
Automating the Management and Versioning of Service Models at Runtime to

Support Service Monitoring

Ta‘id Holmes∗, Uwe Zdun†, and Schahram Dustdar∗

∗ Distributed Systems Group, Institute of Information Systems

Vienna University of Technology, Austria

{tholmes, dustdar}@infosys.tuwien.ac.at
† Software Architecture Group, Faculty of Computer Science

University of Vienna, Austria

uwe.zdun@univie.ac.at

Abstract—In a model-driven service-oriented architecture
(SOA), the services are in large parts generated from models.
To facilitate monitoring, governance, and self-adaptation the
information in these models can be used by services that
monitor, manage, or adapt the SOA at runtime. If a service
for monitoring, management, or adaptation in an SOA is
dependent on models, and the metamodel changes, usually
the service needs to be manually adapted to work with the
new version, recompiled, and redeployed. This manual effort
impedes the use of models at runtime. To address this problem,
this paper introduces model-aware services that work with
models at runtime. These services are supported using a
service environment, called MORSE. Hiding the complexity
of implicit versioning of models from users while respecting
the principle of Universally Unique Identifiers (UUIDs), it
realizes a novel transparent UUID-based model versioning
technique. It uses the model-driven approach to automatically
generate and deploy MORSE services that are used by the
model-aware services to access models in the correct version.
In this way, monitoring and adaptation in SOAs can be
better supported, and the manual effort to evolve services for
monitoring, management, or adaptation, which are based on
models at runtime, can be minimized.

Keywords-Service Management, Service Runtime, Service
Versioning, MDE, Model Repository, Model Versioning, UUID,
SOA

Modern software systems are becoming increasingly com-

plex. Some reasons for this trend are that they unify different

technologies and services are exposed in heterogeneous

environments. Model-driven engineering (MDE) helps to

master the complexity of modern software systems at design

time. It utilizes models as central artifacts of the engineering

process. In the generation step of the MDE process, models

are eventually transformed to source code. This code will be

packaged and deployed, but this is where MDE usually stops.

We argue that while models can be used for describing and

designing the system and its domain, models can also be used

at runtime. This would be interesting as models can be used

for communication of the different stakeholders. Also in a

couple of scenarios such as service monitoring or adaptation

(cf. [1]) it would be desirable to have access to models (e.g.,

models from which the system has been generated). For

example, this can help to display or analyze the models that

cause exceptional situations in the system, or to react on such

situations using a manual or automated adaptation of the

system. In this way, stakeholders can relate to the concepts

of a model more easily. In addition, services of the system

may profit from introspecting models at runtime. We call

services that dynamically work with models model-aware.

There are a couple of obstacles prior to the adoption of

models in service-oriented architectures (SOAs). First, in a

distributed and heterogeneous environment the identification

and retrieval of models from services is challenging. This

is because of the need for unique identifiers across the

SOA and the lack of a common, unified, and service-based

access to models. Second, if a metamodel for service models

changes, dependent model-aware services need to be adapted,

recompiled, and redeployed to work with the new version.

Because this involves manual effort, adopting models without

automation support becomes not only expensive but also

impractical. Beyond that, once a service model is used by

autonomous services in a SOA, the service management

becomes difficult with model evolution. That is, while new

versions of service models exist, old versions need to be

supported and the various services in a SOA need to relate

and work with specific, coexistent versions.

Our approach utilizes a service environment, called Model-

Aware Service Environment [2], [3] (MORSE), for model

publication and lookup. To deal with model evolution, we

introduce a novel transparent versioning approach, which

allows different services to transparently use different ver-

sions of models or model elements at runtime. To make

the approach usable, MORSE automatically generates the

services needed to query and traverse models at runtime when

a service model is stored in MORSE. Universally Unique

Identifiers [4] (UUIDs) are used to enable monitoring and

adaptation services to access the correct model or model

element in the required version. For example, code for raising

events containing the unique identifiers can be generated

into model-aware services, enabling other components to

monitor and adapt the services, and relate to the models

in the particular versions during monitoring and adaptation

tasks. To the best of our knowledge, our approach is the



first approach that makes this link between services and the

models from which they are generated at runtime and that

uses a model repository to support models at runtime in

SOAs that can evolve transparently.

The remainder of this paper is structured as follows: In

Section I a motivating scenario is described that concretizes

the context and prerequisites. The approach for the man-

agement of model versions and for supporting services to

dynamically work with models is described in Section II.

Next, in Section III a solution for a transparent UUID-based

versioning is presented. The automatically generated MORSE

services are described in Section IV. Section V compares

to related work, lessons learned are presented in Section VI,

and Section VII concludes the paper.

