potentially more difficult problem, the problem of characterizing the truthful
mechanisms. There are few results concerning the characterization of mecha-
nisms. For the case of two machines, Dobzinski and Sundararajan [6] showed
that every finite approximation mechanism is task-independent, while [7] gave
a characterization of all (regardless of approximation ratio) decisive truthful
mechanisms in terms of affine minimizers and threshold mechanisms. Until
now the only example of a new lower bound obtained by a characterization
is the lower bound of 2 for instances with two (or more) tasks [7]. (However
for instances with 3 or more tasks it is considerably easier to prove the same
lower bound [4] by employing the approach we describe next instead of a
characterization.)

The second approach is to use an appropriately selected subset of the in-
put instances. Fix one instance and consider its possible allocations (pick an
instance with certain symmetries so that the possible allocations are not too
many). Then argue how each one of the possible allocations implies approxi-
mation ratio at least r for some other instance of the selected set. By applying
the Monotonicity Property to pairs of instances, we get restrictions that their
corresponding allocations have to satisfy in order to guarantee truthfulness.
This approach has been followed in [4,8,9] using a finite set of small instances
of 2 and 3 machines respectively and no more than 5 tasks. The approach of
the current work is also of the second type. We start we a set of tasks and
then we a recursive preprocess the instance in order to reduce it to an instance
that satisfies certain desired properties.

The scheduling problem on unrelated machines is one of the most fun-
damental scheduling problems [1,3]. The problem is NP-complete. Lenstra,
Shmoys, and Tardos [2] showed that it can be approximated in polynomial
time within a factor of 2 but no better than 3/2, unless P=NP.

Nisan and Ronen introduced the mechanism-design version of the problem
in the paper that founded the algorithmic theory of Mechanism Design [4,4].
They showed that the well-known VCG mechanism, which is a polynomial-
time algorithm and truthful, has approximation ratio n. They conjectured
that there is no deterministic mechanism with approximation ratio less than
n. They also showed that no mechanism (polynomial-time or not) can achieve
approximation ratio better than 2. This was improved to 1+

√
2, in [9]. Here we
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improve it further to 1 +ϕ. Four years after the appearance of the conference
version of this paper this is still the best lower bound known. However, for the
special class of “anonymous” mechanisms, Ashlagi, Dobizinski and Lavi [10]
proved a tight bound n of the approximation ratio.

Nisan and Ronen [4] also gave a randomized truthful mechanism for two
players, that achieves an approximation ratio of 7/4. Mu’alem and Schapira [8]
proved a lower bound of 2 − 1

n for any randomized truthful mechanism for n
machines and generalized the mechanism in [4] to give a 7n/8 upper bound.
Lu and Yu [11] gave a 1.67-approximation universally truthful randomized
algorithm for the case of 2 machines improving it later on [12] to a 1.59-
approximation algorithm.

In another direction, [13] showed that no fractional truthful mechanism
can achieve an approximation ratio better than 2 − 1/n. It also showed that
fractional algorithms that treat each task independently cannot do better than
(n+ 1)/2 and this bound is tight.

Cohen et al. [14] studied the envy free version of the scheduling problem
on unrelated machines. They devise an envy-free poly-time mechanism that
approximates the minimal makespan to within a factor of O(logm) and show a
lower bound of Ω(logm/ log logm). This improved the result of Mu’alem [15]
who had given an upper bound of (m+ 1)/2, and a lower bound of 2− 1/m.
Christodoulou and Kovács [16] characterization of envy free mechanisms for
the case of 2 tasks and n players.

Lavi and Swamy [17] considered the special case of the same problem when
the processing times have only two possible values low or high, and devised
a deterministic 2-approximation truthful mechanism. Very recently, Yu [18]
generalized their results constructing a randomized 7(1 + ε)-approximation
algorithm for the case when the processing times belong to [Lj , Lj(1 + ε)] ∪
[Hj , Hj(1 + ε)] where Lj < Hj and ε < 1/16mn.

