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Abstract—Software architecture evolution has become an
integral part of the software lifecycle. Thus, the maintenance
of a software system involves among others the maintenance
of the software system architecture. Component models are
widely used as an essential view to describe software archi-
tectures. In recent years, the software architecture community
has proposed to additionally model the architectural design
decisions for capturing the design rationale and recording the
architectural knowledge. Unfortunately, there are no formal
relations between design decisions and component models. This
leads to potential inconsistencies between the two Kkinds of
models as the software system evolves. In this paper, we propose
to overcome this problem by introducing a constraint-based ap-
proach for checking the consistency between the decisions and
the corresponding component models. Our approach enables
explicit formalized mappings of architectural design decisions
onto component models. Based on these mappings, component
models along with the constraints used for consistency checking
between the decisions and the component models can be
automatically generated using model-driven techniques. Our
approach can cope with changes in the decision model by re-
generating the constraints for the component model. Thus,
our component model gets updated and validated as the
architectural decisions evolve. The evaluation of our approach
shows that our prototypical implementation scales sufficiently
for large component model sizes and large sets of decisions.

Keywords-software architecture; software architecture evo-
lution; architectural decisions; architectural knowledge; com-
ponent models; constraint checking

I. INTRODUCTION

Documenting the design decisions as well as the archi-
tecture of a software system does not belong only to the
early software development phases but is realized repeatedly
in the software lifecycle. Architectural Design Decisions
(ADDs) capture knowledge that may concern a software
system as a whole, or one or more components of a
software architecture. In recent years, software architec-
ture is seen more and more as a set of principal ADDs
rather than the components and connectors constituting a
system’s design [1]. The idea behind this new perspective
is to document not only components and connectors but
also the design rationale of the architecture as well as
to contribute to the gathering of Architectural Knowledge
(AK). For this reason, many approaches have been proposed
for the capturing of AK. Tyree and Akerman defined a rich

decision-capturing template [2]. Kruchten et al. presented an
ontology for architectural decisions, defining types of ADDs,
dependencies between them and a decision lifecycle [3].
Zimmermann et al. suggested a meta-model for decision
capturing and modeling [4]. A considerable amount of
tools have been developed to ease capturing, managing and
sharing of ADDs [5]. These approaches mainly target the
reasoning on software architectures, capturing and reusing
of AK as well as on the communication of the ADDs
between the stakeholders. Furthermore, by documenting the
architectural decisions software architects can reason about
the evolution, maintenance and reengineering of a software
system. Unfortunately, in practice, the ADDs frequently do
not get maintained over time as the requirements and the
design of the software system change and they often do
not get synchronized with other architectural views that
represent the system structures [6].

Many software systems today are based on reusable
software components, and Component-based Software En-
gineering (CBSE) has gained a lot of prominence in indus-
try [7-9]. Component-and-connector diagrams offer a natu-
ral presentation to the software architects and designers to
describe the software architecture using reusable, customiz-
able and replaceable entities. In many enterprises today soft-
ware architecture is mainly documented using component-
and-connector diagrams, which are in many cases used
in an informal or semi-formal fashion (e.g., as box-and-
line diagrams). However, architectural documentations that
concentrate only on components and connectors have many
disadvantages, such as limited reusability of and reasoning
about AK, and lack of stakeholders communication [10].
That happens because they derive from requirements and
ADDs in a rather informal way and the consistencies with
the ADDs depend highly on the interpretation and under-
standing by the software designer. The lack of a formal
mapping of the ADDs and architectural views leads to
inconsistencies and low traceability. Consequently, the reuse
of derived component diagrams along with the reuse of AK
is not possible. Component and connector based methods of
architecture documentation, however, manage to visualize
the software architecture in terms of software components
as well as the wiring between them, the data flow and the



properties associated to them.