I. MOTIVATION: MONITORING IN A SOA

Before we describe our approach, a motivating scenario

is given that exemplifies a general setup and is the starting

point for further discussion. Thus, we depict the context

and introduce the prerequisites of our work. In this scenario,

MDE is applied for developing services of a SOA. Therefore,

these services relate to models. At runtime a monitoring

service (or monitor for short) first receives notifications from

the model-driven services of the SOA on invocation and

termination. This is realized via event notification. Hence,

the services emit events and the monitor processes these

(cf. [5] for service level agreement (SLA) monitoring). Note

that in our scenario the events relate to models. That is, if a

service is invoked, it emits an event with an identifier of the

model from which it has been generated. Also please note

that this is a simple, generic setup that can be extended if

necessary. That is, if the monitor needs to receive further

events than only invocation and termination, or if it needs to

consider additional information, this would be provided by

the model-driven services, e.g., by generating and embedding

the required eventing into the services.

In the next step, the monitor can use the information from

the models the events relate to. For example, this can be

the models from which the services have been generated.

In a more elaborative setup, such events can also relate

to other models as well. Next, to facilitate the governance,

management, and adaptation of the SOA the monitor needs

to consider the information from the models. Typically, this

is done by reflecting on the value or state of model elements,

certain semantics have been attributed to. For example, the

monitor can compare values against thresholds. Ideally, the

monitor is able to retrieve relevant models dynamically.

With the results from inspecting the various models, all the

necessary information is available to the monitor for reporting,

realizing governance tasks, or initiating an adaptation.

A monitor itself relies on configurations (e.g., thresholds).

We argue that configurations ideally are captured in the form

of models, too (cf. [1] for goal models). This allows for

the generic use of models at runtime. Besides retrieving

such configurations, a monitor for adaptation typically

also operates on models that are specific to the reporting,

governance, or adaptation. Such models can contain data

from the monitoring such as aggregated statistics. Thus, the

monitor not only retrieves but also operates on models.

If a metamodel is modified that a monitor is dependent on,

the monitoring service also has to be changed; i.e., it usually

has to be adapted to work with the new version. This implies

a manual maintenance of the source code, recompilation,

testing, and redeployment of the monitoring service. Such

evolution steps thus impose significant effort and this in turn

impedes the use of models at runtime.

II. APPROACH OVERVIEW

We aim at avoiding the aforementioned obstacles by

adopting models at runtime. With our approach models are

consistently used in different layers and parts of the system.

In this section, we specify the different requirements and

introduce our approach. It leverages the service-based use

of models at runtime employing an automatic generation

from metamodels. This is complemented with a version

management of models.

A. Management of Model Versions

All models (i.e., metamodels and conforming models

(cf. [6])) are stored in a model repository. This repository

needs to support the versioning of models, as different

versions of models can be used by different services. At

runtime the services that dynamically interact with the

repository need to retrieve specific model versions. In contrast,

modeling tools and end users such as system stakeholders

typically expect a transparent versioning. That is, they can

reuse an identifier of a previously updated model for obtaining

the current model in its latest version.

B. Supporting Services to Dynamically Work with Models

For supporting both model evolution and the use of models

at runtime, we propose a model-driven and service-based

approach to dynamically work with models in a SOA.

MORSE

Services

1 create or evolve model

MORSE

Model Repository

3 generate model code

4 generate model services

5 deploy model services

2 refine model

Technical

Expert

Domain

Expert

Figure 1. Generating MORSE Services for Models



For this, we automatically generate MORSE services for

managing models as depicted in Figure 1. Usually, a domain

expert starts to design a domain model (Step 1), i.e., a

metamodel with concepts of a certain domain. Next, a

technical expert refines the model (Step 2), e.g., by enriching

the model with technical details as needed in further model-

driven process steps. Domain-specific languages (DSLs) can

assist stakeholders to formulate the models. Finally, in order

to support the use of the resulting model in a SOA, MORSE

services are automatically generated and deployed (Steps

3-5) that can be used by other services for sharing, storing,

and retrieving models.

For facilitating development of a monitor, MORSE can

also automatically generate ready to use service clients that

interact with the MORSE services. This is demonstrated in

Figure 2 (Step 2). After deployment (Step 1), the exposed

MORSE services can be used by the monitoring service,

which is a model-aware service, for storing and retrieving

models (Step 4). Note that, while model-aware services can

be manually developed by a service developer as depicted in

the figure (Step 3), they may be also automatically generated

from models using MDE.

If a metamodel evolves, MORSE generates appropriate

services and service clients. This simplifies maintenance

of the model-aware services that can also automatically be

instructed to work with the new version.