Another special case of the problem is the problem on related machines in
which there is a single private value (instead of a vector) for every machine, its
speed. Myerson [19] gave a characterization of truthful algorithms for this kind
of problems (single-parameter problems), in terms of a monotonicity condition.
Archer and Tardos [20] found a similar characterization and using it obtained
a variant of the optimal algorithm which is truthful (albeit exponential-time).
They also gave a polynomial-time randomized 3-approximation mechanism,
which was later improved to a 2-approximation, in [21], and to a PTAS by
Dhangwatnotai, Dobzinski, Dughmi and Roughgarden [22]. These mechanisms
are truthful in expectation. Auletta De Prisco, Penna, and Persiano [23] pro-
vided a deterministic, monotone (4 + ε) approximation algorithm for the case
of constant number of machines m. Andelman, Azar, and Sorani [24] improved
this to a FPTAS and additionally gave a 5-approximation algorithm for arbi-
trary m. Kovács improved the approximation ratio to 3 [25] and to 2.8 [26].
Finally, the definite answer for the related machines problem was given by
Christodoulou and Kovács who gave a deterministic PTAS for the problem
[27].
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Much more work has been done for the more general problem of combi-
natorial auctions (see [28], Chapter 11). The mechanisms for the scheduling
problem and the combinatorial auctions problem may be closely related, as it
was suggested in [29] for the case of 2 players.

Saks and Yu [30] proved that, for mechanism design problems with convex
domains of finitely many outcomes, which includes the scheduling problem,
the monotonicity property is also sufficient for truthfulness, generalizing re-
sults of [31,32]. Monderer [33] showed that this result cannot be essentially
extended to a larger class of domains. Both these results concern domains of
finitely many outcomes. There are however cases, like the fractional version of
the scheduling problem, when the set of all possible allocations is infinite. For
these, Archer and Kleinberg [34] provided a necessary and sufficient condition
for truthfulness which generalizes the results of [30]. A geometrical character-
ization of truthfulness for the case of three items was given in [35].

2 Problem definition

We recall here the definitions of the scheduling problem, of the concept of
mechanisms, as well as some of their fundamental properties.

Definition 1 (The unrelated machines scheduling problem) The input
to the scheduling problem is a nonnegative matrix t of n rows, one for each
machine-player, and m columns, one for each task. The entry tij (of the i-th
row and j-th column) is the time it takes for machine i to execute task j. Let ti
denote the times for machine i, which is the vector of the i-th row. The output
is an allocation x = x(t), which partitions the tasks into the n machines. We
describe the partition using indicator values xij ∈ {0, 1}: xij = 1 iff task j is
allocated to machine i. We should allocate each task to exactly one machine,
or more formally

∑n
i=1 xij = 1.

In the mechanism-design version of the problem we consider direct-revelation
mechanisms. That is, we consider mechanisms that work according to the fol-
lowing protocol:

– Each player i declares the values in row ti, which is known only to player
i.

– The mechanism, based on the declared values, decides how to allocate the
tasks to the players.

– The mechanism, based on the declared values, and the allocation of the
previous step, decides how much to pay each player.

The mechanism consists of two algorithms, an allocation algorithm and a
payment algorithm. The cost of a player (machine) is the sum of the times
of the tasks allocated to it minus the payment. Think of the players as being
lazy and not wanting to execute tasks, and the mechanism pays them enough
to induce them to execute the tasks. On the other hand, the players know
both the allocation and the payment algorithm and may have an incentive to
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lie in the first step. The class of mechanisms for which the players have no
incentive to lie are called truthful mechanisms. Here we consider the strictest
version of truthfulness which is the class of dominant truthful mechanisms: In
these mechanisms truth telling is a dominant strategy, i.e., for every possible
declaration of the other players, an optimal strategy of a player is to reveal its
true values.

A classical result in mechanism design, the Revelation Principle (see [28]
page 224), states that for every mechanism, in which each player has a domi-
nant strategy, there is a truthful mechanism which achieves the same objective.
The Revelation Principle allows us to concentrate on truthful mechanisms (at
least for the class of centralized mechanisms). Since every mechanism with
dominant strategies can be turned into an equivalent truthful one, we can
concentrate only on truthful mechanisms.

