
D I S S E R T A T I O N

Titel der Dissertation

An Infrastructure for Context-Dependent RDF
Data Replication on Mobile Devices

Verfasser

Dipl.-Inf.(FH) Stefan Zander, MSc, M.I.T.

Angestrebter akademischer Grad

Doktor der technischen Wissenschaften (Dr. techn.)

Wien, 2012

Studienkennzahl lt. Studienblatt: A 786 175
Dissertationsgebiet lt. Studienblatt: Wirtschaftsinformatik
Betreuer: Univ.-Prof. Dipl.-Ing. Dr. Wolfgang Klas

Declaration of Authorship
I, Stefan Zander, declare that this thesis with the title, ‘An Infrastructure for Context-Dependent
RDF Data Replication on Mobile Devices’ and the work presented in it are my own. I confirm
that:

� This work was done wholly or mainly while in candidature for a research degree at this
University.

� Where any part of this thesis has previously been submitted for a degree or any other
qualification at this University or any other institution, this has been clearly stated.

� Where I have consulted the published work of others, this is always clearly attributed.

� Where I have quoted from the work of others, the source is always given. With the exception
of such quotations, this thesis is entirely my own work.

� I have acknowledged all main sources of help.

� Where the thesis is based on work done by myself jointly with others, I have made clear
exactly what was done by others and what I have contributed myself.

Signed:

Date:

iii

"The creation of something new is not accomplished by the intellect but by the play instinct acting
from inner necessity. The creative mind plays with the objects it loves."

Carl Gustav Jung (1875 - 1961) Swiss psychologist

Abstract
This work describes an infrastructure for the selective RDF data replication to mobile devices
while considering current and future information needs of mobile users and the different con-
texts they are operating in. It presents a novel approach in synthesizing context-aware computing
concepts with semantic technologies and distributed transaction management concepts for intelli-
gently assisting mobile users while enhancing mobile information seeking behavior and increasing
the precision of mobile information retrieval processes.

Despite the huge potential of a proactive, context-dependent replication of RDF data, such
data can not be efficiently processed on mobile devices due to (i) technical limitations and
network-related constraints, (ii) missing processing and management capabilities of ontology-
based description frameworks, (iii) the inability of traditional data replication strategies to adapt
to changing user information needs and to consider technical, environmental, and infrastructural
restrictions of mobile operating systems, and (iv) the dynamic and emergent nature of context,
which requires flexible and extensible description frameworks that allow for elaborating on the
semantics of contextual constellations as well as on the relationships that exist between them.
As a consequence, existing approaches suffer from the deployment of proprietary data formats,
server-dependent application infrastructures, and the inability to share and exchange contextual
information across system borders. Moreover, results of recently conducted studies reveal that
mobile users find their information needs inadequately addressed, where a large share can be
attributed as context or context-relevant.

Although progress has been made in applying semantic technologies, concepts, and languages to
the domain of context-aware computing, a synthesis of those fields for the proactive provision
of RDF data replicas on mobile devices remains an open research issue. This work discusses
possible fields where context-aware computing can be enhanced using technologies, languages,
and concepts from the Semantic Web and contains a comparative study about the performance
of current mobile RDF frameworks in replication-specific tasks. The main contribution of this
thesis is a formal description of an abstract model that allows for an efficient acquisition, repre-
sentation, management, and processing of contextual information while taking into account the
peculiarities and operating environments of mobile information systems. It is complemented by
a formal specification of a concurrently operating transaction-based processing model that con-
siders completeness and consistency requirements on data and process level. We demonstrate
the practicability of the presented approach trough a prototypical implementation of context
and data providers that satisfy typical information needs of a mobile knowledge worker. As a
consequence, dependencies to external systems are reduced and users are equipped with relevant
information that adheres to their information needs anywhere and at any time, independent of
any network-related constraints. Since context-relevant data are processed directly on a mobile
device, security and privacy issues are preserved.

Zusammenfassung
Der im Rahmen dieser Arbeit vorgestellte Ansatz beschreibt die Erstellung einer technischen
Infrastruktur, die selektiv RDF-Daten in Abhängigkeit der Informationsbedürfnisse und den un-
terschiedlichen Kontexten mobiler Nutzer auf ein mobiles Endgerät repliziert und diese somit in
intelligenter Art und Weise unterstützt. Eine Zusammenführung kontextspezifischer Konzepte
und semantischer Technologien stellt einen wesentlichen Bestandteil zur Verbesserung der mo-
bilen Informationssuche dar und erhöht gleichzeitig die Präzision mobiler Informationsgewin-
nungsprozesse.

Trotz des vorhandenen Potentials einer proaktiven, kontextabhängigen Replizierung von RDF-
Daten, gestaltet sich die Verarbeitung auf mobilen Endgeräten schwierig. Die Gründe dafür
liegen in den technischen und netzwerkspezifischen Beschränkungen, in der fehlenden Verarbei-
tungs- und Verwaltungsfunktionalität von ontologiebasierten Beschreibungsverfahren sowie in
der Unzulänglichkeit bestehender Replikationsansätze, sich an verändernde Informationsbedürf-
nisse sowie an unterschiedliche technische, umgebungsspezifische und infrastrukturbezogene Ei-
genheiten anzupassen. Verstärkt wird diese Problematik durch das Fehlen ausdrucksstarker
Beschreibungsverfahren zur Repräsentation kontextspezifischer Daten. Existierende Ansätze lei-
den dementsprechend unter der Verwendung proprietärer Datenformate, dem Einsatz serverab-
hängiger Applikationsinfrastrukturen sowie dem Unvermögen, kontextspezifische Daten auszu-
tauschen. Dies äußert sich in Studien, welche die Berücksichtigung der Informationsbedürfnisse
mobiler Nutzer als unzureichend einstuft und einen Großteil der benötigten Informationen als
kontextrelevant auszeichnet. Obgleich Fortschritte bei der Adaption von semantischen Technolo-
gien und Beschreibungsverfahren zur kontextabhängigen Verarbeitung zu erkennen sind, bleibt
eine auf semantische Technologien basierende, proaktive Replizierung von RDF-Daten auf mobile
Endgeräte ein offenes Forschungsfeld.

Die vorliegende Arbeit diskutiert Möglichkeiten zur Erweiterung der mobilen, kontextspezifischen
Datenverarbeitung durch semantische Technologien und beinhaltet eine vergleichende Studie
zur Leistungsfähigkeit aktueller mobiler RDF-Frameworks. Kernpunkt ist die formale Beschrei-
bung eines abstrakten Modells zur effizienten Akquise, Repräsentation, Verwaltung und Verar-
beitung von Kontextinformationen unter Berücksichtigung der technischen Gegebenheiten mo-
biler Informationssysteme. Ergänzt wird es durch die formale Spezifikation eines nebenläufigen,
transaktionsbasierten Verarbeitungsmodells, welches Vollständigkeits- und Konsistenzbedingun-
gen auf Daten- und Prozessebene berücksichtigt. Der praktische Nutzen des vorliegenden An-
satzes wird anhand typischer Informationsbedürfnisse eines Wissensarbeiters demonstriert. Der
Ansatz reduziert Abhängigkeiten zu externen Systemen und ermöglicht Nutzern, unabhängig von
zeitlichen, örtlichen und netzwerkspezifischen Gegebenheiten, auf die für sie relevanten Daten
zuzugreifen und diese zu verarbeiten. Durch die lokale Verarbeitung kontextbezogener Daten
wird sowohl die Privatssphäre des Nutzers gewahrt als auch sicherheitsrelevanten Aspekten Rech-
nung getragen.

Acknowledgements
First and foremost, I would like to thank my supervisor Univ.-Prof. Dr. Wolfgang Klas for his
guidance and valuable support throughout the preparation of this work and in particular for
his input and feedback on the formal model. Despite his positions as both chair of the research
group and dean of the faculty of computer science, he always had an open ear for my matters.
I also would like to thank my second supervisor Univ.-Prof. DDr. Gerald Quirchmayr for his
helpful and constructive contributions during the doctoral seminars that have helped a lot in
directing research efforts of this work.

Special thanks are due to my colleague and friend Dr. Bernhard Schandl or his encouragement
and the many fruitful discussions we had – and with whom I authored a number of papers.
Working with you Bernhard was both pleasure and true inspiration. Moreover, I want to ex-
press my gratitude to my present and former colleagues Maia, Gerhard, Peter, Christian, Ela,
Bernhard, Chris, and Wolfgang as well as Niko, Wolfgang, Stefan, and Robert for their support
and cooperation – it is and was a pleasure to work with you. A honorable mention goes to the
two master students Doris Braunöder and Christina Ochsenhofer for implementing parts of the
evaluation framework and for conducting the performance evaluation. Many thanks also deserve
our two administrators Jan Stankovsky and Peter Kindermann for their hardware and software
support as well as the members of our secretary’s office for their administrative support.

Above all, I wish to express my sincere gratitude to my beloved family, friends, and Melanie for
all their kind support and the sacrifices made throughout this work.

ix

Contents

Declaration of Authorship iii

Abstract v

Zusammenfassung vii

Acknowledgements ix

List of Figures xv

List of Tables xvii

1 Introduction 1
1.1 Mobile Computing . 1

1.1.1 Mobility and Mobile Information Needs 2
1.1.2 Context and Context Awareness . 4
1.1.3 Context and Context Awareness in Mobile Information Systems 5

1.2 Motivating Example . 8
1.3 Problem Description . 9
1.4 Contributions . 10
1.5 Overview of this Thesis . 14

2 Background 17
2.1 Definition and Overview . 17
2.2 Definition and Utilization of Context in Different Domains 20

2.2.1 Pervasive and Ubiquitous Computing . 20
2.2.2 Artificial Intelligence (AI) . 21

2.3 Positivist and Epistemological View on Context 22
2.4 Context and Context Awareness in Information Systems 23

2.4.1 Context Models . 24
2.4.2 Classification Frameworks for Contextual Information 27
2.4.3 Reference Architectures for Context Acquisition, Management, and Pro-

cessing . 30
2.4.4 Key elements of Context Processing and Management Frameworks 39
2.4.5 Summary and Discussion . 44

2.5 Problems of Context-aware Computing . 45
2.6 The Semantic Web . 47
2.7 Representing Contextual Information using the Resource Description Framework 49

xi

Contents xii

2.7.1 Representing Contextual Aspects . 52
2.7.2 Identifying Contextual Information . 53
2.7.3 Representing Context Property Values . 53
2.7.4 Using Structured Properties for Representing Contextual Information . . 55

2.8 Semantic Web-enhanced Context-aware Computing 56
2.9 Discussion . 59
2.10 Summary . 60

3 Related Work and State of the Art 61
3.1 Introduction . 61
3.2 Mobile Data Replication . 61
3.3 Semantic Web Frameworks for Mobile Platforms 62

3.3.1 Mobile XML Parsers . 65
3.3.2 Mobile RDF Frameworks . 66
3.3.3 Query and Persistence Frameworks . 68
3.3.4 Discussion and Summary . 69

3.4 Analysis and Review of Related Projects . 72
3.4.1 Related Projects and Applications . 75
3.4.2 Analysis . 83
3.4.3 Summary . 87

3.5 Conclusion . 87

4 Approach 89
4.1 Requirements and Design Considerations . 90
4.2 Conceptual Context Acquisition and Data Replication Workflow 94
4.3 Formal Model . 98

4.3.1 Symbols and Relations . 99
4.3.2 Context Model . 102
4.3.3 Context Provider . 103
4.3.4 Orchestration Trees . 109
4.3.5 Formal Definition of the Orchestration Logic 112
4.3.6 Compounded Context Acquisition Model 114
4.3.7 Context Acquisition Workflow . 115
4.3.8 Context Configuration . 116
4.3.9 Context Description . 117
4.3.10 Data Providers . 118

4.4 Formal Model of the Orchestration Process . 119
4.4.1 Data Description Ontology . 121
4.4.2 Computing Compatibility Metrics between Context Providers 124
4.4.3 Building Orchestration Trees . 133

4.5 A Transaction-based Processing Model for Context Acquisition Workflows 136
4.5.1 Preliminaries . 137
4.5.2 Definition of Transactions . 139
4.5.3 Events and Event Histories . 143
4.5.4 Dependencies between Transactions . 145
4.5.5 Processing Context Acquisition Workflows 149

4.6 Conceptual Architecture . 155
4.6.1 Concepts and Features . 155
4.6.2 Components . 157

4.7 Discussion and Summary . 164

5 Implementation and Case Study 171
5.1 Development Platform . 172

Contents xiii

5.2 Implementation of Context and Data Providers 174
5.3 Case Study . 179

5.3.1 Context Acquisition . 181
5.3.2 Data Provisioning . 182

5.4 Summary . 184

6 Evaluation of the Processing Efficiency of RDF Data Replicas 187
6.1 Test Environment . 188
6.2 Test Setup . 189

6.2.1 Test data . 190
6.2.2 Preparation of Test Data . 190
6.2.3 Recording of Benchmark Results . 191

6.3 Results . 193
6.3.1 Parsing RDF Data Replicas . 193
6.3.2 Serialization and Storage of RDF Data Replicas 201
6.3.3 Adding Data to RDF Data Replicas . 210
6.3.4 Removing Data from RDF Data Replicas 222
6.3.5 Retrieving Elements from RDF Data Replicas 228
6.3.6 Constructing In-memory RDF Graphs . 234

6.4 Discussion and Summary . 236

7 Conclusion and Future Work 239
7.1 Conclusion . 239
7.2 Future Work and Possible Application Fields . 241

A Detailed Performance Statistics of the Replication Benchmarks 245

Bibliography 265

List of Figures

2.1 Roles and influence of context awareness in human-computer interaction with
respect to effectuation, representation, and interpretation 29

2.2 Layered reference architecture for context frameworks1 31
2.3 Reference architecture of context-aware computing systems for ubiquitous envi-

ronments2 . 33
2.4 Crisp (a) and fuzzy (b) quantization methods for calculating context features from

low-level context data3 . 42
2.5 Example of low-level to high-level context-aggregation using Bayesian classifications4 43
2.6 Example of a situation ontology that classifies situations as business and private5 44
2.7 Example RDF Graph . 48
2.8 Value space, lexical space, and lexical-to-value mapping for the XML Schema data

type xsd:boolean and their typed literal definition 55
2.9 Use of rdf:value property for representing the values of a temperature sensor . 55

3.1 Summary of the evaluated mobile XML parsers, RDF frameworks, and query and
persistence frameworks (summarized as ’Infrastructure Frameworks’) 71

3.2 The DBpedia Mobile client application depicting Semantic Web resources about
POIs located around the user’s current location on a map (left picture) as well as
descriptions of the Brandenburg Gate retrieved from DBpedia and Revyu (right
picture)6 . 76

3.3 The mSpace Mobile client application showing cinemas located in the user’s im-
mediate vicinity (left picture) together with movie and actor information (center
and right picture)7 . 77

3.4 An overview of the IYOUIT system consisting of two screenshots of the client
application (left side) as well as screenshots depicting different views of the com-
munity portal (right side)8 . 79

3.5 The ContextTorrent system architecture and its core components9 81
3.6 An example of NanoXML’s functions for accessing OWL and RDF document

elements10 . 82
3.7 Summary of the evaluated Semantic Web projects 84

4.1 Conceptual architecture of the components involved in a data replication process 95
4.2 Example of an adjacency tableau created from the elements r ∈ Rp for a context

provider p ∈ P . 114
4.3 Structure of the data description ontology represented in EBNF 123
4.4 Structural composition of elements constituting the data description ontology . . 124
4.5 Exemplary data description for a complementary context provider for extracting

contact data from calendar entries . 125
4.6 Example of a compatibility matrix MC and the corresponding orchestration ma-

trix MO . 133
4.7 Example of an adjacency tableau and corresponding orchestration matrix MO for

eight context providers p1,...,3 ∈ P and c1,...,5 ∈ C 135
4.8 Orchestration trees op1 , op2 , and op3 derived from the orchestration matrix MO

depicted in Figure 4.7 . 136

xv

List of Figures xvi

4.9 Correspondence between the relations r ∈ Rp constituting the structure of an
orchestration tree op ∈ O and the corresponding transactions t ∈ Tp 141

4.10 Conceptual architecture of the proposed context-dependent RDF data replication
framework . 158

5.1 Conceptual class infrastructure for context and data providers 175
5.2 Code snippet of GPSContextProvider, converting location data into an RDF-

based context model . 177
5.3 Code snippet of the DBpediaLocationDataProvider, querying DBpedia for data

about location resources . 180
5.4 Geographical coordinates as returned by the GPSContextProvider (Turtle notation)181
5.5 Context description as returned by the GeonamesContextProvider (Turtle notation)182
5.6 Context retrieved from the user’s calendar by GoogleCalendarContextProvider 182
5.7 Aggregated context models that constitute a context configuration instance . . . 183
5.8 An example SPARQL query produced by the DBpediaLocationDataProvider . 183

6.1 An excerpt of the DBpedia test data set used for the performance evaluation . . 191
6.2 Parsing performance of the Androjena framework depending on the serialization

format . 195
6.3 Parsing performance per device using the µJena framework 197
6.4 Parsing performance per device using the Mobile RDF framework 198
6.5 Parsing performance compartmentalized by device and serialization format . . . 200
6.6 Serialization and storage performance of the Androjena framework separated by

serialization format . 203
6.7 Serialization and storage performance using the µJena framework 205
6.8 Serialization and storage performance using the Mobile RDF framework 206
6.9 Serialization and storage performance compartmentalized by device and serializa-

tion format . 207
6.10 File sizes in bytes of RDF data replicas stored on the local file system depending

on the serialization formats supported by involved RDF frameworks 209
6.11 Performance of insertion operations on included devices using the Androjena

framework . 212
6.12 Performance of insertion operations on included devices using the µJena framework214
6.13 Performance of insertion operations on included devices using the Mobile RDF

framework . 216
6.14 Performance per framework for adding data sets of specific size to RDF data

replicas on the HTC G1 . 218
6.15 Performance per framework for adding data sets of specific size to RDF data

replicas on the Motorola Milestone . 219
6.16 Performance per framework for adding data sets of specific size to RDF data

replicas on the Samsung Galaxy S I9000 . 220
6.17 Performance per framework for adding data sets of specific size to RDF data

replicas on the Dell Streak . 221
6.18 Performance of removal operations using the Androjena framework 224
6.19 Performance of removal operations using the µJena framework 226
6.20 Example of the query method signatures and result sets implemented in the An-

drojena and µJena frameworks . 229
6.21 Example of the query method signature and result set implemented in the Mobile

RDF API . 229
6.22 Performance of retrieval operations using the Androjena framework 230
6.23 Performance of retrieval operations using the µJena framework 232
6.24 Performance of retrieval operations using the Mobile RDF framework 233
6.25 Construction of in-memory RDF graphs using the Androjena, µJena, and Mobile

RDF frameworks . 235

List of Tables

4.1 Symbols used in the formal model . 100
4.2 Relations existing between selected elements of the formal model 101
4.3 List of the generic states q ∈ Q of a context provider cp ∈ CP 107
4.4 Core classes of the data description ontology . 121
4.5 Domain and range values of the data description ontology properties 122
4.6 Symbols and descriptions of the inverted term indices 126
4.7 Symbols used in the transactional processing model 140

6.1 Overview of the Android Devices’ Specification 189
6.2 File sizes in bytes of locally stored RDF data replicas depending on RDF frame-

work and serialization format . 208

A.1 Detailed results of parsing RDF data replicas on the HTC G1 246
A.2 Detailed results of parsing RDF data replicas on the Motorola Milestone 246
A.3 Detailed results of parsing RDF data replicas on the Samsung Galaxy S I9000 . . 247
A.4 Detailed results of parsing RDF data replicas on the Dell Streak 5 247
A.5 Detailed results of storing RDF data replicas on the HTC G1 248
A.6 Detailed results of storing RDF data replicas on the Motorola Milestone 249
A.7 Detailed results of storing RDF data replicas on the Samsung Galaxy S I9000 . . 250
A.8 Detailed results of storing RDF data replicas on the Dell Streak 5 251
A.9 Detailed results of adding data to RDF data replicas using the Androjena frame-

work on the HTC G1 . 252
A.10 Detailed results of adding data to RDF data replicas using the Androjena frame-

work on the Motorola Milestone . 252
A.11 Detailed results of adding data to RDF data replicas using the Androjena frame-

work on the Samsung Galaxy S I9000 . 253
A.12 Detailed results of adding data to RDF data replicas using the Androjena frame-

work on the Dell Streak 5 . 253
A.13 Detailed results of adding data to RDF data replicas using the µJena framework

on the HTC G1 . 254
A.14 Detailed results of adding data to RDF data replicas using the µJena framework

on the Motorola Milestone . 254
A.15 Detailed results of adding data to RDF data replicas using the µJena framework

on the Samsung Galaxy S I9000 . 255
A.16 Detailed results of adding data to RDF data replicas using the µJena framework

on the Dell Streak 5 . 255
A.17 Detailed results of adding data to RDF data replicas using the Mobile RDF frame-

work on the HTC G1 . 256
A.18 Detailed results of adding data to RDF data replicas using the Mobile RDF frame-

work on the Motorola Milestone . 256
A.19 Detailed results of adding data to RDF data replicas using the Mobile RDF frame-

work on the Samsung Galaxy S I9000 . 257
A.20 Detailed results of adding data to RDF data replicas using the Mobile RDF frame-

work on the Dell Streak 5 . 257

xvii

List of Tables xviii

A.21 Detailed results of removing data from RDF data replicas using the Androjena
framework on the HTC G1 . 258

A.22 Detailed results of removing data from RDF data replicas using the Androjena
framework on the Motorola Milestone . 258

A.23 Detailed results of removing data from RDF data replicas using the Androjena
framework on the Samsung Galaxy S I9000 . 259

A.24 Detailed results of removing data from RDF data replicas using the Androjena
framework on the Samsung Galaxy S I9000 . 259

A.25 Detailed results of removing data from RDF data replicas using the µJena frame-
work on the HTC G1 . 260

A.26 Detailed results of removing data from RDF data replicas using the µJena frame-
work on the Motorola Milestone . 260

A.27 Detailed results of removing data from RDF data replicas using the µJena frame-
work on the Samsung Galaxy S I9000 . 261

A.28 Detailed results of removing data from RDF data replicas using the µJena frame-
work on the Dell Streak 5 . 261

A.29 Detailed results of retrieving elements from RDF data replicas using the Andro-
jena, µJena, and Mobile RDF frameworks . 262

A.30 Detailed results of constructing in-memory RDF graphs using the Androjena,
µJena, and Mobile RDF frameworks . 263

Dedicated to my family and all the people who supported me
throughout my life

xix

Chapter 1

Introduction

“Mobility is perhaps the most important current market and technological trend in information
and communication technology (ICT)”

Prof. Barbara Pernici (Politecnico di Milano)

Recent trends in information and communication technology indicate that mobile information
systems are becoming increasingly prevalent today. They allow for accessing information re-
sources and services independently of physical locations or temporal constraints. Mobile de-
vices also became an integral part of our everyday lives for managing our personal information
assets where more and more aspects are virtualized. This trend is accelerated by research
towards creating ubiquitous and pervasive computing environments (cf. [AMR02]) as evident
from recent deployments of near-field communication technology and communication networks
(cf. [Mad08, YKIAL09, BJRGN10]). Traditional mass media like television or radio broadcast
that were originally separated due to different technologies and separated communication chan-
nels are now becoming ubiquitously integrated and tailored towards mobile consumption. This
technological convergence of traditionally separated communication channels together with re-
cent technological advancements in terms of network technologies and protocols enable mobile
users to consume a wide variety of services and resources and send information across mobile
telephone networks regardless of any physical connection. New mobile infrastructures and more
reliable network connections with a higher Quality of Service (QoS) will change the way how
people access and consume information [Per06]. With such convergence of technology and net-
work infrastructure, resources and services can be accessed from virtually anywhere, i.e., regard-
less of the current location or prevailing equipment, at anytime, and anyhow using multimodal
communication and interaction channels. This form of mobility opens the door for new, more
sophisticated types of mobile applications.

1.1 Mobile Computing

Mobile computing has revolutionized the way information systems are used and utilized [FZ94].
While early mobile devices had been designed as part of a superior computing infrastructure and
require other components for being fully operational [FZ94], the current generation of mobile de-
vices are self-contained autonomous computing devices. They offer continuous and unobstructed

1

Chapter 1. Introduction 2

access to online available information built on multiple versatile communication channels that
could be established between communicating partners. This led to a paradigm shift from consum-
ing information towards producing information and participating in so-called social communities
and networks, where mobility adds another dimension: participation in such networks is no
longer a matter of spatio-temporal and physical circumstances but possible almost anytime and
anywhere.

The increasing advent of mobile devices also introduced a new computing paradigm that moves
from general-purpose towards task-specific computing [SBwG98]. Mobile devices in general need
to be increasingly aware of environmental, technical, and user-related changes since mobile in-
teraction is rather spontaneous and situation-dependent compared to desktop-based interaction
where the constituting environmental parameters remain relatively stable [MT07, ATH07]. One
reason for making devices and systems context-aware is to refrain people from the “infelicitous”
interference of technology [Eri02]. Context-aware computing is supposed to be a technologi-
cal solution to solve or at least minimize that issue, especially in consideration of the ongoing
technological advancements in pervasiveness, ubiquitousness, and mobility.

1.1.1 Mobility and Mobile Information Needs

Mobility not only influences the type of information we need but also how we access it as well as
the tools and mechanisms that are at our disposal to process it. Understanding the information
needs of mobile users and their interaction metaphors is crucial for improving mobile application
development and the usability of mobile devices in general [SLGH08].

An extensive study conducted to identify mobile search pattern in search queries reveals that mo-
bile search differs substantially from desktop search in terms of intra-query diversity1, the effort
needed for setting up a query, and the total amount of queries initiated in one session [KB06].
However, this study only focuses on how people use search engines rather than what information
they are really seeking for while taking into account motivation and situational circumstances
of users, i.e., the context in which a query was initiated. In contrast, Sohn et al. [SLGH08] con-
ducted a qualitative diary study to analyze the information needs of moving people and how they
address such needs, i.e., the strategies and methods they use to retrieve the required information
by observing search behaviors.

It turns out that plain internet access is often not sufficient for adequately addressing infor-
mation needs of mobile users since their situational contexts and current activities could not
be addressed sufficiently (also see [CS08]). Other issues concern the impedimental interaction
with the device while browsing for information, the extensive attention needed for interaction
and information seeking tasks, and the lack of methodological knowledge on how to address a
specific information need although users had the required resources (tools and permissions etc.)
at their disposal [SLGH08]. As a consequence, sole internet access does not solve or contribute
to the majority of mobile users’ information needs.

Despite the technical limitations of mobile devices, there had been attempts (e.g. [McL02,
XMS+05, KTCY09]) to convert desktop browsing interfaces to mobile screens. However, de-
ploying desktop metaphors on mobile devices does not seem to be appropriate for mobile users
since mobile applications and services need to be tailored to the specific needs and requirements

1The diversity of queries initiated in mobile setting is significantly lower compared to queries on desktop
search. Additionally, query categorization reveals that context searching behavior is similar to desktop searching
behavior although query exploration is significantly lower.

Chapter 1. Introduction 3

of mobile users [SLGH08]. Personal information needs often depend on the particular situation—
the context—a user is currently in. Recent endeavors (e.g., Google GOOG-4112, Google mobile3,
or Microsoft Live Search4) try to address these issues to provide mobile context-sensitive services,
but still require substantial human involvement. In this respect, it is crucial to understand the
types of information mobile users need as well as how these needs are addressed.

According to that study, 72 percent of information needs are attributed or related to context5.
Context-aware computing can significantly support the task of information access and proactive
opportunistic information delivery. Due to the fact that context is likely to change the needs
of users and how they address it, a context-aware computing infrastructure should be incorpo-
rated into the essence of mobile devices [Teo08]. By analyzing the user-related activities, users
can be supported with information related to their current tasks at hand in a proactive and
opportunistic manner. Calendar items as a special form of timely orchestration of events might
help in sorting and determining information that might become important on future events.
However, an estimated amount of 58 percent of mobile information needs could be satisfied by
requesting publicly available data sources [SLGH08] wherefore we consider Linked Data reposito-
ries (cf. [Biz09, BHBL09]) as one of the main sources for local data replication. The information
hosted in Linked Data sources is potentially relevant for a wide range of application domains and
in particular for mobile applications. In the following, we exemplify the benefits of replicating
Linked data to a mobile device by means of three application scenarios:

• Efficient Mobile Personal Information Management. The quality of mobile personal in-
formation management can be significantly improved by augmenting the personal space
of information with publicly available data that may originate from Linked Data sources:
58% of mobile information needs can be satisfied by publicly available data [SLGH08]. For
instance, data from FOAF profiles can be directly integrated into the user’s local address
book, therefore keeping the user’s contacts database up-to-date. Similarly, events that
are of interest to the user can be directly imported into their calendars, if event data are
available on the Web in structured form.

• Location-based Services. When users are traveling with their mobile devices, it is quite
common for them to use location-based and social services to become informed about their
current location. For instance, information from geographical services can be combined
with semantically annotated news feeds and user reviews in order to form a unified, context-
aware information stream. Therefore, semantic mashups bring additional user benefit that
a single information source cannot provide.

• Emergency Management. Especially in crisis regions (e.g., after an earthquake), first-aiders
cannot expect the local infrastructure (especially power supply and cellular network cover-
age) to operate normally. However, being equipped with the right data can be of significant
importance to persons who are not familiar with the local circumstances. Therefore, it is
crucial that in such situations relevant information (such as local points of interest, ameni-
ties, infrastructure, etc.) is proactively replicated to their mobile devices in order to allow
aiders to perform their work more efficiently.

Additionally, 38 percent of users’ information needs are of personal nature and can be solved
by accessing personal information items; having an infrastructure that proactively retrieves and

2Google GOOG-411 service: http://www.google.com/goog411/

3Google mobile service: http://www.google.com/mobile/

4Microsoft bing: http://www.discoverbing.com/mobile/

5See [SLGH08] page 440 and Figure 5(a).

http://www.google.com/goog411/
http://www.google.com/mobile/
http://www.discoverbing.com/mobile/

Chapter 1. Introduction 4

updates such items can help people saving time and effort. Future mobile systems should there-
fore take into account a user’s context as well as her personal data items stored across multiple
sources to better address mobile information needs [CS08, SLGH08].

1.1.2 Context and Context Awareness

Humans in general have five senses through which they gather information in form of bio-chemical
processes that constitute the basis of our actions, believes, judgements, and how we conceive the
surrounding environment and reality in general [KPL+04]. These collected or “sensed” infor-
mation form the basis of our judgments and our way to conceive our reality. Based on the
interpretation of signals collected by our senses, we are able to conceive a given situation and
take appropriate actions. To simulate that behavior technically, devices are equipped with little
microprocessor-driven sensors that allow for gathering specific aspects of the surrounding envi-
ronment electronically and represent them as machine-processable raw data. By interpreting and
aggregating such data, machines are able to assign “meaning” to those collected data streams
and draw inferences to “understand‘” a given situation and process it accordingly. Context and
context awareness are thus thought of as the machine-equivalent to the human capability of
judging a situation and taking appropriate actions [KPL+04]. Context is also of great impor-
tance regarding the selection processes of humans: context helps people to determine relevant
aspects of the current situation thus preventing us from information overload that originates
from environmental stimuli [MT07]. The central idea of context as discussed in the computer
science literature is to bind information processing and communication tasks to situational as-
pects [SBwG98]. The most prominent example of context-dependent adaptation can be found in
the implementation of context menus in graphical user interfaces, which adapt their menu items
according to the selected element.

Context combines information processing and communication tasks with aspects of the surround-
ing environment and relates them to the personal concerns of individuals, their goals, tasks at
hand etc. [Bon04]. One way to achieve such form of awareness about the surrounding environ-
ment and the different situations a mobile device is operated in, is by formalizing and processing
contextual information. The central question in this respect is what is context, how can it be
formalized and processed, and how can context awareness be formalized and utilized for mobile
information systems [GSB02]. Our underlying assumption is, the more a device knows about its
user, the environment, and the situation in which it is used, the better assistance it can provide
in accessing relevant services, delivering relevant information, and contribute to an overall user
experience (cf. [SBwG98, ATH07]). According to this assumption, the user should take a central
role since their relationships to the surrounding environment often determine the relevance and
interpretation of contextual aspects.

Context awareness in its simplest form describes a system’s capability to conceive aspects of
the physical and virtual environment it is operating in and dynamically adapt its behavior
and internal decision making processes according to the computational analysis of such as-
pects [Dey00, FMGI06]. Context awareness can therefore be defined as a system’s capability
of using contextual data for providing relevant information and services with respect to the cur-
rent situation of the user [Dey01]. A system can be denoted as “context-aware” when it is able
to adapt its behavior to ongoing activities, as well as the operational environment where it is
used in [ST94, ADB+99]. Context-aware applications and systems are able to react according
to those changes in an intelligent and user-related manner [ATH07].

Chapter 1. Introduction 5

This can be accomplished by sensing and interpreting changing conditions, resources, and pro-
cesses [Dey00, FMGI06]. Context awareness can also be thought of as the machine-equivalent
to the human capability of judging a situation and taking appropriate actions [KPL+04]. From
a technical viewpoint, context awareness refers to the accurate extraction, combination, and in-
terpretation of contextual information, gathered from various multi-modal sensors [BC04] where
its objective refers to the identification of the set of relevant features that describe and represent
a given situation with the greatest possible accuracy [SBwG98]. The key aspect in this respect
lies in answering the question which information sufficiently characterize the situation in which
a user currently operates or at least helps in identifying it.

An important aspect in this respect is relevance ([Bon04]) that defines the meaningfulness of
contextual information by measuring their relevance according to the user’s activities and current
tasks at hand. Assuming that every piece of information can be considered context-relevant
(cf. [ADB+99]), we need to define a filter that distinguished between related and relevant-
related contextual information as they directly influence the outcome of a system’s responses
and adaptation processes [Bon04, BCQ+07]. The main objective of context-aware computing
therefore is to structure and select those information that can be defined as relevant to users
and their tasks at hand and thus becoming context-relevant.

Attempts to categorize context and context-aware approaches suffer from the non-existent avail-
ability of a common and general understanding about context and context-awareness across
domains [SBwG98]. Context in general is defined differently across communities where the focus
of most approaches was put on the acquisition and processing of contextual information rather
than finding a unified model and theory of context [Bon04]:

“Context is not any more a matter of knowledge representation or knowledge pro-
cessing, but information about a concrete environment of a person, device, computer
network.”

Early attempts in context-aware computing in particular suffer from the exclusive concentration
on specific forms of contextual aspects (in most cases location) and context approximations that
were derived from environmental aspects and provide either too low or too specific abstractions,
or were designed for specific application domains [SBwG98]. However, this form of conception
and treatment amplify the problems in unifying and consolidating the heterogeneous context
definitions and models, which manifest themselves in a lack of generality, flexibility, and extensi-
bility6 [Bon04]. Recent approaches therefore claim for representing context using generic models
augmented by languages and frameworks that allow for the explicit specification of meaning
using semantic technologies. These will be introduced and discussed in the course of this thesis.

1.1.3 Context and Context Awareness in Mobile Information Systems

Context awareness should be incorporated into mobile information systems for the following
reasons [ATH07]: (i) user contexts change more frequently due to mobile behavior, (ii) mobile
devices are operated in highly dynamic environments with constantly changing user requirements,
and (iii) mobile information needs are different from those of desktop users wherefore search
capabilities7 need to be augmented with contextual information to tailor result sets towards the
user’s current situation and information needs [SLGH08].