MORSE

Services

MORSE

Model 

Repository

1 generate & deploy

2 generate service clients

Model-Aware 

Services
4 store & retrieve models

3 develop

Service

Developer

Figure 2. Supporting Model-Aware Services with Service Clients

III. TRANSPARENT UUID-BASED MODEL VERSIONING

A model contains model elements such as classes, at-

tributes, and references (cf. Ecore [7] and EMOF [8] classes

and properties). In the MORSE repository each instance of a

(M2, metamodel) class corresponds to a table in a relational

database 1. An instance thereof (a M1 model) is stored as a

row in such a table. A respective record thus holds the values

for the respective attributes and also the references in the

form of foreign keys and is the smallest unit of versioning

(cf. [10, p.4]) (UV) in the MORSE repository. If the value

of an attribute changes, the record is updated. Similarly,

the records are updated in case references are set, deleted,

1The MORSE repository is realized with Teneo [9] that utilizes the Eclipse
Modeling Framework [7] (EMF).

or changed. As a value for references the UUIDs of the

corresponding model class instances are used.

For supporting the management of model versions during

model evolution we propose a transparent versioning mech-

anism as realized in the MORSE repository. In addition to

version-specific models, the latest version is always present

in the form of a version-independent model (head) in MORSE.

All of these models and its model-elements are identifiable

by UUIDs. Hence, for their identification we distinguish

between version-independent and -specific UUIDs. Thus, a

versions-independent (resp. specific) UUID identifies models

or model elements of the head (resp. a certain revision).

Typically a model change introduces new, changes existing,

or eliminates model elements. That is, not the entire model

is updated in an evolution step but only parts of it change.

Our model versioning approach respects this and operates

on small changes in a space saving way.

state = inactive

B

Version Specific ObjectsHead

Revision 1

Revision 2

Revision 1

Revision 1

Revision 2

Revision 3

Revision 1

Revision 2

Revision 3

Revision 4

head model instances

deleted/removed model instances

shadowed model instances from former revisions

tim
e

tim
e

tim
e

A UUID 1

A UUID 1 B UUID 2

A UUID 1 B UUID 2

A UUID 1 B UUID 2

A UUID 3 B UUID 4

A UUID 3 B UUID 4

A UUID 5

A UUID 3 B UUID 4

A UUID 5

B UUID 6

A UUID 3 B UUID 4

A UUID 5

B UUID 6

A UUID 7 UUID 8

Figure 3. Transparent Versioning

Figure 3 depicts an example of our solution for the

transparent UUID-based model versioning. On the left hand

side, the version-independent model (Head) is displayed in

four different revisions. On the right hand side, the version-

specific objects are displayed. In Revision 1 two model

elements A and B exist. The first change introduces a reference

from the former to the latter. In MORSE the reference is stored

as part of A. Therefore, A is updated. Note that a new version-

specific object is created that references B, overshadowing

the model element from the previous revision. That is, for

obtaining a certain revision of a model only the most recent

model element until the revision is considered and the older

revisions are not; thus, we say, they are overshadowed. In

Revision 3 a new reference from B to A is added. Similarly

to the previous change, B is updated. Note that in the version-



specific objects of that revision the reference from A still

points to the now overshadowed B from Revision 1. This is

no problem however, if for obtaining a model of a specific

revision the reference is updated to the most recent version

of B. Finally, the last change removes B from the model. This

implies that also the reference from A is removed. Therefore

A is updated and B is removed. The latter is realized by

introducing a new B that overshadows former instances and

explicitly is marked as deleted (state = inactive).

For retrieving a specific model version an algorithm is

applied on the version-specific objects. This is shown in

Algorithm 1 that describes how a specific version of a model

can be calculated from the version-specific objects. First the

various model elements of a model in a specific version

are retrieved (Line 5). Only model elements that have not

been removed (Line 8) are registered (Line 9). The returned

model equals to the formerly version-independent objects

for the revision. For this, the version-specific elements are

transformed to version-independent elements (Line 7) and

the UUIDs of the references are updated (Line 15).

Algorithm 1: Reconstructing a Revision of a Model from

Version-Specific Objects

Input: UUIDs, revision ∈ Revisions

Output: Model

begin1

model ←− ∅;2

vsid2viid ←− ∅;3

for uuid ∈ UUIDs do4

element ←− retrieve(uuid, revision);5

vsid2viid.put(getVSID(element), uuid);6

makeVI(element);7

if ¬ isInactive(element) then8

model.put(uuid, element);9

for reference ∈ getReferences(model) do10

vsid ←− getUUID(reference);11

viid ←− vsid2viid.get(vsid);12

if ∅ = viid then13

viid ←− retrieveVIID(vsid);14

setUUID(reference, viid);15

←− model;16

end17

IV. MORSE SERVICES

In this section we describe the MORSE services, that

provide retrieve and storage functionalities for models in

a SOA and realize the transparent model versioning as

explained in the previous section.