Here we care only about the approximation ratio of the allocation part of
the mechanisms. So when we refer to the approximation ratio of a mechanism,
we mean the approximation ratio of its allocation part. Since payments are of
no importance in this consideration, it would be helpful if we could find a nec-
essary and sufficient condition that characterizes which allocation algorithms
are ingredients of truthful mechanisms. Fortunately such a condition exists:

Definition 2 (Monotonicity Property) An allocation algorithm is called
monotone if it satisfies the following property: for every two sets of tasks t and
t′, which differ only on some machine i (i.e., on the i-th row), the associated
allocations x and x′ satisfy

∑m
j=1(xij−x′ij)(tij−t′ij) ≤ 0, which can be written

more succinctly as a dot product:

(xi − x′i) · (ti − t′i) ≤ 0.

Proposition 1 Every truthful mechanism satisfies the Monotonicity Prop-
erty.

The Monotonicity Property characterizes the allocation part of truthful
mechanisms. The fact that it is necessary and sufficient was shown in [4] and
[30] respectively. Although this is a complete characterization, it is not easy
to use it, because it is a local property for each player separately, and because
it involves two inputs. One fundamental open problem is to find a better
characterization of truthful mechanisms for the scheduling problem. For the
problem of mechanism design in unrestricted domains (i.e. when the possible
valuations are unrestricted), there is a simple characterization by Roberts [36]:
The only truthful mechanisms are affine minimizers [37–39]. In the scheduling
problem the valuations are restricted to additive valuations, so the scheduling
problem is at the other end of the spectrum, where the domain is restricted
yet general enough to admit interesting mechanisms.

Lacking such a nice characterization as the characterization by Roberts for
the domain of the scheduling problem, we employ the Monotonicity Property
in order to argue about how the allocation of one instance of the problem
affects the allocation of another instance. In particular, the following lemma
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from [9], which will be the main ingredient of our proof, gives a way to change
the values of one player without changing his allocation. For completeness, we
also include its proof here.

Lemma 1 Let t be a matrix of processing times and let x = x(t) be the allo-
cation produced by a truthful mechanism.

a. Suppose that we change only the processing times of machine i and in
such a way that t′ij > tij when xij = 0, and t′ij < tij when xij = 1. The
mechanism does not change the allocation to machine i, i.e., xi(t

′) = xi(t).
(However, it may change the allocation of other machines).

b. Fix now a mechanism with approximation ratio r and consider an instance
whose optimal allocation has cost c. Suppose that for a task j we have
tij = 0 for machine i, and ti′j = ∞ for every other machine i′, where ∞
denotes a very large real number, greater than r · (c+u), for some constant
u. If we change the times of machine i for all other tasks as in the first
part of the lemma but raise the time for task j to t′ij = u, the mechanism
again does not change the allocation vector of machine i.

Proof By the Monotonicity Property, we have

m∑
j=1

(tij − t′ij)(xij(t)− xij(t′)) ≤ 0.

a. Observe that all terms of the sum are nonnegative (by the premises of the
lemma). The only way to satisfy the inequality is to have all terms equal
to 0, that is, xij(t) = xij(t

′).
b. When we change the value tij to u, the optimum makespan becomes at

most c+u. If the mechanism allocates task j to a machine different than i,
the approximation ratio is greater than r, which contradicts the hypothesis
about the mechanism. Therefore xij(t) = xij(t

′) = 1, which makes the term
corresponding to task j in the sum

∑m
j=1(tij − t′ij)(xij(t) − xij(t′)) ≤ 0

vanish. For the rest of the terms we repeat the argument of the first part.

Remark 1 To simplify the presentation, when we apply Lemma 1, we will in-
crease or decrease only some values of a machine, not all its values. The under-
standing will be that the rest of the values increase or decrease appropriately
by a tiny amount which we omit to keep the expressions simple.

3 A lower bound of 1 + ϕ for n→∞ machines

The main result of this work is

Theorem 1 There is no deterministic mechanism for the scheduling problem
with n→∞ machines with approximation ratio less than 1 + ϕ.

