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Abstract—In this paper, we present a generic framework
for performance evaluation of video streams. We embrace the
perspective of a streaming application, and model the playback
buffer level at given network and playback conditions. That
way, our model enables flexible, adaptable evaluation of a wide
variety of streaming methods and protocols. We test our model
on HTML5 and Flash video as served by the YouTube web site.
We find universal achievable limits in any streaming process, and
explore quality trade-offs every application has to decide on.

I. INTRODUCTION

Video streaming resonates well with web users, and stream-
ing traffic makes up an ever-growing share of network traffic.
At the same time, multiple streaming methods exists, resulting
in a multitude of protocols, codecs, and their variety increases
at an astonishing rate. Furthermore, the current boom in
smart-phones creates an increasing plurality of access network
technologies across which media are streamed.

This poses a problem to traditional analytical approaches
like source-traffic modeling: Such models are complex to
develop, and hard to adapt to new streaming mechanisms.
Often, they deliberately omit details for reasons of analytical
tractability, or only look at single layers of the network stack.

The method presented in this paper rather aims to evaluate
performance by capturing generic behavioral patterns of
streaming mechanisms, embracing the perspective of a
streaming application. Specifically, we model the level of
the playback buffer, and thus can subsume both network
and playback behavior, while maintaining flexibility and
adaptability with regards to the actual streaming server
implementation, type of transmission network, protocol stack,
and codec. Our model reports perceivable artefacts of buffer
underruns, e.g. skips or stalls, which could then be fed into a
QoE model to yield actual user QoE values.

The remainder of this paper is structured as follows. Section
II reviews related work. Section III discusses issues arising
from different (and multiple) parts of the network stack. In
Section IV, we take a closer look at the buffering and playback
behavior on both the theoretical and practical side of things.
Our testbed approach is described in Section V and evaluated
in Section VI, where we conduct an exemplary measurement
and modeling campaign on the popular YouTube platform.
Section VII wraps up the paper.

II. RELATED WORK

The technical fundamentals for video streaming have ex-
isted for a sufficiently long time so that there is a large
body of existing work. We focus on TCP and especially
HTTP streaming to which [1] and [2] give an introduction
and overview the mechanics involved in streaming, e.g. flow
control mechanisms in the video delivery.

The authors of [3] propose an analytical model for TCP-
based video streaming, differentiating between live (“con-
strained”) and prerecorded videos. In our approach, analytical
tractability is not an issue as we perform actual measurements
and decoding, so we are not limited to constant bit-rate video
streams, constant packet sizes, or single playback strategies.

The importance of packet loss for an H.264 SD video stream
is studied in [4]. Packet loss on the link is also investigated
in our comparison of playback behaviors. However, in our
first evaluation we analyze TCP as the transport protocol for
streams. So, from the perspective of the application, packets
are not lost, but delayed.

In [5], the authors present a quality-assessment model for
video streaming services, with the quality features derived
from the actual video. The model does not include the network
behavior, but focuses on the codec performance instead.

A metric termed “application comfort” is calculated from
YouTube videos in [6] to monitor live network conditions
in realtime. While this approach is in effect similar to our
evaluations, it is geared towards a very specific implementation
of streaming, whereas we believe our methodology is more
generic.

III. NETWORK STACK LAYERS AND STREAMING

In network layering models, it is often assumed that the
layers are independent, or at least strongly decoupled, and
present only narrow interfaces to each other. From a concep-
tual point of view, media streaming is a process governing
the application layer. Thus, the application and its behavior
might be thought to dominate the overall streaming process
and associated quality. In this Section, we will show that this
is not necessarily the case.

Figure 1 overviews the approximate time scales on which
activities on different layers may take place, spanning a
remarkable range of twelve orders of magnitude. Multiple
layers might implement the same or similar functionality, e.g.



flow control in the application and on transport layer, resulting
in nested control loops, which might be coupled due to the
timing constraints.

A. Network Layer

As seen in Figure 1, the time constants found in different
network implementations range from nanoseconds (for Gigabit
Ethernet) to seconds (for UMTS networks), depending on the
technology used. This also influences the achievable round-
trip time across such networks, which directly affects the
performance of higher-layer protocols: IP, ICMP, UDP, TCP,
and subsequently all application-layer protocols are subject to
these timing constraints.