6These problems are discussed in Section 2.5.
7For instance query adaptation and query expansion

Chapter 1. Introduction 6

Throughout this work, we use the term ‘mobile information system’ according to the definition
provided by [Per06]:

Definition 1.1 (Mobile Information System). A mobile information system is an
information system that allows for accessing resources and services independently of
spatial and temporal constraints by using end-user terminals typically based on wireless
connections. In a mobile information system, resources and services can be accessed
by a multitude of different devices through different communication channels.

Within the domain of Mobile Computing, context is generally used for multiple purposes: (1) in-
creasing the accuracy of the information retrieval process, (2) adaptation of device behavior ac-
cording to the environment in which it operates, and (3) increasing the usability and interaction
between a user and the device (cf. [SBwG98, KPL+04]). This is achieved by either filtering the
flow of information (i) from the device to the user to decrease information overload as well as
(ii) from the user to the device, where user-generated data is augmented with contextual in-
formation predominantly in an automated and transparent manner to add additional meaning.
The underlying rationale is that mobile communication requires the user’s explicit concentra-
tion and attention where context-assisted communication will introduce new interaction styles,
techniques, and paradigms (e.g. transparent interaction [Abo99]) that in turn reduces the cog-
nitive load and explicit interaction with the device (cf. [KPL+04]). Contextual-aware systems
in general provide a “more natural and less obtrusive way of interaction” and contribute to an
enhancement of the overall mobile usability and user experience [MT07]. Other research in the
domain of mobile computing [KA04] has attempted to use context awareness for overcoming the
technical limitation imposed by current mobile devices in terms of small screen sizes and limited
interaction possibilities. Users often are confronted with multiple simultaneous activities and
information channels, where context-aware computing promises to improve user interaction by
reducing explicit user inputs and attention [KA04]. In this respect, context-awareness allows for
a transition from traditional explicit user-driven interaction design to an implicit context-driven
interaction design [SS00, GSB02]. This aspect is particularly relevant for mobile information
systems since multiple simultaneously running applications are competing for the user’s explicit
attention. Context awareness can be therefore considered as a methodology for facilitating hu-
man computer interaction by lowering explicit cognitive load and user attention.

Deriving reliable information from multiple heterogeneous sources in uncertain and rapidly
changing environments is mandatory for efficient context awareness in the domain of mobile
computing [KMK+03]. The challenge in providing accurate and reliable context information
lies in the detection and elimination of noisy, faulty, inaccurate, or—in worst cases—conflicting
and contradictory data retrieved from heterogeneous sources. Especially in mobile and dynamic
ad-hoc environments, context-relevant information can change rapidly and unpredictably, and
evolve over time. Even if context-related data represent real-world contextual constellations
precisely and accurate, users might find automated adaptation of application or device behavior
irritating due to different conceptualizations of context [KMK+03].

The real challenges of context-aware computing thus lie in the accurate detection of user con-
texts under the assumption that they are not known a priori [ATH07] and to avoid and reduce
the misinterpretation of context which might arise due to the complexity of context and its
relative nature [WB05]. This requires a selection of an appropriate representation logic and a
mechanism that allows to backtrack and resolve inappropriate actions resulting from context
misinterpretations.

Chapter 1. Introduction 7

In information systems, context is often treated as a special resource that defines and is de-
fined by the sensors being relevant to it, and which must be observed to detect context tran-
sitions. This implies that only one single context is active at any given point in time and
that a context can be characterized technically by the number of active sensors and the prop-
erties they measure. Most context-aware approaches therefore used isolated subsets of con-
text such as location, identity, or technical and physical characteristics whereas recent works
(e.g. [KA04, EPR08, CRL+09, HDW09]) motivate to direct research into exploring the rela-
tionships between the different context elements and examining their impact on the efficiency
on context-aware applications [KA04]. However, using Semantic Web languages and knowledge
representation languages, such relationships can be made explicit and described in a structured
and well-defined way using controlled vocabularies and ontologies that are based on formal logic
(cf. Section 2.7).

However, recent research in integrating context awareness into the essence of mobile applications
suffers from a “fundamental methodological weakness” and demands for solid design methodolo-
gies [RTA05]. This fact influences the development of effective context awareness methodologies
and models, which are seen as a key requirement for delivering useful information related to the
current user activities as well as their communication concerns. Another factor that exacerbates
the deployment of context-aware applications in mobile systems can be attributed to the lack of
conceptual models, methods, and tools that would promote and facilitate the design of context-
aware mobile applications [DAS01]. Mobile devices typically operate in environments that are
characterized by unstable states, unpredictable contextual conditions, dynamically changing lo-
cations of users etc. However, such conditions have a significant influence on the way how users
interact with the device.

Context-aware computing for mobile and pervasive environments has not reached its full potential
yet, where the semantic interoperability between context descriptions and context sources as
well is still not handled satisfactorily. Hu et al. [HDW09] identified the lack of a standardized
infrastructure for context acquisition, utilization, and semantic interoperability among context
sources as the main reason why context-aware computing is only insufficiently supported in
mobile and pervasive computing yet. The diversity and magnitude of contextual information, new
interaction patters, mobile operation modalities, and the increasing growth of context-relevant
data are additional reasons for the weak adoption of context-aware computing paradigms in
mobile and ubiquitous computing.

One possible field where context-awareness can increase the quality of mobile information man-
agement is proactive information provisioning [SZ09a, SZ09b, ZS10, ZS11]. We can rightfully
expect that an information system should be capable of providing information relevant to the
user’s current task. However, a system that is capable of doing this without the need for the
user to explicitly issue search and retrieval operations can bring significant benefit, because often
users are not capable of explicitly expressing their information needs [SLGH08]. This is espe-
cially true for mobile environments and their limited interaction possibilities. In the following
section, we present an example scenario where a mobile user is supported by such a proactive
information provisioning system.

Chapter 1. Introduction 8

1.2 Motivating Example

John is a representative of a medium-size software company. His tasks include to regularly
contact potential customers in order to create awareness for his company’s most recent prod-
ucts, to maintain relations with already existing customers in order to ensure their support and
maintenance plans still work for them, and to represent the company at exhibitions, industry
conferences, and relevant meetings.

His company maintains a customer relationship management software, a product database, a
shared calendar system, a company-internal Wiki system as collaboration platform, and a shared
file server to store all kinds of documents. Because of his job, John is often required to travel to
abroad places. In consequence, he heavily relies on mobile infrastructure to get his work done.
He has a powerful laptop, which he uses as his primary working device, as well as a mobile phone,
which is used as his personal information management device.

When he is on travel, it is crucial for him to be equipped with all relevant information for his
business meetings and other activities. However, he can never be sure to have online access to his
company’s network from wherever he goes, since certain limitations are in place: missing network
coverage or security restrictions may prevent him from establishing a connection via the cellular
network, and even if he manages to setup a connection, it may be slow and unreliable. For this
reason, John often relies on local replicas of relevant data, which he stores on his laptop and (to
a far lesser extent) on his mobile phone. However, because of the limited storage capacity of
these devices and the necessary infrastructure, he cannot synchronize all data from all systems
mentioned before, so he has to carefully select subsets of these data, which is a tedious and
error-prone task.

This selection needs to be done before each trip, since he needs different information every time:
this includes data about the (potential) customers he is going to meet (this includes organizations
as well as persons), the locations and venues he is going to (including points of interest to visit
in his spare time), latest information about the products he is trying to sell (which requires close
cooperation with his company’s product managers and development department), and data
needed for his trip planning and administration (including timetables and travel accounting
information).

A system that would be able to automatically select data for replication from a variety of systems
would be highly desirable for John, since it would save him several hours of preparation time
before each longer trip. Such a system could make use of a number of data sources, which provide
valuable hints about which data could be of importance during his trip. First, John organizes
all his upcoming appointments and travel plans in his digital calendar, which contains dates,
locations, and participants of meetings. Additional information about people and organizations
can be found in John’s personal address book, as well as in the company’s customer relationship
management system. There, references to products that customers will use are mentioned; these
refer to entries in the product database.

Additionally, the system could infer potential selling options from the interest topics that are
stored for leads and potentials. Further, it can lookup information about locations and points of
interests that John will visit from external public data sources, e.g., the Linked Open Data cloud.
Further, it can find (via keyword lookups) articles from the company-internal Wiki system and
the shared file server and replicate all these data to John’s both mobile devices. For this purpose
the system could rank each information item according to its assumed relevance, and replicate
data according to the mobile devices’ capacities.

Chapter 1. Introduction 9

During his trip, John will update and extend the replicated data with upcoming information
(e.g., contact data and interests of new potential customers). Whenever his devices have sufficient
network connection to his company network, the system should automatically synchronize his
devices, upload changes, and update his local replicas according to possible changes in his context.
After he has returned from the trip, all information is synchronized back to their origin systems,
ensuring that no data are lost. If the system is able to track John’s actual usage of replicated
information during the trip, it can utilize this implicit feedback to adjust its relevance ranking
algorithms, and therefore improve the selection for his next trip.

1.3 Problem Description

Given the different and contradictory views on context and context awareness, it is useful to
consider the question of how applicable existing research in the field of context-aware computing
is to the problem of mobile RDF data replication and Linked Data exploitation in general,
and whether existing results in Semantic Web and context-aware computing research can be
efficiently combined and deployed on mobile information systems to establish a context-sensitive
infrastructure for the exploitation and replication of RDF data. This thesis contains a detailed
review of the research literature of context and context awareness and elaborates on how context
can be represented, processed, and stored using semantic technologies on a mobile information
system. This analysis forms the basis for innovation in context-driven RDF data replication
on mobile devices, uncovering useful concepts and techniques that can be applied to context-
dependent mobile Semantic Web-based information systems, and offers improvements for the
issues that current RDF frameworks for mobile platforms experience. The peculiarities and
generic graph-based structure of the RDF data model render its processing especially on mobile
systems cumbersome and inefficient (resource consuming) due to the lack of efficient frameworks
and infrastructures for mobile RDF processing, management, and storage8 (see [Zan09, SZ09a,
ZS10] and Section 3.3).

The efficient acquisition and processing of distributed and heterogeneous RDF-based context
descriptions highly depends on concepts and methodologies explored and researched by the
database management systems (DBMS) community – especially in the domain of distributed
transaction management (cf. [GR92]). Those findings need to be adapted to the peculiarities of
mobile information systems to provide an infrastructure for the efficient context-dependent RDF
data replication and storage for mobile information systems that is facilitated by technologies
and languages from the Semantic Web.

Although progress has been made in applying context-aware computing research to Semantic
Web research and vice versa (cf. [GMF04, Bon04, HMD05, EPR08, CRL+09]), the demonstration
of a unified Semantic Web-based context management and processing architecture specifically
designed for context-driven RDF data replication to mobile platforms still remains an open
issue. Little work has been done in examining the creation of a context-dependent replication
infrastructure for mobile systems to date [ZS11]. This places limitations on information systems
targeted towards the mobile exploitation, utilization, and replication of RDF and Linked Data
sources and also on a wider adoption of the Web Of Data [Biz09] in mobile information systems
research.

8Other works (e.g. [MWL+08, Owe09]) investigated optimization strategies to increase RDF triple store per-
formance; however, those issues become more obvious when RDF data is to be processed and stored on resource
constraint systems such as mobile device or PDAs.

Chapter 1. Introduction 10

Although the replication and processing of RDF data on mobile devices offers a magnitude of
significant advantages and new possibilities to mobile application development, such data cannot
be easily deployed on and processed by mobile devices due to the following reasons:

• Technical limitations: despite the significant recent technical advancements in this field,
mobile devices are still restricted in terms of memory capacity, computational performance,
power supply, and heat generation. Therefore, potentially large Linked Data sets cannot
be processed efficiently by mobile devices. Instead, algorithms are needed that facilitate
an intelligent selection of potentially relevant data w.r.t. users information needs and tasks
at hand.

• Connectivity or network-related constraints: network connectivity might be hindered by
several factors, e.g., technically (no cellular radio coverage), economically (high transaction
costs), or because of security restrictions (protocol restraints, blockade of several ports).
These may render the usage of applications with a high degree of network traffic impossible.

• Different application and operation models: since mobile devices use different modalities
in accessing information and are operated in different contexts, current tasks might be
intermitted abruptly or moved to the background. Therefore different application models
and operating system infrastructures have to be employed in order to deliver an appropriate
user experience.

• Missing RDF processing capabilities: existing Semantic Web frameworks such as Sesame9,
Virtuoso10, and Jena11 are too heavy-weight to be efficiently deployed on mobile devices,
while common data management frameworks for mobile systems provide only rudimentary
RDF support.

These issues clearly indicate that mobile systems require a more sophisticated approach in making
RDF and Linked Data available that is centered around user activities while considering the
different contexts users may be operating in. To the best of our knowledge, there is no such
system in existence yet, and we believe that this work will greatly inform and stimulate both
the Semantic Web community as well as the mobile computing community in further combining
both technologies for context-aware computing and contribute towards synthesizing research in
those areas.

However, this work does not intend to solve the problems related to the absence of a general
model of context and context awareness in mobile computing (cf. [SBwG98, RTA05]), but it
helps in achieving a technological convergence towards open and flexible models for contextual
information representation as well as processing and management architectures that better re-
semble the special characteristics and nature inextricably linked with the notions of context and
context awareness.

1.4 Contributions

The central contribution of this thesis is a formal and conceptual specification of a Semantic
Web-based context processing and management framework for mobile RDF data replication to
facilitate the information needs of mobile users by proactively and transparently replicating

9Seasame: http://www.openrdf.org

10Virtuoso: http://virtuoso.openlinksw.com

11Jena: http://jena.sourceforge.net

http://www.openrdf.org
http://virtuoso.openlinksw.com
http://jena.sourceforge.net

Chapter 1. Introduction 11

data to the mobile devices that address current and future information needs. The proposed
architecture supports the acquisition, aggregation, consolidation, and dissemination of contextual
information acquired in a distributed fashion from heterogeneous context sources and allows for
the exchange and reuse of context descriptions by using well-defined semantic vocabularies for
describing contextual information. This work contributes to research in context-aware computing
on mobile systems backed by semantic technologies, taking into account the peculiarities of
mobile platforms and information systems and the lessons learned from the implementation of
several aspects of the proposed architecture and the motivating example.

In the following, we outline the main contributions of this work and also present contributions
that have been created in the context of this thesis but are published elsewhere:

• A Semantic Web-based context processing and management framework for mobile RDF
data replication
By replicating related data in a transparent and proactive manner to the mobile device, we
can better address the current and future information needs of mobile users and foster the
development of applications and services that utilize such information. The architecture
was built on principles from graph theory and distributed transaction management for the
acquisition, augmentation, and aggregation of context-relevant data gathered from a variety
of different sources in a deterministic and well-defined manner while maintaining data and
process consistency. It allows to combine independently acquired contextual information
to derive additional, high-level context information that was not initially anticipated. We
conceptually describe the set of constituting components that cover the entire context pro-
cessing life cycle comprising context identification, acquisition, interpretation, aggregation,
consolidation, reasoning, storage, and dissemination. This infrastructure can be deployed
on mobile devices that contain a Java virtual machine and adapted to certain scenarios.
It can serve as a basis for deploying more sophisticated services or application frameworks
for instance for situational awareness (cf. [Geh08, LFWK08, SWB+08, CCMS10]) or for
enhancing personal information management (cf. [BS04, Kel06]) through the connection
to semantic desktop systems [HMD05, SBD05, FAS09]. The framework also contains a
persistent storage mechanism for RDF data based on the µJena RDF framework that
was extended with a graph-based storage implementation backed by the SQLite database
provided by the Android platform. It exhibits two significant advantages compared to
server-based approaches as it does not depend on the availability of an external system
and all contextual data (which may include highly private information) are processed lo-
cally on the mobile device, which reduces security and privacy issues. Different aspects
of our approach and the constituting architecture were published in several workshop and
conference and papers as well as journal articles (e.g., [SZ09a, SZ09b, ZS10, ZS11, ZS12b]).

• Formal model and conceptual architecture for the acquisition, aggregation, and consolida-
tion of heterogeneous RDF-based context descriptions taking into account technical and
conceptual peculiarities of mobile devices and mobile operating systems
The underlying formal model is based on the idea of cascading context acquisition compo-
nents in orchestration graphs (cf. [AMR02]) that allow for a controlled and deterministic
execution of acquisition workflows while maintaining data and process consistency and
considering technical and conceptual peculiarities of mobile devices. From the analysis
of existing works in related domains, we have identified a set of requirements that serve
as a basis for the conceptual architecture in order to avoid the emergence of inaccurate,
inconsistent, incomplete, or outdated contextual information. Due the dynamic and un-
predictable character of mobile environments, compensation strategies have been included

Chapter 1. Introduction 12

in the conceptual model to deal with situations in which a context source is temporarily
unavailable or malfunctioning. Aspects of the formal model were published as preliminary
results in earlier works (e.g., [SZ10b, ZS12b]).

• The specification and prototypical implementation of a formal graph-based orchestration
model for context acquisition and aggregation based on a minimal, lightweight data de-
scription ontology

We have defined a lightweight ontology for describing the data a context acquisition compo-
nent emits that serves as a basis for identifying compatibilities between context acquisition
components and combining their acquisition workflows by cascading them in orchestration
networks. The data description ontology allows for describing emitted data on different
granularity levels that are considered by the orchestration algorithm. The compatibility
among context acquisition components is computed by a matching algorithm based on
configurable scores for correspondences on namespace, concept, and property levels. In ad-
dition, the orchestration algorithm considers RDFS semantics such as rdfs:subClassOf
relationships. For instance, if one context provider emits foaf:Person instances and an-
other context provider requires foaf:Agent instances as input data, the matching algo-
rithm detects the compatibility between these differing concepts since foaf:Person is a
subclass of foaf:Agent according to the FOAF ontology [BM07]. The building process
is completely decoupled from the context framework where rebalancing the orchestration
networks does not affect context acquisition tasks.

• A comprehensive evaluation on quantitative and qualitative aspects of current mobile RDF
frameworks

We have conduct a comprehensive evaluation regarding the features offered by currently
available RDF frameworks for mobile devices. We focus on quantitative aspects regard-
ing the parsing, storage, and processing performance as well as on qualitative aspects
concerning ontology, language, query, and reasoning support, as well as quality of docu-
mentation, API robustness, licensing model etc. The analysis of quantitative aspects has
been conducted on different classes of Android devices to obtain insights about the scala-
bility behavior of mobile RDF frameworks with respect to available hardware resources and
processing power. This analysis identifies potential areas where mobile RDF frameworks
need to be improved and points out the weaknesses regarding the storage, processing, and
query of large RDF data sets on mobile devices. To the best of our knowledge, no such
comprehensive analysis exists to date whereas results from preliminary and less exhaustive
studies were published in [ZS10, ZS11].

• An evaluation of current frameworks and applications in the Semantic Web domain that
synthesize context-aware computing with technologies and concepts from the Semantic Web

We have analyzed existing projects in the Semantic Web domain that already incorporate
or are built on context-aware computing functionality and published preliminary results
in [Zan09, ZS11, ZS12b]. Since existing works in the domain of ubiquitous and pervasive
computing have been extensively surveyed (e.g. [ADB+99, CK00, RTA05, BDR07, Kja07,
SB08a]), we exclusively concentrated on Semantic Web-related projects that aim to synthe-
size context-aware computing functionality with semantic technologies and languages and
mobile information system aspects. For our analysis, we identified requirements that we
consider relevant for classifying a system as context-aware. This gives readers an impression
on the context-aware functionalities offered by current works and helps them classifying
existing systems according to distinct requirements. To the best of our knowledge, no such
analysis exists to date for mobile Semantic Web-based context-aware applications.

Chapter 1. Introduction 13

• Showcase that demonstrate how the work of a knowledge worker can be improved through
the proactive and transparent replication of publicly available RDF data

We demonstrate the feasibility of our approach through the prototypical implementation of
a typical use case of a knowledge worker that is on a business trip including several meetings
and he/she can not rely on a stable network connection. We implemented a number of
context and data providers that acquire data related to the user’s current position, combines
them with personal information items extracted from the user’s local address book and
calendar, and replicate data about persons the user is likely to meet within the next days
together with information about points of interest that are in her immediate vicinity to
the mobile device. Details regarding the implementation of the case study were published
in [ZS11].

• A discussion of possible fields where Semantic Web technologies and concepts can enhance
context-aware computing on mobile devices

Early approaches in context-aware computing suffered from a number of limitations and
the usage of proprietary technologies and languages for processing and representing con-
textual information (e.g. [SBwG98, Dey01]). We could identify an number of similarities
between the acquisition and processing of contextual information that has been acquired
from distributed context sources and the Semantic Web, which was designed as an in-
frastructure to deal with distributed and heterogeneous data descriptions by reconciling
syntactical, structural, and semantic heterogeneity and explicitly representing data se-
mantics [BLHL01, WVV+01]. By applying those concepts and technologies to context
processing and management, we are able to build an architecture that fosters interoper-
ability and exchange among context descriptions in a semantically enriched way by using
vocabularies being built on formal logic and well-defined semantics. We outline those areas
of context-aware computing that benefit from the application of semantic technologies and
demonstrate the usefulness for future context-aware computing projects. Main aspects of
this issue are published [ZS12b].

• A framework for the local storage and dissemination of replicated RDF data

To allow other applications to utilize replicated data, we have implemented an RDF-based
content provider that offers access to local data replicas. The RDF content provider covers
operations for accessing data replicas as well as business logic that ensures synchronization
among replicas and modifications performed on them. It contains the projections between
the graph-based representation of RDF data and the relational model exposed by the
local SQLite database that serves as a mobile triple store. The RDF content provider
can be easily utilized by other projects to implement a local RDF storage infrastructure.
To provide a persistent storage mechanism for RDF data, we have extended µJena RDF
framework with a storage implementation that is backed by the SQLite database provided
by the Android platform and uses a normalized triple table design (cf. [AMMH09]) for
storing RDF models. Moreover, µJena has been extended with lightweight support for
named graphs [CBHS05]. Details of this work were published in [ZS12b].

• Implementation of a mobile RDF browser for the visualization and navigation of local data
replicas and external Linked Data sources

The implementation of a mobile RDF browser shows how locally replicated RDF data can
be visualized in a user-friendly interface so that users can browse and navigate through
data replicas. The RDF browser considers the semantics of selected RDFS [KC04] and
OWL [PSHH04] vocabulary elements and adapts its rendering algorithms accordingly.
Moreover, it extracts and renders multimedia objects contained in an RDF document.

Chapter 1. Introduction 14

This prototypical RDF browser implementation offers mobile users the possibility to ex-
perience the benefits of proactively replicated data without the burden of coping with
technical or implementation details of the underlying infrastructure. It has been improved
in a number of iterations and is to date the one and only available browser that offers such
functionalities. Since it is implemented as an open-source project, it can be easily used
and extended in other applications or projects. A detailed description of this work is to be
published in [ZS12a].

1.5 Overview of this Thesis

In Chapter 2 we give a comprehensive overview of the notions of context and context awareness,
elaborate on how they are used and understood across communities, outline their role and uti-
lization in information systems, and discuss problems and limitations. We ascertain the two main
streams, wherein context is either considered a representational issue reflecting environmental
aspects, and as an emergent phenomenon12 that is continuously re-negotiated between commu-
nicating partners and thus cannot be determined beforehand, especially not at the design time
of a mobile system. We also give a brief introduction to the general idea of the Semantic Web, its
main constituents and involving technologies, as well as its knowledge representation languages.
The chapter concludes with a discussion of possible areas where context processing and manage-
ment can be substantially enhanced by the deployment of Semantic Web technologies, leading
to an approach that we denote as Semantic Web-enhanced Context-aware Computing.

Since currently available full-fledged RDF frameworks can not be deployed on mobile systems for
several reasons (cf. [ZS10]), we comprehensively analyzed current RDF frameworks developed
for mobile devices according to their RDF processing capabilities and provide an overview of
their features in Chapter 3. This overview is followed by an analysis on the current state of
the art of projects that emerged in the Semantic Web domain and aim to synthesize context-
aware computing, technologies and languages from the Semantic Web, and mobile information
system architectures. We analyze the capabilities and context-relevant features offered by those
projects and provide an evaluation framework that helps readers classifying existing systems as
context-aware.

This analysis serves as a basis for defining a number of requirements and design considerations for
the proposed context-sensitive RDF data replication architecture, which is presented in Chap-
ter 4. We formally describe the concepts and distinguishing features of the replication framework
and give in-depth insights into the constituting components, formal models, and algorithms for
mobile context acquisition, aggregation, consolidation, and dissemination. We also present a
loosely-coupled context-acquisition model that resembles concepts from graph theory and dis-
tributed transaction management to maintain data and process consistency as well as a formal
description of the graph-based orchestration model and an exposition of the data description
ontology.

The prototypical manifestation of the formal model and conceptual system architecture is in-
troduced and described in Chapter 5 together with a case study that is built upon the proof-of-
concept prototype. In the first part, we introduce Android as a novel development platform for
mobile applications. Distinctions to existing platforms are ascertained and some of the unique
features of using Android as development platform for our approach are expounded. In the

12This perception reflects the dynamic character of context.

Chapter 1. Introduction 15

second part, we give and overview of the class structure of context acquisition and data repli-
cation components that allows 3rd-party developers to exclusively focus on the acquisition and
replication logic rather than dealing with processing and management-related aspects. The fea-
sibility of our approach is presented in the last part of Chapter 5 and illustrated through the
implementation of a real-world use case introduced in Section 1.2. The use case serves as proof
of concept of our chosen approach and demonstrates how the proposed framework can be used
to proactively replicate RDF data on the mobile device to ensure that a knowledge worker is at
any time equipped with data about people they are likely to meet in the near future, as well as
information about people and points of interest that are based near the user’s current position.

In order to evaluate the practical applicability of our approach, we present a comprehensive
performance analysis about the processing efficiency of local RDF data replicas on modern mobile
platforms using the proposed context-sensitive RDF data replication framework. In Chapter 6,
we therefore analyze and discuss the runtime behavior of typical RDF processing operations
applied to local RDF data replicas and evaluate whether data replicas can be processed on
current mobile devices in reasonable time using available RDF frameworks. We used devices
from different mobile marked segments representing different device classes in order to be able
to make assertions about the scalability and memory dependency of our approach.

In Chapter 7, we conclude our work by summarizing the findings, which have been acquired
throughout the preparation of this thesis and the implementation of the constituting components
and discuss future research directions and potential application domains.

Chapter 2

Background

“Context is not simply the state of a predefined environment with a fixed set of interaction
resources. It’s part of a process of interacting with an ever-changing environment composed of

reconfigurable, migratory, distributed, and multiscale resources.”

Coutaz et al., Context is Key (2005)

This chapter is intended to provide fundamental background knowledge about technologies and
concepts that are necessary for building a Semantic Web-based context management and pro-
cessing infrastructure for mobile devices. We provide an introduction to the concepts of context
and context awareness and ascertain the two main streams wherein context is either considered
a representational issue reflecting environmental aspects, and as an emergent phenomenon that
is continuously re-negotiated between communicating partners and thus cannot be determined
beforehand, especially not at the design time of a mobile system. We show, how such dynami-
cally evolving contexts can be represented and processed using technologies and concepts from
the Semantic Web, while preserving its unpredictable and dynamic characteristics—a require-
ment neglected by most context-aware computing approaches [Teo08]. The section also gives a
brief introduction to the general idea of the Semantic Web, its main constituents and involving
technologies, as well as its most prominent knowledge representation languages. The section
concludes with a discussion of possible areas where context processing and management can be
substantially enhanced by the deployment of Semantic Web technologies, leading to an approach
that we denote as Semantic Web-enhanced Context-aware Computing.

2.1 Definition and Overview

The notions of context and context awareness have been subject to controversial discussion and
differing perception across communities. Several definitions have been proposed to context,
depending on its actual usage as well as on the domain in which it was utilized. Context is
originally used in different domains such as Natural Language Processing (NLP) for information
extraction tasks, Human Computer Interaction (HCI) for facilitating the interaction between a
human user and a device, and Artificial Intelligence (AI) for information integration purposes
(cf. [SBwG98, GM03, GMF04]). The word context is derived from the Latin word con, which
means ‘together’ or ‘with’, and texere, which is the present infinitive of ’texö’, meaning ‘to weave’

17

Chapter 2. Background 18

or ‘intertwine’. A well-known and widely used definition of context has been proposed by Abowd
and Dey [ADB+99] which define context as follows:

“Context is any information that can be used to characterize the situation of an entity.
An entity is a person, place, or object that is considered relevant to the interaction
between a user and an application, including the user and applications themselves.”

This definition describes context as a set of situations and actions (cf. [ATH07]) that are sub-
ject of dynamic and frequent changes including the states of the involved entities (contextual
information fragments). Context in general can be defined as “everything that surrounds a user
or device and gives meaning to something” [Teo08]. In this respect, Coutaz et al. [CCDG05]
identified three characteristics that are essential to the notion of context:

1. Context is not simply a state but part of a process that requires the involved system to
behave correctly with respect to the process and situation in which it is used.

2. Context must be considered as a process and treated holistically where the utility and
usability of a system depends on its means to represent contextual information and the de-
gree of exchanged information rather than on the technical constitution and sophistication
of the involved services and components.

3. A system’s interaction model must be aligned to the user’s individual view of the system,
i.e., aligning and adapting a system’s functions to the individual who uses the system as
closely as possible. This requires an adaptation of the interaction space and an introduction
of conceptual frameworks to reduce system and model mismatches.

The last fact is particularly important for mobile or ubiquitous computing since the interac-
tion space there is ill-defined, unpredictable, and emerges opportunistically [CCDG05]. New
interaction possibilities and techniques help in reducing such misinterpretations but require the
deployment of well-defined, flexible, and interoperable underlying conceptual context frame-
works.

In [ST94] context is referred to as an entity that comprises location, identity, objects, as well
as changes that apply to those objects. Ryan et al. [RPM98] add the dimension of environment
and time. More user-related definitions have been provided by [DAPW97] and [Dey98] in which
context is defined relatively to the user’s emotional state, their believes, intentions, and concerns.
These definitions take into account people in the closest proximity of the user. Other definitions
such as proposed in [HNBr97] and [Bro96] define context on more abstract levels and wider
scale: context is considered as “the aspects of current situations” as well as “elements of the
user’s environment that are known by a computer” [BDR07].

Bolchini et al. [BCQ+07] define context as an abstract process rather than a profile that deter-
mines how humans interweave their experiences with the environment surrounding them to give
meaning to something. Other authors (e.g., [Dou04, EPR08]) highlight that context is never uni-
versal in that it encompasses all information constituting a specific situation but always defined
relative to a concrete situation. Coutaz et al. [CCDG05] characterize context as “not simply
a state of a predefined environment with a fixed set of interaction resources” rather than part
of an interaction process with the polymorphic and varied environment that is composed of
“reconfigurable, migratory, distributed, and multi-scale resources”.

Chapter 2. Background 19

However, due to the different proliferations on the notion of context, there has not been a clear
consensus established on what context exactly is [Dou04], but there is a common agreement on
what it is about: context is concerned with an evolving, structured, and shared information
space that is designed and utilized to serve a particular purpose [CCDG05]. Anagnostopoulos
et al. [ATH07] consider context as a means to solve the problem of generality due to efforts
in formalizing the notion of context in logic-based systems, e.g., in first-order logic systems
(cf. [ADB+99, GM03, GMF04]).

Contextual information, which are constituent parts of surround contexts, can be considered as
any information that may be used for describing the situation the user or a device is currently
operating in. Contextual information is gathered through a variety of different technologies and
considered as computational abstractions over distinguishable virtual or real-word aspects that
have a specific relationship to the current task at hand. Contextual information can be static
(e.g., the date of a person’s birthday) or dynamic (e.g., a person’s location). Dynamic context
information is usually captured indirectly using sensors. Additional characteristics for classifying
contextual information have been proposed by [HIR02].

Basically, contextual information can be acquired explicitly where context-related information
is manually specified by the user, or implicitly where context information is captured through
communication using specific technologies such as sensor or network infrastructures, or by moni-
toring user behavior. The main focus of the framework proposed in this work lies on the implicit
acquisition of contextual information, especially from physical sensors embedded in the device or
from ubiquitous sensors located in the immediate vicinity, as well as logical and software sensors
that extract context-relevant information from personal sources such as emails, calendars, or web
services1. Two approaches can be distinguished for capturing environmental context: the first
approach is based on the idea of smart environments [SBwG98] which provide an infrastructure
for obtaining and disseminating contextual information by placing intelligence in the environ-
ment. The second approach focuses on embedding sensors in devices for acquiring contextual
data related to the physical or virtual environment independently from the surrounding infras-
tructure or environment. In this respect, the challenge is to identify a set of relevant features used
for capturing and describing a situation or parts of the environment sufficiently [BC04]. Deriv-
ing reliable information from multiple heterogeneous sources in uncertain and rapidly changing
environments is mandatory for context awareness in the domain of mobile computing [KMK+03].

Consequently, two forms of context awareness can be found in information systems [GSB02]:

• Direct awareness shifts the process of context acquisition onto the device itself, usually
by embodying sensors that obtain contextual information autonomously and independent
from the surrounding environment or infrastructure; e.g., location ascertainment using
the device-internal GPS sensor. This approach usually employes distinct methodologies
and logics for performing context acquisition, reasoning, and computations for deriving
higher-level contexts from raw-sensorial data.

• Indirect awareness, in contrast, captures contextual information by communicating with
sensors or services via the surrounding environment or infrastructure. Context acquisition
and processing is done exclusively by infrastructural services, where a mobile system ac-
quires contextual information during communication. For instance, to capture the social
context of a user, a mobile device may request data from social communities or portals; to
track the user’s location, a remote geocoding service (based on the user’s IP address) may
be employed.

1See Section 4.3.3 for a detailed discussion; Section 5.2 provides implementation details of logical sensors

Chapter 2. Background 20

Indirect awareness introduces the problem of trustworthiness of acquired context-relevant data,
which is referred to as the “dislocation of context-acquisition from context use” [GSB02] since
indirectly captured context might be imperfect, i.e., the acquired information might be inconsis-
tent, inaccurate, incomplete, or out-dated [ATH07]. The objective of a context-aware system is
to minimize such failures as far as possible by applying different methodologies and technologies
such as reasoning, Quality of Context (QoC) (cf. [BS03, BTC06, PvHS07, SWvS07, MTD08]),
fuzzy logic etc. to derive reliable indicators regarding the trustworthiness of acquired contexts.

Gellersen et al. [GSB02] propose a direct awareness approach for context acquisition by employing
a multitude of diverse sensors since those are better suited to capture a larger set of diverse
aspect of a situation compared to single, generic, and powerful sensors. The underlying rationale
is that sensor diversity is key for a comprehensive situational recognition especially for devices
with severe technical limitations, since valuable contextual information can be inferred with
comparatively small computational effort [GSB02].

2.2 Definition and Utilization of Context in Different Do-
mains

In the following, we elaborate on how context is used and understood in different domains. To
illustrate the ambiguous character and utilization, we focus on the three most prominent domains
in relation to context-aware computing, which are pervasive computing, ubiquitous computing,
and artificial intelligence. We outline how context is perceived and defined in each domain and
sketch its main purpose.