Moreover for any fixed number of players n, the solution of the equation

1 +
1

a
+

1

a2
+ . . .+

1

an−1
= 1 + a.
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n 2 3 4 5 6 7 8 . . . ∞
Lower bound 2 2.324 2.465 2.534 2.570 2.590 2.601 . . . 2.618

Table 1 The lower bound given by Theorem 1 for few machines.

is a lower bound for the approximation ratio (Table 3.)

We shall build the proof of the theorem around the instance
0 ∞ · · · ∞ ∞ 1 a · · · an−2
∞ 0 · · · ∞ ∞ a a2 · · · an−1

. . .

∞∞ · · · 0 ∞ an−2 an−1 · · · a2n−4
∞∞ · · · ∞ 0 an−1 an · · · a2n−3

 ,

where a ≥ 1 is a parameter and ∞ denotes an arbitrarily high value. Eventu-
ally, we will set a = ϕ when n→∞. We let however a to be a parameter for
clarity and for obtaining better bounds for small n.

The lower bound will follow from the fact (which we will eventually prove)
that every truthful mechanism with approximation ratio less than 1 + a must
allocate all n − 1 rightmost tasks to the first player. However, in order to
be able to prove the statement for arbitrary n we need to prove a stronger
statement which involves instances of the form

T (i1, . . . , ik) =


0 ∞ · · · ∞ ai1 ai2 · · · aik

∞ 0 · · · ∞ ai1+1 ai2+1 · · · aik+1

...
. . .

...
. . .

...
∞∞ · · · 0 ai1+n−1 ai2+n−1 · · · aik+n−1

 ,

where 0 ≤ i1 < i2 < . . . < ik are natural numbers and k ≤ n− 1. We call the
tasks indexed from 1 to k regular. We allow these instances to have additional
tasks for which some value is 0, i.e., additional columns with at least one 0
entry in each one and we call these tasks redundant. This is only for technical
reasons, and will play no significant role in the proof (and it definitely does
not affect the optimal cost).

We will call the first n tasks dummy. Observe that every mechanism with
bounded approximation ratio must allocate the i-th dummy task to player i.

Remark 2 Notice that the optimal allocation for T (i1, . . . , ik) has cost aik .
Furthermore, if i1, i2, . . . , ik are all successive natural numbers, then the opti-
mal allocation is unique and coincides with the diagonal assignment and has
cost aik . Also notice that in this case all values of the last n − k players are
at least aik+1. For example, the following instance has a unique optimal al-
location indicated by stars. We will employ this convention of using stars to



Title Suppressed Due to Excessive Length 9

indicate an allocation throughout.
0∗ ∞ ∞ ∞ ∞ 1 a a2∗
∞ 0∗ ∞ ∞ ∞ a a2∗ a3
∞∞ 0∗ ∞ ∞ a2∗ a3 a4

∞∞∞ 0∗ ∞ a3 a4 a5

∞∞∞∞ 0∗ a4 a5 a6


Otherwise there are more than one allocations with optimal cost. For example
the allocations below:

0∗ ∞ ∞ ∞ ∞ 1 a a3∗
∞ 0∗ ∞ ∞ ∞ a a2∗ a4
∞∞ 0∗ ∞ ∞ a2∗ a3 a5

∞∞∞ 0∗ ∞ a3 a4 a6

∞∞∞∞ 0∗ a4 a5 a7

 ,


0∗ ∞ ∞ ∞ ∞ 1 a a3∗
∞ 0∗ ∞ ∞ ∞ a a2 a4

∞∞ 0∗ ∞ ∞ a2 a3∗ a5
∞∞∞ 0∗ ∞ a3∗ a4 a6

∞∞∞∞ 0∗ a4 a5 a7


both have the optimal cost a3.

We will now show the main technical lemma of the proof.

Lemma 2 Suppose that a truthful mechanism on T (i1, . . . , ik), does not allo-
cate all non-dummy tasks to the first player. Then we can find another instance
for which the approximation ratio is at least 1 + a.

Proof Fix a truthful mechanism and suppose that the first player does not
get all regular tasks. In the first part we do a preprocessing of T (i1, . . . , ik).
We recursively manipulate the tasks in such a way that we obtain a smaller
instance T (i′1, . . . , i

′
k′) with 1 ≤ k′ ≤ k whose allocation satisfies the following

properties:

– the first player gets no regular task, and
– every other player gets at most one regular task.