Our work presented in this paper aims at bridging the gap
between requirements and design, between ADDs and archi-
tectural views, combining ADDs with component models in
a formal way. For this purpose, we propose a mapping model
from ADDs onto a component model. Without loss of gen-
erality, a generalized component model (that can easily be
mapped to popular component-based modeling approaches
such as the UML 2 Component Diagram') is considered
in our approach for describing software architecture. Based
on the mapping model, we can generate the component
model and constraints for consistency checking between
ADDs and the component model by using model-driven
techniques. During the evolution of the software systems,
the ADDs may be altered. Accordingly, the component
model and the constraints can be re-generated, and therefore,
remain in sync with the ADDs. As the component model is
changed, the constraints checking shall verify whether these
changes invalidate the corresponding ADDs or not. In case
inconsistencies between the ADDs and the component model
occur, the relevant design elements that invalidate the ADDs
shall be highlighted.

The remainder of the paper is structured as follows.
Section II presents an industrial case study as a motivating
example and provides the problem statement and Section III
presents an overview of our approach. In the context of this
case study, we describe in detail our solution in Section I'V.
The case study is then revisited and resolved using this
approach in Section V. Next, we evaluate our approach and
discuss our findings in Section VI. The related work shall
be discussed in Section VII and we conclude our major
contributions in Section VIII.

II. CASE STUDY AND PROBLEM STATEMENT

To motivate our work, let us first discuss the problem
using an industrial case study that deals with platform
integration. In Section V, we shall explain how our solution
can be applied to address the case study. The scenario is
centered on a warehouse management system that is used
to control the movement and storage of goods and materials
in a warehouse. A product is delivered to the warehouse
after it has been produced and assembled. A material flow
computer (MFC) contains a registry of all slots and racks in
the warehouse and tracks the delivery and the positioning of
a product into a certain rack using actuators and sensors. The
product orders are managed by an ERP system that commu-
nicates with the MFC through an integration platform. We
call this kind of platforms Virtual Service Platform (VSP).
Here we target the adaptation of parts of the aforementioned
platforms to the VSP. We exemplify an excerpt of the system
so that our example is still simple, comprehensible, and
illustrative enough for elaborating our approach in detail. For
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this reason, we shall concentrate on the ADDs and designs
that are influenced by the following excerpt of the case study
requirements:

1) The orders are placed at the ERP system and for-
warded to the MFC through the VSP.

2) All the messages sent from the ERP system are
encrypted and compressed.

3) The MFC must be able to handle 1000 orders per
minute.

In this context, the architectural decisions corresponding
to the aforementioned functional and non-functional require-
ments shall be documented. Besides, the architecture of
the system shall be designed accordingly to fulfill these
requirements. The issue occurring in this case is that the
documented ADDs and the relevant design are not explic-
itly and formally connected. As the number of services
integrated to the VSP increases, the number of ADDs to
be documented also increases and the architectural design
becomes more and more complex. As long as the ADDs
and designs remain disconnected, the corresponding designs
relating to the ADDs likely become outdated during the
evolution of software system. Even worse, the ADDs may
become inconsistent with the design. In our approach, we
demonstrate how this gap between the ADDs and the design
is reconciled, and therefore, the ADDs and design remain
consistent.

Our approach starts at the development stage where the
requirements have been resolved into the ADDs. The ADDs
are usually captured in an informal way using document
templates or meta-models [2, 4]. The key concepts that our
approach focuses on are architectural decisions and their
implications. Therefore, most of existing approaches for cap-
turing and representing ADDs can be applied because most
of them provide these essential concepts. In this case study,
the architecture decision description template proposed in [2]
is exemplified to capture ADDs. We show an excerpt of the
documented ADDs including three architectural decisions
D01, D02, and D03 in Table 1.

D01 Expose Place Order functionality as Apache CXF Web Ser-
vices.

D02 Connect Place Order to VSP using encrypted HTTPS connec-
tion and compress the messages using standard HTTP/1.1.

D03 Implement Order Picking as a BPEL flow that is able to handle
asynchronously 1000 orders per minute.

Table 1
EXEMPLIFIED ARCHITECTURE DESIGN DECISIONS OF THE CASE STUDY

At this stage, we have necessary information that shall be
used as inputs for our approach. But before we go deeper
into the details of our solution, let us briefly introduce the
software architecting and design process. Software architects
and designers use the requirements in order to make and
document the design decisions and design the details of



the architecture. In reality, the two roles can either be
played by the same person or distinguished stakeholders
who involve in both the decision making and designing.
Architects and designers use templates or meta-models to
capture the ADDs and component models to document
the software architecture — sometimes represented in terms
of informal box-and-line diagrams or formulated using a
formal or semi-formal modeling techniques such as UML2
Component Diagrams.