2.2.1 Pervasive and Ubiquitous Computing

Pervasiveness has first been introduced by Mark Weiser [Wei91] and describes the transparent
and seamless integration of electronic sensors and devices—also called appliances [KPL+04]—in
the every day life of humans, where the users’ tasks are intended to play the most important
role. The central idea of pervasive computing is to equip the surrounding physical environment
with small electronic devices that act as an interconnected network of interactive computing
devices [Wei91]. Those networks of small computing devices being seamlessly and unobtrusively
integrated and dispersed across the surrounding physical environment operate autonomously
and independent from any centralized control, which create a new form of interaction between
people, computational devices, and technology [CCSC07]. Their idea is to offer a multitude
of sophisticated services assisting humans in unobtrusive ways [Sat02]. Pervasive environments
are characterized by frequent user changes, a high user mobility, as well as diversity of used
communication and interaction devices and networks. Users in those environments prefer to
use applications that are tailored towards their current tasks and situations where context-
aware systems are able to adapt to those needs. Context awareness in pervasive environments is
considered as the capability to support the development of personalized applications that operate
in those environments [PvHS07].

In ubiquitous computing, context is generally used for augmenting information retrieval tasks
in which queries are enriched with codified context information not being manually specified
by the user as well as to dynamically reflect environmental changes and adapt a system’s be-
havior and its responses to predefined usage patterns [Dou04]. Contextual information is pre-
dominantly conceived as a set of physical or user-related parameters where context has largely

Chapter 2. Background 21

been defined according to technical or computational aspects such as available memory and
battery capacity, processor speed and processing load, display resolution, language, installed
applications etc [DAS01]. Context awareness in the domain of ubiquitous computing refers to a
scenario in which the primary functions of a service adapt to the current context of a physical
object [REB+06]. Its purpose is to support humans in performing their activities by delivering
services that dynamically adapt their behavior according to the situation being used [CCDG05].
Two processes are fundamental to ubiquitous computing: (1) recognition of users’ goals and
activities, and (2) adaptively aligning these goals and activities to available resources and ser-
vices [GSS02]. Both processes are supported by context in such ways as context provides a struc-
tured and unified view of the surrounding environment in which the user operates [CCDG05].

2.2.2 Artificial Intelligence (AI)

In the Artificial Intelligence domain, context is mainly concerned with the representation and
provenance of information. Its perception differs from other domains since the primary objective
is to enhance existing reasoning techniques to enable contextualized, i.e, context-dependent
reasoning using Propositional Logic of Context in which context is considered as a first class
entity of a logical theory, as well as MultiContext Systems respectively Local Models Semantics,
that is a partial and individual approximation of the world’s theory – to name the most mature
approaches [BCQ+07]. The notion of context in Artificial Intelligence is specifically targeted
towards two main areas: (i) to determine the validity of information and (ii) to improve the
accuracy of reasoning algorithms [EPR08].

Most approaches try to formalize the notion of context in order to ascertain and determine the
trustworthiness and validity of a given assertion by reducing the inherently present ambiguities
of real world information entities (cf. [Dey01, HIR02]. More recent approaches such as the one
presented in [GMF04] apply Web principles and knowledge representation languages from the
Semantic Web to express different kinds of contexts. The underlying triple-based data model of
RDF is enhanced towards a quad-based model (quadruple) in which each assertion is augmented
with provenance information (cf. [DFP+05, PFFC09]).

While there is a dissonance in perceiving context as “independent theories related to some par-
ticular knowledge field” and considering context as “concurrent viewpoints on the same infor-
mation” mappings should be defined for transforming and sharing information within different
contexts [EPR08]. This approach is useful if heterogeneous context descriptions of comparable
real world facts or stimuli (e.g different location sensing techniques) need to be integrated into
a coherent corpus of interrelated context information.

Other works such as [WVV+01] and [Noy04]) apply the notion of context to the problems of
aggregating data from multiple heterogeneous sources since although identical (data) models
and vocabularies are used, there exists differences and inconsistencies in the way terms are
applied, or regarding the assumptions underlying a data model. Guha et al. [GMF04] for instance
examine some of the problems that may occur in aggregating independently published data
on the basis of Semantic Web technologies and propose a context-based mechanism to handle
those inconsistencies and incompatibilities. Although the directed graph-based structure of RDF
(see Section 2.6) has proven to be a rather simple but effective model for the integration of
heterogenous data, “higher-level differences” often exacerbates a direct integration since such
difficulties occur due to assumptions made by data publishers that are implicitly reflected in the
design of the underlying data models [GMF04].

Chapter 2. Background 22

2.3 Positivist and Epistemological View on Context

The rationale of many definitions for context that emerged in the information systems discipline is
that information available in the physical and electronic environment influences human-machine
interaction, thus forming the context for such interactions [DAS01]. The technical or positivist
school therefore treats context as a conceptualization of human action and their interaction with
the system, where the notion of context is intended to incorporate a specific form of sensitiveness
to interactive systems2 that allows them to conceive their operational setting electronically and
respond appropriately [Dou04]. As a consequence, context is considered as a set of features of the
environment surrounding the user’s tasks at hand and generic actions, which can be computa-
tionally captured, represented, and processed. Especially technical disciplines consider context a
representational issue and concentrate on sensorial or static data such as location, time, identity
etc. (cf. [SBwG98]) putting emphasize on its codification and representation [MT07, Teo08]. Fol-
lowing this argumentation, context is instance-independent, separable from user activities, and
can be scoped in advance [Dou04]. This form of perceiving context has its root in information
system since it adheres very well to existing software methodologies [Teo08] but is contradictory
to the phenomenological view of context that is grounded on subjective and qualitative analy-
sis. This view considers context and activity inextricably connected and fundamental in giving
meaning to something [Dou04]:

“Rather than considering context to be information, [the phenomenological view] in-
stead argues that contextuality is a relational property that holds between objects or
activities. It is not simply the case that something is or is not context; rather, it
may or may not be contextually relevant to some particular activity. [...] the scope
of contextual features are defined dynamically.”

This consideration emphasizes the aspect of relevance as context as such can not be defined
or determined in advance since its scope is dynamically defined and changes frequently and
unpredictably. It should be considered an occasioned property to emphasize its dynamic, fluent,
and relative character as context arises in the course of action [Dou04]:

“Context isn’t just "there", but is actively produced, maintained and enacted in the
course of the activity at hand. [...] Context isn’t something that describes a setting;
it’s something that people do. It is an achievement, rather than an observation; an
outcome, rather than a premise.”

The epistemological view considers context as an interactional feature inspired by “sociological
investigations of real-world practices” [Dou04]. This view has been adopted by many context-
aware approaches in interaction theory since context and its surrounding activity are inseparable
and require a holistic treatment of both aspects including their relationships and consequences
w.r.t the user’s tasks at hand [WB05]. Context is inextricably linked to the process in which it
is conceived, which renders the positivist and phenomenological view on context incompatible.
As [WB05] points out:

“Action and context are inseparable and should be analyzed as a whole. This implies
that context awareness should be examined in its relationship and consequences to the
supported activity or actions.”

2One major disadvantage of traditional interactive systems is that they only insufficiently respond to the
environments in which they operate [Dou04].

Chapter 2. Background 23

This view puts emphasis on the stringent and close binding between content and context, and
claims for a holistic treatment of both areas. Therefore, context and content should be considered
and processed together since context arises and is sustained by the activity itself [Dou04, WB05].
Context in its broadest sense is essentially about the ways in which actions can be rendered as
meaningful according to a particular situation. Context plays an important role in determining
the meaningfulness and appropriateness of actions and information where the central question is,
how can the dynamic and emergent nature of context be formalized and transformed to a model
reflecting these characteristics, followed by the question how to support the process by which
context is manifested, defined, negotiated, and shared in mobile environments (cf. [Dou04]).

The social or phenomenological school in contrast tries to intertwine context with certain aspects
of social science as well as the social settings of the users. Context emerges opportunistically
(cf. [CCDG05]) and reflects a mutual understanding of the course of user activities and interaction
with a system. Information becomes contextually relevant if it has a certain influence on the
user’s tasks (e.g. [DAS01]). Therefore, the user should hold a central position in context-aware
computing.

As a consequence, the dynamic aspects of context are entirely neglected by technically oriented
disciplines as context is a constitutional part of interaction processes that emerge opportunisti-
cally. Context should be rather considered as an emergent phenomenon or feature of interaction
that is inextricably linked with user activities [WB05, Teo08] and continuously renegotiated be-
tween communicating partners [Dou04, CCDG05, MT07] wherefore a pre-determination of the
relevance of contextual elements is impossible – especially at design time of a system [EPR08].

To cope with this dynamic and emergent nature of context, a context processing and management
framework must facilitate the creation of flexible, extensible, and open context descriptions that
are not restricted to a single static vocabulary or predefined schema. Static context descriptions
are not able to deal with unknown context information at run time, but require links between
different context vocabularies to be specified at design time [EPR08]. The ability to dynamically
handle and integrate new types of context information into existing structures is therefore a
fundamental requirement of a context framework where open and well-accepted vocabularies
help in describing contextual information to guarantee their evolution and accurateness. In this
respect, one can observe an analogy to the "real" Semantic Web which deals with providing
infrastructure to process information in a distributed and heterogeneous manner.

2.4 Context and Context Awareness in Information Sys-
tems

The notion of context is mainly used in the information systems discipline for two reasons
(cf. [Dou04]): (1) contextual information facilitates information integration processes by encoding
provenance information and (2) contextual information is utilized for adopting systems to the
environments in which they are used. In mobile computing, in contrast, context is used for
(i) intelligent service provision, (ii) realizing adaptive user interfaces, and (iii) increasing the
accuracy of information retrieval processes since context-aware information systems in general
provide a “more natural and less obtrusive way of interaction” [MT07]. This is achieved by
filtering the flow of information from the device to the user to decrease information overload
as well as from the user to the device, where user-generated data is augmented with contextual
information predominantly in an automated and transparent manner. A variety of research
endeavors elaborated on the nature of context and proposed a multitude of different definitions

Chapter 2. Background 24

as well as—mostly taxonomical—classification schemes. A large share of classification schemes
distinguish between physical context, that is, contextual information retrieved from physical
or hardware sensors referring to the surrounding physical or virtual environment, and logical
context that encompasses user-related information such as a user’s goals, their tasks, emotional
states etc. Such information is acquired by monitoring user interactions, specified by the users
themselves, or inferred from physical contexts. Other works (e.g. [BD05b]) classify context as
meaningful if it has a particular relationship to the user’s current high-level goals, or incidental
in case the user enters an unpredicted or unexpected situation that has no special relationship
to their high-level goals.

2.4.1 Context Models

The efficient management of a large number of diverse contexts require a working organization
structure in which relevant and present information has to be tailored to the physical, cognitive,
and social constraints imposed by the surrounding contexts defining a situation [CX06]. A
context model has been identified as a central component (cf. [WX06]) for an open context
management framework since it provides an abstract representation of context-relevant aspects
of the surrounding real-world environment in a structured and machine-processable way. A
context model’s task is to act as a bridge between the physical world and a context-aware
system [Dey01] since it allows for a separation application logic and application behavior from
context acquisition and processing components [KMS+05], hence facilitating context exchange
and interoperability between context infrastructures [WX06] where adaptation and extensibility
have been identified as most important features [PdBW+04]. A large number of formal and
informal context models have been proposed so far. This indicates one of the main problems
context-aware computing suffers from: there exists no standard model on context and context
awareness.

A context model in general is used for the definition and storage of contextual data in a machine-
representational form. Due to the diversity of contextual information, several categorization
frameworks have been introduced to manage and comprehend such information systematically. It
reflects different aspects of a context-aware system where the contextual information represented
by a context model may range from unstructured raw sensorial data constituting low-level context
to full-fledged logic theories about contextual constituents (e.g. based on situation ontologies such
as proposed in [LMWK05, LFWK08]). The most prominent approaches have been summarized
in [SP04] and [BDR07], ranging from simple key-value models to complex logic or ontology-based
models. The use of concepts from knowledge representation languages allow for using symbolic
structures for representing context on which machine-based reasoning techniques based on formal
logics can be applied. Context models can be distinguished according to the data structures they
use for the representation and exchange of contextual data (cf. [SP04]):

• Key-Value models represent the simplest data structure for representing contextual data in
a machine-processable form. They were especially used in service frameworks for describing
service capabilities by key-value pairs on which basis matching algorithms can be applied
to support the service discovery process. Although key-value models provide a simple form
of managing and representing contextual information, they lack extended capabilities for
structuring contextual data and representing relationships among contextual entities.

• Markup scheme models usually employ a hierarchical data structure that contains markup
tags and corresponding attributes. A wide variety of markup schemes rely on the Standard

Chapter 2. Background 25

Generic Markup Language (SGML) or on one of its most prominent descendants XML.
Markup schemes are usually represented as profiles. A discussion of the variety of different
context profiles can be found in [SP04].

• Graphical models host general purpose modeling frameworks such as the Unified Modeling
Language (UML) or Object-Role Modeling (ORM). Due to their graph-based representa-
tion and their generic structure, they are appropriate means for representing contextual
information. Some extensions have been proposed to general purpose graph-based modeling
languages (e.g. [HIR02]) for expressing complex contextual constellations and relationships.

• Object-oriented models aim to exploit the advantages of the object-oriented paradigm in
describing and modeling the dynamics inherently anchored in the nature of context (cf.
Section 2.3). Object-oriented concepts such as abstraction, inheritance, or polymorphism
are applied to representing contextual data where the details are encapsulated in specific
components and well-defined interfaces are used for their controlled access.

• Logic-based models were primarily used for deducing or inferring new facts from given
contextual constellations. Usually, logic-based system employ a set of rules for describing
contextual conditions in a formal way. Such systems usually employ a high-degree of
formality and tend to be more general than specific.

• Ontology-based models represent contextual information by means of the concepts and
properties defined in an ontology. Ontologies incorporate machine-processable semantics
that allows for explicitly describing contextual facts as well as their interrelations and have
proven to be appropriate means for representing contextual constellations in information
systems (cf. [HMD05, MT07, EPR08]).

A context ontology serves as a uniform representation of contextual information and enables
a systematic management of context-relevant aspects. It should be separated from application
logic [KMS+05] and facilitates application adaptation, automatic code generation, code mobility,
and user interface adaptation [PdBW+04], which have been identified as the key issues in ambient
intelligence and mobile computing [RF05]. A number of approaches (e.g. [KMS+05, REB+06])
use single ontologies for context information representation and for the transformation of raw,
low-level context data into high-level context descriptions (e.g. [BKL+08a]). Some of these
ontologies refer to the analogy of physical objects, i.e., their concepts refer to objects in the real
world (the studied context). In addition, [FMGI06] suggest to augment context descriptions
with additional meta data about the context source a context description was created from, the
quality of the sensing mechanism, context value metrics, time stamps, and relationship attributes
to increase their precision and to support processing and dissemination steps.

Rather than using a single context model (cf. [KMK+03]), different works (e.g. [WX06, BKL+08a])
recommend to use multiple context models dedicated to different aspects of a context-aware sys-
tem such as a core context model for identifying those context elements that are contained in
and are relevant for a context representation, an infrastructure context model, which allows for
integrating context consumers and producers by abstracting over concrete technical implemen-
tations, and application-specific context models for describing application-relevant aspects3.

A different approach is taken by [RSP07] who motivates the usage of a “more user-friendly
approach” in representing contextual entities, since those entities are mainly constructed for
electronic consumption through a natural formalization of contextual entities oriented on human
language, which seems more appropriate and usable than a rigid formal specification. Therefore,

3A number of requirements for each of the three context model types can be found in [WX06].

Chapter 2. Background 26

a term-index-model is introduced that allows for a verbal description of contextual entities such
as user preferences using natural language constructs. An evaluation of the chosen approach
regarding performance, user-friendliness, scalability, and other criteria is subject to future work.

A number of approaches (e.g., [BC04, REB+06, BKL+08a, BKL08b]) treat and represent context
as hierarchies to better handle the complexity of contextual constellations and enable efficient
inferencing by reducing the amount of rules to be applied to those constellations to a subset
of the system’s rule base. This yields positive effects on rule development and adaptation pro-
cesses [BC04] since the number of rules to evaluate for a given context can be reduced from n,
representing the entire set of rules deployed in a system’s rule base, to k, which represents the
average number of rules that need to be computed for an active context4. Therefore, the order
O(n) of rule-based inferencing is reduced to O(k) where k < n by combining rule-based reasoning
and context hierarchies (cf. [BC04]); a formalization of this approach is presented in [GSB08].

Other works applied concepts from Activity Theory [CX06, Teo08] or Task Analysis [KA04] to
describe contextual information independent from existing application scenarios aiming towards
a general model of context awareness in mobile computing. Activity Theory is a philosophical
framework developed in the 1920s for conceptualizing human activities and identifies significant
elements that have an impact on human behavior. It accounts for the tools and the social environ-
ment such tools are used in since both areas have a substantial impact on how activities and tasks
are performed by humans [KA04]. Cai and Xue [CX06] therefore propose an activity-oriented
context model based on the computational theory of collaborative plans5 [GK96] that establish
late bindings of contexts to ongoing activities with respect to their contribution in finishing a
task successfully. The late binding of activities, contexts, and adaption strategies allows for a
more accurate determination of relevant contexts and scheduling of appropriate actions. They
propose a computational model of activities consisting of a “diverse set of contextual factors”,
that relate relevant contexts to ongoing activities, where a certain aspect of the environment
becomes context-relevant when it defines (or helps to define) a contextual state, which allows for
the prediction on how to consume relevant services and information.

An aspect-oriented approach to deal with the “crosscutting” nature of context and to increase
the efficiency in handling the different kinds of contexts and their relationships is proposed
by [CCSC07] and [MFC07]. Quantitative results indicate an increased efficiency (positive effect)
compared to conventional object-oriented programming techniques in terms of coupling, cohesion,
and complexity [MFC07]. However, we did not follow this approach any further since aspect-
oriented programming is not supported by our target development platform and would render a
proof-of-concept implementation of our framework difficult if not impossible.

Several ontologies have been proposed for context modeling such as the Context Ontology Lan-
guage (CoOL) from which the Aspect-Scale Context Model emerged [SLPF03], the Context Broker
Architecture (CoBrA) [CFJ03], or the generic ontology proposed in [PdBW+04] for Ambient In-
telligence. Other context modeling vocabularies such as CC/PP [Kis07b] revealed to be too
restrictive for describing complex contextual constellations and models [IRRH03]. However,
there is often a trade-off to be made between general purpose ontologies such as DOLCE6,
SUMO7 [NP01], or CYC [LPS86] and specific domain dependent ontologies since workable

4Supposing that only one context is active at any given point in time (cf. [BC04]).
5A collaborative plan is a timely representation of activity-related tasks and actions, including associated

constraints and contextual conditions. Every task involved in an activity is associated with a collaborative plan
of activities, each of which having a certain relevance metric to determine its relevance towards successfully
finishing a specific task.

6Laboratory for Applied Ontology - DOLCE: http://www.loa-cnr.it/DOLCE.html

7SUMO: http://www.ontologyportal.org/

http://www.loa-cnr.it/DOLCE.html
http://www.ontologyportal.org/

Chapter 2. Background 27

context ontologies in general require a more precise description of exploitable context infor-
mation [EPR08].

Ontologies are the preferred choice by most recent approaches to create and represent context
descriptions as they allow to establish a common understanding of contextual semantics and
relationships between context fragments that can be exchanged and communicated among com-
municating partners [FMGI06]. Ontologies further allow for performing complex context reason-
ing on contextual concepts to deduce additional, not explicitly asserted information. Context
modeling thus focuses on improving context information accurateness, detecting and establishing
relations among contextual entities, and reflecting contextual changes within a context model,
which is denoted as context model evolution.

However, no “silver bullet” in context modeling has been proposed yet, since existing approaches
merely focus on the facilitation of specific context sub problems and lack a deep understand-
ing of the fundamental context problem, which is essential for the development of appropriate
context models [BCQ+07]. A context model in general should be represented using a formalism
(representation language) that allows to reason about contextual facts in polynomial time of com-
plexity [ATH07]. It should be developed according to its application domain8 [GSB02, EPR08]
and focus on specific context sub-problems since the generality of a context model in terms of
expressiveness and powerfulness is inversely proportional to its practical applicability and usabil-
ity [BCQ+07]. In general, a lightweight vocabulary seems to be the most appropriate solution
for modeling context in mobile systems [MT07].

2.4.2 Classification Frameworks for Contextual Information

For understanding the different types of context-aware systems and its architectures, it is crucial
to understand the different types of context and their classifications [Kja07]. Categorizing context
information allows for deducing or inferring new facts from given context descriptions and enable
a more extensive assessment of a given situation [DAS01]. In the following paragraphs, we give an
overview of the different classification schemes proposed for classifying contextual information.
For further information, the reader is referred to the respective works.

A common approach for distinguishing contextual information is to classify context instances,
that is, concrete manifestations or representations of contextual information or context descrip-
tions according to contextual dimensions [BDR07], where a number of categorization frameworks
have been proposed: Prekop and Burnett [PB03] distinguish between external and internal (also
called tacit) contexts, that is, contexts focusing on supporting the user’s cognitive activities. A
classification matrix is proposed by Öztürk et al. [OA98] that adds the aspects of relevance and
independence to external and internal dimensions. Chen and Kotz [CK00] use the contextual
dimensions influence and relevance to classify context as active or passive according to the influ-
ence it has on application behavior and adaptation processes; a context is active when it directly
influences an application’s behavior, whereas passive contexts do not have a significant direct
influence on an application.

Hofer et al. [HSP+03] and other authors divide context into physical context for representing
concrete environmental aspects and instances, and logical context for complementing physical
contexts with additional semantic information. Dey et al. [Dey01, DAS01] propose the three
groups places, people, and things for classifying contextual entities, where various attributes can

8According to [GSB02] useful context must always be bound to a specific application domain where the
usefulness of acquired contexts is always defined according to the application domain in which it is used.

Chapter 2. Background 28

be applied for further describing them. Those attributes itself can be classified into identity, i.e.,
the unique identifier each entity has, location, i.e., the physical or virtual location of an entity,
status, i.e., additional properties that represent the implicit and explicit status of an entity, and
time [BDR07].

In addition to physical context that reflects relevant attributes of the surrounding physical en-
vironment, Cai and Xue [CX06] differentiate between computing or technical context referring
to the technical properties and capabilities of the involved device and network infrastructure,
human or social factors, i.e., context that arises in the course of communication or human affairs,
and time, which has considerable influence on people’s behavior and helps to understand present
and future actions [KA04]. However, works from related domains such as the Semantic Desktop
(e.g. [HDM05, HMD05]) propose similar classification schemes for context, which distinguish
between personal, computational, and knowledge-based contexts and emphasize the interactions
among them.

Computational or technical context encompasses aspects such as network connectivity, installed
applications, and device characteristics. Such information can be represented using specific vo-
cabularies that exhibit concepts and properties for representing technical aspects of a system.
For instance the Composite Capability/Preference Profiles (CC/PP) vocabulary [Kis07a], which
is a W3C Recommendation, defines elements for representing device capabilities and user prefer-
ences. Version 2.0 of this specification is built upon the latest version of RDF using the concept
of URIs for uniquely describing specific device functions and characteristics. It includes the
function of RDF dereferencing [Lew07, BCH07] that allows for referring to subgraphs that are
hosted on other machines or servers.

Krogostie et al. [KLO+04] identified four contextual dimensions that are relevant for context-
aware computing in mobile information systems. The spatial dimension describes the movement
of persons or objects in space as well as their interdependence among each other. A special form is
the spatiotemporal dimension that adds the aspect of time and describes how things move along a
time axis, which allows for deducing additional information such as direction, tracking, or speed.
Ambient characteristics are referred to by the environment dimension that describe aspects
related to the physical of virtual environment such as temperature, luminosity etc. The personal
dimension refers to user characteristics such as physiological states (e.g pulse, blood pressure,
weight collect via body sensors), mental states (e.g., mood, stress level, expertise), the current
activities (e.g. goals, achievements, information needs), and social relationships [Per06, MT07].

Personal and social context are often used synonymously to refer to information related to the
personal preferences of individuals including their social relationships and social networks. Such
information substantially influence the way tasks or activities are performed while not being
specific to it [HMD05]. Personal context is treated as the superordinate concept for social
context and comprises individual preferences as well as personal resources that are relevant for
a specific task. The authors in [PdBW+04] suggest to differentiate between user profiles which
they classify as static, and user preferences that are always related to a situation and thus being
dynamic. Mihalic and Tscheligi [MT07] emphasize that the user’s social environment significantly
influence the way mobile technology is used and claim for an interdisciplinary research approach
to understand and elaborate on the interdependence between social context and technology9. A
part of social context is interactional context [Dou04] that is based on the types of relationships
between individuals. Such relationships can be described using specific vocabularies such as the
FOAF vocabulary [BM07].

9During the act of communication, people modify their social relationships which in turn influence how mobile
devices are used [MT07].

Chapter 2. Background 29

Figure 2.1: Roles and influence of context awareness in human-computer interaction with
respect to effectuation, representation, and interpretation10

A classification framework for interactional context is proposed by [WB05] in which context
awareness is classified into three high-level spheres according to its influence on interaction
processed in human-computer interaction. The classification scheme describes the roles context
can take in the interaction process and distinguishes between interpretation, representation, and
effectuation (cf. Figure 2.1)

Within the Interpretation Sphere context is used for achieving an understanding of an activity’s
intentional meaning that results from the interpretation of and reasoning on low-level contextual
data and allows for interpreting a user’s intentional actions as well as their legitimization to
perform a specific action. The Representation Sphere is responsible for the representational
adaptation of contextual data to the user in order to reduce the cognitive load associated with
conceiving the interfaces being part of the human-computer interaction process. This phase
consists of three sub-phases: (i) selecting the representation focus and directing user’s attention
within the representation space, (ii) reducing information amount by providing only pertinent
and hiding irrelevant information, and (iii) provide a valid representation of context information.
The Effectuation Sphere is concerned with selecting and executing the most appropriate actions
according to the contextual data acquired by applying sophisticated reasoning and machine
learning techniques. This is done by suggesting the most appropriate actions (action focus),
reducing the action space (action filter), and executing actions (reacting) on the user’s behalf
(action actualization). The Representation and Effectuation Sphere seize on Weiser’s idea of
transparency in which “interfaces disappear in the background” and computational tasks are
hidden from the user [Wei91].

Kjaer [Kja07] classifies context according to whether it is externally or internally defined to
an information system and argues that internally defined contexts are neglected wherefore they
are not included in the context models of most context-aware computing approaches. Internal
contexts represent information about the underlying computing infrastructure and the operating
system such as the available disk space etc.

The theoretical framework developed by [RTA05] proposes four contextual dimensions that are
complementary but interact with each other since contextual dimensions are not isolated in
the real world [MT07]. System context addresses the entire set of interconnected devices and
applications constituting a specific system as a whole from a technological, i.e., hardware and
software-related perspective. Infrastructure context describes how the devices and applications

10Taken and adapted from [WB05], page 2.

Chapter 2. Background 30

being part of a system are connected among each other; such contexts are important for making
explicit assertions about the validity of information, which might change when people and device
move along the time-space continuum. Domain context refers to the social, physical, and mental
concerns of users in terms of the information they require and information needs they have as
well as “the specific situated interaction taking place in a domain” [RTA05]; the objective is
to guide the user through a system’s interaction space. Physical context encloses the physical
properties of the surrounding environments and elaborates on how such properties are related
to the entire system, for instance the current position of a device measured through a location
sensor.

In [DAS01] context is categorized according to the four dimensions identity (i.e, assigning a
unique identifier to each contextual entity or element to ensure its uniqueness within a certain
namespace), status (i.e, intrinsic characteristics of a sensed or captured entity comprising tech-
nical, computational, personal or social, and environmental aspects, such as the temperature of
a place represented by its geographical coordinates), location (i.e., geographical information in a
three-dimensional space as well as additional information such as acceleration, elevation, or ori-
entation etc.), and time (i.e., contextual information that helps in determining and characterizing
a situation).

The taxonomy developed by [FMGI06] is based on the work of [ST94] and differentiates between
user domain, system domain, and physical domain. User domain context can be further divided
into subjective and objective user context where the first refers to the user’s personality and
psychological attributes such as their mood and feelings, the latter itself consists of personal
information, physiological and conditional information, and agenda-related information. The
system domain is concerned with technical capabilities and the technical specification of the
operating device in terms of available hardware and software resources as well as installed appli-
cations. The physical domain comprises all information related to the physical, virtual, logical,
and technical environment in which a device and its user operates. It is further subdivided into
physical geography, physical conditions, and timing information. For a further discussion on the
context taxonomy, the reader is referred to [FMGI06], page 37.

In summary, location-related information as part of the physical dimension is unarguably the
most prominent type of contextual information, which receives the greatest attention in both
mobile as well as pervasive and ubiquitous computing [GSB02]. It has been the subject of many
research endeavors (e.g., [HKS06, PRS06, BD05a]) where powerful hybrid models have been
proposed that do not only contain the physical coordinates of a particular location but also
employ a combination of geometric, arithmetic, and symbolic models for representing logical
relations such as locatedIn, containedIn, northOf, nearBy etc [DRD+00]. Early models,
in contrast, are built on static structures consisting of fixed sets of attributes for representing
location-based information and geographical entities. Newer hybrid approaches employ instance
and schema-based models that expose abstract and logic modeling primitives. For instance, the
location model proposed in [BD05a] employs a graph-based representation scheme comparable
to the one proposed by RDF and RDFS.

2.4.3 Reference Architectures for Context Acquisition, Management,
and Processing

The diversity of contextual information is also reflected in the variety of architectures proposed
for context acquisition, management, and processing, which differ in their technical capabili-
ties, acquisition techniques, context representations, and reasoning capabilities etc. The main

Chapter 2. Background 31

Application Layer

Storage / Management Layer

Pre-processing Layer

Raw-data Retrieval Layer

Sensors Layer

Figure 2.2: Layered reference architecture for context frameworks12

problems lie in the multitude of different information types and the weak standardization ef-
fort [RSP07]:

“Developers of context management infrastructures are not only challenged by the
overwhelming amount of data that is to be stored in the system’s database, they must
also standardize a plethora of information types. Yet, albeit this approach appears to
be straightforward, it comes at the cost of extensive standardisation.”

Despite the wide variety of different context management and processing architectures, a common
architecture is identifiable [BDR07]11. Figure 2.2 displays this conceptual architecture which
consists of five separate functional layers:

• Sensors layer : The sensors layer is the bottommost layer and comprises the set of sensors
that a context framework exploits. Such sensors can be classified into three groups [IS03]:
(i) physical or hardware sensors for gathering physical context information, (ii) virtual sen-
sors that capture data form software applications and service by observing user interaction
and user behavior, and (iii) logical sensors that are responsible for deriving higher-level
context information usually by augmenting physically or virtually acquired contexts with
additional information from repositories or other data sources.

• Raw data retrieval layer : This layer is concerned with the retrieval of raw sensorial data
usually by encapsulating driver logic or sensor APIs in dedicated wrapper components (cf.
Widgets [DAS01]). It offers common interfaces that encapsulate specific drivers or sensor
APIs thus making them exploitable for upper layer components. This layer exposes query-
functionality that abstracts from low-level raw sensorial data and provides higher-level
representations and functions.

• Pre-processing layer : In case sensorial data is too coarse [BDR07] or need to be clustered
for further processing, this is handled by the pre-processing layer. It also provides appro-
priate abstractions of contextual data whose representation is too technical (e.g. a bit-wise
representation of contextual data). Interpretation, aggregation, and reasoning tasks are
also handled by this layer together with quantization algorithms for aligning raw-sensorial
data with the elements of a framework’s context model.

11See [BDR07] for a more detailed discussion about the different layers.
12Adapted from [BDR07].

Chapter 2. Background 32

• Storage and Management layer : This layer serves as a context repository as it organizes
contextual information and offers interfaces to client applications. Components in this layer
expose different operation models where contextual information can be either requested in
a polling-based style where the client applications issues requests to a context server in
regular time (synchronous) or via a subscription mechanism where clients are notified
by the context server whenever new contexts are available (asynchronous). Due to the
dynamic and unpredictable nature of context (cf. [Dou04, CCDG05, Teo08]) the use of an
asynchronous communication style (cf. [XYCS02]) is suggested [BDR07].

• Application layer : The application layer is the uppermost layer and hosts the client ap-
plications that request and process contextual information from a context repository or
a framework respectively. Contextual information is usually consumed by applications in
this layer in order to adopt their actions with respect to user-related tasks. One popular
example is increasing the background luminosity level in case the user enters an outdoor
area.

In a similar way, Dey et al. [DAS01] identified five distinct conceptual components a context
framework must consist of. Context acquisition components are used for collecting and gath-
ering contextual data, that is, raw sensorial data or context-relevant data from other sources
such as web services or ubiquitous devices located in the immediate vicinity. Interpretation
components are responsible for deriving useful and workable information from sensed data by
building abstractions and deducing qualitative high-level assertions. Interpreters are often used
in conjunction with context aggregation components, so called aggregators to combine multiple
context data fragments and allow for a uniform access by applications. Context services [DAS01]
or accentuators [BC04] respond and react according to acquired and aggregated contextual in-
formation provided by a context framework. This can either result in an adaption of device or
application behavior, which includes an adaption of its user interfaces towards the current needs
of the user, or the adoption of requests to remote services (context-aware interaction and service
delivery). Context discovery components scan the environment for devices and sensors that can
be used as context sources and provide information regarding their accessibility and utilization,
e.g., the used communication protocols, network addresses etc. These five types of components
correlate to the layers proposed by [BDR07] in terms of their functional responsibilities.

A different layer-based reference architecture particularly for ubiquitous environments has been
proposed by [CCDG05]. It consists of four horizontal and three vertical layers and addresses
both technical as well as functional abstractions for a reference architecture for context-aware
computing. In the following, we briefly sketch the constituting elements of the proposed general-
purpose architecture, which is depicted in Figure 2.3.

On the bottommost level, the sensing layer, a contextual aspect or fact is represented as a
set of (plain) numerical values sensed from physical sensors embedded in the device or located
in the environment. This layer is responsible for the acquisition and transformation of raw
contextual data into so called numeric observables. To derive useful and valuable meaning
from numeric observables, these must be interpreted, aggregated, or clustered (cf. [GSB02]) as
necessary so that algorithms and transformation heuristics could be applied. This is done on the
perception layer, which is ideally independent from the sensing layer and the underlying sensing
technology respectively. It maps raw context data values to symbolic values (add reference
to quantization) to provide high-level contexts (cf. [BKL+08a, LFWK08]). The situation and
context identification layer elaborates on the current situation of the user by analyzing the

13Adapted from [CCDG05], page 52.

Chapter 2. Background 33

Sensing Layer: Acquisition of numeric observables

Perception Layer: Transformation into symbolic observables

Situation and Context Identification Layer

Exploitation Layer

Pr
iv

ac
y

/ S
ec

ur
ity

 /
Tr

us
t

H
is

to
ry

D
is

co
ve

ry
 /

R
ec

ov
er

y

Figure 2.3: Reference architecture of context-aware computing systems for ubiquitous envi-
ronments13

symbolic observables created in the preceding layer. Additionally, it tries to identify context
transitions, i.e., alterations in contextual information that represent a movement from the current
situation to a subsequent situation and anticipates such conditions to system or user-centric
needs. The exploitation layer finally offers external applications access to the services and
functions of a context framework. It acts as an adapter or middleware situated between the
framework and applications that try to make use of the framework’s functionalities. Requests
and queries issued to the framework are processed in this layer.