These services are automatically generated from meta-

models and exposed as XML and RESTful Web services.

Model-aware services can thus choose between these imple-

mentations. Note that in addition to a service implementation

MORSE also generates service clients (see also Step 2 of

Figure 2) for using the MORSE services.

All of the generated software modules are organized as

Maven [11] projects and distributed using a Maven repository.

In this way, service developers such as displayed in Figure 2

are provided with the client software modules for integrating

with the MORSE services and are thus supported for using

models at runtime. With Maven it is very easy to setup a

dependency that automates the retrieval and use of required

modules.

With the model-driven generation, the deployment of

services, and the distribution of service-clients the major part

for supporting a new or evolved model at runtime is realized

and fully automated. At present, for this, MORSE supports

two different modeling technologies with Ecore – which is the

EMF implementation of the Essential Meta Object Facility [8]

(EMOF) M3 meta-metamodel – to be natively supported.

Models that conform to other M3 models can be supported

with a model-to-model transformation and a mapping to

Ecore if necessary as well. Please note that while for a

technical realization MORSE itself builds on EMF, MORSE

tries not to place any restrictions on the use of different model

technologies. MORSE services and its operations in particular

are agnostic to model technologies and serialization formats.

Support for further model technologies can be realized in

the MORSE services if necessary. As a result, model-aware

services are not limited to work with EMF but can use

different model technologies as well.

Table I
MORSE SERVICE OPERATIONS

Response Operation Description

boolean exists does a model with a UUID exist?

boolean isHead is the UUID version-independent?

UUID[] list all version-independent UUIDs

UUID[] versions version-specific UUIDs of a model

<Class>[] query search for models; support of
various query parameters

<Class> retrieve a model is retrieved by UUID

UUID create UUID is version-independent

UUID update UUID is version-specific

UUID delete UUID is version-specific

UUID list<Role> UUIDs for a role

UUID add<Role> UUID is version-specific

UUID remove<Role> UUID is version-specific

UUID clear<Role> UUID is version-specific

For each class of a metamodel a service is generated with

basic operations such as create, retrieve, update, and

delete (CRUD) for the management of models as listed in

Table I. The UUIDs of all version-independent models can

be obtained by calling the list operation. Similar operations

are generated for references.

The exists operation checks if a model for a provided

UUID is found in the repository. Whether a UUID is a

version-independent or version-specific UUID can easily

be checked using the isHead operation. The versions

operation returns the various version-specific UUIDs of a

model. The query operation returns a set of serialized models



that match specified query parameters. These parameters

support WHERE and ORDER clauses (cf. [12]). For pagination

also an index for the first result can be specified as well as

the number of maximum results returned.

V. RELATED WORK

The MORSE approach particularly focuses on the manage-

ment of models of service-based systems and their accessi-

bility during runtime for facilitating monitoring, governance,

and self-adaptation. For this reason, a model repository

with versioning capabilities is deployed (see Section III).

It abstracts from modeling technologies and its UUID-based

implementation allows for a straightforward identification of

models and model elements. In this section we compare the

MORSE repository against other model repositories and relate

the MORSE approach to work in the field of monitoring.

A. Model Repositories

There are a number of related model repositories. Table II

lists their methods of identification for models and model

elements, indicates supported modeling technologies, the

smallest unit of versioning (cf. [10, p.4]) (UV), and compares

navigation and search capabilities. In the following we

compare to the related work and to the data from the table.

The Adaptable Model Versioning [13], [14] (AMOR)

model repository has a focus on the versioning aspect of

model management (see also [23]), e.g., for the conflict

resolution in collaborative development (cf. [24]). For this

reason the smallest UV can be set to model elements. Models

in AMOR are identifiable by Uniform Resource Locators [25],

[26]. In addition, identifiers (IDs) are assigned to model

elements. While these are unique across models they are not

over time, i.e., model elements from different versions of a

model contain the same ID. AMOR builds on top of EMF,

focuses on the design time, and addresses important research

questions in the field of conflict detection and resolution.

The AtlanticZoo [15] is a simple, web-based model

repository. Thus, models are accessible via URLs. It aims at

constituting a recognized repository for open-source models.

For this purpose and for maximizing potential usage of

contributed models they are automatically transformed from

and into diverse languages such as Ecore, Kernel Meta Meta

Model [27], [28] (KM3), Web Ontology Language [29]

(OWL), or Unified Modeling Language [30] (UML). Ver-

sioning is not in focus of this repository that rather can be

characterized as a collection of models. These are stored in

a serialized form. For this reason the repository is agnostic

to modeling technologies and is ignorant of model elements.

Thus, no model element identifiers exist that are supported

by the repository.