The consistency between the ADDs and the component
models depends highly on the understanding and interpreta-
tion of the requirements and on how often they get updated
as the software system evolves. In the enterprise, ADD
capturing and architectural design are performed sometimes
independently and from different stakeholders and have both
the requirements as a starting point. Also, some ADDs get
forgotten or not updated at all. Besides, the software systems
are constantly subject to a substantial amount of evolutionary
changes that reflect new or modified functional and non-
functional requirements, new or modified design decisions.
Consequently, the software system evolution potentially
leads to inconsistent and outdated ADDs. Apart from that, as
the complexity and coupling of software systems increase,
the traceability as well as the rationale of the design may be
lost. The process of maintaining the traceability and consis-
tency between ADDs and software architecture is not trivial
as a single ADD may address multiple architectural concerns
and an architectural element may be connected to multiple
ADDs. Furthermore, ADDs and software architecture often
use different terms and concepts to describe model elements
related to them although they may both contain identical or
related information. Our observations show that the main
reason for this issue is that ADDs and component models
are formulated and manipulated independently because there
are no explicit formal connections between them.

III. APPROACH OVERVIEW

Our contributions to the software architecture and design
process are summarized in Figure 1. Our approach is useful
not only at design time but also during software system
evolution and maintenance. We aim at bridging ADDs and
component models by introducing a mapping between them
based on the model-driven development approach. The great
advantage of the mapping is to enable traceability and
consistency checking between ADDs and component models
and automate the generation of an initial instance of a
component model that reflects the design decisions. Apart
from the generation of the component model, we introduce
the generation of constraints that are used for consistency
checking between the ADDs and the component model. As
the human decision is important in the interpretation of
the ADDs and their connection to software architectures,
the mapping from ADDs to the component model shall
be performed in a semi-automatic manner. After the map-

Requirements &§

¥
—

map & generate

9@ (\Y
% . W Designs
Architectural p (Component

Decisions Diagrams)

constraints

check consistency
using constraints

Figure 1. Mapping and consistency checking between ADDs and Designs

ping is established, the generation of component models
and constraints is fully automated. As such, the software
architects and designers can use our tool to analyze and
estimate how the changes of certain ADDs shall affect the
design and/or leverage the generation to come up with a
recommendation design directly derived from the ADDs
rather starting from scratch. Apart from that, we aim at
reducing the cost and burden of the maintenance of both
ADDs and component models. Information included in the
ADDs shall be fully reflected in the component model.
Changes at the component model or the ADDs that cause
inconsistencies get highlighted. Hence, we aim at ensuring
that ADDs and component models remain consistent with
each other and component models are traceable from ADDs
and vice versa.

IV. SOLUTION DETAILS

In this section we introduce a generic component model
used for describing system and software architectures. Next,
we introduce a mapping model from ADDs to the compo-
nent model. We elaborate afterwards this mapping model for
the generation of the component model and of constraints
for checking consistency using model-driven techniques. We
revisit the case study and explain how our approach can be
applied to bridge the gap between ADDs and the designs.

A. Component Model

Component models are often used as an essential view
for describing software architectures [11]. Without loss
of generality, we propose the use of a generic, abstract
component model built upon the essential concepts such as
components, ports, and connectors to specify the underlying



system and software architectures. Other component-and-
connector models such as the UML 2 Component Diagram
are applicable in our approach as well.

For the sake of integrating different models, we define
a Core model that provides essential concepts such as
NamedElement and AnnotatedElement (see Figure 2). A
View and its Element are abstractions of a design model and
its model elements, respectively. A component model (see
Figure 3) reflects a view of software architectures that com-
prises various Components wired by several Connectors via
the component’s Ports. A component may have several sub-
components. We propose Property and Stereotype elements
to enrich Components, Connectors and Ports with additional
information.