The orthogonal layers represent aspects that must be incorporated (to a certain extend) in
each of the horizontal layers. Hence, every vertical layer must include mechanisms that address
trust, security, and privacy issues of context processing as well as context history, and context
discovery and recovery. Context history, for instance, allows for tracing back context changes and
infer on how a specific context representation has evolved over time. Combined with feedback
mechanisms, historical context analysis further helps in elaborating on how well a context model
adapts to user activities.

2.4.3.1 Context Acquisition Architectures

Context can be acquired from a multitude of different sources, e.g., by applying sensors or sensor
networks, by deriving information from the underlying communication infrastructure or network,
or by acquiring status information and user profiles directly from the device the user currently
uses [BDR07]. In general, every piece of information or any content can be considered context-
relevant if it provides information related to the user’s current tasks and activities [WX06].
Therefore, context acquisition should not be restricted to capture context merely from hardware
sensors. Instead, additional information sources should be integrated into the acquisition process.
A social bookmarking service for example could be requested for obtaining information related
to the user’s interests or information needs. Especially when considering Web 2.0 applications
in which users actively contribute, such services likely contain valuable information that can be
used for complementing sensorial data [WX06].

In the following, we provide an overview of the types of potential context sources relevant for mo-
bile devices, which range from hardware or software sensors deployed directly on the device, over
devices located in the physical (ubiquitous) environment surrounding the user, towards external
context sources such as Web services, Web APIs, and specifically Linked Data repositories.

Chapter 2. Background 34

• Analysis of System and Execution Environment
A background service running on a mobile device can monitor system processes and asso-
ciated threads to deduce information about the currently running applications and corre-
sponding information needs of the user. Additionally, such service can track and analyze
user queries to infer on the topics and information items a user is interested in. Tracing
and aggregating that information enables the creation of information clouds similar to the
concept of tag clouds in which more relevant and thus important items are highlighted.
Explicit information according to the user’s scheduled tasks, calendars, and preferences
can be acquired via software sensors that encapsulate the corresponding interfaces to such
data sources.

• Internet and Online Communities
The Internet is a great source of context information [WX06]. With more and more users
contributing to social communities such as Facebook, Flickr, LinkedIn (to name just a
few) those portals provide a multitude of different information about a user. Due to the
increased availability of such web applications that can be requested or accessed using
mobile devices, the popularity and relevance subsequently becomes more apparent. Social
bookmarking services such as Delicious14 holds information about the preferred websites a
user is interested in as well as the tags (terms) they use for annotating a particular website.
With the advent of Web 2.0 applications, context sources available on the Internet are
getting richer and increasingly important for context acquisition.

• Local and Embedded Sensors
The continuing technical progress of current mobile devices together with the ongoing
miniaturization of microprocessor-embedded devices15 are reasons why more and more
sensors such as accelerometers, digital compasses, etc. are deployed on mobile devices.
Such sensors provide data about the physical environment in which a device operates.
In newer operating systems such as the Android platform, such sensors are more tightly
integrated into the operating system and offer dedicated interfaces and libraries for their
utilization. However, some mobile system architectures and operating systems respectively
only allow for utilizing a restricted set of sensors. This is due to the fact to not allow 3rd-
party applications to have full access to the full range of deployed and available sensors so
that premium services can only be offered by the manufacturer. In Java ME16 (formerly
J2ME) for example, applications are executed within sandboxes to which a number of
restrictions are imposed. Such restrictive application models make it difficult to retrieve
an exhaustive set of contextual data from embedded sensors.

• Network Services
Some network providers offer additional services that may also serve as context sources. For
example, a network provider may provide information about the current radio cell in which
a mobile device was recognized. That information can be transformed to GPS-coordinates
to derive information about the current location of the user. Another prominent example
are Smart-ITs [GSB02, BG03] in which autonomous devices are equipped with sensor and
sensing technologies as well as processing and communication capabilities that enables
them to interact in an ad-hoc manner in order to exchange the context of artifacts. Such
devices operate independent from a concrete technical or network infrastructure and can
be considered as ancestors of ubiquitous devices.

14The online bookmarking service Delicious: http://delicious.com/

15However, cost is another factor that leads to equipping mobile devices with even more sensor devices but it
will not be considered any further here.

16J2ME: http://www.oracle.com/technetwork/java/javame/overview/index.html

http://delicious.com/
http://www.oracle.com/technetwork/java/javame/overview/index.html

Chapter 2. Background 35

• Sensor Networks and Ubiquitous Environments

Sensor networks are primarily used in ubiquitous environments for context information
retrieval. Such sensors implement raw-sensing techniques to detect and measure aspects
of the physical environment in the form of proprietary values such as a user’s location,
physical conditions such as temperature and humidity, acceleration etc. Those networks are
denoted by [ATH07] as rudimentary knowledge measurement engines using sensor-based
context detection. However, sensor-based context detection techniques may range from
simple sensing technologies to more elaborated and sophisticated techniques by deploying
full-purpose context sensors (cf. [BC04] who developed the sentient object model) or by
combining several sensors to form a sensor network. This can be accomplished by combining
several context information retrieved from selected sensors of a sensor network. Extensive
work in this area has been carried out within the Smart-ITs-project (cf. [BG03, HGK+04]).

Some sensors, however, use proxies to provide their information. Physical sensors in general do
not have sufficient computational resources and logics for providing high-level context represen-
tation and managing contexts. Therefore, the concept of dedicated context proxies are proposed
that interpret, manage, and disseminate data provided by physical sensors and offer interfaces for
accessing remote data sources that contain context-relevant data [EPR08]. This aspect should
be considered as a first-class requirement for context processing architectures, especially due to
the distributed and heterogeneous nature of ubiquitous environments and the sensors deployed
in, where a context framework has to support such distributed and heterogeneous operational
environments in most flexible ways [EPR08]. This results in the requirement of an ad-hoc and dy-
namic deployment of new context sensor proxies without the necessity of adapting context-aware
applications to utilize newly integrated context sensors.

The way contextual data are acquired significantly influences the architectural style of a context-
aware system [BDR07]. Context acquisition architectures can be broadly classified into three
different groups (cf. [Che04]): (1) proprietary architectures that directly access locally deployed
sensors where sensor and driver logic is directly implemented in application code limiting con-
text reuse and exchange, (2) middleware infrastructures which employ a layered system archi-
tecture (e.g. [BKL+08a, CJ04, LFWK08]) encapsulating sensor specifics in dedicated compo-
nents and expose uniform interfaces for context utilization, and (3) context server architectures
(e.g. [HSP+03]) that operate similar to database management systems and offer remote access
to contextual information hosted within a context repository. A detailed discussion about the
advantages and limitations of each architectural style can be found in [CFJ03] and [Che04]. In
the following, we provide a more detailed overview of each architectural approach:

• Direct sensor access is the primary option for gathering contextual data from hardware
sensors embedded in a device. A context framework usually employs a dedicated layer
that abstracts over concrete sensor specifics and encapsulate sensor-related driver logic.
Layer-based approaches can primarily be found in newer approaches (e.g. [CJ04, BKL+08a,
LFWK08]) since early context frameworks usually employed hard-wired sensor-logics di-
rectly in application code [Dey01, DAS01].

• Middleware infrastructure extends the idea of direct sensor access by employing a layered
system architecture a priori where the methods for accessing context acquisition compo-
nents are encapsulated in dedicated components and layers, respectively. The rationale
is to conceal low-level sensor-logic from context utilization components, so-called context
consumers or context services, and the framework as such to facilitate re-use and extensibil-
ity of context acquisition components. A middleware infrastructure is usually deployed in

Chapter 2. Background 36

distributed acquisition architectures to provide uniform interfaces that encapsulate specific
sensor APIs and sensor details.

• Context Server represents a technical infrastructure that offers multiple clients remote ac-
cess to contextual information hosted within a central context repository. Contextual infor-
mation, which is stored in remote data sources can be exploited by clients in a distributed
manner. A context server acts similar to a database management system since it handles
concurrent requests and keeps track of modifications and context updates. The context
server might also offer different representation formats of its contextual data depending on
the protocol a client uses for requesting context information. Extensive processing tasks
are handled by the context server itself rather than on the requesting components. Such
an approach also allows for establishing load balancing algorithms in order to efficiently
exploit the technical infrastructure.

Since context awareness in general is concerned with a multitude of different information sources
and information types, its implementation in information systems requires an adequate middle-
ware support (cf. [FMGI06]) to make such information available for context consumers in a con-
trolled and well-defined way, where functions of the middleware should be by itself context-aware
(e.g., context-dependent service discovery and interaction) (cf. [Sat02, CDA07]). A middleware-
based architecture connects context acquisition components with other components of a frame-
work or context consumers such as context services or external applications.

A middleware is defined as an abstraction layer situated between the operating environment of
a software system and the applications operating in a distributed environment [Kja07]. The
objective of a middleware—especially for traditional distributed systems—is to unify access and
exploitation of distributed data sources by encapsulating the heterogeneity and distributed archi-
tecture of the underlying system infrastructure. This has proven to be useful for wired and static
environments but fails to compete in dynamic and wireless environments due to the decision mak-
ing processes of the running applications that are often based on technical and environmental
facts [Kja07]. Middleware architectures for context-aware systems are used to deal with sensor
heterogeneity and context source diversity. Their objective does not lie in hiding sensors specifics
but to provide suitable abstractions and interfaces for their exploitation, and to offer technical
and architectural aspects of the underlying system or network infrastructure as (environmental)
context information. Context-aware middleware systems range from pure middleware systems to
complete computational infrastructures capable of managing the surround physical environment
and can be classified according to their functional range and the capabilities they offer17.

2.4.3.2 Context Management Architectures

Two directions have been identified for managing context information [FMGI06]: the first di-
rection is denoted as pervasive spaces and direct the management of contextual information to
the physical environment where such information is gathered from. In such environments, a
centralized system is deployed for context management (cf. context server architecture) that
can be accessed by context consumers. The second direction is based on the concept of dele-
gation where context information management is placed on end-user devices, which resembles
a decentralized architectural approach. Hence, a device is responsible for the entire context
processing and management life-cycle, although devices can make use of distributed context

17See [Kja07] for a classification taxonomy distinguishing between the type of technical infrastructure, storage
facility, reflection mechanisms, quality of context data, composition of context services, migration types, and
adaptation support

Chapter 2. Background 37

repositories or ubiquitous sensors for context acquisition. Such devices acquire context au-
tonomously and operate independently from each other. They collaborate in an ad-hoc man-
ner and connect to its peers for context sharing and exchange. They use technologies for
sharing contextual information among each other in a distributed and autonomous fashion
(e.g. [MC02, GSS02, BC04, HIMB05, RF05, PvHS07, RSP07, HDW09]), which introduces the
necessity for context consistency control, context replication, and context dissemination strategies
(e.g. [CDY90, Len96, RSP07]).

However, different classification schemes for context management architectures have been pro-
posed by, e.g., [DAS01, BDR07, EPR08]. These works distinguish between a (1) direct integration
of context management functionality into context-aware applications, (2) context management
services, and (3) context-aware devices and services augmented with context management func-
tionalities. In the following, we give a brief overview of each architectural approach:

• Direct Integration into Context-aware Applications. This group of frameworks is charac-
terized by a direct communication between context acquisition components such as sensors
and context-aware applications, the so-called context consumers (e.g. [DAS01]). Applica-
tions need to know in advance which sensors are available and how to communicate with
them. As a consequence, context data semantics are limited to the applications in which
they were interpreted and can, in most cases, not be shared between applications which
makes it difficult to integrate new sensors dynamically in running frameworks. Sensors
have to be queried by each application separately, which impede the process of context
aggregation, exchange, and dissemination.

• Using Context Management Services. Within that approach, context information is gath-
ered in a single place (e.g. a central component within a system or the environment) and
forwarded to the respective context-aware applications or context consumers either on re-
quest or proactively. The advantage of this approach lies in the central aggregation of
contexts. At the same time, this is one of the major drawbacks of this approach since it is
contradictory to the nature of context per-se [EPR08].

• Augmenting Devices or Services with Context Management Functionality. The third class
of frameworks is grounded on the idea of embedding context-management functionalities
directly into devices or context services whose functionality can be shared across com-
ponents (e.g. [BC04, EPR08]). Each sensor or context service subscribes to a registry in
which it is registered together with the context capabilities it offers. Whenever there is need
for a particular context service, a context consumer requests the service registry and gets
the corresponding service forwarded. Thus, new services can be easily integrated and uti-
lized. The context management framework proposed in this thesis adheres to this approach
since every context acquisition component contains individual functions for processing and
interpreting context-relevant data.

Context-aware functions, in general, can be classified according to their responsibilities for (i)
representing information and services that enable the adaptation of user interfaces and pro-
vision of application services with respect to contextual constellations; (ii) triggering specific
application or device behaviors automatically; for instance, a car navigation system is going to
compute a new route in case some significant contextual parameters such as congestion alerts
or construction works have been provided; (iii) adopting data retrieval algorithms; for example,
queries to remote data sources can be adapted according current information preferences of a
mobile user [ADB+99]. The context framework presented in this thesis can be ascribed to the
last category.

Chapter 2. Background 38

Korpipää [KMS+05] claims for a direct management of rapidly changing context data on the de-
vice itself, leading to independent, autonomous context acquisition and processing. By directly
integrating context management functionality into mobile applications, such applications need
to know in advance which sensors are available and how to communicate with them. As a con-
sequence, context data semantics are limited to the applications in which they were interpreted
and can, in most cases, not be shared between applications which renders a dynamic integration
of new sensors in running frameworks difficult. Sensors have to be queried by each application
separately, which impede the process of context aggregation, exchange, and dissemination. In
contrast, if context management functionality is implemented in devices or sensors, their func-
tionality can be shared among components and integrated during run-time (e.g. [BC04, EPR08]).
Other works (e.g., [KHK+04, KMS+05, RSP07]) apply the concept of End User Development
(EUD) [BCR04] to the development process of context-aware functions and features, which in
general should be supported by easily amenable tools in order to encourage users to customize
application behavior and implement individual context-aware features.

2.4.3.3 Context Processing and Utilization Architectures

However, most of the proposed context-aware computing infrastructures (e.g. [DAS01, GSB02,
HIMB05, EPR08]) are built on the idea of separating the process of context retrieval (context
acquisition) and context processing from the underlying application logic through the provision
of suitable abstraction mechanisms; this aspect is denoted as separation of concerns [DAS01].
Literature research reveals that there exists three different context management models for the
coordination of context processes and context consumers [Win01].

• Widgets as proposed by [Dey01, DAS01] are software components that encapsulate or
abstract over specific driver or sensor-logics and offer public interfaces for utilizing a context
sensor. Widgets resemble the so-called concept of separation of concerns (cf. [DAS01])
and are intended to increase the reusability among context services by encapsulating low-
level sensor specifics. They are controlled by a central authority, the so-called Widget
Manager. Additionally due to their self-contained and autonomous nature, widgets can be
easily replaced by components that provide the identical kind of data but offer a higher
Quality of Service (QoS). The tight coupling of widgets with a context management’s
infrastructure increases acquisition efficiency but also entails a loss of robustness in case of
malfunctions [BDR07].

• Networked services are based on a client-server architecture and resemble the Context
Server approach18. They represent a more flexible approach in processing context in-
formation and are usually used for connecting higher-level components. This approach
became prominent with the advent of network-based services and distributed system in-
frastructures. In contrast to the Widget-based model, networked services primarily use
distributed discovery techniques for accessing network services and expose a more complex
structure compared to Widgets since they contain functionalities for establishing network
connections, message handling, and error handling. Networked Services are not as efficient
as Widgets in terms of context acquisition but provide greater robustness with respect to
failures [BDR07].

• The Blackboard model represents an asymmetric approach for data sharing and resembles
a data-centric perspective. The central component of this approach is the so-called black-
board that represents a message board to which context components can send messages

18cf. Section Architectures

Chapter 2. Background 39

in an asynchronous way. Context consumers subscribe to a context blackboard in order
to receive notifications whenever a new message has been sent to the board. Context
sources can be easily added, which is one advantage of this approach. Subscription to
messages follows a pattern matching approach, which varies among different blackboard
implementations and may, for instance, be based on “sophisticated inference algorithms”
tuple-based representations, or a “field-by-field comparison” of tuples [Win01]. Although
context blackboards allow for a simple integration of additional context sources, a central
server for hosting the blackboard and handling communication concerns is still required
accompanied by a loss of communication efficiency [BDR07].

In summary, Widgets provide a process-centric perspective, Networked Services a service-centric
perspective, and Blackboards a data-centric perspective [Win01]. Networked services provide
a greater flexibility compared to the widget-based approach as it uses several discovery tech-
niques for finding network services and resembles the context-server approach, although with an
accompanying loss of efficiency [BDR07].

2.4.4 Key elements of Context Processing and Management Frame-
works

Several context management and processing frameworks for mobile and pervasive computing
information systems have been proposed that cover some of the following aspects: context detec-
tion and acquisition, context identification and representation, context retrieval, context source
discovery and integration, context augmentation, aggregation, and reasoning, as well as context
storage, dissemination, and service adaptation (cf. [ADB+99, CK00, SP04, RTA05, BCQ+07,
BDR07, Kja07, SB08a]). Those frameworks incorporate a number of functional entities that
can be classified along the general functions of generation, management, and application19 of
contextual information [FMGI06]. A number of works defined requirements a context framework
or context-aware application must fulfill to be classified as context-aware. These requirements
serve as a basis for defining a number of key elements and functionalities a context framework
must exhibit. In the following, we give an overview of the most relevant features:

• Context acquisition refers to the set of methodologies and techniques of acquiring context-
relevant data from context sources, which might be a locally deployed sensors, ubiquitous
devices, or Web-based services and applications. Context acquisition can be divided into
four sub-phases (cf. [KMK+03]): (i) sensor measurement for retrieving raw sensorial data,
(ii) preprocessing in which data arrays of measured sensorial data are created for chronolog-
ical quantization and feature calculations, (iii) feature extraction to calculate more specific
context features such as classifying ambient noise values according to predefined classifica-
tion features using specific mathematical and logic-based methods20, and (iv) quantization
and semantic labeling for aligning context features to real-world contexts where their spe-
cific meaning is represented by concepts and properties from controlled vocabularies and
ontologies. In some other works, this process is also denoted as context recognition, context
detection, or context gathering [KMK+03].

• Context aggregation denotes the task of combining contextual information from different,
potentially distributed and heterogenous sources in order to derive higher-level context

19That is responses according to contextual information processing.
20See Figure 2.4 for an illustration of quantizing extracted features from acquired contextual information.

Chapter 2. Background 40

information that was not anticipated at design time of a system. To facilitate the aggre-
gation of contextual information, acquired context descriptions must adhere to a flexible
and well-defined context model that forms the basis for its composition. However, a prob-
lem of context aggregation, in particular of low-level contexts, is that of competing context
sources [LFWK08], which might introduce inconsistencies that arise from aggregating con-
text information that has been acquired from similar sensors, i.e., sensors that measure
identical real-world aspects (e.g., in-house versus outdoor location ascertainment using po-
sitioning devices with varying precision and resolution). A strategy to handle such conflicts
is to explicitly embed users in evaluation processes in order to manually specify the trust-
worthiness of context sources where contextual data coming from a source with a higher
ratio can overrule those from lower rated sources [LFWK08]. Another strategy is to assign
confidence parameters to context sources, but this requires a-priori knowledge regarding
a potential context source, which is contradictory to the idea of ubiquitous computing
environments [EPR08]. In other works (e.g. [GSB02, BC04]) context aggregation is also
denoted as context clustering or context fusion.

• Context consistency is an advanced form of context aggregation that specifically focus on
the aggregation of distributed context models that are subject of frequent changes. Con-
text consistency ensures that the aggregated context models adhere to the structure and
semantics of the global context model or the prescribing schema. Representing contextual
information using Semantic Web languages facilitate the tasks of detecting and resolving
inconsistent contextual information that result from imperfect context sensing, that is, in-
directly acquired contextual data might be inconsistent, incomplete, or outdated [ATH07].

• Context discovery describes the process of locating, integrating, and exploiting context
sources, which are usually dispersed across the environment and not known at design
time. It must take into consideration the service descriptions and protocols exposed by a
context source. This feature is particularly important for context frameworks in the domain
of ubiquitous computing due to the difficulties in discovering and integrating ubiquitous
sensors resulting from the technical diversity of devices as well as the interfaces, protocols,
and data formats such devices expose. Especially at design time, such information is
usually not available and it can not be guaranteed that a context source is compatible to a
context management framework. Context discovery as such is not always a straight-forward
process since both low-level and high-level contexts “incorporate some uncertainty in form
of inferred probability based on previously learned evidence” and “often ambiguously reflect
real-world conditions” [KMK+03]. Other approaches (e.g., [BS03, BTC06, WX06, PvHS07,
SWvS07, MTD08]) therefore suggest to align Quality of Service (QoS) or Quality of Context
(QoC) parameters to context sensors and contextual information to support the process of
selecting appropriate context sources.

• Context query and dissemination is used for requesting information from context sources
such as sensor proxies or context data repositories. Therefore, the different heterogeneous
context descriptions must adhere to a general and global context model so that queries can
be issued against it – ideally in a transparent manner. Context data can be requested either
by querying them or by using a notification mechanism to inform interested components
about the availability of updated data (consumer-subscriber model).

• Context adaptation describes the system’s capabilities to adapt its behavior according to
contextual constellations. System configurations should automatically adopt to respond in-
telligently. For instance, evaluation of context changes is often realized by using conditional
rules (cf. [BC04, KMS+05]. Adaptability requires that the user context is self-descriptive,

Chapter 2. Background 41

that is, user context is described in terms of constraints, preferences, believes of the user’s
needs so that services can be located and executed on behalf of where a context framework
acts as a mediator between services, user needs, and the environment [ATH07].

• Context reasoning allows for deriving new context-relevant knowledge that is not explicitly
asserted or anticipated beforehand within an instance of a context description or context
model. Additionally, reasoning can be used to perform consistency checks to elaborate
whether a given contextual statement holds true or not. Reasoning is also used for deriving
higher-level contexts.

• Context quality indicators allow for computing the trustworthiness and validity of a con-
text description. This is of significant importance for acquiring contexts from distributed
and heterogeneous context sources, as it is the case in mobile ad-hoc or ubiquitous sce-
narios. Such distributed and heterogeneous context sources usually lack a global model
or scheme for describing the data they offer. Therefore, a considerable amount of works
(e.g. [BS03, BTC06, PvHS07, SWvS07, MTD08]) has considered Quality of Context (QoC)
to handle the diversity and heterogenous nature of context sources in ubiquitous and mobile
environments.

For calculating context features from low-level context data and binding it to real-world context,
two quantization methods have been proposed by [KMK+03]: (i) the definition of crisp limits
and (ii) the usage of fuzzy sets. An example of these methods is depicted in Figure 2.4 where
the x-axis represents the value of a context data element (the measured value x) and the y-axis
the membership function µ(x)21.

Let XS denote the set of context data values that correspond to a sensor S; let x denote a
concrete context data value retrieved from the sensor S where x ∈ XS . Let F X denote a feature
classification for the context data set X that consists of a number of classification intervals or
labels fi with F X := [f1, f2, . . . , fn]. Hence, by applying the fuzzy membership function µ(x), a
context data value x is mapped to the interval [0 . . . 1] for a given context feature classification
fi ∈ F X :

µ(x)Feature fi
�−→ [0 . . . 1] (2.1)

Crisp limits evaluate context features according to true or false-values and allow for a distinct
differentiation between context value classifications calculated by the fuzzy membership function
µ(x) that returns values of either 0 or 1 indicating that a given classification feature fi is true
for a sensor value x ∈ XS or not (cf. Figure 2.4 (a)). For instance, the humidity classification
features ’dry’, ’intermediate’, ’humid’ represent high-level context classifications to which the
value of a given context sensor is mapped if the measured value lies within a predefined range
and is true for the corresponding membership function µ(x). The conforming high-level context
concept (context feature) is then included in a context description for the given feature (e.g.,
’humid’ in case humidity value is > 0.80). Hence, only one membership function µ(x)fi

and
classification feature fi ∈ F X respectively can be true at one point in time.

F Humidity(x) ⊕

fdry = 0
fintermediate = 0

fhumid = 1
(2.2)

21 This section represents an extended version of the example proposed in [KMK+03], page 43ff.

Chapter 2. Background 42

Silent

0

1

L(x)
Moderate Loud

Feature x

Silent

0

1

L(x)
Moderate Loud

Feature x(b)(a)

Figure 2.4: Crisp (a) and fuzzy (b) quantization methods for calculating context features
from low-level context data22

Fuzzy sets, in contrast, allow for specifying transitions between feature classifications fi ∈ F X

and enable a continuous quantization of context values as illustrated in Figure 2.4 (b). For
instance, the membership function of a fuzzy quantization F Sound of noise levels consisting of
’silent’, ’moderate’, ’loud’ could return µ(x) = (0.7/fsilent) + (0.3/fmoderate) + (0/floud) for a
given decibel value x.

F Sound(x) ⊕

fsilent = 0.7
fmoderate = 0.3

floud = 0.0
(2.3)

Figure 2.5 illustrates an example for the deduction of higher-level context information from con-
text feature classifications. In this example, naive Bayesian classification [FL04] is used for the
aggregation of low-level contextual data to determine whether the user’s current position refers to
an indoor or outdoor location. The white rectangular boxes represent context features F X that
correspond to elements of a context ontology (the context types), which have specific context
feature classifications fi ∈ F X assigned (the beige boxes). The confidence values returned by the
membership functions µ(x)fi

of all context types (context feature classifications fi) are displayed
in the brown boxes. In this examples, the context feature classification values are mapped to
the upper-ontology classes ’Indoors’ and ’Outdoors’ based on the confidence values calculated
by the corresponding membership functions23. Hence, an aspect of a given situation (in this
case the position of the user and her device) can be classified according to the two upper-class
context ontology types with respect to the previously calculated confidence values. Bayesian
classification is used for the aggregation of the context feature classification instances and corre-
sponding confidence values into pre-defined high-level context ontology classes. Naive Bayesian
classifications in general provides rather satisfying results in recognizing specific situations under
controlled conditions, but can only be applied in restricted and pre-defined settings [KMK+03].

For the representation of both low-level and high-level contextual information, a context frame-
work must support multi-granular context descriptions that incorporate different levels of com-
plexity according to the contextual information contained in a description [ATH07]. Those
descriptions consist of low-level sensorial data as well as high-level contextual information re-
ferring to a user’s current situation represented through concepts from higher-level ontologies;
for instance, a user’s location might be represented as ’at work’, ’at home’, or a specific room
number in a building. The spectrum of context-relevant information ranges from simple binary
arrays to detect whether a sensor or device is turned on or off, to sensors that elaborate on the
activities a user is currently involved [KQJH03].

22Taken and adapted from [KMK+03], page 46.
23Please note that both types of membership functions are used: fuzzy-logic as well as crisp transitions.
24Taken and adapted from [KMK+03], page 47.

Chapter 2. Background 43

Intensity

Environment

Location

Humidity

Indoors
OutdoorsBuilding

Bayesian
classi!cation

Light Type

SourceFrequency

Temperature

Environment

First-level
contexts

(context atoms)

Second-level
contexts

(higher-level
contexts)

Dark
Normal
Bright

Arti!cial
Natural

50Hz
60Hz

NotAvailable
Dry

Normal
Humid
Cold

Normal
Hot

0
0.4
0.6
0
1
0
0
1

0.3
0.7
0
0
1
0

0
1

Figure 2.5: Example of low-level to high-level context-aggregation using Bayesian classifica-
tions24

In general, a context management framework should include high-level context information, so-
called context abstractions, in its context descriptions since there exists a direct relationship
between the level of abstraction and the motivation of adoption and usage [DAS01]. As a
consequence, context should be shifted towards the notion of situation as a higher-level abstrac-
tion of context since context is always defined relative to the situation in which it is acquired
(see, e.g., [LFWK08, Geh08, SWB+08, THS09, CCMS10] for related approaches). A context
framework must therefore allow for the specification of complex situations referring to real-world
events that can not be derived from single context providers or sensors. A number of works
(e.g. [LMWK05, LFWK08]) therefore applied situational reasoning as a more sophisticated form
of context awareness for the aggregation of several context information fragments that were har-
vested from multiple context sources. In situational reasoning, the explicit knowledge encoded
in context ontologies is used to infer additional high-level qualitative context assertions based
on the recognition of specific contextual constellations that represent a given situation. Hence,
a context description is complemented and enriched with additional inferred context statements
on a qualitative level.

In the following, we illustrate how situational reasoning based on classification rules can be
performed by means of a concrete example proposed by [LFWK08]. Figure 2.6 depicts a fragment
of a situational ontology with a top-level concept denoted as ’Situation’ that is further refined by
the concepts ’Private’, ’Business’, and ’Meeting’ which refer to elements (concepts and relations)
defined in a situational ontology [LFWK08]. By applying dynamic assertional classification of
situation descriptions, the concepts defined in context ontologies can be mapped to an upper-level
situation ontology where a situation can be classified as “Business Meeting” when the individuals
of a context ontology match the corresponding rule of a business meeting.

In a concrete example, a situation of an individual is classified as business meeting (’Busi-
ness_meeting’) when the conditions for the concepts ’Situation’ and ’Meeting’ hold true and

25The situation ontology was originally presented by [LFWK08], page 14.

Chapter 2. Background 44

Figure 2.6: Example of a situation ontology that classifies situations as business and private25

there a people classified as colleagues (’Colleague’) or business partners (’Business_partner ’) in
an individual’s immediate environment:

Business_meeting := Business � Meeting � ∃company(Colleague � Business_partner)

Additionally, the following example represents a classification rule that classifies a situation as a
business situation, if it takes place at a location that is either classified as a business place (e.g.
an office or a conference room) or a public place (e.g. an airport or a railway station) in case it
is taking place at office hours:

Business := Situation � (∃location.Business_place �
(∃location.Public_place � ∃time.Office_hour))

However, in the approach proposed by [LFWK08], the classification of situations is restricted to
high-level qualitative context elements. Low-level contextual data are represented using an XML-
based meta model and managed separately due to size of the produced context models, which
may become significantly large and decelerate reasoning and processing performance. The use of
ontologies for representing contextual information on mobile devices is problematic since available
reasoners are generally weak in handling large RDF documents or models efficiently [LFWK08].
Mobile devices in general provide less computational power and memory capacity than desktop
computers or servers wherefore we recommend to keep context descriptions relatively small
with an average amount of triples that do not exceed a maximum of 2.000 or 3.000 triples
(see Chapter 6). However, reasoning performance has been significantly increased within the
last years through the use of multiple optimization techniques for handling large amounts of
data [LFWK08].

2.4.5 Summary and Discussion

The usage and utilization of the notion of context in information systems raises some technolog-
ical as well as human-related challenges. Dey et al. [DAS01] identified the poor understanding
on what context constitutes, how it is to be represented in information systems, and the lack of
conceptual models, methods, and tools that would promote the design of context-aware mobile
applications as one of the main reasons why context awareness has only insufficiently found its
way into the essence of mobile and ubiquitous computing yet. This additionally hampers empir-
ical investigations in human-computer interaction and interaction design. Effective interaction

Chapter 2. Background 45

design thus requires the multiple dimensions of context to be reflected in mobile application
design and implementation [RTA05].

The fact that context is often misinterpreted, superficially used, and lacking an unambiguous
and widely agreed definition are some of the reasons, why context awareness has not found its
way into the corpus of most mobile applications yet [RTA05].

Many works indicated the non-existent availability of a general model of context and context
awareness as one of the main problems of context-sensitive systems. This fact in particular con-
cerns mobile computing where the notions of context and context awareness are used ambiguously
across communities and reflect specific application domain peculiarities (cf. [BCQ+07, RTA05]).
This problem also hampers context-aware application development for mobile systems since a
widely-accepted and well-defined programming model does not exist wherefore sensor-logics are
often hard-wired into application code and application developers have to deal with low-level
interactions between sensors and context-acquisition components [DAS01, BC04]. Therefore,
the semantics of contextual information are limited to the applications in which they were ac-
quired and are represented using proprietary formats for representing contextual information.
This exacerbates the exchange and dissemination of contextual information and binds its uti-
lization to the application they stem from. In general, context information should be sensed and
gathered from a variety of different sources that are usually distributed across system bound-
aries. This requires open and well-known standards for describing contextual information as
well as interfaces and protocols for distributing that information26. Newer approaches (e.g.,
[BC04, MFC07, BKL+08a]) employ more flexible designs for context processing and representa-
tion where sensor-logics or sensor-specific APIs are encapsulated in specific components that can
be mutually shared or employ middleware infrastructures (e.g., [HIMB05, HM05]) for facilitating
communication and interoperability between context processing components while using knowl-
edge representation languages from the Semantic Web such as RDFS or OWL for representing
contextual information [PvHS07, MT07].

2.5 Problems of Context-aware Computing

A fundamental problem of context-aware computing is that of context ambiguity [Dey01] and con-
text imperfection [HIR02] which refers to the implicit assumption shared by many context-aware
computing approaches that the computational context is a 1-to-1 reflection of the real-world
context. Evidently, this assumption is wrong since the way context is conceived by individuals
differs substantially from the way it is acquired and represented electronically [Dey01, Dou04]. A
logical consequence of that misperception is that a context framework can only work on a more
or less accurate context representation where the degree of accuracy is determined by numerous
technical and soft factors. The unpredictable and relative nature of context renders a determina-
tion of all contextual aspects that constitute a specific context at a system’s design time difficult,
if not impossible, since context is always defined relative to the situation in which it is used.
An electronic representation of context can therefore never be universal in that a context model
contains all information that characterize a given situation; instead it only represents a relevant
subset of the constituting real-world context [Dey01, HIR02, Dou04]. The problem is that a
1-to-1 relation between a situation and the describing context information does, in most cases,
not exist wherefore a situation can be represented by multiple context models with a specific de-
gree of accuracy w.r.t. the several viewpoints. Several methodologies such as bayesian networks,

26In Section 2.8, we demonstrate the different possibilities the Semantic Web offers for modeling and distributing
contextual information in mobile ad-hoc and highly dynamic environments.

Chapter 2. Background 46

case-based reasoning, stochastic models, or machine learning techniques have been proposed for
defining precise transitions between different context descriptions with as little ambiguity and
overlapping as possible. However, such approaches contribute towards increasing the accuracy
of context acquisition and context representation but do not help in identifying all constituting
aspects of a specific situation. Context-aware computing in general is merely an approximation
to a real-world situation rather than a 1-to-1 reflection of it.

Three complementary approaches have been proposed by [DAS01] to deal with context ambigu-
ities:

1. Let applications choose an appropriate way on how to deal with ambiguities

Within the first approach, an application can specify the accuracy of the context informa-
tion it requires. On the other hand, this requires the context framework and the involved
applications to use the same accuracy measurement method or at least compute and share
measurements on a common basis. In decentralized context processing architectures where
context sensing components are distributed, this requirement becomes more complicated
to fulfill since a framework has to guess on the accuracy of acquired contextual data. Con-
sequently, a context sensor has to be annotated with information that allows a context
framework to ascertain the accurateness of its context data, which on the other hand also
depends on the context consumers themselves that make use of the acquired context infor-
mation. For one application, the acquired context might be sufficiently accurate whereas
another application requires a more precise representation.