The Connected Data Objects model repository [16] (CDO)

is a server-client framework for EMF models. In EMF a

model element is identifiable within a model 2 via a so

2A Resource (identifiable by a URL) in terms of EMF.

called Uniform Resource Identifier [25] (URI)-fragment.

Usually, although pluggable in CDO, a relational database

management system (RDBMS) is used as a persistence

backend (e.g., with Teneo [9]) in which case the smallest

UV is at an M2 class instance level. The CDO framework

establishes a CDO protocol on top of the Net4j [31]

communication framework and also aims to support the

execution of server-side queries.

EMFStore [17] is a model repository for the Eclipse

integrated development environment (IDE) that employs

operation-based change tracking, conflict detection, and

merging. As a result, it is specific to EMF models that Ecore

class instances need to inherit an EMFStore class in order to

be tracked and managed by EMFStore. While EMFStore does

not support complex queries, (server-side) model navigation

may be realized. IDs are used for identifying models and

model elements. These are unique across the space of models

and model elements but not across time, i.e., models from

previous versions contain the same IDs. The UV in EMFStore

due to its operation-based approach can be of any size.

The NetBeans metadata repository [18] (MDR) was a Meta-

Object Facility [8] (MOF) 1.4 compliant model repository

for the NetBeans IDE that is not actively developed and

maintained any more. It was used as a persistence backend

by Odyssey-SCM (see below).

ModelBus [19], [20] is a model-based tool integration

framework. It addresses the heterogeneity and distribution of

model tools and realizes transparent model update. Designed

as an open environment, ModelBus focuses on integrating

functionality such as model verification, transformation, or

testing into a service bus. It is agnostic to modeling languages

and uses a version control system (VCS) as persistence

backend. Thus, models are stored in their serialized forms. As

a consequence, the UV is the entire model and no navigation

or search capabilities exist. Models in ModelBus are identified

by URLs but no identifiers exist for model elements.

Odyssey-SCM [21], [10] and Odyssey-VCS 2 [22] identify

models using XML Metadata Interchange [32] (XMI) IDs.

Model elements are identified with additional URI-fragments.

While Odyssey-SCM used MOF 1.4, Odyssey-VCS 2 builds

on EMF. Great focus is dedicated to the versioning aspect and

conflict detection. For this, the authors defined the terms unit

of versioning (cf. [10, p.4]) (UV) and unit of comparision

(cf. [10, p.3]) (UC) and make these customizable for the

software configuration management [33] (SCM) of UML

model elements. While complex model search scenarios

and navigation are not supported by the repository, model

navigation is at least possible for source and destination

models of model transformations in Odyssey-MEC [34]

through exogenous ”records of transformation”.

All mentioned model repository approaches do not pro-

vide transparent UUID-based model (element) versioning

capabilities, a central contribution of our work. From the

compared repositories, the MORSE repository is the only



Table II
COMPARISON OF MODEL REPOSITORIES

Repository Model Model Element Modeling Unit of Model Complex

Identification Identification Technology Versioning Navigation Search

AMOR [13], [14] URL ID EMF ANY NO NO

AtlanticZoo [15] URL NO ANY model NO NO

CDO [16] URL URI-Fragment EMF M2 class instance YES YES

EMFStore [17] ID ID EMF ANY YES NO

MDR [18] ID URI-Fragment MOF 1.4 ANY NO NO

ModelBus [19], [20] URL NO ANY model NO NO

MORSE [2], [3] UUID UUID ANY M2 class instance YES YES

Odyssey-SCM [21], [10] ID URI-Fragment MOF 1.4 ANY NO NO

Odyssey-VCS 2 [22] ID URI-Fragment EMF ANY NO NO

model repository that allows models and model elements

to be identified by means of simple UUIDs, i.e., without

the need of multiple identifiers. We consider the unique

identification as important in regard to the runtime use of

models. This is because different runtime systems may require

different versions of a model or model element. Hence, model

evolution is harder in these approaches.

In contrast to most model repositories, the MORSE

repository abstracts from technologies and focuses on MDE

projects. That is, the MORSE repository comes with explicit

support for the management of MDE projects and supports

the MDE process, something that is not supported by many

other repositories (e.g., workflows, that cover processes of

MDE, have to be defined on top of ModelBus).

Finally, the MORSE services support model navigation as

well as complex (server-side) queries which are important

features for the dynamic use and lookup of models.

B. Monitoring

The topic of service (cf. [35], [5]) and process (cf. [36])

monitoring is well covered by the literature; e.g., in the

areas of quality of service (QoS) and SLAs. Yet by applying

a model-aware service environment we contribute a novel

approach, i.e., the use of service models at runtime.