In the second part, we show that instances which satisfy the above two condi-
tions, can be changed to obtain an instance with approximation ratio at least
1 + a.

1st part: Suppose that the first of the above conditions is not satisfied. That
is, suppose that the first player gets some regular task. We can then decrease
its value (for the first player) to 0. By the Monotonicity Property and in
particular by Lemma 1 (keep also in mind Remark 1), the same set of tasks
will be allocated to the first player, so he still does not get all non-redundant
tasks.

Suppose that the second condition is not satisfied, i.e., there is a player
in {2, . . . , n} who gets at least two tasks. We can then lower all the non-
zero values allocated to this player to 0 except for one. By the Monotonicity
Property and in particular by Lemma 1, the same tasks will be allocated
to the player. This guarantees that the first player still does not get all non-
dummy tasks. Whenever we change the value of a task 0 it becomes redundant.
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Redundant tasks remain part of the instance but they will play no particular
role in the proof.

By repeating the above operations we decrease the number of regular tasks.
We will end up with an instance that contains at least one regular task in which
the first player gets no regular task and every other player gets at most one
regular task.

2nd part: We can now assume that there is some T (i1, . . . , ik) with k ≥ 1 for
which the above two conditions are satisfied, i.e, the mechanism allocates no
regular task to the first player and at most one regular task to each of the
other players. For clarity, we can assume that there are no redundant tasks;
they play no essential role in the rest of the argument because they do not
affect the cost of the optimal solution and they can only increase the cost of
the mechanism. Specifically, there is only one place in the argument where the
redundant tasks may affect the cost of the mechanism and we point it out
below.

The optimum cost is aik . Our aim is to find a regular task, which is allocated
to some player j, with value at least aik+1; we will then increase player j’s
dummy 0 value to aik . By Lemma 1, player j will get both tasks with total
value at least aik+1 + aik . This is the only place where the redundant tasks
may play a role. Specifically, when we increase the value of the dummy task,
some redundant tasks that were allocated to player j may move to another
player. However, the cost of the mechanism is again at least aik+1 + aik .

If the optimum cost is still aik , then the approximation ratio is at least 1+a.
However, when we raise the dummy 0 to aik we may increase the optimum
cost. The crux of the proof is that there is always an allocated value greater
or equal to aik+1 for which this bad case does not occur. To find such a value
we consider two cases:

Case 1: The algorithm assigns a task with value at least aik+1 to one of the
last n−k players. This is the easy case, because we can increase the dummy 0
value of this player to aik without affecting the optimum. The reason is that
we can allocate the non-dummy tasks to the first k players with cost aik (see
Remark 2).

Example 1 Consider the following instance with n = 5 and k = 3. Suppose
that the mechanism has the allocation indicated by the stars.


0∗ ∞ ∞ ∞ ∞ 1 a a3

∞ 0∗ ∞ ∞ ∞ a a2 a4∗
∞ ∞ 0∗ ∞ ∞ a2∗ a3 a5

∞∞∞ 0∗ ∞ a3 a4∗ a6
∞∞∞∞ 0∗ a4 a5 a7
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Then we can raise the dummy 0 of the 4-th player to a3. This does not affect
the optimum (which is a3) but raises the cost of the 4-th player to a4 + a3.

0∗ ∞ ∞ ∞ ∞ 1 a a3

∞ 0∗ ∞ ∞ ∞ a a2 a4

∞∞ 0∗ ∞ ∞ a2 a3 a5

∞∞∞ a3∗ ∞ a3 a4∗ a6
∞∞∞ ∞ 0∗ a4 a5 a7


The allocation of the 3-rd player is indicated by the stars, the rest of the players
might exchange their non-dummy tasks but it doesn’t affect our argument.