2. Automatic disambiguation of context

Another common approach for resolving or disambiguating contextual data is to collect
context data from as many sources as possible to improve its accuracy. Collecting contex-
tual data from multiple, distributed sensors is per-se a non-trivial task since it requires a
certain degree of compatibility in terms of the protocols used for communicating contextual
data as well as on syntactical, structural, and semantic level, i.e., how to interpret a cer-
tain contextual value or property. The process of combining multiple (often homogeneous)
context sensors is called sensor fusion (cf. [GSB02, BC04]). Although sensor fusion is a
valid strategy for reducing context ambiguities by increasing its accurateness, inherently
given ambiguities can not be fully eliminated by automated approaches.

3. Manual disambiguation of context

A third approach is that of manual disambiguation of context data where the user is in-
volved in the process of interpreting contextual data and resolving disambiguations. In this
approach, the system should support the user by providing alternatives and give feedback
on the consequences of their chosen option. Ideally, this information is transferred to or
stored by the context framework so that other components can make use of it or use it for
future actions.

Another problem of context-aware computing is that most architectures are targeted towards a
specific application or domain [EPR08]. The difficulties hereby are that certain high-level context
interpretations are not absolute characterizations per se, since the concept ‘high temperature’
for instance depends on the context or situation in which it was acquired. This dependency
makes it difficult to share context information in an application and domain-independent manner
since implementing new application behaviors based on context characterizations made for one
application might not be appropriate for another one [EPR08]. Some works [KA04, CX06, Teo08]

Chapter 2. Background 47

therefore focus on describing and representing context in an application independent manner by
means of concepts from activity theory [Nar95, Kuu95] using collaborative plans [GK96], task
analysis [RW03, Dia90], aspect-oriented context modeling and modularization [CCSC07], or
situational reasoning [BKL+08a, LFWK08] to decouple context from specific application domains
and provide abstract contextual concepts (e.g., “business meeting”) that adhere to upper-level
ontologies. Context and contextual information needs a uniform representation to be effectively
managed, integrated, and processed by reducing the ambiguities inherently attached [FMGI06].

Early approaches suffered from the tight integration of context acquisition and context-aware fea-
tures which are treated by applications in proprietary ways leading to inflexibility in application
design and reduced extensibility with respect to the development of new context-aware func-
tionalities [KMS+05]. The proposed context management and processing framework provides
the necessary technical infrastructure on which additional more sophisticated layers (e.g., for
situation-awareness) can be deployed. Such layers allow for aggregating the contextual artifacts
acquired by the underlying framework and apply different methodologies (e.g., Bayesian net-
works, case-based reasoning, stochastic methods, etc.) for context interpretation, consolidation,
and augmentation.

2.6 The Semantic Web

The Semantic Web [BLHL01] is the idea of expressing rich, machine-processable knowledge using
the Web infrastructure. Descriptions about resources (which are entities of any kind, including
digital objects like documents and media, physical objects like humans, cars, or buildings, and
abstract concepts like locations, topics, and time periods) are published in a structured format
and using vocabularies that follow a well-defined semantics. Applications can consume these
descriptions, interpret them, merge them with descriptions from other sources, and infer new
knowledge or determine the truth value of statements. In analogy to the World Wide Web,
which nowadays serves as one underlying knowledge-provisioning infrastructure for a wide va-
riety of human knowledge workers, the Semantic Web is envisioned to serve as an underlying
information-provisioning infrastructure for information-centric applications, whereas the infor-
mation processing is performed semiautomatically by computer programs.

Broadly, the Semantic Web consists of a stack of technologies that build on each other. The
core technologies are shared with the World Wide Web: Uniform Resource Identifiers (URIs)
[BLFM05] to identify resources, and Hypertext Transfer Protocol (HTTP) [FGM+99] for the
transportation of information. URIs are a fundamental part of the Web architecture and are
considered as a single global identification system for resources [JW04]. They allow for a globally
unique identification of resources across the Web thus promoting large-scale network effects and
are defined in [JW04] as follows:

Definition 2.1 (URI). A Uniform Resource Identifier (URI) is a compact sequence
of characters that identifies an abstract or physical resource. [...] It enables uniform
identification of resources via a separately defined extensible set of naming schemes
[...]. How that identification is accomplished, assigned, or enabled is delegated to each
scheme specification.

On top of these core technologies, the Resource Description Framework (RDF) [KC04] is used
as the abstract data model in which all information is represented. RDF is a triple-based graph

Chapter 2. Background 48

urn:uuid:
265a887f-5644-4067-9b3e-

d3b7c59f7bf9

http://www.mobisem.org/
2009/01/context#Context

http://www.w3.org/1999/02/22-rdf-syntax-ns#type

http://cs.univie.ac.at/
stefan.zander#me

"Stefan Zander"

http://xmlns.com/foaf/0.1/name

http://purl.org/dc/terms/creator

Figure 2.7: Example RDF Graph

model, with the statement being the atomic unit of information. Each statement consists of three
elements (subject, predicate, and object), where the predicate identifies the relationship that is
asserted to exist between the subject and the object.

Definition 2.2 (RDF Statement). An RDF statement S is a triple T = �S, P, O�
consisting of a subject S which is either a URI reference or a blank node, a predicate
P which is a URI reference, and an object O that can either be a URI reference, a
blank node, or a (plain or typed) literal.

An RDF document consists of a set of RDF statements and can be considered as a labeled multi-
graph [EPR08]. URIs can be used for all three elements; whenever the same URI is used in
multiple statements these statements are referring to the same resource (or real-world entity).
Therefore, a set of RDF statements that shares common URIs can be interpreted as connected
graph (cf. Figure 2.7). Through the use of URIs as identifiers for information entities, these
can be referenced from outside the system context and incorporated into external knowledge
structures. RDF itself is an abstract data model; in turn, there exist several serialization formats
that can be used to exchange RDF statements between parties, including RDF/XML [Bec04],
Turtle [BBL08], N3 [BLC08], N-Triples [GB04], and RDF/JSON 27.

Based on RDF a set of technologies has been developed that aims to make more “knowledge” out
of the data represented in RDF graphs. Higher-level languages like RDF Schema (RDFS) [BG04],
Web Ontology Language (OWL) [MPSP09], and Rule Interchange Format (RIF) [BHK+10]
can be used to define the constraints of a domain of discourse based on formal logics; us-
ing these languages, valid combinations of statements can be defined axiomatically. This al-
lows implicit knowledge to be discovered based on asserted information using reasoners such
as FaCT++ [TH06], Pellet [SPG+07], or Racer [HM01], to detect inconsistencies in knowledge
bases, or to determine the truth value of statements, given a set of background knowledge. A
query language (SPARQL) [PS08b], which resembles similarity to the SQL language for rela-
tional data, can be used to formulate structured information needs, which are evaluated against
a set of RDF graphs.

One line of development within the ongoing Semantic Web research field is Linked Data [Biz09],
which denotes the practice of publishing data on the Web according to simple core princi-
ples [BL06a]. Its core idea is to denote resources (which includes real-world entities as described
above) exclusively using HTTP URIs, and to allow data consumers to directly de-reference these
URIs (i.e., to fetch their representations using HTTP GET methods). Upon this de-referencing,
structured information about the resources is returned, which contains links to other relevant

27RDF/JSON syntax specification: http://docs.api.talis.com/platform-api/output-types/rdf-json

http://docs.api.talis.com/platform-api/output-types/rdf-json

Chapter 2. Background 49

resources. These other resources can then, in turn, be retrieved by the client, allowing it to
navigate through a global information network based on the “follow-your-nose” principle.

Since 2007, when the Linked Data W3C community project28 was established, a significant
amount of data has been published according to the Linked Data principles. This includes
popular data sets of general interest like DBpedia (consisting of structured information extracted
from Wikipedia pages), geographic information (like Geonames), media-related content like BBC
Programmes, and bibliographic information (e.g., DBLP). An example of a highly distributed
data set is the entirety of all FOAF Profiles, which are usually served on private infrastructure,
and are interconnected based on social relationships between their owners. Through the (partly
indirect) interconnection of these data sets, light-weight data integration can be performed,
and information about the same entities can be gathered and combined from heterogeneous,
distributed sources.

2.7 Representing Contextual Information using the Re-
source Description Framework

In this section, we extensively discuss the implications of using RDF as a description framework
for representing contextual information. An RDF document can be considered a set of distin-
guishable RDF triples, which describe resources as well as the relationships that exists between
them using vocabularies that are defined on the basis of ontologies and whose elements can be
identified using URIs. These elements form a directed labeled graph of (semi-)structured informa-
tion, which is a very common and natural way to express domain knowledge [BLHL01, KC04].
RDF uses a graph-based data model for representing information that is independent of a spe-
cific serialization mechanism or format. It has been developed as a framework and language for
representing meta data about resources in the Web [MM04]. In the context of the World Wide
Web, a resource denotes or represents an item of interest that is identified by a Uniform Resource
Identifier (URI) [Lew07]. In the W3C Recommendation “Architecture of the World Wide Web,
Volume One” [JW04] a resource is defined as follows:

Definition 2.3 (Resource). The term “resource” is used in a general sense for what-
ever might be identified by a URI. It is conventional on the hypertext Web to describe
Web pages, images, product catalogs, etc. as “resources”. The distinguishing charac-
teristic of these resources is that all of their essential characteristics can be conveyed
in a message. We identify this set as “information resources”.

RDF uses the concept of Uniform Resource Identifiers (URIs) [BLFM05] for identifying both
information resources as well as non-information resources, which are identifiable but not directly
retrievable (cf. [JW04, BCH07]). In contrast to the concept of URLs [BLMM94], which not only
identify Web resources but also provide information about locating and retrieving a resource’s
representation using specific protocols and network locations, URIs resemble a more general
concept of identifying things on the Web that do not necessarily need to have a network location
nor require a specific form of access mechanism (cf. [MD02]). URIs may also be used to denote
abstract or intangible concepts such as “legislation period” or “law”. In [Lew07] an information
resources is defined as:

28W3C Linked Open Data Community Project: http://esw.w3.org/SweoIG/TaskForces/CommunityProjects/

LinkingOpenData

http://esw.w3.org/SweoIG/TaskForces/CommunityProjects/LinkingOpenData
http://esw.w3.org/SweoIG/TaskForces/CommunityProjects/LinkingOpenData

Chapter 2. Background 50

Definition 2.4 (Information Resource). Information resources are resources, iden-
tified by URIs and whose essential characteristics can be conveyed in a message. The
pages and documents familiar to users of the Web are information resources. Infor-
mation resources typically have one or more representations that can be accessed using
HTTP. It is these representations of the resource that flow in messages. The act of
retrieving a representation of a resource identified by a URI is known as dereferencing
that URI.

Additionally, information resources usually have one or multiple representations that constitute
the messages that are exchanged between applications or users [Lew07]. Information resources
can be accessed using the Hypertext Transport Protocol (HTTP) [FGM+99] where dereferencing
a URI denotes the process of retrieving a resource’s representation. In contrast, non-information
resources refer to real-world objects and are outside of the Web’s information space. They
can not be dereferenced directly, wherefore the requested server that hosts a non-information
resource returns a HTTP response with status code 303 See Other [FGM+99]. This process is
called a 303 Redirect (cf. [BCH07]). The server’s response contains the URI of an information
resource that describes the requested non-information resource in more detail; it provides a
machine-processable representation of the requested non-information resource.

Despite the simplicity of the underlying conceptual model, RDF offers expressive power and
flexibility while exposing a relatively generic triple-based model; by identifying concepts as well
as the relationships among them using URIs, RDF documents can be linked together to form a
larger data graph29. Using RDF as a representation language and storage model for contextual
data offers a number of significant advantages compared to other representation and storage
formats (cf. [Owe09, HRSZ11]):

• Data aggregation: due to the simple yet flexible underlying conceptual schema, aggregating
RDF data can be realized by specifying relationships between resources from different data
sources or RDF repositories, which can be uniquely identified and referred to by their
URIs. In this way, data sources can be linked together by adding new RDF triples that
express relationships between related resources or allow for defining mappings and rules
for schema realignments (more expressive languages such as OWL allow for specifying
more complex and logic-based relationships such as functional, reflexive, transitive, inverse
properties etc.), which is a more viable form compared to the complex schema realignments
in relational database management systems [Owe09]. Additionally, if two resources are
using the same URI, its valid to assume that they refer to the same (real world) entity.

• Data discovery: by using URIs for identifying resources and concepts, data discovery across
documents and systems is facilitated since the use of URIs allow for a global identification
mechanism among systems and domains. Identical resources can be discovered among
different RDF documents in case they use identical URIs to refer to information and non-
information resources (e.g. http://www.dbpedia.org/resource/Vienna to refer to the
city Vienna and http://www.dbpedia.org/data/Vienna.xml to refer to a information
resource that contains information about Vienna30). It is common Web practice to assume
that identical URIs conceptually refer to the same resource and denote identical concepts.

29Please note that the notions of RDF document and RDF graph are used synonymously across this section
for simplicity reasons although a graph refers to a more generic and mathematical notion whereas the notion of
RDF document is used to emphasize the RDF vocabulary classes and instances (also denoted as resources or
individuals).

30In this respect, the information resource http://www.dbpedia.org/data/Vienna.xml is a representation of
the non-information resource http://www.dbpedia.org/resource/Vienna

Chapter 2. Background 51

• Data representation: URIs exhibit a standard and uniform identification scheme that is
used to identify and refer to the elements defined in a controlled vocabulary to represent
the knowledge of a particular domain – the universe of discourse. Since URIs are used
to identify such elements, elements from different vocabularies and ontologies can be ex-
changed and utilized among different RDF documents and work in a networked way. By
making the semantics of such elements explicit, different RDF documents using the same
controlled vocabulary for describing their data can be interpreted and processed identically
in different systems. Since RDF-based vocabularies are built on higher-level languages such
as RDF/S and OWL that were defined on formal and well-defined logics, knowledge not
explicitly asserted in an RDF document can be deduced by drawing logical conclusions
on existing assertions. Additionally, RDF supports the concept of reification [HM04] and
facilitates the reconciliation of structural heterogeneity due to its generic triple-based data
model.

• Data flexibility: RDF is an open world framework with no tightly defined data schemas,
the underlying data model conceptually does not impose any limitations or restrictions
(besides complying with its triple-based structure) to an RDF graph in terms of the data
being represented or the amount of data to be contained in a graph. RDF offers a great
flexibility for expressing almost any kind of information where anyone can say anything
about any topic. This allows to add data to an RDF graph even if the structure is not
known beforehand, which is a significant advantage compared to database management
systems that rely on tightly defined database schemas [TGE+06, Owe09].

• Tool support: RDF offers a powerful and open knowledge representation language that can
be used to virtually express any type of knowledge due to its underlying generic triple-based
schema. This simplicity and flexibility led to the creation of a multitude of open-source
frameworks and tools (e.g., knowledge extraction engines, reasoners etc.) for processing
and storing RDF data that can be used in existing applications.

In the following paragraphs, we elaborate on the benefits resulting from the usage of RDF/S and
ontology-based vocabularies for representing contextual information compared to hierarchical
XML-based context representations. However, the benefits of using RDF instead of XML as a
description framework have been discussed since the emergence of RDF itself [BL98].

Generally, the logical structure behind an XML document can be expressed in multiple ways,
which on the other hand influences query languages that should be ideally independent from a
concrete representation. Since RDF is based on a simple directed triple-based graph, the logical
structure is consistent among every RDF document. By mapping XML documents to semantic
graphs, one must consider the one-to-many relation that exists between a semantic graph and the
various XML representations since an RDF graph can be represented using a multitude of differ-
ent hierarchical XML graphs. Additionally, the underlying schema must be known beforehand to
elaborate on the structure and semantics expressed in an XML document. Due to the different
possibilities of representing identical facts in XML, querying for information is more complicated
in an XML tree in terms of the different structural possibilities an XML document incorporates.
This complexity increases for combined queries, that is, queries containing more than one prop-
erty. Moreover, traditional XML schema definitions such as DTDs lack an inferencing support
and inferencing language [BL98].

By representing context descriptions as RDF graphs, a context consumer can process the triples
it is interested in and ignore irrelevant ones. XML in contrast requires a schema and explicitly

Chapter 2. Background 52

specified semantics (mostly encoded in applications) to interpret and infer on the semantic re-
lationships between the different context items and properties. For interpreting the semantics
of a context description as well as the semantics of the relationships between context elements,
an XML parser and the application making use of it respectively have to interpret the structure
and schema information of the XML document. In RDF, the semantics of context elements can
be specified explicitly and independent of a document’s structure as opposed to XML, where the
semantics of a document is implicitly encoded in the structure and composition of its constituting
elements.

Another problem is that XML schemas can not be extended without influencing query expres-
sions, that is, query expressions must be adapted according to changed schemas. RDF in contrast
allows to add new data to context descriptions without the necessity to adapt existing query
expressions, which can be applied without modification. Ambiguities in context descriptions can
also more easily be handled and reconciled using RDF since the semantics of asserted statements
are defined externally to the document in which they were used. When new facts are introduced
to XML-based context descriptions, they need to be compliant to the prescribing schema.

2.7.1 Representing Contextual Aspects

Context in general represents an information space that can be well represented using a directed
labeled graph, which is the underlying data model of the Semantic Web languages RDF and OWL
(cf. [EPR08]). A node in an RDF graph refers to the resource identifying a contextual aspect
such as location or temperature where more complex contextual aspects may be represented
by sub graphs consisting of several nodes and edges. Edges represent relationships between
elements describing a contextual aspect where the semantics of a relationship is determined
by the vocabulary term used to describe a relation and the direction of an edge. Two nodes
connected by an edge form an RDF statement or RDF triple (cf. Definition 2.2) and represent
an elemental assertion about a contextual aspect or a part of it. An edge in an RDF graph is
equivalent to a predicate of an RDF statement and constitute a specific context property where
the object of a statement may represent a specific context property value being a plain or typed
literal (cf. Section 2.7.3), refer to another resource, or represent a structured value using the
concept of blank nodes [KC04]. Based on these conventions, a contextual aspect is defined as
follows:

Definition 2.5 (Contextual Aspect). A contextual aspect is a relevant and distinct
part of the surrounding real-world context such as the current location or the current
temperature (cf. [RSP07]) and is identified using a concrete URI. A resource and
associated statements represent a concrete instantiation of a contextual aspect and
describe the elements being relevant to it.

An instance of a contextual aspect thus comprises all the RDF statements31 that adhere to the
resource representing a contextual aspect and make assertions about the elements being relevant
to it; for instance, the contextual aspect of the user’s current location can be described using the
statements depicted in Figure 5.4 on page 181. Moreover, contextual aspects that are logically
or semantically related together form a contextual constellation that represents an constituting
part of the user’s real-world context.

31We use the term ’triple’ and ’statement’ synonymously throughout this chapter.

Chapter 2. Background 53

In general, we suggest to make use of the concept of blank nodes [KC04] for the description
of contextual aspects, in particular when there is no need for globally identifying a specific re-
source or for expressing complex contextual aspects respectively contextual constellations. For
instance, the use of anonymous nodes are general means to express restrictions on concept
and property instance values in OWL (using owl:Restricition) such as owl:AllValuesFrom,
owl:SomeValuesFrom, or owl:hasValue [AH08]. Moreover, RDF only supports binary relation-
ships per default; by validating a path expression we can asses whether a given relation holds
between two resources (given that the object is not a literal). However, blank nodes allow to
represent n-ary relationships between a specific context-relevant resource and its constituting
elements.

Different contextual aspects can be classified by means of a common concept using the rdf:type
property that indicates the correspondence of an instantiation of a contextual aspect to a spe-
cific classification class. According to the RDF semantics, the class specified as a statement’s
object represents the category or class from which the corresponding subject is an instance of32.
Resources that are instances of concrete classes are called typed nodes in terms of RDF graph
semantics or typed node elements in terms of RDF syntax [Bec04].

2.7.2 Identifying Contextual Information

To identify contextual information and contextual aspects respectively, a common approach is
to make use of fragment identifiers33 [BL97]. A fragment is interpreted relatively to a given base
URI and allows to represent different aspects as well as different revisions of a user’s context.
In the context of the Semantic Web, fragment identifiers are commonly used for referring to
vocabulary terms or to concepts of an ontology as illustrated in the subsequently given example,
in which the URI of the concept Context from the data description ontology is presented.

1 http://www.datadescription.org/2010/09/vocabulary#Context

By using the base URI plus the fragment identifier, a context consumer can request a particular
contextual aspect it is interested in by adding the fragment identifier to the base URI of the
context description hosting an instance of a contextual aspect. By assigning a fixed URI to
context descriptions created by a context framework, these can be requested regardless of their
individual identifiers by de-referencing the respective static URI (cf. [Lew07]).

2.7.3 Representing Context Property Values

For expressing concrete context property values, RDF offers the concept of typed literals [KC04]
to represent such data as structured values in order to standardize processing and interpretation
tasks among context consumers. In contrast to plain literals which are untyped and self-denoting
literals (cf. [KC04] Section 6.5), typed literals exhibit datatype-specific information and allow
for expressing context-specific numerical values in a structured and controlled way. By using
typed literals, the interpretation of context property values adhering to a contextual aspect is
not restricted to the applications or services in which a context description is consumed but
explicitly represented in it. In [KC04] Section 3.4, typed literals are defined as follows:

32Please note that according to the RDF semantic, a resource can be instance of multiple classes (cf. [MM04]).
33However, the term ’fragment’ is misleading as a fragment identifier can identify anything (not only document

fragments) [BL97].

Chapter 2. Background 54

Definition 2.6 (Typed Literal). A typed literal is a string combined with a datatype
URI. It denotes the member of the identified datatype’s value space obtained by ap-
plying the lexical-to-value mapping to the literal string.

Typed literals in RDF consist of a prefix string and an associated URI reference that identifies a
particular XML Schema data type [BM04]. The concept of typed literals can be used for repre-
senting time stamps that refer to the creation date of a context description, which is important
for their synchronization. For instance, the following fragment of an RDF-based context de-
scription illustrates the use of typed literals for explicitly representing synchronization-relevant
information (indicated by the context:timestamp property) using the XML Schema datatype
#date34:

1 <urn:uuid:baac630a-5cdb-4c79-92e6-6ce3d07419bc>
2 a context:Context ;
3 context:timestamp "2009-06-16T15:58:22"^^<http://www.w3.org/2001/XMLSchema#date> ;
4 context:previous <urn:uuid:d3ee316b-5704-4893-acb9-df1495c79011> .

By explicitly modeling such information, a context framework or context consumer can infer
whether a requested context description has been recently created and reflects the user’s current
context or whether it refers to a previous context35.

Due to the fact that RDF does not incorporate a dedicated data type system that defines a
value and lexical space for representing data types nor provides modeling primitives for explicitly
defining data types (apart from the built-in data type rdf:XMLLiteral itself), RDF makes use
of XML Schema data types [BM04] to align an XML Schema data type such as xsd:integer
or xsd:date to a literal in order to provide explicit information regarding its interpretation.
This information concerns the value space36 that the data type represents, the lexical space37 a
data type must adhere to, as well as a lexical-to-value mapping. To illustrate this exemplarily,
the value space, lexical space, and the lexical-to-value mappings for the XML Schema data type
xsd:boolean are depicted in Figure 2.838. An XML Schema data type assigned to a literal
can be identified by its specific XML Schema URI and is thus being defined externally to an
RDF document (see [MM04]). The inclusion of standard XML Schema data types facilitates
the interoperability between context frameworks and context-aware applications since shared
contextual information and the included context property values can be interpreted externally
to the application logic.

As RDF does not inherently define data types, the interpretation of typed literals is left to appli-
cations that process an RDF document. Hence, an application is responsible for determining the
validity of assigned XML Schema data types to literals, e.g., whether or not the value of a typed
literal is in the lexical space of the corresponding XML Schema data type. Moreover, by using
external schemas for identifying specific data types, the interpretation as well as determination
of the correctness and validity of a specific data type is also part of the respective application.
By using typed literals whose URIs refer to XML Schema data types, a context producer is
able to make explicit assertions on how to interpret given context property values which in turn
facilitates the exchange of contextual information.

34Please note that data types are defined externally to RDF and are referred to by their URIrefs (e.g., the
URIref for the data type xsd:integer is http://www.w3.org/2001/XMLSchema#integer).

35Supposing that the timing has been synchronized beforehand.
36A value space is defined as “the set of values for a given datatype” where “each value in the value space of

a datatype is denoted by one or more literals in its lexical space” [BM04].
37The lexical space determines the set of literals that are valid for the data type it was defined for.
38The lexical-to-value mapping for the XML Schema datatype xsd:boolean has been compiled from [KC04].

Chapter 2. Background 55

1 Value Space: {T, F}
2 Lexical Space: {"0", "1", "true", "false"}
3 Lexical-to-Value Mapping: {<"true", T>, <"1", T>, <"0", F>, <"false", F>}
4

5 Typed Literal Lexical-to-Value Mapping Value
6 --
7 <xsd:boolean, "true"> <"true", T> T
8 <xsd:boolean, "1"> <"1", T> T
9 <xsd:boolean, "false"> <"false", F> F

10 <xsd:boolean, "0"> <"0", F> F

Figure 2.8: Value space, lexical space, and lexical-to-value mapping for the XML Schema
data type xsd:boolean and their typed literal definition

2.7.4 Using Structured Properties for Representing Contextual Infor-
mation

In some situations, typed literal fail to provide the necessary expressiveness to explicitly specify
the interpretation of complex context property values. Typed literals presume the existence of
implicit unit information for a stated value. This might be adequate for certain types of in-
formation such as location-based coordinates (e.g. the latitude or longitude coordinates could
be modeled in RDF as geo:lat "48.175443" and geo:long "16.375493") but fails for other
information types, in particular for physical or cultural-dependent information units such as tem-
perature, weight, dimension, or price, which require explicit units or measurement information.
For those cases, RDF includes the concept of rdf:value-properties that allow for explicitly spec-
ifying the "context", i.e., the unit of an acquired value. Hence, the value of a context property is
represented as a blank node [KC04] being the subject of additional statements that describe how
the value is to be interpreted. Structured values are usually represented by adding a separate
blank node that has the rdf:value as well as the qualified property value attached to it, plus
additional unit or measurement properties and corresponding values (in most cases this is the
URI of the concept representing the unit). Figure 2.9 exemplifies the use of structured property
values for representing temperature values according to different temperature scales:.

1 [] a context:Sensor ;
2 exterm:temperature [
3 rdf:value "24.6"^^xsd:decimal ;
4 exterm:unit exunit:Celsius rdfs:label "Temperature in Celsuis degree" .
5 rdf:value "76.28"^^xsd:decimal ;
6 exterm:unit exunit:Fahrenheit rdfs:label "Temperature in Fahrenheit" .
7] .

Figure 2.9: Use of rdf:value property for representing the values of a temperature sensor

By attaching unit information to context property values, a context description may host different
values referring to a contextual aspect. In case a context consumer specifies that it requires
context information to be measured in a particular unit, a context framework can request a
translation service and adapt context property values to the requirements stipulated by the
requesting client. In doing so, a context description can be enriched with alternative values
regarding its acquired context property values which allows for adding structured information
from additional classification schemes in order to further describe a given context property value.

Chapter 2. Background 56

2.8 Semantic Web-enhanced Context-aware Computing

For managing context information systematically, a common structure for representing con-
textual information need to be established [KMK+03]. Since technologies and concepts from
the Semantic Web have been designed for heterogenous environments, they offer languages and
technologies that serve as standards for expressing contextual information, and can therefore be
shared and exchanged among systems and applications. The Resource Description Framework,
discussed in the previous section, has proven to be an appropriate representation framework
for representing complex contextual constellations and facilitating the sharing and exchange of
context descriptions based on ontological semantics [ZS10]. It can be used for codifying the
semantics of contextual information as well as the relationships among them in a well-defined,
uniform, and systematic way. Its open architecture allows for the integration of different vo-
cabularies to describe contextual information so that context descriptions can dynamically grow
and become more elaborated. Additionally, RDF allows to represent contextual information in
multiple ways so that such information can be utilized by a wide variety of context consumers.
On top of RDF, RDF Schema (RDFS) offers a simple set of common language properties that
can be used for building context descriptions which can be shared among different context
providers and consumers collaboratively [KMK+03]. However, the set of RDFS language ele-
ments is not sufficient for expressing rich contextual constellations, wherefore the use of more
expressive languages such as OWL is suggested [MT07, EPR08]. Generally, the use of ontolo-
gies as a key component for building a context-aware computing framework is broadly acknowl-
edged [KMK+03, PdBW+04, EPR08, LFWK08], and it has been shown that Semantic Web tech-
nologies are sufficiently mature and performant to be deployed on mobile devices [ZS11, ZS12b].

Several works have already demonstrated that ontologies are appropriate means for expressing
and representing contextual information since they incorporate some characteristics that are
essential for mobile and ubiquitous environments [CJ04, HDM05, HMD05, EPR08]. Ontologies
are highly expressive and widely adopted knowledge representation techniques, and a multitude
of open software tools for their design, creation, management, and storage are available [PvHS07].
Ontologies offer a well-defined set of concepts and relationships to model the domain of interest,
which can be adopted by context-management frameworks to integrate and share contextual
knowledge from other domains to facilitate context exchange and reuse. Ontologies are based
on knowledge representation languages that are open with respect to evolutions of the domain
they describe. This allows ontologies to be adapted and extended according to domain-internal
changes. The use of ontologies as languages for representing contextual information is further
supported through the availability of tools that helps in designing and managing ontological
vocabularies. Since most of the technologies and languages found in the Semantic Web were
defined on the basis of open standards, this fact further lowers the barriers for their adoption in
distributed and heterogeneous environments.

Semantic Web languages such as RDF and OWL were specifically designed for highly distributed
and heterogeneous environments and use HTTP URIs [BL02] to reference both information and
non-information resources (cf. [BL05, BCH07]). URIs do not distinguish between locally or
remotely hosted resources. Due to the single global address space of Web URIs, naming conflicts
between different context representation languages can be easily reconciled. Especially when
adding new context acquisition components, which were not available at design time, ontologies
allow for information transformations and matching even if the information does not exactly
match information requirements [EPR08]. Due to the fact that URIs use a global address space,
Semantic Web-based vocabularies and ontologies used for describing contextual data can work
in a networked way.

Chapter 2. Background 57

Building a context awareness computing infrastructure on the principles and technologies of the
Semantic Web has several implications and advantages: due to the fact that ontologies are based
on the open world assumption, context ontology evolution is a central aspect in context manage-
ment and allows for adapting and modifying a context ontology according to changed conditions.
This makes them applicable to dynamic, unpredictable, and frequently changing environments.
Due to the fact that RDF is a system- and application-independent framework for modeling data
and its close relatedness to Web technologies, it is well suited for the data exchange between
components (e.g., using HTTP). This facilitates interoperability among context frameworks and
services since established and well-known vocabularies together with their inherent semantics
can be understood and used across systems.

Since ontologies provide a common structure for representing and describing the relationships and
semantics of context-relevant information in a machine-processable way, they can be conceived
as a general approach for systematic management of context information. In such a setting,
RDF can be used as a description syntax to enable the communication and sharing of context
information between collaboratively communicating partners, i.e., applications, services, and
devices. These descriptions are represented as labeled multi graphs, where the contained entities
are referred to through HTTP URIs (see Section 2.6). Its open architecture allows for the
integration of different context-relevant vocabularies so that context descriptions can dynamically
grow and become more elaborated to better reflect intra-domain evolutions.

Additionally, ontologies facilitate the interpretation of sensed or derived values to allow for
their aggregation and transformation into symbolic values, i.e., transforming collected data into
statements adhering to a prescribed vocabulary. Hence, context acquisition components do
not need to anticipate possible queries beforehand, but provide the data they have and let
the requesting components decide which information is of relevance to them. Additionally, if
context-relevant data are represented using Semantic Web languages, they can be integrated
and processed even if they were not known at design time of a mobile system (see [EPR08]
page 30 for an example). This also applies to divergent sensor or service feature descriptions
where the identification of correspondences between heterogeneous descriptions serves as a basis
for utilizing services and integrating acquired information that had not been anticipated at design
time of a mobile system.

Ontologies help in expressing application or service needs, and in aligning them to acquired
context information wherefore only relevant information is extracted. This simplifies query pro-
cessing since a context consumer can limit queries to relevant information, instead of processing
the entire context description. In cases of incompatibility of context descriptions, ontology
matching algorithms help in reconciling differences in description semantics. Euzenat [Euz05]
therefore suggests the use of ontology mediators or ontology alignment services39 to identify
correspondences between incompatible context descriptions. Such services help in identifying
correspondences between different context models used by context producers and consumers,
perform query transformations, and reflect domain and information space evolutions [EPR08].
Other works such as [WX06] suggest to use a dedicated model matching component as part of
the infrastructure in which it is deployed. If a sensor interface is expressed using an RDF vocab-
ulary, such services can be used for aligning and translating the exposed sensor information to
the ontologies used by a context framework. However, this aspect will not be addressed in the
course of this thesis and is subject of further research.

39An ontology alignment service is a sub-domain or field of ontology matching whose result is a set of corre-
spondences (the alignment between ontologies) that can be used for merging ontologies or transforming queries
issued against a model [EPR08].

Chapter 2. Background 58

Semantic Web technologies facilitate both direct and indirect context awareness, since context-
related information can be acquired from external services or repositories in a structured and
well-defined way based on explicitly represented semantics using open standards. Those technolo-
gies allow for mapping low-level sensor data to high-level ontological concepts so that collected
context-relevant information is transformed and embedded in a controlled context description.
Based on ontological semantics, new facts can be deducted by applying aggregation and rea-
soning heuristics. In this way, Semantic Web languages such as RDFS and OWL allow for
aggregating heterogeneous and autonomously acquired context information both on a syntactic
and semantic layer. By transforming sensorial data into RDF statements, context acquisition
components are not required to anticipate possible queries beforehand. Instead, the requesting
context consumers determine the data that are relevant for them.

Additionally, Semantic Web technologies can further be used to describe the source from which
contextual data were gathered (cf. data provenance) by using meta data or annotations in order
to indicate the trustworthiness, reliability, and stability of a context source. Context information
with a high trustworthiness factor could be preferred by context reasoners to reduce the com-
putational resources involved and assessing the truth-value of a contextual fact [HMD05]. The
specification of meta-information allows a framework to facilitate the integration of contextual
information acquired from remote sensors by attaching meta-information to acquired contexts
and sensors to make additional assertions wether such data are contradictory, inaccurate, or
incomplete. This aspect is also often referred to as Quality of Context (QoC) where predefined
parameters help in assessing the trustworthiness according to the requirements imposed by the
underlying framework and the applications operating on it (cf. [BS03, BTC06, MTD08]).

In the fields of Semantic Web and Linked Data, a number of vocabularies and ontologies have
emerged that are of interest for the representation of contextual and situational information
(e.g., time40 and location41, technical parameters42, or social aspects43). The elements (terms
and concepts) of those vocabularies are well-known across communities and expose a well-defined
and commonly understood semantics that allows for information integration and exchanges es-
pecially in heterogeneous system and network infrastructures. Additionally, such vocabularies
are continuously maintained by communities to guarantee their accurateness and evolution. By
re-using such vocabularies and (implicitly) connecting context descriptions to external Linked
Data sources, we gain two benefits: first, if context descriptions are distributed (either to the
public or within a closed environment, e.g., a corporate network) they can be directly combined
with already existing data, and existing tools can be directly applied to contextual information
without the need to adapt existing software. Second, data from external sources can be imported
and used to enrich the context descriptions, leading to a richer semantics, which facilitates more
powerful processing and reasoning. Not being bound to a single vocabulary also adheres to the
idea of dynamic and flexible context descriptions evolving in the course of user-relevant activities
that can not be determined a priori – especially not at design time of a mobile system or mobile
application.