A model-based design for the runtime monitoring of QoS

aspects is presented by Ahluwalia et al. [35]. In particular,

an interaction domain model and an infrastructure for the

monitoring of deadlines are illustrated. In that approach,

system functions are abstracted from interacting components.

While a model-driven approach is applied, the presented

model of system services is not (also) a source model for

the model-driven development of the services. In contrast,

MORSE manages and is aware of the service models, systems

are generated from and/or relate to. This allows for supporting

the monitoring and adaptation in SOAs as outlined.

Commuzi et al. [5] explicate the link between SLA

negotiation and monitoring of complex service-based systems.

While being specific to SLAs, their proposed monitoring

architecture has similarities to our MORSE setup. We believe

that by applying our approach to that work some parts of the

architecture could be automatically generated while others

could profit from the available MORSE service clients.

In contrast to these works, the MORSE approach, that

allows for the management and versioning of (service)

models, is a generic approach for the use of models at

runtime for supporting service monitoring. It is generic

because it is agnostic to the actual domain such as QoS,

SLAs, or compliance. The monitoring for the specific domain

is realized by the model-aware services. As a consequence, all

of the mentioned monitoring approaches can be supported by

MORSE. For this, a domain model needs to be deployed and

model-aware services need to realize the domain-specific

monitoring. From applying MORSE to these monitoring

domains we expect benefits in the areas of evolution and

management.

MORSE is the first model repository that specifically targets

at integration with runtime services. Other work mainly

focuses on the design time, e.g., in order to support the

MDE process. With our MORSE approach, however, we aim

at adopting models at runtime, i.e., using models beyond

the model-driven generation step. Thus, MORSE focuses on

runtime services and processes and their integration, e.g.,

through monitoring, with the repository and builds on the

simple identification for making models accessible at runtime.

Apart from the model repository, MORSE with its model-

aware services establishes a service-oriented approach that

has not yet been presented at large.

None of the mentioned model repositories offers an

integration scheme for runtime events or the automated

model generation and deployment capabilities. As shown

in this paper, however, for supporting models at runtime, if

model evolution is possible some similar capabilities would

be needed. However, our approach is general enough and

not limited to MORSE: It should be possible to extend

all the model repository approaches that we mentioned

using a frontend that extends them with transparent UUID-

based model versioning capabilities or at least UUID-based

identification and provides a model-driven component for

runtime generation and deployment.

VI. DISCUSSION

In this paper, we have presented – to the best of our

knowledge – the first model repository based approach to



support models at runtime in SOA. In our experiences,

especially in large scale systems, such as SOA, the main-

tainability of models at runtime is difficult, as the system

continuously evolves as it runs. Hence, different services

of the SOA rely on different models or model elements

in distinct versions. This problem has not yet been fully

addressed in the existing literature. We have provided the

transparent versioning approach to practically deal with this

situation. Even for frequently changing central metamodels,

on which many services, some developed by third parties,

are based, our approach is easily applicable. We have used

the information in the models successfully for monitoring

the system and supporting some semi-automated adaptations.

However, one caveat in this approach was that initially

we were only able to provide a generic interface to query

the models in the repository. These are rather difficult to

work with. To improve this situation, we developed the

MORSE services that offered the specific interfaces needed for

querying and traversing the models in the repository. As our

approach is a model-driven approach, it was an obvious idea

to use the model-driven generator for this task. However, the

model-driven approach is usually used at design time; hence,

we needed to extend the MORSE repository to automatically

generate and deploy the MORSE services in the background.

In this way, every time a new metamodel version is created,

automatically MORSE services are generated and deployed

that enable users to easily deal with these versions. No

other model management approach supports the automatic

generation of specialized traversal and query services upon

deployment of the metamodel version. This approach greatly

enhances the usability of models at runtime.

The transparent versioning and the full automation of

the MORSE service generation allow developers to better

maintain models at runtime. To use them to better support the

monitoring and adaptation in SOA, one final problem needed

to be solved: The unambiguous identification of models,

model elements, and versions thereof. We use UUIDs for this

task that are automatically generated into the services during

the model-driven generation, making the services model-

aware. This novel approach to model and model version

identification allows us to generate events from services

that enable monitoring and adaptation services to access the

correct service model version.

A drawback of our approach is that it combines a number

of approaches and raises the overall complexity of the system.

But the large degree of automation means that users usually

need to deal with only the frontend parts of the MORSE

environment for using models at runtime. In the model-

aware services there is only a small performance overhead

for raising the events, which is often needed anyway. For

instance, in the context of compliance the events must be

raised and logged for legal auditing purposes.