Case 2: The value of all tasks assigned to the last n − k players is at
most aik . Consequently the indices i1, i2, . . . , ik are not successive integers
(see Remark 2). Let q be the length of the last block of successive indices, i.e.,
k− q is the maximum index where there is a gap in the sequence i1, i2, . . . , ik.
More precisely, let k − q be the maximum index for which ik−q + 1 < ik−q+1.
Since player 1 gets no non-dummy task, there is a player p ∈ {q + 1, . . . , n}
such that some of the last q tasks is allocated to p. We raise the dummy 0
value of player p to aik .

We have to show two properties: Firstly that the value allocated to p was
at least aik+1 and secondly that the optimum cost is not affected. Indeed, the
first property follows from the fact that p > q (and by the observation that all
values of the last q tasks for the players in {q+1, . . . , n} are at least aik+1). To
show that the optimal solution is not affected consider the optimal allocation
which assigns

– the `-th from the end non-dummy task to the `-player, for ` < p
– the `-th from the end non-dummy task to the (`+ 1)-player, for ` ≥ p

Notice that this allocation assigns no non-dummy task to the p-th player, as
it should. The p-th player is allocated the dummy task, which was raised from
0 to aik . Also, since there is a gap in position k − q, the total processing time
of each player is at most aik .

Example 2 Consider the following instance with n = 5, k = 3, and q = 2.
Suppose that the mechanism has the allocation indicated by the stars.

0∗ ∞ ∞ ∞ ∞ 1 a2 a3

∞ 0∗ ∞ ∞ ∞ a a3∗ a4
∞∞ 0∗ ∞ ∞ a2 a4 a5∗
∞ ∞ ∞ 0∗ ∞ a3∗ a5 a6

∞∞∞∞ 0∗ a4 a6 a7


Then p = 3, and we can raise the dummy 0 of the 3-rd player to a3. This does
not affect the optimum (which allocates the a3 values), but raises the cost of
the 3-rd player to a5 + a3 ≥ a4 + a3.

With the above lemma, we can easily prove the main result:
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Proof (Proof of Theorem 1) Consider the instance
0 ∞ · · · ∞ ∞ 1 a · · · an−2
∞ 0 · · · ∞ ∞ a a2 · · · an−1

. . .

∞∞ · · · 0 ∞ an−2 an−1 · · · a2n−4
∞∞ · · · ∞ 0 an−1 an · · · a2n−3

 .

By the previous lemma, either the approximation ratio is at least 1 + a or
all non-dummy tasks are allocated to the first player. In the latter case, we
raise the dummy 0 of the 1-st player to an−1. The optimal cost becomes an−1

while the cost of the first player is 1 + a+ a2 + . . .+ an−1.
The approximation ratio is at least

min{1 +
1

a
+

1

a2
+ . . .+

1

an−1
, a+ 1}.

We select a so that

1 +
1

a
+

1

a2
+ . . .+

1

an−1
= 1 + a. (1)

For n→∞, this gives
1

1−
1

a

= 1 + a.

Thus a2 = 1 + a, and the solution to this equation is a = ϕ. So the approxi-
mation ratio of any mechanism is at least 1 +ϕ. For a fixed number of players
n, the solution of Equation 1 determines a lower bound for the approximation
ratio. For small values of n, the approximation ratio is less than 1 + ϕ but it
converges to it rapidly, as shown in Table 3.

4 Conclusion

An observation that might help improving the lower bound, but only to a
better constant, is the following: An essential element of the proof of the lower
bound of 1 +

√
2 [9] was a geometric characterization, equivalent to the mono-

tonicity property, about the way a truthful mechanism for 2 tasks partitions
the input space of a player in regions corresponding to the possible allocations.
We now have in our machinery the analogous geometric understanding for the
case of 3 tasks [35]. Since in this work, we only employ Lemma 1, which is
a restricted version of the monotonicity property, it is conceivable that a full
geometric argument similar to the one used in [9] may give an improved lower
bound.

A better, albeit much more challenging, approach is to obtain a character-
ization of all possible truthful mechanisms for the case of n players. In fact,
to bound the approximation ratio, it suffices to characterize only the decisive
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mechanisms as it was shown in [6]. Also characterizations for special cases, like
the characterization of envy free mechanisms for the case of 2 tasks and n play-
ers [16], are of particular interest since they can give us a better understanding
of the problem structure.
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