The flexibility and generic schema of the RDF data model combined with the usage of URIs as
identification and addressing scheme allows for the combination of different vocabularies in an
RDF document, which is common practice in many Semantic Web applications. Therefore, it is
good practice to not define new vocabularies from scratch but to use existing vocabularies and
extend them with the concepts and properties needed [BCH07]. Context descriptions can benefit

40OWL Time Ontology: http://www.w3.org/TR/owl-time

41Basic Geo (WGS84 lat/long) Vocabulary: http://www.w3.org/2003/01/geo

42Composite Capabilities/Preference Profiles: http://www.w3.org/Mobile/CCPP

43The Friend of a Friend (FOAF) project: http://www.foaf-project.org

http://www.w3.org/TR/owl-time
http://www.w3.org/2003/01/geo
http://www.w3.org/Mobile/CCPP
http://www.foaf-project.org

Chapter 2. Background 59

in two ways when contextual information is expressed using terms from well-defined semantic
vocabularies and linked data sources: (1) linked data URIs are dereferenceable (cf. [Lew07]), i.e.,
when a contextual aspect is identified using an URI from a linked data source, a description
can be retrieved for it, and (2) linked data resources are already linked to other data sources
in many ways so that elements from context description can be easily reconciled [HB11]. Al-
though, RDF-based descriptions are intended for machine consumption, it is nonetheless useful
to add human-readable information such as explanation for the defined terms. For a discussion
about good practices for publishing RDF vocabularies on the Web, the reader is requested to
consult [BPM+08].

The notions of context and context awareness are also of importance for the Semantic Web,
especially for ontology alignment and ontology-based information integration since ontologies—
according to their definition as shared conceptualizations of a domain (cf. [Gru95])—expose an
implicit conceptualization of the universe of discourse they formalize and require the notion of
context to elaborate on and transform the claims made [Bon04]. Context can support this process
as it helps to specify the situations and circumstances in which certain claims had been made.
In this respect, context is used for codifying provenance information that helps in ascertaining
the trustworthiness and validity of context-related data.

2.9 Discussion

For leveraging the full potential and opportunities of mobile information systems and devices,
context awareness need to be considered a central aspect of mobile computing [Teo08]. How-
ever, current approaches for integrating context awareness in mobile systems fail to consider the
dynamic and ambiguous nature of context, which require a holistic treatment of context and
context awareness taking into consideration the manifold and versatile nature of context types
as well as the relationships among them [KA04]. One reason for that is that static and external
factors are easy to capture since they adhere very well to existing software methodologies [Teo08].
Soft factors such as the user’s intentions, believes, preferences, information needs, goals etc can
not be sensed or inferred indirectly. Mobile information systems are likely to benefit most from
context-aware computing if the notion of context awareness moves from a system-centric towards
a user-centric view since context awareness is an activity-driven process focusing on users’ ac-
tivities and information needs [CX06, SLGH08]. A user-centric view on context awareness leads
to a general model of context-aware mobile computing that is more intuitive, productive, and
consistent according to the user experience [Teo08].

Especially in the information systems discipline, context is considered as a representational is-
sue where the focus is put on its codification and representation. According to this conception,
context can be scoped in advance, is independent from its instantiation, and can be separated
from user activities. This renders the determination of a set of relevant contexts or contextual
aspects in advance difficult, if not impossible [Gre01]. The static conception fails to consider
context as a dynamic, emergent construct that is formed by interaction and can therefore not be
determined a priori, and it is unable to provide a holistic view or treatment of context awareness
in which the user’s role, her intentions, and her activities are central aspects. Instead, context
should be conceived as a phenomenological construct whose scope is defined dynamically and in
an instance-dependent way since context emerges opportunistically in the course of interaction
and is being continually redefined and renegotiated; context is an emergent feature of interac-
tion [Dou04] that differs among instances and is being actively created where an activity itself
can be the context of another activity [Teo08]. Context should be considered as a dynamic and

Chapter 2. Background 60

emergent phenomenon that is relevant for a certain amount of time and whose scope is defined
dynamically and unpredictably.

2.10 Summary

Our analysis affirmed that the way context and context awareness is conceived by people differs
fundamentally from how it is computationally processed and utilized, and demands for a tech-
nical, conceptual, and methodological reconciliation (cf. [Eri02]). People usually interpret visual
and auditory signals based on their previous experiences (their mental models) that helps them to
define the context relevant for their actions. Context-aware systems in contrast are only able to
capture a limited space of the current situation that is determined by their implemented sensors
and lack the human intellect and common sense of conceiving a situation holistically and behave
intelligently [Eri02, KPL+04]. Instead, the main purpose of context-aware computing is to serve
for the automatization and autonomous execution of electronic tasks based on certain contextual
constellations while shielding computational tasks from the necessity of explicit human attention
and involvement [Eri02]. The objective of context-aware computing is not to create systems that
adopt human behavior and react as humans would do in comparable situations, but to provide
the technical and conceptual background that allows for creating applications and systems that
can tailor their behavior and information retrieval processes according to specific contextual
constellation.

Context is continually and ubiquitously redefined and negotiated in the process of communica-
tion and interaction. The central question in this respect is how to develop an accurate model
of context and context awareness that continually adapts to unpredictable changes in the sur-
rounding physical, virtual, and technical environment as well as on the changing information
needs of mobile users. We believe that semantic technologies supplemented with reasoning and
machine-learning technologies are appropriate means to facilitate the building of a context-ware
infrastructure for mobile devices that continually adapts its replication processes according to
current and future information needs.

In this section, we have outlined some of the areas in context-aware computing where concepts,
technologies, and languages defined in the context of the Semantic Web can make substantial
contributions regarding the representation, processing, and sharing of contextual information
as well as in the reconciliation of heterogeneous context semantics. The potential benefits of
semantic technologies for related areas such as pervasive computing have been discussed in
previous works (e.g. [EPR08]). In the next chapter, we discuss relevant works that elaborate on
mobile replication strategies, we analyze currently available mobile RDF frameworks and mobile
RDF storage and persistence frameworks, as well as existing context-aware mobile Semantic
Web applications that combine context-aware computing concepts with semantic technologies
and ontology-based description frameworks. We then comprehensively introduce and define the
constituting elements of our context-sensitive RDF data replication framework that implements
the ideas and concepts presented in this section on a formal and conceptual basis. We denote
this form of context-aware computing as Semantic Web-based context-aware computing [ZS12b].

Chapter 3

Related Work and State of the
Art

“We shall not cease from exploration.
And the end of all our exploring will be to arrive where we started and know the place for the

first time.”

Thomas Stearns Eliot (1888 - 1965)

3.1 Introduction

In this chapter, we analyze existing works regarding the main building blocks of our work as
outlined in the introductory chapter. For realizing our idea of making Semantic Web technologies
available on mobile systems for the intelligent, context-dependent provision of user-related data,
research into the current state of the art has been carried out along three directions: first we give
a brief overview of mobile data replication and distinguish existing works from our approach;
second, we analyze existing Semantic Web frameworks as well as current RDF query and storage
infrastructures with respect to their appropriateness and deployability on mobile platforms; and
third, we present and discuss existing Semantic Web projects that aim to synthesize semantic
technologies, mobile systems, and context-aware computing.

3.2 Mobile Data Replication

The problem of replicating data to mobile devices is not new. Standard replication strategies—as
known e.g., from relational data bases—cannot be directly applied to mobile scenarios because
of the special restrictions imposed by changing context parameters, as outlined in Chapter 2.
Therefore, several algorithms were proposed that estimate the costs of data usage based on vari-
ous context parameters, and adapt the used replication strategies accordingly (e.g., costs of data
transmission [HSW94], access frequency [WJH97], location [WW03], or device and environment
characteristics [BGSA05]). These approaches are highly optimized towards single specific con-
text parameters but do not consider the entire user context; especially they do not focus on the

61

Chapter 3. Related Work and State of the Art 62

semantics of replicated data. However, they can be considered complementary to our approach
since they can be used to determine the frequency of replication updates.

Several approaches follow a more generic strategy and provide architectures that are extensible
w.r.t. the considered context parameters and replicated data (e.g., [HS03, LBWK05]). However,
all these approaches depend on a server infrastructure, on which context processing and inference
tasks are performed. To the best of our knowledge, no approach exists that solely relies on
processing executed on the mobile device itself, without depending on external components and
services.

3.3 Semantic Web Frameworks for Mobile Platforms

Typical Semantic Web frameworks like Sesame1, Virtuoso2, Jena3 [McB01], and ROWLEX4, an
open source toolkit developed by the NATO C3 Agency for the C# platform, hide the details of
RDF data processing, serialization, and query execution from higher-level applications. However,
these heavy-weight systems cannot be deployed on typical mobile devices because of their limited
memory and processing capacities, latencies as well as incompatible application models and
operating system infrastructures (cf. [FZ94, KLO+04]). Those frameworks are usually developed
for powerful server or desktop computing infrastructures incorporating many-core architectures,
whereas mobile devices in general contain low-powered single-core RISC-based processors whose
architecture was not designed for processing large data amounts.

Although such systems have proven to be powerful means to process, store, and reason over RDF
data, they cannot be efficiently deployed on mobile systems due to the previously mentioned
reasons and are therefore not considered in our related work analysis. Instead, we exclusively
concentrate on RDF frameworks that have been specifically designed for deployment on mobile
platforms and are available as Java libraries as well as on mobile query and storage frameworks
that are built on top of existing RDF frameworks and provide additional functions for local RDF
data query and persistence.

In the following, we give an overview of existing XML and RDF frameworks available for mobile
platforms as well as query and persistence frameworks, where we include all publicly available
solutions that have been referenced and described on the Web or were discussed in related
publications throughout the past years (see [Zan09, HDW09, ZS11]). We categorize these works
in XML parsers that were extended with RDF and OWL support, pure mobile RDF frameworks,
and query and persistence frameworks, since pure RDF frameworks usually lack dedicated query
and storage functionality [Zan09, ZS10, ZS11]. For each framework as well as query and storage
infrastructure, we provide a short background description together with details regarding the
following functional and non-functional features:

• Licensing Model. A license and in particular a software license usually defines the terms and
rules that determine how to use a particular software or parts of it and grants permission
to manipulate or adopt a piece of software. We ascertain the type of license under which

1Sesame: http://www.openrdf.org

2Virtuoso: http://virtuoso.openlinksw.com

3Jena: http://jena.sourceforge.net

4ROWLEX: http://rowlex.nc3a.nato.int/

http://www.openrdf.org
http://virtuoso.openlinksw.com
http://jena.sourceforge.net
http://rowlex.nc3a.nato.int/

Chapter 3. Related Work and State of the Art 63

a framework was released (e.g., EUPL5, GNU GPL6, Apache License7, etc.) and whether
a framework can be used in commercial and non-commercial applications.

• Deployment and Installation. Some frameworks are released as Java libraries (.jar-files) or
as Android applications (.apk-files), which influence their deployment on a mobile device as
well as their integration in existing applications. For instance, the integration of frameworks
released as .apk-files in existing applications requires manual involvement and also puts
restrictions on the utilization of exhibited functionality. For instance, to share data between
two Android applications, dedicated Intents and Intent Filters as well as corresponding
Content Providers need to be defined (cf. [RLMM09, Mei10, And10]). Additionally, some
frameworks require the installation of additional 3rd-party libraries to be fully operational.

• Quality of APIs. This feature examines the quality of the respective frameworks’ APIs
and concerns aspects regarding the completeness of an API. For instance, we specifically
analyze whether functions are defined that were not implemented or whether there are
undocumented classes or methods. Moreover, we examine whether some sort of exception
handling was implemented and to which extend exceptions are covered in case of improper
function calls.

• Internal data model. The internal data model used for managing and storing RDF data
allows for extrapolating on how a framework performs under specific circumstances and
settings (for instance, a HashMap-based storage of RDF data yields fast access times but
requires more storage and management overhead compared to, e.g., a Vector-based data
structure). More specifically, we analyze how RDF triples are stored internally, i.e, which
projections and transformation algorithms are internally used to resemble the triple-based
structure of RDF using programming language-specific data types and data structures.
This allows for drawing predictions regarding the efficiency of a chosen data structure
w.r.t. access times, storage overhead, etc.

• Platforms. Some XML and RDF frameworks were originally developed for specific mobile
platforms such as CDC 8, CLDC 9, or MIDP-based10 operating environments. This fact
might influence the potential platforms on which a framework can be deployed. Due to the
incompatibilities between different mobile Java Virtual Machines (JVMs), it is not possible,
for instance, to deploy a framework developed for the Android platform on a MIDP device.
The compilation of a framework for a specific JVM exacerbates its deployment on other
Java-based mobile devices that expose a different, incompatible virtual machine11.

• Supported Semantic Web Languages. This aspect outlines whether a framework provides
explicit support for Semantic Web languages such as RDF, RDFS, OWL Lite, OWL DL,
OWL Full, and OWL 2. We ascertain, which Semantic Web languages are supported
natively, for instance, through dedicated libraries or API methods and ontology classes.

5The European Union Public Licence (EUPL) http://www.osor.eu/eupl

6GNU General Public License v3: http://www.gnu.org/licenses/gpl.html

7Apache License Version 2.0 http://www.apache.org/licenses/LICENSE-2.0.html

8CDC is a framework specification for deploying and sharing mobile Java applications on hardware-constraint
devices such as mobile devices or set-top boxes. It defines a basic set of libraries and virtual machine features that
the underlying runtime environment must exhibit. Further information are available at: http://www.oracle.com/

technetwork/java/javame/tech/index-jsp-139293.html

9Connected Limited Device Configuration: http://java.sun.com/products/cldc/

10Mobile Information Device Profile (MIDP): http://www.oracle.com/technetwork/java/index-jsp-138820.

html

11Further information can be found at: http://developers.sun.com/mobility/overview.html - accessed 15th
June 2011

http://www.osor.eu/eupl
http://www.gnu.org/licenses/gpl.html
http://www.apache.org/licenses/LICENSE-2.0.html
http://www.oracle.com/technetwork/java/javame/tech/index-jsp-139293.html
http://www.oracle.com/technetwork/java/javame/tech/index-jsp-139293.html
http://java.sun.com/products/cldc/
http://www.oracle.com/technetwork/java/index-jsp-138820.html
http://www.oracle.com/technetwork/java/index-jsp-138820.html
http://developers.sun.com/mobility/overview.html

Chapter 3. Related Work and State of the Art 64

• Inferencing. Inferencing allows for drawing logical conclusions on asserted RDF triples
based on the logic and semantics defined for specific RDF, RDFS, OWL language con-
structs. Those languages allow to define statements and combinations of statements in an
axiomatic way. There exist different forms of inferences (e.g., transitive closure and class
membership inferencing [HBS08]) differing in their complexity as well as the sophistication
and completeness of information to be deduced from existing assertions. Since inferenc-
ing is generally problematic on resource-constrained devices such as mobile phones, we
ascertain which type of inferencing a specific framework supports or whether inferencing
is supported at all.

• Query support. To date there exists a number of query languages proposed for querying
RDF data (cf. [PG01]) such as RQL, RDQL, SeRQL, N3QL, RDFQ etc. where SPARQL
proved to be the de-facto standard query language currently in status of a W3C Recom-
mendation. We outline whether some of the query languages proposed for RDF data are
supported natively or whether a framework uses proprietary mechanisms and methods to
query for data contained in an RDF document.

• Persistence. This feature refers to a framework’s capability to store RDF data permanently
on a mobile device. We investigate which methods and infrastructures for RDF data storage
are available and whether the storage of RDF data on a mobile device is supported at all.
However, a common way to store RDF data locally is to serialize it in a specific serialization
format and write it to a file-based output stream that writes an RDF document stream to
a file object on the local file system. Another possibility is to define projections for storing
RDF data in mobile database management systems.

• Supported Serialization Formats. Currently, there exist many formats for serializing RDF
data such as N-Triple, N3, Turtle, RDF/XML, and specific RDF/XML abbreviation for-
mats based on informal conventions such as RDF/XML-ABBREV (cf. [Bec04, MM04])
etc. We analyze which formats are supported by a framework for parsing and storing, i.e.,
serializing RDF data. Since each format imposes a different complexity regarding its syn-
tactical, lexical, and semantic parsing, not all serialization formats are supported natively
by a framework. We also distinguish between input serialization formats for parsing an
RDF document and output serialization formats for writing an RDF document.

• Documentation. The successful deployment and utilization of an RDF framework requires
a sufficient documentation wherefore we ascertain whether there is an “official” documen-
tation available for a framework as well as the language in which it is written. We also give
an overview of the potential locations and sources, e.g., whether the official documentation
is supported or complemented by a wiki system or other online resources. Additionally, we
ascertain whether the documentation reflects the latest development status, i.e., whether
there are differences in the framework’s version described in the documentation and the
latest version available.

• Source code availability. In order to extend a framework’s functionality or to apply code
corrections and bug fixes, it is desirable to have a framework’s source code available for a
subversion-based check out or download. This aspect therefore indicates whether the source
code of a framework is freely available and can be extended or modified on demand12.

• Extensibility and Add-ons. Since most RDF frameworks only provide basic, i.e., rudimen-
tary functions for RDF management and processing, external libraries for querying, storage,

12In most cases, the availability of a framework’s source code depends on the license applied to it wherefore
the aspects of license and source code availability are not disjunct and are considered in conjunction.

Chapter 3. Related Work and State of the Art 65

or reasoning should be available and complement a framework’s functional spectrum. We
investigate whether external libraries or APIs are available for a given framework, what
functionalities they offer, and how they are to be integrated in existing projects.

• Latest release and version. This aspect records the month and year when the latest version
of an RDF framework was released at the time of writing. We also provide the versioning
scheme together with the most recent version nomenclature.

3.3.1 Mobile XML Parsers

kXML13 is a lightweight open source XML pull parser that was specifically designed for con-
strained operating environments and mobile platforms such as Applets or Java ME-based mobile
devices. It is based on the Common XML Pull API 14 and combines the advantages of XML
DOM and SAX parsers for aligning XML processing routines to the structure of an XML doc-
ument and, at the same time, providing instant access to parsed document elements. It was
specifically designed to be used in CLDC and MIDP-based runtime environments. kXML is
available as a Java library (kxml2-2.3.0.jar) and due to the compatibility between the Dalvik
Virtual Machine exposed by the Android platform and the J2ME Java Virtual Machine, kXML
can be deployed on Android devices as well. kXML uses a Vector-based data structure for
storing XML nodes, i.e., all children of a specific XML node are stored in the corresponding
Vector-instance of its parent node. Documentation about the parser is available on the official
project page and in form of a Javadoc delivered with the project’s sources and hosted online15.
Additionally, a number of articles about kXML version 1.0 and 2.0 have been published on the
Web16,17. However, development stalled in 2006 at version 2.3.0 although the developers an-
nounced a revised version including some architectural changes, which has not been officially
released yet. Since kXML is a small and lightweight XML pull parser, capabilities for handling
and processing RDF/S or OWL documents have not been implemented nor are available as ex-
ternal libraries. Due to the lack of fundamental RDF processing capabilities, kXML revealed to
be inadequate to be considered as a framework for processing RDF data on a mobile device.

NanoXML for J2ME (+RDF/OWL)18 is an open source J2ME port19 of the original non-
validating XML parser NanoXML20 for Java, released under the zlib/libpng License21, that has
been extended with RDF and OWL support. It is dedicated to mobile environments such as
CLDC and MIDP-based operating environments and offers convenience methods for navigating
and retrieving data from RDF and OWL documents such as resources or property values. Basic
information according to its usage and deployment are available on the nanoxml-j2me wiki page22

as well as in the framework’s Javadoc23. RDF data are stored and processing internally using
a Vector-based data structure. NanoXML for J2ME is available as a single Java library and
can be applied to existing projects by integrating the nanoXML-j2me.jar-file into the Java Build
Path. NanoXML for J2ME incorporates only very basic RDF processing capabilities; its API
does not define RDFS or OWL specific methods or classes nor does it elaborate on RDF/S and

13kXML 2 parser: http://kxml.sourceforge.net/

14Common XML Pull API: http://xmlpull.org/

15kXML Javadoc: http://kxml.sourceforge.net/kxml2/javadoc/

16See http://www.devx.com/xml/Article/11773/0

17See http://www.ibm.com/developerworks/xml/tutorials/wi-kxml/section2.html

18NanoXML for J2ME (+RDF/OWL) project: http://nanoxml-j2me.sourceforge.net

19Java Platform 2, Micro Edition (J2ME): http://java.sun.com/javame/index.jsp

20NanoXML project: http://devkix.com/nanoxml.php?lang=en

21zlib/libpng License: http://www.opensource.org/licenses/Zlib

22NanoXML for J2ME Wiki: http://sourceforge.net/apps/trac/nanoxml-j2me/wiki

23NanoXML for J2ME Javadoc: http://nanoxml-j2me.sourceforge.net/javadoc/

http://kxml.sourceforge.net/
http://xmlpull.org/
http://kxml.sourceforge.net/kxml2/javadoc/
http://www.devx.com/xml/Article/11773/0
http://www.ibm.com/developerworks/xml/tutorials/wi-kxml/section2.html
http://nanoxml-j2me.sourceforge.net
http://java.sun.com/javame/index.jsp
http://devkix.com/nanoxml.php?lang=en
http://www.opensource.org/licenses/Zlib
http://sourceforge.net/apps/trac/nanoxml-j2me/wiki
http://nanoxml-j2me.sourceforge.net/javadoc/

Chapter 3. Related Work and State of the Art 66

OWL semantics. Additionally, no form of rule-based reasoning or RDF/S-based inferencing is
implemented in its latest release that also includes only very generic exception handling. In
addition, NanoXML for J2ME provides only rudimentary query functionality and does not offer
native support for SPARQL or other Semantic Web query languages. External libraries, e.g.,
for RDF querying, storage, and reasoning are not available either. NanoXML for J2ME is
able to parse and process documents in RDF/XML serialization format; RDF/XML-ABBREV
and other serialization formats are not supported. NanoXML for J2ME does not offer native
methods for storing RDF data permanently on a mobile device. However, RDF documents can
be serialized in the RDF/XML format and directed to a FileOutputStreamWriter to store RDF
data in file objects on the device’s local file system.

3.3.2 Mobile RDF Frameworks

Mobile RDF24 is a Java-based open source implementation for the RDF data model, providing
a simple and easy-to-use API for accessing and serializing RDF and OWL graphs. It is released
under the Apache License 2.0 and was specifically designed for Java ME Personal Profile25 and
Connected Device Configuration (CDC) compliant devices, which is one of the main drawbacks
of this framework since these application environments are only supported by a comparatively
small amount of devices, namely those that employ a CDC-specific Java Virtual Machine (JVM).
Most current and older J2ME-compliant devices deploy the more widely-used CLDC profile. Due
to the compatibility between the Dalvik Virtual Machine and the J2ME-CDC Virtual Machine,
the framework can also be deployed on Android devices. Mobile RDF provides specific packages
for creating, parsing, and serializing RDF/S and OWL ontologies, and supports RDF Schema
type and property propagation rules as well as RDFS and rule-based inferencing. The frame-
work’s class architecture offers abstract classes and interface definitions for extending the default
RDF type and property propagation rule implementations and integrating individually defined
inference rules. However, RDF graph modifications like deleting or editing RDF triples are not
supported in the latest framework release. The RDF/XML format is the only serialization for-
mat supported by default and the framework also lacks native SPARQL or other query language
support. The internal selection-based query implementation requires explicit knowledge about
the triples/statements to be searched for. Documentation for MobileRDF is available as Javadoc
delivered with the project’s source code as well as on the official project page that also includes
few implementation examples and information about a prototypical implementation of a mobile
client for fetching RSS feeds. Mobile RDF is available as a Java library and can be applied to
existing projects by integrating the mobilerdf-0.3.jar-file into the Java Build Path. Mobile
RDF does not offer any additional APIs, although dedicated packages for RDF graph render-
ing based on the Graph Modeling Language (GML) [Him] are integrated. Mobile RDF uses a
HashMap-based data model for the in-memory management of RDF data where each statement is
stored in a separate entry. However, it does not offer methods for native RDF data persistence;
instead, RDF data can be serialized in the RDF/XML format and written to the mobile device’s
local file system. Mobile RDF provides implementation support for selected XML Schema data
types26. It offers an individual XML parser implementation that is specifically optimized for
parsing RDF/XML-based documents and contains a set of basic exceptions for RDF and OWL
parsing errors.

24Mobile RDF project: http://www.hedenus.de/rdf/index.html

25Java ME Personal Profile: http://java.sun.com/products/personalprofile/

26See http://www.hedenus.de/rdf/datatypes.html for a list of natively supported XML Schema data types.

http://www.hedenus.de/rdf/index.html
http://java.sun.com/products/personalprofile/
http://www.hedenus.de/rdf/datatypes.html

Chapter 3. Related Work and State of the Art 67

µJena27 is an open source J2ME port of the popular Jena Semantic Web framework, targeted for
low-capacity mobile and embedded devices and specifically developed for CLDC-1.1 and MIDP-
2.0 platforms28. It was released in 2008 under the GNU General Public License. Although its
API is currently in a prototypical state and only allows for processing RDF data serialized in
N-Triples format, it covers the entire set of RDF and RDFS modeling primitives, provides ontol-
ogy, and limited inference support, as well as convenience classes for handling OWL ontologies.
Like in Jena, RDF data are represented on two levels: on the lower, generic graph-based level,
µJena stores RDF data as triple nodes, where an RDF-based model API is deployed on top
that offers convenience methods for accessing and manipulating RDF models. Additionally, it
defines a number of exceptions for indicating parsing problems and handling processing errors.
RDF data are stored and processed internally using a Vector-based data structure. Most of
µJena’s documentation is available as Javadoc generated from its source code; additional infor-
mation regarding its implementation and usage has been published in form of a master thesis
written in Italian. Since µJena is a Jena port, a large part of the official Jena documentation
also applies to it. µJena is available as a Java library together with a Java Application Descrip-
tor (microJena.jad-file) that contains deployment information of the µJena main library on
MIDP-based operating environments. It can be applied to existing projects by integrating the
microJena.jar-file into the Java Build Path. Like Jena, µJena does not offer native support
for SPARQL or other Semantic Web query languages; instead, it contains specific Selector and
Iterator implementations for querying RDF models internally and provides at least a basic
set of query functionality. However, additional libraries, e.g., for RDF querying, storage, and
reasoning, as well as other external libraries are not available for µJena. Additionally, it does
not offer native methods for storing RDF data permanently on a mobile device although RDF
models can be serialized in the N-Triples format and directed to a FileOutputStreamWriter to
store it into a file object on a device’s local file system. µJena includes a basic reasoner that
computes a set of simple entailments such as transitive closures on sub-property and sub-class
hierarchies; however, rule-based inferencing is not supported natively.

Androjena29 is the most recent Jena port specifically created for the Android platform and was
released in 2010 under the Apache License 2.0 as an open source project. It is built on Jena ver-
sion 2.6.2 and includes adapted versions of the entire set of functions and libraries Jena exhibits
such as full RDF/S and ontology support, inferencing, as well as reading and writing RDF data
in different serialization formats. Androjena includes specific reasoner implementations that sup-
port forward and backward chaining as well as rule-based reasoning. Just as Jena, Androjena is
capable of processing RDF documents serialized in RDF/XML, RDF/XML-ABBREV, N-Triple,
N3 and the Turtle format30. The Androjena core libraries do not include specific APIs for query-
ing RDF data, local persistence, Named Graphs [CBHS05], or support for external reasoners.
However, to provide at least a minimum of query functionality, the Androjena project page also
hosts the ARQoid project31, which is a reduced port of Jena’s SPARQL query engine ARQ32

and the TDBoid project33 which offers a non-transactional, java-based, persistent storage and
query infrastructure for Android. Currently, TDBoid and ARQoid are in prototypical status
where ARQoid lacks some of ARQ’s original features such as full-text query support. Currently,
Androjena does not deliver a Javadoc for its libraries but hosts a Wiki on its official web page as

27µJena project page: http://poseidon.elet.polimi.it/ca/?page_id=59

28See http://poseidon.ws.dei.polimi.it/ca/wp-content/uploads/install.txt

29Androjena project: http://code.google.com/p/androjena/

30There exists different sub formats and sub writers for the N3/Turtle format such as a pretty printer, a
record/frame-oriented format printer, and a prefix-based printer.

31ARQoid: http://code.google.com/p/androjena/wiki/ARQoid

32ARQ: http://jena.sourceforge.net/ARQ/

33TDBoid: http://code.google.com/p/androjena/downloads/detail?name=tdboid_0.4.zip&can=2&q=

http://poseidon.elet.polimi.it/ca/?page_id=59
http://poseidon.ws.dei.polimi.it/ca/wp-content/uploads/install.txt
http://code.google.com/p/androjena/
http://code.google.com/p/androjena/wiki/ARQoid
http://jena.sourceforge.net/ARQ/
http://code.google.com/p/androjena/downloads/detail?name=tdboid_0.4.zip&can=2&q=

Chapter 3. Related Work and State of the Art 68

well as a discussion group34. Since Androjena is an official port of the Jena framework for An-
droid, the official Jena documentation35 also applies for Androjena. Androjena is available as a
Java library (androjena_0.5.jar) plus a set of required libraries that host additional functions
Androjena requires such as Unicode (icu4j-3.4.5) and URI creation (iri-0.8.jar) support.
Androjena exhibits a proprietary implementation of a data structure called FasterTripleStore
for handling and processing RDF data internally, which resembles concepts from a native triple
store implementation that stores subjects, predicates, and objects independently in dedicated
NodeToTripleMap-instances. As outlined, Androjena does not provide dedicated or native func-
tions for local RDF data persistence; instead, RDF models can be serialized in different formats
and directed to a FileOutputStreamWriter to store it in a file object on a mobile device’s local
file system.

3.3.3 Query and Persistence Frameworks

RDF On the Go36 is a full-fledged RDF storage and query framework specifically designed
and implemented for mobile devices that was released under the new BSD 2-Clause License37

and features the Android operating system. It follows an approach similar to Androjena, as the
Jena core APIs together with the ARQ library have been adapted to the Android platform to
allow developers to directly operate on and manipulate RDF data models. The primary storage
infrastructure are B-Trees as provided by a lightweight version of the Berkeley DB38 adopted for
mobile usage and deployment. The internal query processor provides support for both standard
and spatial SPARQL queries, where an R-Tree based indexing mechanism is used for storing
URIs with spatial properties [LPPRH10]. The current version as of March 2011 supports a
large set of standard SPARQL query operations where aggregation, sorting, and some spatial
operations are subject to future implementations [LPPRH10]. RDF On the Go is available
as a Google Android application (.apk-file) and need to be installed manually on a device39.
Information about the RDF On the Go project can be found on the official wiki40 as well as in
a separate conference paper [LPPRH10]. A number of projects are hosted within the project’s
repository but further information whether these correspond to RDF On the Go could not be
found41. Since the project’s source code has not been released yet, further details regarding the
implemented internal data model as well as supported Semantic Web languages, and inferencing
technologies could not be provided.

SWIP: Semantic Web in the Pocket42 was developed in order to support RDF data storage
and exchange in a uniform, schema-less, and system-wide way based on the Linked Data princi-
ples [BHBL08]. SWIP represents an Android-specific implementation of an RDF storage infras-
tructure that is based on the Android-internal concept of ContentProviders43 for application-wide
data storage and exchange across applications and processes. It maps URIs to data stored in
the local SQLite database deployed on Android systems and returns data in the form of triple
sets or tuple tables. It employs a simple subject-predicate-object table layout for RDF data

34Discussion group for Androjena: http://groups.google.com/group/androjena?pli=1

35Official Jena documentation: http://jena.sourceforge.net/documentation.html

36RDF On the Go project: http://code.google.com/p/rdfonthego/

37BSD 2-Clause License: http://www.opensource.org/licenses/bsd-license.php

38Oracle Berkeley DB: http://www.oracle.com/technetwork/database/berkeleydb/overview/index.html

39 At the time of writing, the download server http://rdfonthego.googlecode.com/files/RDFOnTheGo.apk

responded with a 404 code: “The requested URL /files/RDFOnTheGo.apk was not found on this server” (Accessed
on 17th June 2011).

40RDF on the Go Wiki: http://code.google.com/p/rdfonthego/source/browse/wiki/GettingStarted.wiki

41See http://code.google.com/p/rdfonthego/downloads/list

42SWIP: semantic web in the pocket: http://swip.inrialpes.fr/

43ContentProviders: http://developer.android.com/guide/topics/providers/content-providers.html

http://groups.google.com/group/androjena?pli=1
http://jena.sourceforge.net/documentation.html
http://code.google.com/p/rdfonthego/
http://www.opensource.org/licenses/bsd-license.php
http://www.oracle.com/technetwork/database/berkeleydb/overview/index.html
http://rdfonthego.googlecode.com/files/RDFOnTheGo.apk
http://code.google.com/p/rdfonthego/source/browse/wiki/GettingStarted.wiki
http://code.google.com/p/rdfonthego/downloads/list
http://swip.inrialpes.fr/
http://developer.android.com/guide/topics/providers/content-providers.html

Chapter 3. Related Work and State of the Art 69

storage and is currently in prototypical status [DE10]. For demonstration purposes, data stored
in device-internal data sources such as calendar entries or contacts have been exposed as RDF-
based Linked Data and visualized through a generic browser interface. A number of extensions
have been developed for the SWIP architecture (cf. [DE10]): an RDFContentProvider exposes
device-internal data as RDF, an RDFContentResolver redirects query requests to the respec-
tive components, the Pikoid application allows for annotating pictures taken by the user with
RDF-based metadata, an AndroidRDFProvider exposes locally stored data as RDF-based linked
data, and an RDFBrowser allows for visualizing and navigating RDF data. SWIP is released
as a Google Android application (.apk-file) and requires a manual installation on the device.
Unfortunately, the project’s source code was not available for download at the time of writing44.
Due to this fact, additional details regarding the internal data models, supported Semantic Web
languages, inferencing techniques, and serialization formats could not be given. However, in-
formation regarding the different components of the SWIP project are available online on the
official project page and a description of the architecture together with prototypical details have
been published in a conference paper [DE10]. No licensing information could be found on the
official web page.