B. Mapping of ADDs to Component Model

Capturing architectural design decisions is important for
analyzing and understanding the rationale and implications
of these decisions and reducing the problem of archi-
tectural knowledge vaporization [11, 12]. Several existing
approaches have been proposed for addressing the aforemen-
tioned challenges [2, 4]. However, none of these approaches
supports to explicitly capture the causal relationships be-
tween the decisions and relevant design artifacts. These
relationships are crucial because they enable the traceability
between ADDs and the designs for analyzing the design
coverage (e.g., checking whether some ADDs have been re-
alized or not), estimating change impacts (e.g., which design
artifacts are affected by certain changes of ADDs), checking
consistency between ADDs and the designs, and many other
tasks. In this paper, formalizing these relationships in order
to bridge the gap between ADDs and the designs as well as
using them for generating component models and constraints
for checking consistency are the key contributions.

We propose a generic concept, namely, AD, for repre-
senting ADDs (see Figure 4). Each AD has a number of
Outcomes which are inputs for designing component models.
An Outcome can be mapped to a certain element of the com-
ponent model shown in Figure 3. The ADD’s Outcomes are
often expressed in natural language, and therefore, human
interventions are necessary for instantiating the Mapping
model. For instance, if an Outcome implies a new property
of a component, the name of the component and the name,
type, and value of the property should be defined manually.
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C. Generation of Component Model

The Mapping model presented in the previous section
shall connect the architectural decisions and designs at
various levels of granularity. Each mapping represents a
relationship between a certain Outcome of an ADD to an el-
ement of the design (in this case, the component model) such
as a component, port, connector, an annotation, property, and
so on. Among the benefits of the Mapping model mentioned
before, we can also leverage these mappings to generate an
initial component model that can serve as a starting point
for designing the corresponding software architecture. In
case of a green-field development scenario (i.e., there are no
existing designs), this step can save tedious efforts that the
software architects and designers have to spend to sketch
the designs from scratch. Nevertheless, in case there are
existing designs, the generated designs can be referenced
for analyzing the deviation as well as estimating necessary
changes in order to accomplish the architectural decisions. In
addition, constraint checking can be performed beforehand
to ensure that the component model can be updated without
any errors.

The constraint-checking at this stage is necessary not only
for generating the component model but also for finding
out the issues due to that the component model cannot be
generated, if any. For instance, assume that we want to
assign a property to a connector linking the ports of two
components. We illustrate the templates that will be used for
the generation of the constraints that will be checked before
the generation of the component model. The variables within
the notion $..$ (e.g. ScomponentAS$, SportA$) shall
be substituted with concrete values during the constraint
instantiation.

J¢ € Components | c.name = $component A$
dc € Components | c.name = $component BS

cl, 2 € Components | cl.name = $component A$
A c2.name = $component B$

A (Fcon € Connectors)

A (Ipl € cl.ports, Ip2 € c2.ports |

(pl.name = $port A$ A p2.name = S$portBY)

A ((pl = con.source N p2 = con.target)

V (pl =con.target A p2=con.source)))

Whenever a certain constraint is not satisfied, specific
errors shall be reported. The stakeholders have to fix those
errors before the component model can be generated prop-
erly. The component model gets successfully generated if
and only if all constraints are satisfied.

Each kind of mapping might imply one or more con-
sequent updates to the component model. For example,
suppose that we want to assign the property to a connector,
after the constraints are checked and satisfied, a new property
should be created and annotated to the connector.

We implement the constraint checking using the the

declarative constraint checking language Check. The com-
ponent model is generated based on the mapping model
by using the expression language Xtend. Xtend and Check
are powerful OCL-like expression languages provided by
the Eclipse Model-to-Text (M2T) project>. The process of
constraint-based model validation and component model
generation is integrated using the modeling workflow lan-
guage provided in the Eclipse M2T project.

D. Generation of Consistency Checking Constraints

Each of the aforementioned types of mapping is related to
a set of constraint templates from which concrete constraint
“instances” are generated. The constraint templates have
been already defined for each kind of mapping. The con-
straint “instances” are generated using the Velocity template
engine® and the attributes to be replaced get values from
the mapping of the ADDs to the component model. The
generated constraints are also based on the Check language.
We illustrate one of the constraint templates that is used for
creating constraints on the mapping of an ADD to a new
property of a certain component. As mentioned above, the
variables within the notion $..$ shall be substituted with
concrete values during the instantiation of the constraints.