VII. CONCLUSION

In this paper we identified and proposed solutions to

basic requirements for using models for service monitoring

and adaptation. First of all, we addressed the need for the

management of different model versions with a transparent

UUID-based model versioning in MORSE. For facilitating

services to work with models at runtime, MORSE services

are automatically generated and deployed. These services,

that realize the transparent versioning, can be used by other

services, that we called model-aware services. For easing

the development of such services MORSE also generates and

distributes appropriate service clients.

ACKNOWLEDGMENTS

This work was supported by the European Union FP7 project COMPAS,
grant no. 215175.

REFERENCES

[1] B. H. C. Cheng, P. Sawyer, N. Bencomo, and J. Whittle,
“A goal-based modeling approach to develop requirements
of an adaptive system with environmental uncertainty,” in
MoDELS, ser. Lecture Notes in Computer Science, A. Schürr
and B. Selic, Eds., vol. 5795. Springer, 2009, pp. 468–483.

[2] T. Holmes, U. Zdun, and S. Dustdar, “MORSE: A Model-
Aware Service Environment,” in Proceedings of the 4th
IEEE Asia-Pacific Services Computing Conference (APSCC),
M. Kirchberg, P. C. K. Hung, B. Carminati, C.-H. Chi,
R. Kanagasabai, E. D. Valle, K.-C. Lan, and L.-J. Chen, Eds.
IEEE, Dec. 2009, pp. 470–477.

[3] T. Holmes, “Model-Aware Service Environment (MORSE),”
Distributed Systems Group, Institute of Information Systems,
Vienna University of Technology, Sep. 2008, [accessed in
June 2012]. [Online]. Available: http://www.infosys.tuwien.ac.
at/prototype/morse

[4] International Telecommunication Union, “ISO/IEC 9834-8
information technology – Open Systems Interconnection –
Procedures for the operation of OSI Registration Authorities:
Generation and registration of Universally Unique Identifiers
(UUIDs) and their use as ASN.1 object identifier components,”
Sep. 2004, [accessed in June 2012]. [Online]. Available:
http://itu.int/ITU-T/studygroups/com17/oid/X.667-E.pdf

[5] M. Comuzzi, C. Kotsokalis, G. Spanoudakis, and
R. Yahyapour, “Establishing and Monitoring SLAs in
Complex Service Based Systems,” in ICWS. IEEE, 2009,
pp. 783–790.

[6] J. Bézivin, “On the unification power of models,” Software
and System Modeling, vol. 4, no. 2, pp. 171–188, 2005.

[7] The Eclipse Foundation, “Eclipse Modeling Framework Project
(EMF),” The Eclipse Foundation, 2002, [accessed in June
2012]. [Online]. Available: http://eclipse.org/modeling/emf

[8] Object Management Group, Inc., “Meta-Object Facility,”
Apr. 2002, [accessed in June 2012]. [Online]. Available:
http://omg.org/mof



[9] The Eclipse Foundation, “Teneo,” The Eclipse Foundation,
2005, [accessed in June 2012]. [Online]. Available:
http://wiki.eclipse.org/Teneo

[10] H. L. R. Oliveira, L. G. P. Murta, and C. M. L. Werner,
“Odyssey-VCS: a flexible version control system for UML
model elements,” in SCM. ACM, 2005, pp. 1–16.

[11] The Apache Software Foundation, “Apache Maven,” The
Apache Software Foundation, [accessed in June 2012].
[Online]. Available: http://maven.apache.org

[12] L. DeMichiel, “JavaTM Persistence 2.0,” Java Community
Process, Java Specification Request 317, Dec. 2009, [accessed
in June 2012]. [Online]. Available: http://jcp.org/en/jsr/detail?
id=317

[13] K. Altmanninger, G. Kappel, A. Kusel, W. Retschitzegger,
W. Schwinger, M. Seidl, and M. Wimmer, “AMOR – towards
adaptable model versioning,” in 1st International Workshop
on Model Co-Evolution and Consistency Management, in
conjunction with MODELS ’08, 2008.

[14] P. Brosch, P. Langer, M. Seidl, and M. Wimmer, “Towards end-
user adaptable model versioning: The by-example operation
recorder,” in CVSM ’09: Proceedings of the 2009 ICSE
Workshop on Comparison and Versioning of Software Models.
Washington, DC, USA: IEEE Computer Society, 2009, pp.
55–60.

[15] AtlanMod, “Atlantic Zoo,” [accessed in June 2012]. [Online].
Available: http://www.emn.fr/z-info/atlanmod/index.php/Zoos

[16] The Eclipse Foundation, “Connected Data Objects (CDO)
model repository,” The Eclipse Foundation, 2005, [accessed in
June 2012]. [Online]. Available: http://wiki.eclipse.org/CDO

[17] M. Kögel and J. Helming, “EMFStore: a model repository
for EMF models,” in ICSE (2), J. Kramer, J. Bishop, P. T.
Devanbu, and S. Uchitel, Eds. ACM, 2010, pp. 307–308.