3.3.4 Discussion and Summary

At the time of writing, three RDF frameworks, one RDF/XML parser that has been extended
with RDF support, and one XML parser exist for the processing of RDF on mobile platforms. All
of the surveyed RDF/XML parsers and RDF frameworks are available as open source software
and can be used in both commercial and non-commercial as well as scientific projects; in addition,
it is possible to modify and adapt them according to individual requirements. Source code was
not available for neither of the two RDF infrastructure frameworks where licensing information
could only be obtained for the RDF On the Go project. All RDF/XML parsers and RDF
frameworks are released as pre-compiled Java libraries and can be integrated into existing projects
without much manual effort. Since the two infrastructure frameworks RDF On the Go and
SWIP were developed for the Android platform, they are released as Android applications (.apk-
files). Quality of APIs varies among frameworks; kXML and NanoXML for J2ME exhibit stable
APIs whereas Mobile RDF lacks substantial RDF graph modification operations. Although
µJena and Androjena exhibit a relative complete and comprehensive API for processing RDF,
RDFS, and OWL ontologies, their APIs are currently in prototypical status with few deficiencies
here and there. The same applies to RDF On the Go and SWIP, which—due to their early
stages—currently attire the status of research prototypes. All solutions use different internal
data structures for in-memory storage and management of RDF data, ranging from Vector-
based and HashMap-based data structures to the implementation of a proprietary in-memory
triple store (FasterTripleStore) exhibited by the Androjena framework. Further details about
the internal data structures, supported Semantic Web languages, inferencing mechanisms, as
well as supported serialization formats of RDF On the Go and SWIP could not be provided
since their source code has not been released yet. All analyzed frameworks can be deployed
on the Android platform; however, NanoXML for J2ME, Mobile RDF, and Androjena can not
be used on devices that contain a MIDP or CLDC-based operating environment due to the
incompatibilities between the different Java Virtual Machines. Since the technical capabilities
of mobile devices are continuously enhancing, we expect more powerful virtual machines to be
deployed on next generation devices. Evidently, since RDF On the Go and SWIP were developed
for the Android platform, they can only be deployed on devices that feature a Dalvik-compatible

44The download server answered with “The requested URL /code/RDFContentResolver-1.0.zip was not found
on this server.” (Accessed 17th June 2011).

Chapter 3. Related Work and State of the Art 70

virtual machine. kXML is the one and only analyzed parser that does not incorporate RDF
processing capabilities; all other frameworks offer native support for RDF where µJena and
Androjena are capable of processing RDF/S and OWL ontologies and offer dedicated RDF/S
and OWL class libraries. Support for inferencing can not be found in XML parsers; however,
all mobile RDF frameworks incorporate inferencing support, differing in its complexity and
comprehension, ranging from simple computations of transitive closures on sub-property and
sub-class hierarchies to rule-based reasoning where Androjena exhibits the most comprehensive
set of inferencing mechanisms. In contrast to RDF On the Go and SWIP, none of the analyzed
works offers explicit query support or supports any of the query languages defined for RDF
data. In addition, a dedicated mobile storage infrastructure based on a mobile DBMS or a triple
store optimized for mobile platforms has not been integrated into any of the surveyed works
for the permanent storage of RDF data; instead, only a file-based persistence is supported.
On the contrary, RDF On the Go uses an adapted version of the Berkeley database for RDF
storage whereas SWIP utilizes the SQLite database of the Android operating system and offers
specific interfaces and implementations for RDF data storage in its relational schema. Apart
from Androjena, which supports the most popular and established serialization formats, all other
frameworks are specialized towards one specific serialization format and require a transformation
of the RDF document into this specific format beforehand. Therefore, those frameworks need to
make use of converter services for RDF data such as the rdf:about RDF Validator and Converter45

or the mindswap RDF converter46. All projects are well documented, where some frameworks
describe their classes and methods using a Javadoc (kXML, Mobile RDF, µJena) and complement
it with external articles or wiki-based systems. Since µJena and Androjena are Jena derivates,
the official Jena documentation also applies for them. Extensions are available for only two RDF
frameworks, Mobile RDF and Androjena that add query and persistence functionality as well as
RDF graph-rendering features. All evaluation results are summarized in Figure 3.1.

Recapitulating, kXML does not provide any RDF support at all and NanoXML for J2ME as
well as Mobile RDF lack sufficient RDF management and processing capabilities such as RDF/S
and OWL ontology support and manipulations on RDF graphs. In addition, none of the existing
mobile XML and RDF frameworks fully supports queries on RDF data via SPARQL or other
query languages, although Androjena provides a prototypical implementation of the Jena ARQ
libraries. The other RDF frameworks use proprietary query implementations in the form of
selectors or iterators that provide only basic and generic query functionality. Besides the TDBoid
project that adds a native triple store implementation to Androjena, a native storage mechanism
that translates RDF data into internal storage formats used by mobile devices (e.g., the SQLite
database provided natively by the Android platform) and vice versa could not be found. However,
the analyzed RDF storage and query infrastructures are available as experimental prototypes or
concept studies to date and lack specific storage and query optimizations for mobile platforms.
Nevertheless, they demonstrate that typical RDF processing and storage tasks can be executed on
mobile devices although the efficient execution of complex processing operations (e.g., reasoning)
or indexing mechanisms is still subject to further research. In summary, Androjena and µJena
revealed to be the most mature frameworks for processing RDF data on mobile platforms where
µJena yields severe performance issues when processing larger RDF graphs (see Chapter 6).

45RDF Validator and Converter: http://www.rdfabout.com/demo/validator/

46mindswap RDF converter: http://www.mindswap.org/2002/rdfconvert/

http://www.rdfabout.com/demo/validator/
http://www.mindswap.org/2002/rdfconvert/

Chapter 3. Related Work and State of the Art 71

kX
M

L
Na

no
XM

L
fo

r J
2M

E
M

ob
ile

RD
F

M
ic

ro
Je

na
An

dr
oj

en
a

RD
F

on
 th

e
go

SW
IP

Li
ce

ns
e

M
od

el
BS

D
lic

en
se

zl
ib

/li
bp

ng
 L

ic
en

se
Ap

ac
he

 L
ic

en
se

 2
.0

GN
U

Ge
ne

ra
l P

ub
lic

 L
ic

en
se

Ap
ac

he
 L

ic
en

se
 2

.0
BS

D
2-

Cl
au

se
 L

ic
en

se
N/

A

De
pl

oy
m

en
t a

nd

In
st

al
la

tio
n

Li
br

ar
y

Li
br

ar
y

Li
br

ar
y

Li
br

ar
y

Li
br

ar
y

+
ad

di
tio

na
l l

ib
ra

rie
s

An
dr

oi
d

Ap
pl

ic
at

io
n

(.a
pk

)
An

dr
oi

d
Ap

pl
ic

at
io

n
(.a

pk
)

Qu
al

ity
 o

f A
PI

s
St

ab
le

 re
le

as
e

St
ab

le
 re

le
as

e
No

 g
ra

ph
 m

od
ifi

ca
tio

ns
Pr

ot
ot

yp
ic

al
 s

ta
tu

s
N/

A
Pr

to
ty

pi
ca

l s
ta

tu
s

Pr
ot

ot
yp

ic
al

 s
ta

tu
s

In
te

rn
al

 D
at

a
M

od
el

s
Ve

ct
or

Ve
ct

or
, p

ro
pr

ie
ta

ry
 d

at
a

st
ru

ct
ur

e
Ha

sh
M

ap
Ve

ct
or

Pr
op

rie
ta

ry
 d

at
a

st
ru

ct
ur

e

(F
as

te
rT

rip
le

St
or

e(2
))

N/
A

N/
A

Pl
at

fo
rm

s
An

dr
oi

d,
 C

LD
C,

 M
ID

P
An

dr
oi

d,
 C

LD
C,

 M
ID

P
An

dr
oi

d,
 C

DC
An

dr
oi

d,
 C

LD
C,

 M
ID

P
An

dr
oi

d
An

dr
oi

d
An

dr
oi

d

Se
m

an
tic

 W
eb

La

ng
ua

ge
s

no
t s

up
po

rt
ed

RD
F,

 O
W

L
RD

F,
 R

DF
S,

 O
W

L
(n

ot

na
tiv

el
y)

RD
F,

 R
DF

S,
 O

W
L

RD
F,

 R
DF

S,
 O

W
L

N/
A

N/
A

In
fe

re
nc

in
g

No
No

RD
FS

, R
ul

e-
ba

se
d

In
fe

re
nc

in
g

ba
sic

 R
DF

S
in

fe
re

nc
in

g
Ye

s
N/

A
N/

A

Qu
er

y
su

pp
or

t
No

In
te

rn
al

In
te

rn
al

In
te

rn
al

In
te

rn
al

SP
AR

QL
SQ

L

Pe
rs

ist
en

ce
No

No
No

(1
)

No
(1

)
No

(1
)

Ye
s

(B
er

ke
le

y
DB

)
SQ

Li
te

 D
at

ab
as

e

Se
ria

liz
at

io
n

XM
L

RD
F/

XM
L

RD
F/

XM
L

N-
Tr

ip
le

RD
F/

XM
L,

 N
-T

rip
le

, N
3

N/
A

N/
A

Do
cu

m
en

ta
tio

n
Ja

va
do

c,
 e

xt
er

na
l a

rt
ic

le
s

W
iki

Ja
va

do
c,

 W
iki

Ja
va

do
c,

 M
as

te
r t

he
sis

N/
A,

 W
iki

W
iki

, p
ub

lic
at

io
n

W
eb

pa
ge

, p
ub

lic
at

io
n

So
ur

ce
 C

od
e

Ye
s

Ye
s

Ye
s

Ye
s

Ye
s

No
No

Ex
te

ns
ib

ilt
iy

N/
A

N/
A

Gr
ap

hM
L

N/
A

AR
Qo

id
, T

DB
oi

d
N/

A
Pi

ko
id

La
te

st
 R

el
ea

se
Ju

ne
 2

00
6

M
ay

 2
00

8
Se

pt
em

be
r 2

00
8

20
08

De
c.

 2
01

0
M

ar
ch

 2
01

1
N/

A

Cu
rre

nt
 V

er
sio

n
v2

.3
.0

v1
.0

v0
.3

v1
.5

0.
5

N/
A

N/
A

(1
)

se
ria

liz
at

io
n

an
d

w
rit

in
g

in
 a

 fi
le

-b
as

ed
 o

ut
pu

t s
tr

ea
m

(2
)

pr
op

rie
ta

ry
 tr

ip
el

 s
to

re
 im

pl
em

en
ta

tio
n

XM
L

Pa
rs

er
RD

F
Fr

am
ew

or
ks

In
fra

st
ru

ct
ur

e
Fr

am
ew

or
ks

Figure 3.1: Summary of the evaluated mobile XML parsers, RDF frameworks, and query
and persistence frameworks (summarized as ’Infrastructure Frameworks’)

Chapter 3. Related Work and State of the Art 72

3.4 Analysis and Review of Related Projects

In this section, we review and analyze related Semantic Web projects that are designed for
mobile information processing and incorporate context-aware functionality. We investigate how
semantic technologies and context awareness are synthesized in those systems and also address
limitations and peculiarities of related works. In this survey, we distinguish between Seman-
tic Web-based applications that incorporate context-aware features and Semantic Web-based
context frameworks. All projects have in common that they incorporate technologies and lan-
guages from the Semantic Web for implementing context-aware functionalities. Since the notions
of context and context awareness are exhaustively surveyed in domains such as pervasive and
ubiquitous computing (cf. Section 2.4), this analysis specifically focus on context-aware applica-
tions and projects that emerged in the Semantic Web domain. In the following, we introduce
context-aware features that serve as criteria for classifying the considered works according to the
context-relevant features they provide.

• Quality of Context. In mobile or ubiquitous computing, context is often acquired in a
distributed way and from heterogeneous context sources, where a context source might
become temporarily unavailable or deliver incomplete or inaccurate data [PvHS07]. To deal
with this inherently present variance in representing contextual information, the notion of
Quality of Context (QoC) is proposed as a metric to determine the trustworthiness and
accuracy of acquired context information and to support context-aware applications and
frameworks in selecting those context information the best match predefined requirements
(e.g. [BS03, BTC06, PvHS07, SWvS07, MTD08]). QoC can therefore be considered as
a mechanism to ascertain the quality of contextual information47. This feature indicates
whether QoC and context quality indicators are considered in context processing tasks of
the analyzed works to compute the trustworthiness and validity of contextual information
for facilitating context aggregation and context reasoning.

• Query support. We ascertain whether contextual information is available to external appli-
cations (context consumers) and which query languages, query APIs, or protocols are of-
fered in order to utilize the contextual information acquired by a framework or application.
We specifically consider query languages that emerged in the Semantic Web domain such as
SPARQL [PS08a], RDQL [Sea04], as well as SPARQL-specific extensions48, that is, aggre-
gation, spatial queries (e.g. GeoSPARQL49), and tSPARQL50 (cf. [Har09]). This also ap-
plies to the idea of treating a context framework as a context service (cf. [LSD+02, SFH09])
or a context repository (cf. [HSP+03, Che04]) whose data can be obtained via query inter-
faces and further processed by a context consumer. In this respect, a context framework
or context-aware application can be considered as a context source where query interfaces
allows for retrieving processed, aggregated, and consolidated context descriptions. Query
support additionally allows clients to query for the information they are interested in in-
stead of processing an entire context description (cf. [EPR08]). So context consumers are
able to query for relevant information and omit irrelevant assertions.

• Dissemination. In contrast to the feature query support, which analyzes the query lan-
guages supported by a context framework or context-aware application, dissemination

47Determining the accurateness and validity of contextual information is considered as one of the main challenges
of context-aware computing in pervasive and ubiquitous environments [PvHS07]

48An overview of SPARQL extensions is given here: http://www.w3.org/wiki/SPARQL/Extensions

49GeoSPARQL: http://geosparql.appspot.com/

50tSPARQL: http://trdf.sourceforge.net/tsparql.shtml

http://www.w3.org/wiki/SPARQL/Extensions
http://geosparql.appspot.com/
http://trdf.sourceforge.net/tsparql.shtml

Chapter 3. Related Work and State of the Art 73

refers to a system’s capability to disseminate contextual information, i.e., to make contex-
tual information available to external applications via dedicated interfaces, APIs, network
protocols, or communication technologies. In general, dissemination can be defined as
the set of mechanisms and technologies used to propagate contextual information encoded
in context descriptions among clients [CK02, GASW07]. We analyze existing technologies
and approaches used for context dissemination such as push-based, pull-based, or consumer-
subscriber models (cf. [KMK+03]) as well as how acquired contextual information can be
used and utilized in general, for instance through dedicated programming language-specific
APIs etc.

• Context Types. A wide range of classification schemes and classification frameworks have
been proposed to group and distinguish the different types of context-relevant information
such as location, identity, time, subject etc. (see Section 2.4.2 for an overview). We analyze,
which types of context are supported by a framework or context-aware application and
expound the primary context types supported by a system.

• Context Management Architecture. This feature describes the underlying architecture a
context-aware application or framework is built upon (see Section 2.4.3.2 for an overview).
We distinguish between (i) single autonomous applications or systems that can be locally
deployed on a mobile device and operate independently of network or server infrastructure,
(ii) client-server-based architectures where the client is responsible for context acquisition
and the provision of end-user interfaces and the server hosts context processing compo-
nents, (iii) middleware infrastructures that incorporate context-aware features for context
acquisition, processing, and management that can be utilized by applications, and (iv) con-
text server architectures that host the full spectrum of context processing and management
functions and operate independently of any clients. A survey of existing architectures is
presented in [BDR07] and [SB08b].

• Acquisition Architecture. Context acquisition describes the process of gathering and collect-
ing context-relevant data from local or remote sensors, or other potential context sources
such as context repositories or Linked Data sources (e.g. [HSM+10]) that have been ex-
ploited by a context framework. In general, the architecture of a context-aware system is
significantly determined by its acquisition techniques and acquisition architecture [BDR07].
Several architectures for context acquisition have been proposed (cf. [BDR07, CFJ03, CJ04,
Kja07, SB08a]) which can be broadly classified into three different groups (cf. [Che04]):
(1) proprietary architectures that directly access locally deployed sensors where sensor
and driver logic is directly implemented in application code limiting context reuse and
exchange, (2) middleware infrastructures which employ a layered acquisition architecture
(e.g. [GSB02, CJ04, BKL+08a, LFWK08]) that encapsulate sensor details in dedicated
components and expose uniform interfaces for context utilization, and (3) context server
architectures (e.g. [HSP+03]) that operate similar to database management systems and of-
fer remote access to contextual information hosted within a context repository. A detailed
discussion about the advantages and limitations of each architectural style can be found
in [Che04] and [BDR07]. We ascertain the architectural approach chosen by a framework
or context-aware application for context acquisition and classify each system according to
the discussed acquisition architecture classification types.

• Context Aggregation and Reasoning. Context aggregation denotes the task of collecting
and merging context-relevant data encoded in context fragments that are logically or se-
mantically related and have been acquired independently from each other, usually in a
distributed way. The rationale of context aggregation and reasoning is to provide an

Chapter 3. Related Work and State of the Art 74

augmented, consolidated, and elaborated, i.e., high-level representation of independently
and autonomously acquired contexts that allow for deducing meaningful and high-level
assertions (cf. [HNBr97, LMWK05, LFWK08, Geh08, CCMS10]). Especially when con-
textual data are acquired from different distributed and heterogeneous sources, context
aggregation is an important task in creating a unified and consolidated representation of
contextual information. Aggregation is often performed on the basis of rule-based reason-
ing (cf. [CCMS10]). Therefore, we analyze whether context aggregation is supported by a
system and the type of reasoning (e.g. rule-based, case-based reasoning, forward and back-
ward chaining etc.) that is applied for context augmentation and aggregation or whether
reasoning is supported at all. In this respect, we also ascertain whether a framework or
context-aware application allows to define individual aggregation heuristics or reasoning
rules.

• Context Reuse and Refinement. The openness, flexibility, and uniform representation of
contextual information using Semantic Web languages allows for exchanging, combining,
and aggregating contextual information in order to refine and consolidate contextual data.
We investigate whether the considered frameworks and context-aware applications support
the exchange and reuse of context models or contextual information fragments in order
to augment and refine acquired context information. Since context-relevant data acquired
from sensors is inherently uncertain and “difficult to interpret by high-level components”
(cf. [SP04]), several works proposed approaches for context refinement (cf. [SB08a]) such as
sensor fusion [BC04] or context clustering [GSB02] to facilitate context reuse and eliminate
uncertainties inherently present in acquired context information.

• Dynamic Context Discovery and Integration. The dynamic integration of context sources
during run-time is a fundamental requirement of context-aware systems that were devel-
oped for pervasive and ubiquitous environments. This requirement is also denoted as
dynamic context-service discovery [WX06]. Context discovery in general describes the ca-
pability to dynamically integrate local or remote context sources such as sensors into a
context framework or context-aware application during run-time to exploit the informa-
tion provided. This requirement is of significant importance when a framework accounts
for the non-obtrusive utilization and seamless integration of context sensors whenever they
are discovered. Unlike the discovery of context sources, integrating them for exploitation
involves techniques such as query translation and query mediation (cf. [Euz05]), as well
as a common representation scheme (cf. [EPR08]). Therefore, we ascertain whether a
framework or context-aware application supports the dynamic discovery and integration of
new context sources, either manually or automatically to extend its contextual information
space. However, this requirement is also denoted as openness of a system [EPR08].

• Context Representation and Evolution. Several models and representation schemes (see
Section 2.4.1 for a discussion) have been proposed for modeling contextual information
where the Semantic Web languages RDF/S and OWL have proved to be suitable frame-
works for modeling contextual information with the necessary expressivity to represent its
interdependency and interrelations. In addition to those languages that were designed for
distributed and heterogeneous environments, a number of other models have been proposed
for context representation such as key-value models, markup-schemes, graph-based mod-
els, logic-based models etc. (cf. [SP04, BDR07, BCQ+07]). For the evaluation of related
projects, we specifically consider the Semantic Web languages RDF/S and the various
OWL dialects and also ascertain whether existing vocabularies were used for describing
contextual constellations or whether specific context vocabularies have been defined. We

Chapter 3. Related Work and State of the Art 75

also elaborate on questions concerning the schemas used for context representation and
whether schema supports context model evolution (cf. [TS09]).

• Persistence, Replication, and Caching. Depending on the underlying acquisition archi-
tecture, contextual information is stored in different locations; for instance, if a system
resembles the context server architecture, it must include a context repository to make
acquired contextual information available to clients. Instead, if a context framework oper-
ates autonomously of any server infrastructure, a mobile database management system is
required to host contextual information directly on a device. We analyze whether contex-
tual information is hosted locally on a device, whether it is stored externally in a dedicated
repository, or whether a context server is used for context storage. We also ascertain if
replication or caching strategies are used to store and provide context-relevant data or data
that are transferred to a mobile device based on contextual information. Since a stable
network connection or permanent online connectivity can not be presupposed in mobile en-
vironments, a system should support local data caching or the replication of relevant data
in order to maintain working conditions of a system or mobile application. We therefore
analyze whether such concepts are considered in the surveyed systems.

After having discussed the main features against which our evaluation is carried out, we introduce
and describe the considered relevant works in more detail in the following sections. Since the
synthesis of context-aware computing with concepts and elements from the Semantic Web in
the domain of mobile Semantic Web-based information systems is a rather young and rarely
exploited research area, not many works exist to date. However, we expect more systems to be
developed in the near future as indicated by the growing number of research activities in related
domains accompanied by the technical advancements of current mobile devices.

3.4.1 Related Projects and Applications

3.4.1.1 DBpedia Mobile

DBpedia Mobile51 is a location-centric mobile client application that visualizes data sets from the
DBpedia project [ABK+07, LBK+09] in a Fresnel-based [PBKL06] Linked Data browser based on
the user’s current position [BB08, BB09b]. DBpedia is a community-driven effort for extracting
structured information from the Wikipedia project52 and exposing this information as RDF data
on the Web under the GNU Free Documentation License53. DBpedia’s main objective is to work
towards one of the key challenges of computer science and information integration in particular,
i.e., “stitching together the world’s structured information and knowledge to answer semantically
rich queries” on these data [ABK+07]. This allows for asking sophisticated queries such as
“retrieve all soccer players with number 10 on their shirts playing for a club with a stadium
larger than 50.000 seats located in a country with more than 50 million inhabitants” against
Wikipedia data (cf. [ABK+07, LBK+09]). Data sets from the DBpedia project are exposed

51DBpedia Mobile: http://wiki.dbpedia.org/DBpediaMobile

52Knowledge bases are playing an increasingly important role in enhancing the intelligence of Web and enterprise
search and in supporting information integration. However, the problem of traditional knowledge bases is that
they are created for specific domains, in most cases by a relatively small group of domain knowledge experts.
Maintaining such information sources is a costly and resource consuming task in particular when the knowledge
of a domain evolves. Wikipedia had been proposed to address these issues and has grown into one of the largest
central knowledge source, which is maintained by thousands of contributors. The DBpedia project leverages this
gigantic source of knowledge by transforming data from the wikipedia encyclopedia into structured information
using Semantic Web technologies.

53The GNU Free Documentation License: http://www.gnu.org/copyleft/fdl.html

http://wiki.dbpedia.org/DBpediaMobile
http://www.gnu.org/copyleft/fdl.html

Chapter 3. Related Work and State of the Art 76282 C. Becker, C. Bizer / Web Semantics: Science, Services and Agents on the World Wide Web 7 (2009) 278–286

Fig. 3. DBpedia Mobile running on an iPhone 3G and showing a map view of resources in the user’s proximity.

Fig. 4. A summary view of the Brandenburg Gate that includes a review obtained
from Revyu as well as an abstract text and a photo obtained from DBpedia, and lists
a nearby DBpedia Mobile user.

wrappr and DBpedia. If the displayed data contains RDF links into
other data sets, the user may click them to obtain a full view of the
referenced resource. In this manner, he can navigate from the DBpe-
dia data set into other interlinked data sources. DBpedia Mobile is
not limited to a fixed set of data sources but may be used to access

Fig. 5. A full view of the Brandenburg Gate’s district Tiergarten, which incorporates
Linked Data from GeoNames, the flickr TM wrappr and DBpedia. From here, the user
may navigate into other interlinked data sets.

all data sources that are or will in the future be interlinked with
DBpedia or with other data sources that are reachable from DBpe-
dia. This allows interesting navigation paths: For instance, a user
may navigate into GeoNames and traverse its parentFeature hier-
archy to find out more about the city, state and country in which
a resource is located. From a location, he may navigate to a per-
son within the DBpedia data set who was born, died or worked at
the location. If the person is an author, he may then follow data
links into the RDF Book Mashup [11] or the Project Gutenberg data
sources and explore information about the author’s books.18 If a
tourist is interested in local bands, he may navigate from DBpedia
into Musicbrainz and find out more about albums of the bands.

DBpedia Mobile generates the different views using Fresnel
lenses and formats on the server side. Prior to rendering a view for
a resource, DBpedia Mobile performs data augmentation, whereby
it retrieves interlinked data from the Web and caches retrieved
data in a server-side RDF store. This involves dereferencing the
resource URI and querying the Sindice and Falcons Semantic Web
search engines for related information, as well as Revyu for reviews.
In a similar manner as the Semantic Web Client Library,19 spe-
cific predicates found in retrieved data such as owl:sameAs and
rdfs:seeAlso are then followed for up to two levels in order to
gain more information about the resource, and to obtain human-
friendly resource labels. Because of this approach, there is no
inherent restriction on which data sources are discovered. In fact,
anyone may make statements about a DBpedia resource, and once
this data link has been picked up by a Semantic Web search engine,
it will be found by DBpedia Mobile and integrated into its output.

The map view is plotted based on resource coordinates
expressed using the geo:point predicate of the W3C Geospa-
tial Vocabulary [28]. As with the displayed data, coordinates may
stem from arbitrary data sources. The W3C Geospatial Vocabulary
was chosen over the more established Basic Geo (WGS84 lat/long)
Vocabulary [16] because it provided for atomic storage of latitude
and longitude components.

Retrieved data is stored in individual Named Graphs [18] which
are identified by the URI from which the data was retrieved. A sep-
arate metadata store tracks the date of the last request as well

18 For example, this works for the navigation paths Bedford → John Bunyan and
then to his publications on Project Gutenberg, or University of Southampton → Tim
Berners-Lee and then to his publications on DBLP.

19 http://sites.wiwiss.fu-berlin.de/suhl/bizer/ng4j/semwebclient/.

282 C. Becker, C. Bizer / Web Semantics: Science, Services and Agents on the World Wide Web 7 (2009) 278–286

Fig. 3. DBpedia Mobile running on an iPhone 3G and showing a map view of resources in the user’s proximity.

Fig. 4. A summary view of the Brandenburg Gate that includes a review obtained
from Revyu as well as an abstract text and a photo obtained from DBpedia, and lists
a nearby DBpedia Mobile user.

wrappr and DBpedia. If the displayed data contains RDF links into
other data sets, the user may click them to obtain a full view of the
referenced resource. In this manner, he can navigate from the DBpe-
dia data set into other interlinked data sources. DBpedia Mobile is
not limited to a fixed set of data sources but may be used to access

Fig. 5. A full view of the Brandenburg Gate’s district Tiergarten, which incorporates
Linked Data from GeoNames, the flickr TM wrappr and DBpedia. From here, the user
may navigate into other interlinked data sets.

all data sources that are or will in the future be interlinked with
DBpedia or with other data sources that are reachable from DBpe-
dia. This allows interesting navigation paths: For instance, a user
may navigate into GeoNames and traverse its parentFeature hier-
archy to find out more about the city, state and country in which
a resource is located. From a location, he may navigate to a per-
son within the DBpedia data set who was born, died or worked at
the location. If the person is an author, he may then follow data
links into the RDF Book Mashup [11] or the Project Gutenberg data
sources and explore information about the author’s books.18 If a
tourist is interested in local bands, he may navigate from DBpedia
into Musicbrainz and find out more about albums of the bands.

DBpedia Mobile generates the different views using Fresnel
lenses and formats on the server side. Prior to rendering a view for
a resource, DBpedia Mobile performs data augmentation, whereby
it retrieves interlinked data from the Web and caches retrieved
data in a server-side RDF store. This involves dereferencing the
resource URI and querying the Sindice and Falcons Semantic Web
search engines for related information, as well as Revyu for reviews.
In a similar manner as the Semantic Web Client Library,19 spe-
cific predicates found in retrieved data such as owl:sameAs and
rdfs:seeAlso are then followed for up to two levels in order to
gain more information about the resource, and to obtain human-
friendly resource labels. Because of this approach, there is no
inherent restriction on which data sources are discovered. In fact,
anyone may make statements about a DBpedia resource, and once
this data link has been picked up by a Semantic Web search engine,
it will be found by DBpedia Mobile and integrated into its output.

The map view is plotted based on resource coordinates
expressed using the geo:point predicate of the W3C Geospa-
tial Vocabulary [28]. As with the displayed data, coordinates may
stem from arbitrary data sources. The W3C Geospatial Vocabulary
was chosen over the more established Basic Geo (WGS84 lat/long)
Vocabulary [16] because it provided for atomic storage of latitude
and longitude components.

Retrieved data is stored in individual Named Graphs [18] which
are identified by the URI from which the data was retrieved. A sep-
arate metadata store tracks the date of the last request as well

18 For example, this works for the navigation paths Bedford → John Bunyan and
then to his publications on Project Gutenberg, or University of Southampton → Tim
Berners-Lee and then to his publications on DBLP.

19 http://sites.wiwiss.fu-berlin.de/suhl/bizer/ng4j/semwebclient/.

Figure 3.2: The DBpedia Mobile client application depicting Semantic Web resources about
POIs located around the user’s current location on a map (left picture) as well as descriptions

of the Brandenburg Gate retrieved from DBpedia and Revyu (right picture)56

for both machine and human consumption through a set of APIs and query interfaces. An
information extraction framework [ABK+07] converts Wikipedia content to RDF and represents
it as a large multi-domain RDF graph, which can be utilized by Semantic Web applications.
Furthermore, such data sets can be linked to other data sets exposed on the Web to build a large
network of interlinked data sources—the so-called Web of Data [BHBL09].

As of June 2011, the DBpedia knowledge base provides information about more than 3.5 million
things (i.e., resources), including 364.000 persons, 462.000 places, 99.000 music albums, 54.000
films, 17.000 video games, 148.000 organizations, 169.000 species and 5.200 diseases. 274 million
pieces of information (RDF triples) are currently stored in the DBpedia knowledge base with
labels and short abstracts available in 30 different languages together with 609.000 links to images
and 3.150.000 links to external web pages as well as 4.878.100 external links into other RDF data
sets. DBpedia further features 415.000 Wikipedia categories and 75.000 YAGO categories54.

The DBpedia Mobile client takes the GPS coordinates retrieved from the device’s GPS sensor
or collects information about nearby WiFi networks to calculate approximations of the user’s
current position and requests information about objects (POIs) located in the user’s immediate
vicinity from the DBpedia project. Those displayed data sets serve as a starting point for
exploring related data that are interlinked with the displayed resources. In this respect, DBpedia
Mobile serves as a starting point for exploring the Geospatial Semantic Web [Ege02]. DBpedia
Mobile maps DBpedia resources to YAGO categories [SKW07]. When a resource is selected, the
DBpedia Mobile server retrieves, aggregates, and caches related information from interlinked data
sources (e.g. reviews about the selected resource extracted from the Revyu [HM08] project55)
before they are sent to the mobile device. Additionally, all properties of the selected resource
are displayed in a detailed view including incorporated information from other Linked Data
sources [BB08]. In case the selected resource exposes RDF links to other resource (cf. [VBGK09]),
the user is able to navigate to and browse related Linked Data sources [BB09b]. Figure 3.2 depicts
the DBpedia Mobile client application.

DBpedia Mobile is realized as a Java Script application and requires a Document Object Model
(DOM) Level 1 and 2 capable browser to make use of the Google Maps API 57. RDF data is not
processed directly on a device; instead, data such as the currently visible view area and filter set-
tings are sent to the DBpedia Mobile server that features the Marbles engine [BB09a] and uses the

54These statistics were retrieved from the official DBpedia homepage (http://dbpedia.org/About) on 26th
June 2011.

55Revyu project: http://revyu.com/

56Compiled from [BB08]
57Google Maps API: http://code.google.com/apis/maps/index.html

http://dbpedia.org/About
http://revyu.com/
http://code.google.com/apis/maps/index.html

Chapter 3. Related Work and State of the Art 77

Each of these columns represents dimensions from the current domain, as mentioned
above. This part of the UI is larger than the others because of the constant focus and
interaction with the columns.

The rationale for this approach has been discussed elsewhere [9, 10] but suffice it
to say that the multicolumn approach supports two critical attributes: persistent
context of information surrounding current selection; persistent view of path through
the information. In other words, a rich context is maintained. A person is able to rely
more on recognising what is currently available in the interface than having to recall
what was previously selected – using a web browser to follow numerous links from a
Google search to a cinema website, its films and then to film reviews, means losing
the context of your original Google search. Returning to Google’s search results,
users then have to recall cinemas that were showing the film they wanted to see.
Recognition, we know, reduces cognitive load on task performance over recollection.

A B

C D

Each of these columns represents dimensions from the current domain, as mentioned
above. This part of the UI is larger than the others because of the constant focus and
interaction with the columns.

The rationale for this approach has been discussed elsewhere [9, 10] but suffice it
to say that the multicolumn approach supports two critical attributes: persistent
context of information surrounding current selection; persistent view of path through
the information. In other words, a rich context is maintained. A person is able to rely
more on recognising what is currently available in the interface than having to recall
what was previously selected – using a web browser to follow numerous links from a
Google search to a cinema website, its films and then to film reviews, means losing
the context of your original Google search. Returning to Google’s search results,
users then have to recall cinemas that were showing the film they wanted to see.
Recognition, we know, reduces cognitive load on task performance over recollection.

A B

C D

Each of these columns represents dimensions from the current domain, as mentioned
above. This part of the UI is larger than the others because of the constant focus and
interaction with the columns.

The rationale for this approach has been discussed elsewhere [9, 10] but suffice it
to say that the multicolumn approach supports two critical attributes: persistent
context of information surrounding current selection; persistent view of path through
the information. In other words, a rich context is maintained. A person is able to rely
more on recognising what is currently available in the interface than having to recall
what was previously selected – using a web browser to follow numerous links from a
Google search to a cinema website, its films and then to film reviews, means losing
the context of your original Google search. Returning to Google’s search results,
users then have to recall cinemas that were showing the film they wanted to see.
Recognition, we know, reduces cognitive load on task performance over recollection.

A B

C D

Figure 3.3: The mSpace Mobile client application showing cinemas located in the user’s
immediate vicinity (left picture) together with movie and actor information (center and right

picture)61

Sesame RDF framework [BKvH02] to transform those data into SPARQL queries [PS08a]. Dis-
played information as well as related resources are retrieved by dereferencing resource URIs [BB09b]
and hosted within an instance of the Virtuoso triple store [EM07] to which such SPARQL queries
are issued. To retrieve additional information about interlinked resources, DBpedia Mobile makes
use of the Sindice58 [ODC+08] and Falcons [CQ09] Semantic Web search engines. All data are
retrieved and processed server-side, where the result sets are rendered on the mobile device using
a Fresnel-based [PBKL06] Linked Data browser.

DBpedia Mobile also supports simple and SPARQL-based information filtering as well as pub-
lishing location-related information such as pictures or reviews to the Web of Data, which is
then interlinked with related DBpedia resources [BB09b]. Therefore, each user that registers
for the DBpedia Mobile client is provided with a personal resource URI that is used for all
content contributions of the respective user. Before a view is generated, the server dereferences
interlinked resource URIs and retrieves additional data from the Web of Data using the previ-
ously mentioned Sindice and Falcons Semantic Web search engines, performs some form of data
augmentation, and stores the aggregated data as Named Graphs [CBHS05] in the Virtuoso triple
store [BB09b].

3.4.1.2 mSpace Mobile

mSpace Mobile59 is a mobile Semantic Web application developed within the mSpace-project60

that uses a multi-faceted column-based browser for exploring data sets that have a direct or
indirect relation to the user’s current location. mSpace Mobile offers related information about
the user’s physical environment such as nearby points of interests, amenities, etc. Access to
location-based information is offered through a multi-faceted browsing interface that has been
specifically adapted to mobile devices. Considered contexts are time, space, and subject. For
instance, users are able to receive additional information about the movies currently playing at
nearby cinemas. Figure 3.3 displays the mSpace Mobile client application.