In the case of wireless networks, typical effects of wireless
connectivity relating to physical phenomena, e.g. fading and
interference, come into play. Flaky radio connectivity is a ma-
jor source of packet loss and excessive delay. Certain cellular
mobile technologies like UMTS and its evolutions implement
loss concealment themselves, confounding IP’s assumption
of a host-to-network layer lacking guaranteed delivery. Other
peculiarities of cellular mobile networks include a maximum
transmission unit (MTU) opaque to IP, and delay variances as
functions of packet sizes [7] and radio access technologies [8].

B. Transport Layer

The two most widely used transport protocols are TCP
(Transmission Control Protocol) and UDP (User Datagram
Protocol). As is widely known, TCP implements a number of
elaborate mechanisms to establish and tear down connections,
deliver data to the application in sequential order, conceal
loss on the network layer, adapt its bandwidth usage to the
capabilities of the other endpoint (flow control) and the net-
work (congestion control), and share bandwidth fairly through
a distributed control algorithm.

UDP does not include any of mentioned mechanisms TCP
has. This spurs the common misconception that UDP is the
faster transport protocol. In fact, all packet types are subject to
the same round-trip time, independent of the transport protocol
used. Delays in the delivery of data to the upper layer occur in
TCP when segments are considered lost in transmission (via
timeouts or gaps in the range of acknowledged segments). TCP
retransmits the lost segments, causing the round-trip time to
spike temporarily. In the case of UDP, the application layer
would need to handle packet loss.

As indicated in the previously, mobile cellular networks
often conceal packet loss, which is used by TCP as an
indication for network congestion. Rather than lost, packets
are highly delayed, which can cause sub-optimal bandwidth
usage. Mobile networks also show artifacts relating to port
and network address translation, firewalling, and middleboxes
interfering with TCP timeout on long-lived connections [9].

C. Application Layer

There exists a diversity of streaming applications and as-
sociated application-layer protocols, each one supporting to a
different degree certain types of streaming, and each having

its own set of requirements, depending on the content type
(pregenerated or live), the codec and its bit-rate, and playback
control and quality feedback.

One classification for streaming protocols might be their
body of standardization: There are many proprietary protocols
with undisclosed or legally restricted standards documents, e.g.
RTMP (Real Time Messaging Protocol) and RTMPCS (RTMP
Chunk Stream), MMS (Microsoft Media Server), and WMSP
(Windows Media HTTP Streaming Protocol). Other protocols
and protocol families are standardized by open bodies such as
the Internet Engineering Task Force (IETF). In our work, we
focus on these “open” protocols.

In the latter category are two well-known protocol families
for media streaming, Real-time Transport Protocol (RTP) and
Hypertext Transfer Protocol (HTTP). RTP sees most of its use
in walled garden IPTV services. As RTP is designed for media
transport, a companion protocol suite consisting of RTCP for
control information exchange, RTSP for streaming control, and
SDP for session management is often used. RTP is mostly
transported using UDP.

HTTP is the single most common application layer proto-
col on the Internet, owing its popularity to the ubiquity of
web browsers. In contrast to RTP, HTTP was not designed
for specific payload types apart from HTML. The actual
streaming protocol behavior is defined by the application,
not by the protocol. Every service is thus free to define its
own distinct protocol behavior. For HTTP, many de-facto
variants for streaming exist, but many if not most are not
formally standardized. It is this fact that makes evaluating
HTTP streaming protocols against each other especially and
we attempt to solve with our framework approach.

The time scale on which streaming applications buffer
content lies in the range of seconds. This is a necessity in a
best-effort network, as the available network bitrate might drop
unexpectedly and could drain a shallower buffer quickly. The
application behavior represents a trade-off between different
types of perceivable artifacts – initial startup delay, stalls,
(partial) media skips (e.g. continuous audio, but skipping
video), and quality adaption. The next Section will specifically
look at these issues.

IV. APPLICATION BEHAVIOR

To play back a media stream, an application needs to
maintain a media buffer of sufficient size to at least gather
enough data to reconstruct one single atomic unit of playback,
typically a video frame.