[18] M. Matula, “NetBeans metadata repository,” NetBeans
Community, [accessed in July 2009]. [Online]. Available:
http://mdr.netbeans.org

[19] P. Sriplakich, X. Blanc, and M.-P. Gervais, “Supporting
transparent model update in distributed case tool integration,”
in SAC, H. Haddad, Ed. ACM, 2006, pp. 1759–1766.

[20] A. Aldazabal, T. Baily, F. Nanclares, A. Sadovykh, C. Hein,
and T. Ritter, “Automated Model Driven Development Pro-
cesses,” in Proceedings of the ECMDA workshop on Model
Driven Tool and Process Integration, 2008.

[21] L. G. P. Murta, H. L. R. Oliveira, C. R. Dantas, L. G. Lopes,
and C. M. L. Werner, “Odyssey-SCM: An integrated software
configuration management infrastructure for UML models,”
Sci. Comput. Program., vol. 65, no. 3, pp. 249–274, 2007.

[22] L. Murta, C. Corrêa, J. G. Prudêncio, and C. Werner, “Towards
Odyssey-VCS 2: Improvements over a UML-based version
control system,” in CVSM ’08: Proceedings of the 2008
international workshop on Comparison and versioning of
software models. New York, NY, USA: ACM, 2008, pp.
25–30.

[23] K. Altmanninger, M. Seidl, and M. Wimmer, “A survey on
model versioning approaches,” IJWIS, vol. 5, no. 3, pp. 271–
304, 2009.

[24] P. Brosch, M. Seidl, K. Wieland, M. Wimmer, and P. Langer,
“We can work it out: Collaborative conflict resolution in
model versioning,” in ECSCW 2009: Proceedings of the 11th
European Conference on Computer Supported Cooperative
Work. Springer, 2009, pp. 207–214.

[25] T. Hansen, T. Hardie, and L. Masinter, “Guidelines
and registration procedures for new URI schemes,” Feb.
2006, [accessed in June 2012]. [Online]. Available:
http://ietf.org/rfc/rfc4395.txt

[26] T. Berners-Lee, L. Masinter, and M. McCahill, “Uniform
Resource Locators (URL),” Dec. 1994, [accessed in June
2012]. [Online]. Available: http://ietf.org/rfc/rfc1738.txt

[27] F. Jouault and J. Bézivin, “KM3: A DSL for Metamodel
Specification,” in FMOODS, ser. Lecture Notes in Computer
Science, R. Gorrieri and H. Wehrheim, Eds., vol. 4037.
Springer, 2006, pp. 171–185.

[28] The Eclipse Foundation, “KM3,” The Eclipse Foundation,
[accessed in June 2012]. [Online]. Available: http://wiki.
eclipse.org/KM3

[29] S. Bechhofer, F. van Harmelen, J. Hendler, I. Horrocks, D. L.
McGuinness, P. F. Patel-Schneider, and L. A. Stein, “OWL
Web Ontology Language Reference,” Feb. 2004, [accessed in
June 2012]. [Online]. Available: http://w3.org/TR/owl-ref

[30] Object Management Group, Inc., “Unified Modeling Language
(UML),” Mar. 2000, [accessed in June 2012]. [Online].
Available: http://omg.org/spec/UML

[31] The Eclipse Foundation, “Net4j,” The Eclipse Foundation,
[accessed in June 2012]. [Online]. Available: http://wiki.
eclipse.org/Net4j

[32] Object Management Group, Inc., “XML Metadata Interchange
(XMI R©),” [accessed in June 2012]. [Online]. Available:
http://omg.org/spec/XMI

[33] International Organization for Standardization, “ISO
10007:2003 Quality management systems – Guidelines
for configuration management,” Mar. 2003, [accessed in June
2012]. [Online]. Available: http://www.iso.org/iso/catalogue
detail.htm?csnumber=36644

[34] C. Corrêa, L. G. P. Murta, and C. M. L. Werner, “Odyssey-
MEC: Model Evolution Control in the Context of Model-
Driven Architecture,” in SEKE. Knowledge Systems Institute
Graduate School, 2008, pp. 67–72.

[35] J. Ahluwalia, I. H. Krüger, W. Phillips, and M. Meisinger,
“Model-based run-time monitoring of end-to-end deadlines,”
in EMSOFT, W. Wolf, Ed. ACM, 2005, pp. 100–109.

[36] L. Baresi, S. Guinea, O. Nano, and G. Spanoudakis, “Com-
prehensive Monitoring of BPEL Processes,” IEEE Internet
Computing, vol. 14, no. 3, pp. 50–57, 2010.