Ip € Properties| p.name = $name$

A p.value = $value$

A (Fc € Components | c.name = $component$)
A (Fa € c.annotations | a=p)

These constraints are generated and validated as described
in Section IV-C for the constraints that have to be checked
before the component model generation. The consistency
checking constraints shall check the consistency between the
ADDs and the component model.

V. CASE STUDY RESOLVED

In order to illustrate our approach let us revisit our case
study — the Warehouse Case Study. A material flow computer
in a warehouse receives orders from an ERP system and
the communication between them is accomplished through
a Virtual Service Platform (VSP). The proof of concept
tooling of our approach based on EMF* and GMF’ is shown
in Figure 6. Our tool can support the development and
generation of the constraints as well as the generation and
the graphical representation of the component model.

A. Mapping of ADDs to Component Model

We extract the useful information of the ADDs that can
be mapped to a component, a connector, an annotation, or a
property. Figure 5 presents an excerpt of the Mapping model
between the ADDs and the component model. For example,

Zhttp://www.eclipse.org/modeling/m2t
3http://velocity.apache.org
“http://www.eclipse.org/emf
Shttp://www.eclipse.org/gmf



the first ADD refers to a new component (Place Order)
connected to the VSP component which will be implemented
as a Web Service (annotation of component Place Order)
using Apache CXF (property of component Place Order).

B. Component Model Generation

Once the mapping of the ADDs to the component model
is accomplished, we can generate an initial instance of the
component model. In order to see how the generation is
done, let us take the AnnotateComponent mapping from the
decision D01 (see Table I). Before creating a new annotation
and attach it to a component, we must ensure that the same
annotation has not been already assigned to the component
(see Listing 1).

If the above function for our component graph-
ical view and for component="“PlaceOrder” and
annotation =“WebService” does not return any annota-
tion we proceed with the creation of the new annotation
(see Listing 2).

context component::ComponentView ERROR

" (Architectural Decision --> $Sad$)

Component Scomponent$ is not annotated
as Sannotation$":

element .typeSelect (component: :Component) .
exists (c|c.component == "S$components$"
&& annotation.typeSelect (component::
Stereotype) .exists (s|c.annotation.
exists(ala == s && s.text == "
Sannotations$")));

Listing 3. The constraint template for checking a component’s annotation

In our example, the component “Place Order” shall be
annotated as “Web Service” (i.e.,g annotation=Web Service)
according to the decision ADD DO01. The resulting instanti-
ated constraint is shown in Listing 4.

component: :Stereotype componentHasAnnotation (
component : :ComponentView cv, component::
Component component, String annotation):
component.annotation.select (a| (a.text ==
annotation) && (cv.annotation.typeSelect (
component::Stereotype) .exists (s|s == a)));

// Check whether component is annotated
context component::ComponentView ERROR
" (Architectural Decision —--> D01)
Component Place Order is not annotated
as Web Service":
element .typeSelect (component: :Component) .
exists(c|c.name == "Place Order" &&
annotation.typeSelect (component: :
Stereotype) .exists (s|c.annotation.
exists(ala == s && s.text == "Web
Service")));

Listing 1. Constraints for verifying a component’s annotation

If the generation of the component model completes
without errors, the visualization of the component model
that we get using our Eclipse Tooling is shown in Figure 6.
A component is depicted in terms of a box associated
with its ports. Two ports can be connected by a connector
which is an arrow going from the required to the provided
one. The stereotypes are shown inside the symbol “<>>”
(e.g., <HTTPS>) and the properties are shown in form of
“name[:type]=value” (e.g., “technology=Apache CXF”).

annotateComponent (component : : ComponentView cv,
component : :Component component, String
annotation) :
let stereotype = new component::Stereotype
stereotype.setText (annotation)
—-> cv.annotation.add(stereotype)
-> component.annotation.add (stereotype);

Listing 2. Creating a new annotation for a component

C. Generation of Consistency Checking Constraints

Now we explain how the constraints that check the
consistency of the component model get generated. Let us
consider the AnnotateComponent mapping from the ADD
D01 (see Table I). The AnnotateComponent is mapped to the
constraint template shown in Listing 3 that checks whether
a component is associated with a specific stereotype or not
(note that a variable is inside the notion $. . $).