The current buffer level at time t is given by the amount
of data received from the network so far, diminished by
the amount of data already played back. The actual media
format used in the stream determines the progress of the
playback process, whereas the network conditions and appli-
cation download strategies yield the overall progress of data
reception:

buffer(t) =

t∑
0

datareceived −
t∑
0

dataplayed



Duration of default bearer     

Web session, RTP stream       

        Video buffers, app-layer flow control 

       HTTP Adaptive Streaming chunk  

       RTP receiver reports 

       TCP initial RTO 

       UMTS RTT 

       LTE/SAE RTT 

      Video content at 1 Mbps per Ethernet frame 

       Wireline RTT, ICMP ping, TCP BW probing, ECN 

   10Gbps to 100 Mbps Ethernet packet duration      

-6 -5 -4 -3 -2 -1 0 1 2 3 4 5 log(t) 

 
Fig. 1. Relevant time scales in the layers of the stack

The playback buffer level governs how well the player
can conduct the playback. If the buffer reaches zero size the
playback process stops and stalling occurs. Then a decision
is required when to restart the playback process again after a
stall, and if the stream should skip forward to a more current
playback position. This process is the core part of the playback
model for an HTTP streaming service. The model could also
be extended to accommodate adaptive streaming mechanisms
that use the buffer level as feedback information to influence
the download strategy of the player, e.g. send a receiver report
to request a lower bit rate stream in the case of RTP.

Playback models need to define the behavior at the occur-
rence of one of two conditions during the playback process.
These are the initial playout delay (the point in time when to
start draining the playback buffer), and the buffer fill level at
which to start playing again if the buffer had intermittently
emptied and the video had to be stopped.

These decisions yield a stalling period distribution for a
streamed video. The frequency and the duration of stalls
directly relate to the decision function of the playback model.
The more frequent the stalls are, the shorter they will be; if
the function produces longer stalls, they will be less frequent.

There can be other parameter spaces governed in the model.
For example, in a live streaming scenario a user could prefer
to always stay at the most current stream position. To enable
this, a player would skip older parts of the video. If the user
prefers to consume the entire stream, the player would show
the video without skipping parts, but pause intermittently.

Another user parameter is the quality level of the video
for adaptive streaming. This trades off between maintaining
a certain quality level and putting up with increased waiting
times, and dropping the quality to a level sustainable at the
current transmission rate.

The next subsections present four stalling playback models,
ranging from theoretical models that represent boundaries to
the values possible in stalling characteristics, to the Firefox
and the Flash model, which represent actual player behaviors
that can be seen “in the wild”.

A. Simple Playback Stalling Model

The behavior can be summarized as “Whenever anything
can be played from the buffer, do so”. This means that, if
the player is currently stalling and a complete frame becomes
available in the buffer, playback will immediately restart and
the frame will be shown even if this means stopping playback
after that frame again. This results in the lowest required buffer
space. Moreover, it gives an upper limit for the number of stalls
occurring.1

B. Initial Playback Delay Model

The model will simply delay the initial start of the video
until it can be played completely without any buffer underruns
occurring. The only stall occurring is the initial waiting period
until the video starts. The time spent waiting will also be
minimal. The downside of this model is its reliance on
knowledge of future network conditions, making it purely
theoretical. Actual streaming players need to accurately predict
the transmission process, e.g. through moving averages.

The stalling and initial delay models define the maximum
achievable upper and lower limits for the stalling parameter
space for all possible real models.

C. Firefox HTML5 Model

The algorithm used in the Firefox 4 browser is an approx-
imate realization of the HTML5 video standard [10] which
suggests starting the playback only when it can be ensured
that the video can be played without interruption similar to
the initial playback delay model.

The algorithm shown in Fig. 2 and its variables in Table
I demonstrate the exact behavior of this strategy. Firefox 4
uses moving averages to estimate the development of the
transmission rate. It does not differentiate between intermittent
and initial conditions. As the approach is similar in concept
to the initial playback delay model, it sports very few stalling
events due to conservatively chosen (i.e., long) buffering times.

1As a video frame is atomic, no other model could possibly stop the
playback more often.



if sMA > vMA then
c← (bb = 20s ∨ bT = 20s)

else
c← (bb = 30s ∨ bT = 30s)

end if

Fig. 2. Firefox playback (re-)start decision algorithm.

TABLE I
VARIABLES INVOLVED IN BUFFERING DECISIONS.

Variable Explanation
sMA Moving average of the transmission speed.
vMA Moving average of the video bitrate.
c Condition upon which to start/resume playback.
bb Amount of video data the buffer contains.
bT Amount of time spent in non-playing buffering state.

D. YouTube Flash Player Model

This model is facilitated by the Flash Player used by the
YouTube website. It will initially start the playback after it
has buffered two seconds of video data. If a stall occurs it
will restart playing after five seconds of video are in the buffer.
The Flash Model assumes sufficient network conditions in the
beginning, requiring only a short initial playback delay to pre-
fill the playback buffer. If, however, stalling occurs, then it will
buffer longer to keep the stalling frequency down.

V. TESTBED ARCHITECTURE

Testing and comparing new protocols is a complex and time-
consuming undertaking if traditional evaluation approaches
such as analytical source-traffic models are employed. For
today’s fast-paced development of streaming protocols and
strategies, faster evaluation methods are needed. A testing
environment must be simple and sufficiently flexible to allow
testing of current and adaptation to future protocols, services,
network structures, and associated parameter spaces. At the
same time, it must be able to answer specific questions about
protocols, applications, and network setups. Finally, the results
yielded from analyzing and evaluating a streaming service
should be user-oriented, i.e. provide a foundation of data that
can be fed into the calculation of a Quality of Experience
(QoE) model. We believe our proposed testbed meets these
requirements.

Figure 3 depicts the evaluation testbed. Conceptually, it
replicates the actual steps a user would perform to consume
a media stream on a playback device. Through appropriate
configuration different scenarios can be modeled, e.g. network
conditions, behavior and specifics of the user device.

In the first pass of the process, the stream data is transmitted
from a server to the client. The server could either be an
actual streaming service on the Internet, or a local stream-
ing server implementation. The traffic is directed through a
network emulation node capable of altering the network QoS
parameters, i.e. latency, jitter, and packet loss. The parameters
could also be set according to stochastic models derived from
actual network traces.
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Fig. 3. Testbed Schematic.

The measurement host downloads and records a network
trace of the video stream. For HTTP streaming, it issues a
single HTTP GET request on the video file, and then maintains
the TCP connection until the file has fully arrived. Depending
on the level of detail of the traces, they could further be used
to scrutinize other layers of the connection, e.g. the dynamics
of TCP receive window size. The packet trace is then decoded
using the open source ffmpeg suite, yielding another set of
traces consisting of video frame sizes and playout timestamps.

In the second pass, these two traces are then used to feed
the playback models described before. The playback emulation
process combines the transmission and video frame traces to
calculate the playback buffer fill level for every point in time
during the playback. It then generates statistics about user-
perceivable artifacts such as playback stalls that would occur
during the playback. These statistics can then be compared
to the results of other models and network QoS. It is worth
noting, that the two steps are independent of each other,
meaning that all playback strategies can be applied to the same
network trace allowing for direct comparison.

Currently not modeled in this framework is any kind of user
interaction during playback, i.e. users that skip, pause or stop
playback. However, statistics on any such behavior could be
easily integrated into the measurement setup.

VI. EVALUATION

The results presented here show some of the capabilities
in comparing play network conditions based on playback
models. We compare how the four playback models introduced
previously fare against each other in a measurement series
featuring emulated transmission latency and packet loss. At the
same time, we acknowledge that other specific questions are
not touched in this first set of experiments, e.g. the inclusion
of a mobile network or handset, or RTP-based streams.

The video used in our measurements was streamed from the
YouTube web site. This provides a realistic base for all the



TABLE II
TEST VIDEO PARAMETERS

Video Duration 01:32.536 minutes
Size 9.61 MiB
Framerate 23.976/s
Average Video Bitrate 871 Kbps
Codec AVC+AAC

experiments. Note that YouTube also employs its own form
of application layer flow control in addition to TCP’s [11].
Details on the streamed video are available in Table II.