Listing 4. Constraint instances for checking a component’s annotation

The above example illustrates a great advantage of our ap-
proach: a constraint template shall be defined once but can be
efficiently reused and instantiated for several corresponding
mappings from the ADDs to the component model.

VI. EVALUATION
A. Generalisability

Our approach is to a large extent generic. We use an
abstract component model to map ADDs to components,
connectors, stereotypes, and properties, and we show how
the constraints can check the consistency between ADDs
and component models and allow updates of the compo-
nent model. The resulting component diagram in Figure 6
contains all the information captured by the architectural
decision template, the mapping however is conducted by the
choice of the specific component model. Our approach can
be applied for more complicated and domain-specific models
which requires of course additional efforts for defining the
mapping of the ADDs to the model and necessary constraint
templates.

B. Scalability and Applicability

In order to show that our approach is scalable and
applicable we conducted experiments for different sizes of
component models. We measured the performance on a
normal desktop machine, as our approach will usually need
to run on the local machines of the software architects
and designers. The machine has an Intel Core 15 2.53GHz
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Figure 5. Mapping of architectural design decisions to the Component Model

processor with 4GB of RAM running Java JRE 1.6.0.24 and
Eclipse Helios in Linux Ubuntu.

We first measure the number of constraints per number of
components and the number of components per ADDs. After
that, we measure the time needed for the generation of the
component model, for the generation of the constraints and
the constraints checking. Each measurement is performed
100 times and the resulting time, in milliseconds, is calcu-
lated on average. The deviations calculated were not high,
thus only the average and not the minimum and maximum
values are reported. Table II contains the number of con-
straints that were generated for a given number of ADDs

and components. Figures 7-9 show the time needed for the
generation of the component diagram, for the generation of
the consistency checking constraints and for the validation
of these constraints per number of components respectively.

The time for the component model generation increases
exponentially with the number of components, however,
it remains low for component models having about 100
components. The time for the generation of the constraints
increases in linear to the number of components. For 30
components the generation of the component model and the
constraints needs about 70 and 570 ms, respectively, for 60
components approximately 130 and 1060 ms and for 150
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Table II
NUMBER OF COMPONENTS AND CONSTRAINTS PER NUMBER OF ADDS

ADDs 3 30 60 150 210 300 360 450
Components 3 50 100 250 350 500 600 750
Constraints 10 130 260 650 910 1300 1560 1950

components 400 and 2450 ms respectively. Regarding very
big component models having around 500 components, the
generation time of the component model and the constraints
completes within 4-8 seconds. We are mainly interested in
the range of 10-100 components, as even for big software
projects, the component diagrams do not usually contain
more than 100 components. Regarding this range of com-
ponent model sizes our approach performs reasonably well.

The constraint checking time increases, as expected, ex-
ponentially with the number of components. For 30, 60 and
150 components the constraint checking takes about 200,
1200 and 18600 ms, respectively, to complete. A typical
component diagram however, as mentioned before, does not
consist of more than 100-150 components implying that
the constraint checking time is acceptable. Apart from that,
constraint checking does not need to run very often, and
therefore, an execution time of few seconds is for this reason
as well acceptable. For larger component models, a more
powerful computer and/or a faster or incremental constraint
checker would definitely improve the performance.

C. Limitations

First, bidirectional generation is not considered in our
approach. That is, the designs (i.e., component models) can
be derived and generated from ADDs but not the other
way around. Such a reverse engineering solution, if even
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exists, may be useful for abstracting and analyzing existing
legacy designs. Unfortunately, it is a extremely challenging
for harvesting rationale behind the ADDs in the reverse
direction, i.e., extracting ADDs from the designs, because
many necessary information on architectural decisions are
not often embedded in the designs.

Second, the mapping between the ADDs and the com-
ponent models is done in a semi-automatic manner and
sometimes requires human interventions. That might be
time-consuming for considerably large numbers of ADDs.
This is one of our future endeavors to investigate techniques
for enhancing the automation in deriving the aforementioned
mapping, and therefore, reducing the involvement of the
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stakeholders.