For the loss experiment series, the network emulator was
configured to drop a certain percentage of packets based on
a normal distribution on both the uplink and the downlink
direction. There was no loss correlation involved, the existence
of which one would expect, e.g., in wireless networks. One
streaming run for every two percentage points of additional
loss up to 14% was conducted.

In the latency series, the emulator delayed the delivery of
every packet for a symmetrically amongst up- and downlink
distributed time. One experiment was conducted for every
100ms of additional delay, up to a total of 5000ms.

After the traces were recorded, every playback model was
applied to all runs. For every model, two data points were
computed. First, the total stalling time was calculated. This is
the time the player keeps buffering and not playing the video,
including the initial start delay. To attain results comparable
to the other measurements, the stalling time is calculated
relative to the total video length instead of an absolute value.
The second resulting value is the number of times the video
stops playing including the initial delay, i.e. the stalling fre-
quency. Both of them are an indicator how well the playback
mechanism can cope with the currently emulated network
setup. They could for example be used to either check if a
modification to a network has a noticeable impact on streaming
experience, or to find an optimized player behavior for a given
network.

All models will generally work very similar in good network
conditions. If sufficient bandwidth is available, they will play
videos with almost no delay and intermediate buffering. If,
however, the achievable TCP goodput is close to the average
video bitrate, the buffer may be strained by short deviations
from the average rates.

High latency can also trigger TCP timeouts and retrans-
missions, and in turn decrease the congestion window, further
impacting the goodput. The latency measurements are depicted
in Figure 4. The stalling time increases with the additional
latency. The Initial Start Delay model provides the best
possible result in terms of pure stalling time. On the other
hand, Figure 4b shows the Stalling model provides always
the worst result for the number of stalls. Any other model
will lie beyond that line. The Flash and HTML5 models both
run in just a few buffering events which however tend to
increase in length with rising latency. Attributed to the simple
and optimistic assumption of the Flash model, stalling time is
usually lower than with HTML5, at the cost of slightly more

buffering events.
TCP goodput is strongly affected by packet loss. Lost pack-

ets result in duplicate acknowledgements, retransmissions, and
a decreased congestion window. The connection could stall
on missing old segments without which the playback cannot
proceed. Figure 5 shows some exemplary measurements for
a loss scenario. While additional packet loss of up to four
percent seem to have no noticeable impact on streaming
quality, the total stalling time suffers a large increase for any
model as seen in Fig. 5a. Figure 5b shows the extremity of the
Stalling model compared to other models reaching a number
orders of magnitude larger than any other model.

Through these to exemplary experiments, we tried to show
that network QoS parameters have a direct measurable impact
on the application layer, namely on HTTP streaming quality.
While the models scale rather well with latency, any HTTP
streaming is almost impossible with high packet loss values.
Comparing the presented playback models, we conclude that
every model represents a trade-off between several parameters,
e.g. as measured here, the number and length of stalls. With
the knowledge gained from the experiments, playback models
could be tailor-made to best suit certain conditions and user
requirements. We further conclude, that the evaluated practical
playback strategies are rather tailored for fixed networks,
not being able to cope very well with high latency or loss.
Additionally, both seem to favor keeping the stalling frequency
low instead of keeping a short total stalling duration. However,
there is still room for optimization.

VII. CONCLUSION

Because of rapid developments in the field of video stream-
ing, full-scale measurement campaigns and analytical model-
ing might prove too time consuming to test every new protocol.
The streaming model framework presented here offers method-
ologies to quickly evaluate new streaming mechanisms under
the influence of network QoS as it decouples the network trace
recording and the playback model calculation phase.

We detailed possible influences of the different network
layers on video streaming, This inspired the creation of
a generic model, incorporating universal notions on data
transport, flow control, and buffering, striving to cover most
possible streaming methods. Using this model, we explored
the theoretical quality limits for streaming such as limits
for the maximum stalling duration, and the user trade-offs
incurred by making specific choices on how to treat conditions
related to streaming processes. In our evaluation of the model
on YouTube we observed the influence of network QoS on
playback quality and found that current playback strategies do
well under normal circumstances but tend to break down in
unexpected scenarios, leaving room for further optimization.
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Fig. 4. Playback model observations on additional latency
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Fig. 5. Playback model observations on additional packet loss.
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