Third, we consider component models as the central view
on software architecture. Thus, our approach may be not
applicable in the software projects where concepts of the
models used for documenting the software architecture is
significantly different from those of the component model
shown in Figure 3. Nevertheless, the methodology presented
in this paper can be adapted to other kinds of software
architecture models with reasonable efforts. Our approach
has not considered the representation of design patterns that
are usually implied by ADDs. However, the extension of our
approach to embrace design patterns is part of our future
work.

VII. RELATED WORK

A substantial amount of work has been done in the
direction of documenting the AK using architectural decision
modeling. Jansen and Bosch see software architecture as

being composed of a set of design decisions [1] and propose
a meta-model to capture decisions that consist of problems,
solutions and attributes of the AK. Zimmermann et al. [4, 6]
propose a more detailed meta-model for capturing ADDs,
while Tyree and Akermann [2] propose a generic template.
Some other ADD models and tools are summarized in [5].
Kruchten et al. [3] breaks down the decision capture in steps.
Many of these approaches are focused on the visualization
of the relationships between ADDs and their connection to
alternatives, but not on the visualization of the software sys-
tem, for which the ADDs are supposed to be the main input.
Thus, a connection of the ADDs with the architecture design
is absent. Our approach aims at bridging this gap using
a (semi-)-formal mapping between ADDs and component
models.

Component models [13] are widely used to describe
software systems. In most of component-based software
systems, from COM/DCOM and CORBA to EJB, SOA
and OSGi, reusable components and their relationships are
essential architectural building blocks. Component-based
Software Engineering (CBSE) has gained prominence in the
industry because it brings architecture-centric thinking to
the center of the software development process [7-9]. In
our approach, we use an abstract component-and-connector
model that is similar to the ones widely used in industry for
describing and documenting software architecture.

Constraint languages are used in the literature to describe
architecture constraints for component-based software [14]
or constraints for primitives of architectural patterns [15].
Constraints for consistency checking are used extensively in
many areas of software engineering [16—19]. In our case we
use constraints to check the consistency between ADDs and
component models.

Tang et al. [20] investigate four design decision models
and four existing tools in order to analyze the level of
support of architecture evolution. They conclude that these
models and tools have limited support of architectural evo-
lution and do not solve the problem of AK vaporization as
a software system evolves. We claim that with our approach
we support the architectural evolution and the maintenance
of the design rationale.

A considerable amount of research has been conducted
in relating requirements with software architecture. Liu et
al. [21] propose a feature-oriented mapping and transforma-
tion from requirements to software architecture. We target
mainly the ADDs that not only reflect the requirements but
also include the solutions selected to resolve the require-
ments. Kaindl et al. [22] suggest that with the use of model-
driven approaches we can map requirements to architectural
design and Grunbacher et al. [23] introduce the mapping
from requirements to intermediate models that are closer to
software architecture. We assume that after the collection of
requirements and before the design of the architecture the
capturing of the ADDs takes place. The requirements belong



to the problem space, while ADDs to the solution space. We
claim that a mapping from ADDs to component models is
more direct and natural because the ADDs contain the design
details which can be reflected on a component-and-connector
model. Apart from that, ADDs and software design change
sometimes independently from the requirements and we
want to focus on the software system evolution from the
point of view of the ADDs.

VIII. CONCLUSION AND FUTURE WORK

In this paper we presented an approach for bridging
ADDs and designs and checking their consistencies based on
constraints to support software architecture maintenance and
evolution. In particular, we enable software architects and
developers to explicitly define the mapping of the ADDs to
elements, properties and annotations of a component model
in a formal manner. These mappings are then leveraged
using model-driven techniques for automatically creating
initial component models and generating constraints used
for checking the consistency between the ADDs and the
component model. Our solution is feasible and sufficiently
scalable and performs well enough for large sets of decisions
and component model sizes.

One of our future endeavors is to extend the component
model and the mapping of ADDs to the component model
in order to enhance the automation of deriving the mapping
as well as to support design patterns in our approach. We
will also investigate the relation between reusable ADDs and
component models. Furthermore, we plan to study how our
approach can be implemented for different ways of doc-
umenting ADDs and software architectures by elaborating
more industrial case studies and more complicated scenarios.
Another concern is also to optimize the constraint-checking
between ADDs and component models.
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