58Sindice: http://sindice.com

59mSpace Mobile: http://research.mspace.fm/projects/mobile/

60mSpace: http://research.mspace.fm/mspace

61Compiled from [WRS+05]

http://sindice.com
http://research.mspace.fm/projects/mobile/
http://research.mspace.fm/mspace

Chapter 3. Related Work and State of the Art 78

mSpace Mobile is built upon the mSpace Software Framework62 [sSO+05] designed for the man-
agement and exploitation of distributed semantically related resources. The basic design prin-
ciple behind the mSpace framework is to offer users a software tool that allows for exploring
a multi-dimensional information space in multiple ways by leveraging protocols and languages
from the Semantic Web accounting for its scalability as a distributed data source. Users are able
to navigate along associated items in pre-defined contextual dimensions that have a particular
relationship to a selected subject.

In contrast to traditional location-based information systems that use single and proprietary
data sources, mSpace Mobile exploits data from freely available semantic data sources that
publish information by using RDF such as the Open Guide to London63 [WRS+05]. mSpace
Mobile further supports context transitions, i.e., shifting the focus between contextual entities
where data retrieval tasks are dynamically adjusted according to the selected (context-relevant)
information item. This is a significant difference since most comparable applications merely
consider location as the main context. In this respect, the information item the user is interested
in becomes the new context. Although the context is not bound to a fixed entity or subject,
the underlying context model reveals to be based on a static schema. Support for combined
queries, e.g, by combining two subjects is not implemented; users instead can only query for one
single item at a time. As a consequence, advanced context-aware features such as context fusion
(cf. [GSB02],[BC04]), i.e., aggregation of contextual information fragments or entities, or context
refinement are not supported by default. The mSpace Mobile Framework rather acts as a multi-
faceted mobile data browser that allows for navigating along pre-defined contextual dimensions
where the underlying interaction model tries to reduce the cognitive load by maintaining the
currently active context.

Although mSpace Mobile is designed for mobile usage, it employs a distributed client-server-
based architecture where the server-side abstracts over multiple triple stores and is responsible
for dereferencing and integrating resources [WRS+05]. mSpace Mobile employs a three-layered
architecture: (i) the mSpace Application layer hosts functionalities and components for building
mobile client applications on top of the mSpace Framework and for generating the queries issued
to the mSpace Query Server. The clients themselves are separated from the query generation
and translation steps. (ii) The mSpace Query Server offers query services that can be utilized
by mobile applications in order to query for context-relevant resources. The Query Server uses
SOAP, HTTP, and .NET Web Service technologies for its communication with the client ap-
plications as well as with the mSpace Knowledge Server. (iii) The mSpace Knowledge Server
abstracts over a configurable set of RDF repositories and provides facilities for building links be-
tween resources residing in different repositories. For this purpose, the Knowledge Server makes
use of the RDQL [Sea04] query language for querying RDF data sources. However, RDQL is
officially superseded by SPARQL [PS08a] as the de facto standard query language for RDF data.
The default data repository is the 3store64 triple store [HG03]. The Knowledge Server further
allows for combining inherently isolated data sources. In this respect, we can observe an analogy
to the Linked Data approach (cf. [Biz09],[BHBL09]) whose objective is to establish semantically
meaningful links between RDF resources by using well-known Semantic Web concepts such as
assigning unique URIs to resources in order to make them identifiable and thus dereference-
able [Lew07]. The Knowledge Server thus exposes a WWW approach for data provisioning in
that it consists of a variable amount of data providers, each being controlled separately, that
scale with the availability of potential sources.

62mSpace Framework sources: mspace.sourceforge.net

63The Open Guide to London (superseded version): http://london.randomness.org.uk/

643store project page: http://sourceforge.net/projects/threestore/

mspace.sourceforge.net
http://london.randomness.org.uk/
http://sourceforge.net/projects/threestore/

Chapter 3. Related Work and State of the Art 79

3.1 Context Management
The IYOUIT Context Management Framework (CMF) hosts and

combines various services and data sources [2]. CMF features a

broker architecture and fully distributed context data management.

Conceptually, our component framework splits into so-called

Context Providers (CPs) and CMF management components.

Management components, for instance, ensure a secure authenti-

cation of entities, implement access control to personal data or

allow for the usage of domain specific knowledge formalized

within core context and application ontologies. CPs lie at the core

of CMF and encapsulate basic context data sources at a quantita-

tive level but can also implement aggregations and abstractions to

a qualitative level. Framework components, for instance, track the

positions of users, the whereabouts and proximity of their bud-

dies, scanned Bluetooth and WLAN beacons, local weather, pho-
tos, sounds, observed products, messages and more.

3.2 Embedded Semantic Web Technology
A main objective of our Context Management Framework is to

abstract from raw sensor data to eventually gain qualitative infor-

mation about a user in a given situation. We assume that the

meaningful interpretation of context is best feasible at a qualita-

tive level, based on aggregated context data. To determine a

common vocabulary for a unified interpretation of qualitative

context among CMF components we designed a set of specific

context ontologies formulated in the Web Ontology Language

(OWL). Each CMF Context Provider is responsible to link the

quantitative values contained in context elements to qualitative

values expressed using this vocabulary. In addition, selected Con-

text Providers interface with OWL reasoning engines to derive

even higher-level of abstractions through the classification of sets

of qualitative values using standard Description Logics [3].

A concise overview of CMF components that integrate Semantic

Web Technology is given in [1]. The IYOUIT Location Provider,

for instance, has the main task of resolving given location estima-

tions into actual address records, to store location traces and to

deduce frequently visited places. To this end, user location traces

based on GPS and cell tower information are analyzed through

profound statistical learning and clustering methods to determine

frequently visited places of stay [4]. Once established, a place is

presented to the user to name and typify it by selecting an appro-

priate concept from the place ontology, which includes descrip-

tions like “Office”, “Home” or “Business Place”. Staying in a

place is from thereon recognized automatically by IYOUIT, re-

sulting in qualitative location reasoning.

4. REFERENCES
[1] Böhm, S., Koolwaaij, J., Luther, M., Souville, B., Wagner,

M., and Wibbels, M. Introducing IYOUIT. In Proc. of the 7
th

Int. Semantic Web Conf., Germany, Oct. 2008. To appear.

[2] Böhm, S., Koolwaaij, J., and Luther, M. Share Whatever

You Like. In Proc. of the Int. DisCoTec WS on Context-

aware Adaptation Mechanisms for Pervasive and Ubiquitous

Services (CAMPUS 2008), Norway, June 2008.

[3] Luther, M., Fukazawa, Y., Wagner, M., and S. Kurakake,

Situational reasoning for task-oriented mobile service rec-

ommendation, The Knowledge Engineering Review, vol. 23,

pp. 7–19, March 2008.

[4] Petteri, N., and Koolwaaij, J. Identifying meaningful loca-

tions. In Proc. of the 3
rd

 Int. Conf. on Mobile and Ubiquitous

Systems (MobiQuitous'06), USA, July 2006.

Figure 1: IYOUIT Share and Life integrated with Flickr and Twitter.

Figure 3.4: An overview of the IYOUIT system consisting of two screenshots of the client
application (left side) as well as screenshots depicting different views of the community portal

(right side)67

3.4.1.3 IYOUIT

A rather promising project that aims to combine context-aware functionality and Semantic Web
technologies for mobile information systems is IYOUIT, which was developed by DoCoMo Euro-
Labs65 Munich in cooperation with the Telematica Instituut66 Enschede. IYOUIT describes
itself as a “[...] prototype service to pioneer a context-aware mobile digital lifestyle and its reflec-
tion on the Web” [BKL+08a]. It is built on a distributed infrastructure incorporating semantic
technologies and languages to allow for a qualitative interpretation and evaluation of user activi-
ties, which are acquired locally through the mobile device, processed on a server, and reflected in
a community portal on the Web (see Figure 3.4). Those activities are captured by quantitative
sensors and mapped to qualitative data abstractions using formal ontologies. Formalized do-
main knowledge together with classification and ontology-based reasoning mechanisms are used
to support the process of deriving meaningful interpretations of gathered raw sensor data as well
as the recognition of behavioral patterns (cf. [LMWK05, LFWK08]).

The central idea of IYOUIT is that users can establish relationships among each other and
hence build social networks for sharing context data through the IYOUIT Web portal68. Those
social networks are represented as OWL ontologies so that Description Logic-based reasoning
(cf. [BCM+03]) can be applied for detecting inconsistencies and contradictions in social network
data to maintain data accuracy, and deducing, i.e., revealing implicit relationships between users
in a social network. IYOUIT is designed as a service consisting of a mobile client application
and a server infrastructure, the Context Management Framework (cf. [BKL+08a]). The mobile
client application was developed for the Nokia Series-60 devices and automatically captures and
collects information about the entities surrounding a user—the user’s context—in order to share
personal experiences. Such information is, for instance, the places one visited, the people met,
or personal information such as recently read books. IYOUIT uses locally deployed sensors to
collect context-relevant data automatically and sends it to the Context Management Framework

65DOCOMO Communications Laboratories Europe GmbH: http://www.docomoeurolabs.de/

66Telematica Instituut: http://www.telin.nl/index.cfm?language=en

67Taken from [BKL+08c]
68IYOUIT Web portal: http://www.iyouit.eu/portal/

http://www.docomoeurolabs.de/
http://www.telin.nl/index.cfm?language=en
http://www.iyouit.eu/portal/

Chapter 3. Related Work and State of the Art 80

server onto which such data are interpreted, aggregated, further processed, and stored. IYOUIT
also employs interfaces to Web 2.0 applications such as Flickr69 and Twitter70 to collect personal
information and sharing it online. The main conceptual components incorporated in the system
are described as application domains where each domain is responsible for the acquisition and
processing of a certain type of context (cf. [BKL+08a]):

• Share: community-based context sharing synthesizes context awareness and social network-
ing services in order to analyze personal context histories and to discover relationships for
identifying potential social networking activities by using formal ontologies and ontology-
based reasoning for their representation (cf. [WZGP04]).

• Life: the life domain is targeted towards analyzing user-generated content (e.g, tags being
manually attached to photographs) and their metamorphosis in the temporal dimension
by information extraction and information clustering techniques in order to enable user
guidance and aggregate location-based information.

• Blog: the blog dimension analyzes blogging capabilities in order to derive and manage com-
plex contextual events using classification-based reasoning [GS91] to capture and interpret
the users’ current situations (e.g., to describe their current locations such as in office or at
home using high-level ontological concepts).

• Play: the play dimension is concerned with identifying and describing contextual constel-
lations by observing context histories and to transform and manage low-level quantitative
data in order to “discover homogeneous time segments in a higher-dimensional context
space and to detect correlations between different context dimensions” [BKL+08a], p.806.

The context management framework represents a layered architecture and network of distributed
and interconnected components for collecting, managing, and distributing context information
proactively [BKL08b]. It allows for the implementation of flexible services that track, for in-
stance, the position of “friend”, identify frequently visited places, collect information about
publicly available WLAN hotspots, local weather information, photos, and reflects this infor-
mation (so-called context streams) on the Web portal as well as on mobile clients [BKL+08a,
BKL08b, BKL+08c]. Its objective is to transform quantitative raw context data (e.g., sensor
outputs) into qualitative, human-interpretable statements reflecting the user’s current situation
by context aggregation, combination, and reasoning [BKL08b].

The framework includes a privacy manager for controlling the distribution of sensitive personal
information, an identity manager for the connection to and authentication by 3rd party applica-
tions such as Flickr or Twitter, a relation manager being responsible to reason about the social
networks of users, and an ontology manager for the utilization of domain-specific knowledge
being formalized in core ontologies. It further employs the concept of context providers that rep-
resent wrapping components for specific context sources and contain aggregation heuristics in
order to abstract over low-level quantitative data. An overview of the constituting components
is given in [BKL+08a, BKL08b].

A set of core context ontologies based on the Web Ontology Language (OWL) [OWL04] has been
developed for context clustering and context data transformations, which are utilized by context
providers. Those context ontologies are exclusively used for high-level context elements due to the
fact that ontologies are not well suited for handling large amounts of data [WLL+07]. Reasoning

69Photo community portal Flickr: http://www.flickr.com

70Twitter homepage: http://twitter.com

http://www.flickr.com
http://twitter.com

Chapter 3. Related Work and State of the Art 81

Sensor data, file system

RDF/OWL files

Embedded Context Storage

Native Context Wrapper

Semantic Relationship

Linker

Extended Context

Connector

Ontology-based Context

Modeler

(Embedded RDF/OWL Parser)

RDF triples from

P2P network

O
v

e
r
la

y
 P

e
e
r
 N

e
tw

o
r
k
in

g

ContextTorrent Framework

Figure 3.5: The ContextTorrent system architecture and its core components72

is performed to make implicit knowledge explicit where each relationship has an additional
attribute that indicates whether a relation has been explicitly asserted or inferred [BKL08b].

3.4.1.4 ContextTorrent

A very similar system to the one presented in this thesis has been developed within the Context-
Torrent-project [HDW09]. ContextTorrent is a semantic context management framework that
offers access to semantically represented context information for local and remote context-aware
applications. It is developed for the Google Android platform and makes use of the mobile Java-
based XML parser NanoXML71. ContextTorrent was inspired by semantic desktop research in
which concepts and technologies from the Semantic Web are used to enhance personal informa-
tion management (cf. [BS04]) by providing context-relevant information in an automatic and
proactive fashion to support the user’s long-term memory (cf. [SBD05],[FAS09]).

ContextTorrent offers a controlled interface for the exploitation and utilization of semantically
represented context data where a mobile device takes the role of a context provider as well as
a context consumer. An overlay peer-to-peer network allows for connecting mobile devices and
mobile applications for large-scaled local or remote context query and provision [HDW09]. The
underlying infrastructure allows for building dynamically established semantic links between
related context fragments. An ontology-based semantic modeler represents contextual data as
RDF resources using an adapted OWL/RDF parser and maintains the links between semanti-
cally related context fragments in a dynamic fashion. Those semantic relationships are stored in
an object-oriented database specifically designed for resource-constrained mobile devices which

71cf. Section 3.3.1
72Taken and adapted from [HDW09], page 333.

Chapter 3. Related Work and State of the Art 82

getTypeName()

getResourceValueofSubtag(hasName)

<User rdf:ID="User_1">

 <hasName rdf:datatype="&xsd;string">Dexter H. Hu</hasName>

 <hasContact rdf:resource="#Contact_1"/>

 <hasFriend rdf:resource="#User_2"/>

 <hasNote rdf:resource="#Note_1"/>

</User >

getContentsofSubtag(hasName)

Figure 3.6: An example of NanoXML’s functions for accessing OWL and RDF document
elements74

exposes minimal overheads and better resembles ontological representations and corresponding
schema evolutions [HDW09]. Figure 3.5 provides an overview of the main architectural compo-
nents of the ContextTorrent framework.

As opposed to other context management frameworks which distinguish between low-level and
high-level or inferred versus aggregated contexts, the management infrastructure employed by
ContextTorrent treats all contexts equally regardless of their type or origin where context-
relevant information is considered a semantic resource irrespectively whether the information
stems from an external source, a sensor, or the internal context repository. An N-gram based
matching algorithm [MSLN00] is used to rank context information according to its relevance to
issued context queries.

The core component of the ContextTorrent framework is the Ontology-based Context Modeler
which is responsible for modeling and representing contextual data as RDF resources by making
use of the included OWL/RDF parser. Such contextual data may either be retrieved remotely
via the Overlay Peer Networking component that allows for the large-scaled exchange of context
information between communicating peers, or acquired from the Semantic Relationship Linker
which establishes and manages the semantic relationships that possibly exist between context
fragments. The Extended Context Connector and Native Context Wrapper components imple-
ment unified interfaces for accessing and wrapping context sources that are either deployed on
the mobile system in the form of local file system elements or locally deployed sensors (Ex-
tended Context Connector), or application-dependent context information that is stored in the
Embedded Context Storage component. This component is responsible for storing contextual in-
formation including existing semantic relationships in an object-oriented database management
system (ODBMS) since it better resembles ontological representations and corresponding schema
evolutions.

ContextTorrent uses the Web Ontology Language (OWL) [OWL04] for describing and estab-
lishing the relationships among context entities. Context entities are represented as Semantic
Web resources that have a unique identifier as well as URI assigned to it to make them distin-
guishable and referable (cf. [SC08]). ContextTorrent further allows for the dynamic binding of
shared context data to applications by making use of the Android’s concepts of Intents and Intent
Filters73 in order to enable context sharing between applications at runtime. ContextTorrent
distinguishes between static and dynamic contexts where the classification is not based on the
type of context data but rather on the frequency of context value changes.

73Intents and Intent Filters: http://developer.android.com/guide/topics/intents/intents-filters.html

74Taken and adapted from [HDW09], page 335.

http://developer.android.com/guide/topics/intents/intents-filters.html

Chapter 3. Related Work and State of the Art 83

For processing RDF and OWL data, the open-source Java-based XML parser NanoXML (cf. Sec-
tion 3.3.1) has been ported to the Android Dalvaik Virtual Machine (DVM). Although NanoXML
is a lightweight and fast RDF/XML parser, it lacks sophisticated RDF processing and manage-
ment capabilities (cf. Figure 3.6) compared to other mobile RDF frameworks such as Androjena,
µJena, or MobileRDF (cf. [ZS10]).

3.4.2 Analysis

In the following, we discuss the results which have been acquired in the course of our analysis;
all results have also been summarized in Table 3.7.

Quality of Context Explicit information whether DBpedia Mobile, mSpace Mobile, IY-
OUIT, and ContextTorrent use quality of context indicators for context retrieval and aggre-
gation could not be found. Therefore, we assume that quality of context indicators as proposed
by, e.g., [BS03, BTC06, PvHS07, SWvS07, MTD08] are currently not implemented in each of
the analyzed projects or are used internally and implicitly in server-side components. However,
ContextTorrent applies relevancy ranking algorithms to rank requested resources according to
their relevance for a given query where the relevancy ranking can be considered a special form of
context quality indicator for selecting the resources that match a given request with the greatest
possible accuracy.

Query support DBpedia Mobile supports a simplified set of SPARQL queries as well as the
manual specification of filtering rules based on YAGO categories [SKW07]. Users are able to issue
SPARQL queries manually via a client query user interface to the DBpedia Mobile server, whereas
a fully functional SPARQL endpoint (per definition) that can be utilized by external applications
is not available, which impedes context exploitation. mSpace Mobile supports the RDF Data
Query Language (RDQL) [Sea04] and uses query translations and transformations to communi-
cate with the mSpace Query Server. However, further details about the query transformations
are not given. Due to the project’s release time, other query languages such as SPARQL as the
de-facto standard query language are not supported. IYOUIT allows to query for historically
aggregated context data although no information is given regarding supported query languages
or query endpoints. ContextTorrent supports the RDF Query Language (RQL) [KAC+02] and
other query languages and formats, which have not been specified more precisely in respective
works. For the local exploitation and utilization of contextual data, ContextTorrent offers an
SQL-based query interface since the Android-specific concept of Content Providers75 is used for
local context queries; Content Providers expose an SQL-based query interface that returns data
in the form of relational database tables.

Dissemination Since DBpedia Mobile and mSpace mobile are designed as self-contained
location- and context-aware Semantic Web applications, they do not offer any external dis-
semination features such as APIs or communication interfaces for the contextual information
acquired or generated by these applications; context information is exclusively disseminated in-
ternally between the mobile client and the corresponding server infrastructure. However, the
DBpedia Mobile server can also be accessed online via a web application76. mSpace Mobile
uses .Net Web Service technology and the SOAP protocol [BEK+00] for context dissemination.

75Content Providers: http://developer.android.com/guide/topics/providers/content-providers.html

76DBpedia Mobile as web application: http://beckr.org/DBpediaMobile/

http://developer.android.com/guide/topics/providers/content-providers.html
http://beckr.org/DBpediaMobile/

Chapter 3. Related Work and State of the Art 84

D
B

P
ed

ia M
o

b
ile

m
S

p
ace M

o
b

ile
IY

O
U

IT
C

o
ntextTo

rrent

Typ
e

A
p

p
lication

A
p

p
lication

A
p

p
lication

Fram
ew

ork

Q
uality o

f C
o

ntext (Q
o

S
)

N
ot sup

p
orted

N
ot sup

p
orted

N
o inform

ation availab
le

Im
p

licitly sup
p

orted
 through relevance ranking

algorithm
s

Q
uery S

up
p

o
rt

S
PA

R
Q

L and
 ind

ivid
ual filtering rules

R
D

Q
L, sp

ecific Q
uery A

P
Is

N
o inform

ation availab
le

R
Q

L and
 other q

uery languages that have not
b

een sp
ecified

 in m
ore d

etail

D
issem

tinatio
n

N
o external A

P
Is availab

le; the D
B

p
ed

ia M
ob

ile
server is accessib

le via a W
eb

 ap
p

lication
The m

S
p

ace K
now

led
ge S

erver offers .N
E

T W
eb

S

ervices, S
O

A
P, and

 H
TTP

 interfaces

N
o sup

p
orted

; contextual inform
ation is only

transferred
 internally b

etw
een the m

ob
ile client

and
 the IY

O
U

IT server

E
xternally via the p

eer-to-p
eer netw

orking layer
and

 internally through A
nd

roid
-sp

ecific concep
ts

of Intents and
 Intent Filters

C
o

ntext Typ
es

Location and
 user-d

efined
 resources

Location and
 p

red
efined

 contextual d
im

ensions
related

 to location-b
ased

 inform
ation

M
ultip

le context typ
es d

efined
 in the IY

O
U

IT
context ontologies

N
o p

reference for a sp
ecific context typ

e; all
typ

es are treated
 eq

ually

A
p

p
licatio

n A
rchitecture

C
lient-S

erver A
rchitecture

C
lient-S

erver A
rchitecture

C
lient-S

erver A
rchitecture

M
id

d
lew

are A
rchitecture

A
cq

uisitio
n A

rchitecture
P

rop
rietary

P
rop

rietary
M

id
d

lew
are-b

ased
 architecture; acq

uisition
through context p

rovid
ers or m

anual inp
ut

M
id

d
lew

are-b
ased

 acq
uisition architecture

(sensor and
 p

eer-to-p
eer netw

ork layer)

C
o

ntext A
g

g
reg

atio
n and

R

easo
ning

S
erver-sid

e aggregation and
 reasoning; no

sup
p

ort for ind
ivid

ual reasoning rules or
aggregation heuristics

N
o inform

ation availab
le

S
erver-sid

e aggregation using m
ultip

le O
W

L D
L

reasoners and
 reasoning techniq

ues
C

ontext aggregation and
 reasoning is not

im
p

lem
ented

 in the current release

C
o

ntext R
euse and

R

efi
nem

ent
N

ot sup
p

orted
N

ot sup
p

orted
S

up
p

orted
 only server-sid

e
N

o exp
lixit sup

p
ort for reuse of contextual

inform
ation

D
ynam

ic C
o

ntext
D

isco
very and

 Integ
ratio

n
N

ot sup
p

orted
N

ot sup
p

orted
 (d

ynam
ic integration req

uires an
ad

ap
tation of the m

S
p

ace fram
ew

ork and
 the

m
S

p
ace K

now
led

ge S
erver)

N
o inform

ation availab
le w

hether an integration
of new

 context p
rovid

ers req
uires an ad

ap
tation

of the und
erlying infrastructure

Fram
ew

ork instances can serve as a context
sources and

 are integrated
 via the p

eer-to-p
eer

netw
ork layer

C
o

ntext R
ep

resentatio
n

C
ontext is rep

resented
 as X

H
TM

L client-sid
e

and
 as R

D
F/S

 and
 O

W
L on the server-sid

e

C
ontext is rep

resented
 as R

D
F although no

inform
ation regard

ing the used
 vocab

ularies for
rep

resenting contextual inform
ation is given

Low
-level contexts are rep

resented
 in p

rop
rieaty

form
ats; high-level contextual inform

ation is
rep

resented
 server-sid

e using R
D

F/S
 and

 O
W

C
ontextual inform

ation in general is rep
resented

as resources using R

D
F/S

 and
 O

W
L

P
ersistence

S
erver-sid

e using a V
irtuoso trip

le store
S

everal d
ata stores hosted

 w
ithin the m

S
p

ace
fram

ew
ork server-sid

e
S

erver-sid
e in the IY

O
U

IT server
Local file system

 of a m
ob

ile d
evice or in an

ob
ject-oriented

 d
atab

ase

R
ep

licatio
n

N
ot sup

p
orted

N
ot sup

p
orted

N
ot sup

p
orted

N
ot sup

p
orted

C
aching

S
erver-sid

e
N

ot sup
p

orted
N

o inform
ation availab

le
N

ot sup
p

orted

Figure 3.7: Summary of the evaluated Semantic Web projects

Chapter 3. Related Work and State of the Art 85

However, contextual information can only be requested from the mSpace Knowledge Server or
the mSpace Query Server rather than from the mobile client directly. In the IYOUIT project,
contextual information is transferred only internally from the IYOUIT server to the mobile client
and vice versa. We could not find any information whether contextual information acquired by
IYOUIT clients can be exploited by 3rd-party applications. ContextTorrent disseminates con-
textual information externally via the peer-to-peer networking layer or internally by making use
of the Android-internal concepts of Intents and Intent Filters (cf. [Mei10]).

Context Types DBpedia Mobile and mSpace Mobile use location as the main contextual in-
formation type; users can navigate through resources located in their immediate vicinity where
the selected resource becomes the new context for retrieving additional information. The types of
context processed by the IYOUIT context management framework are on one hand determined
by the context providers deployed within the framework but also through the context ontolo-
gies defined in the course of the project (see [BKL+08a]). However, those ontologies are not
available publicly wherefore no further information regarding the supported context types could
be obtained. For efficiency and scalability reasons, not all contextual information entities are
represented using ontological concepts since ontologies in general are not well suited for handling
large data amounts efficiently (see [WLL+07, BKL+08a]). ContextTorrent is a generic context
management framework and is intended to support a wide range of contextual information of
different type. ContextTorrent treats all types of contextual information equally.

Application Architecture DBpedia Mobile, mSpace Mobile, and IYOUIT are built upon
a client-server-based architecture where the client is used for acquisition, interaction, and vi-
sualization purposes and the context management and processing logic is executed server-side.
ContextTorrent, in contrast, is developed as an autonomous mobile middleware infrastructure
system that operates irrespectively of a server infrastructure. All context processing tasks are
performed directly on the mobile device.

Acquisition Architecture DBpedia uses a proprietary application for accessing locally de-
ployed location sensors on a device or alternatively tries to infer the user’s location via WiFi-
based location ascertainment. mSpace Mobile accesses the device’s built in GPS sensor to gather
information about the current location wherefore it applies to the proprietary architecture clas-
sification. IYOUIT also uses a mobile client application for context acquisition that encapsulates
sensor driver logics for raw-data retrieval. It is built on a flexible acquisition architecture by re-
questing context-relevant data either implicitly from locally deployed sensors or explicitly in case
the user manually enters context-relevant information. ContextTorrent employs a middleware-
based architecture for context acquisition where contextual information can be acquired from
locally deployed sensors, a context repository, or from another mobile device running the Con-
textTorrent framework via the overlay peer-to-peer network layer.

Context Aggregation and Reasoning In DBpedia Mobile, the aggregation of context-
relevant information is performed server-side using RDF/S and OWL-based reasoning. No
information whether mSpace Mobile supports context aggregation or context reasoning could
be found. IYOUIT uses aggregation and reasoning techniques for transforming low-level quan-
titative data into high-level qualitative contextual information where the task of aligning raw
context data to qualitative contextual concepts is solely left to each individual context provider.
For deriving higher level data abstractions, each context provider can implement an interface

Chapter 3. Related Work and State of the Art 86

to an OWL reasoning component that allows for qualitative value classifications using stan-
dard Description Logic techniques [BKL+08a]. The aggregation of context-relevant information
is performed server-side using RDF/S and OWL-based reasoning. According to the literature
available about the ContextTorrent system, it does currently not provide any form of context ag-
gregation or context reasoning. Reliable information whether one of the analyzed context-aware
applications or frameworks provides support for the definition of individual reasoning rules or
aggregation heuristics could not be found.

Context Reuse and Refinement Since DBpedia Mobile and mSpace Mobile are per defi-
nition context-aware Semantic Web applications that offer location-based information retrieval
services, context reuse and refinement as such are not considered primary functions and hence
are not supported actively. However, since both projects allow to navigate along contextual
dimensions where the selected resource is considered as the currently active context, transitions
between context-relevant resources can be considered as context refinements in a similar sense.
IYOUIT mutually shares contextual information between components of the context manage-
ment framework for reuse and refinement purposes. The ContextTorrent framework does not
support the reuse of contextual information for context refinement at the moment but allows for
establishing semantic relationships between contextual fragments during runtime.

Dynamic Context Discovery and Integration DBpedia Mobile is built as a self-contained
application where location is the primary contextual information and hence does not support dy-
namic context source discovery and integration. Additionally, mSpace Mobile and the mSpace
Framework do not support the dynamic integration of new data sources on the fly since the
integration of new context or data sources requires an adaptation of the mSpace framework.
This renders the on-the-fly integration impossible without explicit human involvement. For IY-
OUIT, explicit information whether new context providers can be dynamically integrated during
run-time could not be found. Since an integration of new contextual data sources requires an
adaptation of the client application as the primary context collector, we assume that a dy-
namic integration is currently not supported. The same fact also applies to the ContextTorrent
framework where also no explicit information regarding the dynamic discovery and integration
of context sources could be found. From the fact that the definition and integration of new
context types requires “little implementation work” (cf. [HDW09]) we can deduce that the dy-
namic integration of new context sources during runtime is currently not supported. However,
the acquisition based on the peer-to-peer networking layer can be regarded as a form of dynamic
context discovery, where another mobile device servers as context source or context repository.

Context Representation and Evolution Contextual information as such is not represented
explicitly using Semantic Web languages in DBpedia Mobile; although when the user starts to
browse for interlinked resources, that information is retrieved from Linked Data sources and
stored as RDF data server-side, but transformed into the XHTML format by the Marbles en-
gine [BB09a] before it is sent to a mobile device. mSpace Mobile represents contextual informa-
tion server-side as RDF data although no information regarding the used vocabularies for ex-
pressing context-relevant data is given or whether these data are transformed to a specific format
to be processed and displayed on the client. IYOUIT represents high-level contextual information
using RDF/S and OWL based on a set of defined context ontologies (see [BKL+08a, BKL08b]);
low-level or raw-sensorial data is represented both in proprietary data formats as well as using
elements from Semantic Web languages and vocabularies. However, context providers are able

Chapter 3. Related Work and State of the Art 87

to make use of the internal DL reasoner for context aggregation tasks. Within the ContextTor-
rent framework, contextual information is represented using RDF/S and OWL but no further
information w.r.t. the used vocabularies is given. Additionally, none of the analyzed systems
provides explicit information regarding context model evolution.

Persistence, Replication, and Caching DBpedia Mobile uses an instance of the Virtuoso
RDF store to store and aggregate context-relevant data, which is retrieved from related linked
data sources. The Virtuoso server also supports a form of pre-caching so that queries are first
answered by the local database before other data sources are queried. To the best of our knowl-
edge, DBpedia Mobile does not cache or store data locally on a mobile device. In mSpace Mobile,
contextual data is stored in multiple data sources (triple stores) using the mSpace framework. In
this respect, a triple store acts as a data provider and is requested independently using a WWW
approach [WRS+05]. No information regarding preemptive caching of contextual information
could be found. However, to the best of our knowledge, no information is cached locally on a
device. IYOUIT stores and hosts context-relevant information server-side in the Context Man-
agement Framework and does not replicate context-relevant data to the mobile device; instead,
context data updates are reflected in the user interface of the IYOUIT client application. The
ContextTorrent framework allows for storing contextual information on the local file system or
within a locally deployed object-oriented database77. To the best of our knowledge, it does not
implement any form of replication or caching strategies.

3.4.3 Summary

Most approaches that aim at using Semantic Web technologies for the implementation of context-
aware functionality exist as self-contained systems that exhibit limited sharing capabilities. Con-
textual information is predominantly hosted in external triple stores where a client application
acts as acquisition and visualization interface. Although almost all analyzed works use Semantic
Web-based description frameworks and languages for context representation, they exhibit only
a limited set of client or query interfaces that allow for using acquired contextual information
externally or to make use of context-aware functionality. Context aggregation and reasoning
steps are performed server-side. As contextual information is processed only internally, explicit
information about quality of context aspects could not be found. Moreover, most context-aware
Semantic Web applications implement context-aware functionality for a specific purpose where
a framework that specifically focuses on mobile RDF data replication could not be found.

3.5 Conclusion

In summary, our analysis revealed that context-driven replication of RDF data to mobile devices
has not been addressed by current or related research yet. Existing replication algorithms are
considered complementary to our approach as they focus on specific context parameters rather
than on the entire user context. Replication architectures that follow a more generic strategy
require the employment of server infrastructures for context processing and the execution of
reasoning heuristics. The RDF parsers and frameworks currently available for mobile systems
mostly exist as research prototypes but provide the necessary functions for a context-dependent
RDF data replication infrastructure as proposed in this thesis although much space is left for

77For a performance evaluation, the two object-oriented database systems Perst (http://www.mcobject.com/

perst/) and db4objects (http://www.db4o.com/) were analyzed.

http://www.mcobject.com/perst/
http://www.mcobject.com/perst/
http://www.db4o.com/

Chapter 3. Related Work and State of the Art 88

optimization. In Section 6, we therefore analyze the performance of mobile RDF frameworks in
typical replication-related tasks comprising the creation, parsing, modification, and storage of
RDF data replicas directly on a mobile device. Only two frameworks offer advanced RDF pro-
cessing and management capabilities such as inferencing but lack a sophisticated query support;
however, there exists a prototypical implementation of the SPARQL query standard for the An-
drojena framework. The mobile storage and query frameworks that exist to data are currently
available as experimental research prototypes but recent developments indicate an increasing
awareness of deploying Semantic Web technology on mobile devices (cf. exploiting Linked Data
for mobile Augmented Reality [RHP+10], SWIP [DE10], or i-MoCo [WBB08]).

The context-aware Semantic Web applications we analyzed extensively use Semantic Web-based
description frameworks such as RDF or OWL but outsource processing-intensive tasks to external
servers or to specific server-side applications rather than execute them on the device itself. This
means, however, that in case of missing network connectivity the client applications become
practically useless. While our architectural approach does not allow to proactively update data
from remote sources without connectivity, it provides at least a local buffer of the data that have
been replicated so far, and hence allows the user to continue using the applications, although in a
restricted manner. Another distinct aspect is that context acquisition and context representation
is not limited to a predefined set of contextual aspects, i.e., the context descriptions created by
the framework are dynamic and include as many aspects as could be acquired. Applications
can process the data they are interested in, leading to a greater flexibility in elaborating on
contextual constellations.

Chapter 4

Approach

“Progress is the product of human agency. Things get better because we make them better.
Things go wrong when we get too comfortable, when we fail to take risks or seize opportunities.”

Susan Rice, Stanford University Commencement, 2010

After having discussed recent projects from the Semantic Web domain that aim to synthesize
context-aware computing concepts with semantic technologies for building more user-oriented
applications and services in the previous chapter, we now introduce a conceptual architecture of
a context-sensitive RDF data replication framework for mobile devices on a formal basis. We
both formally define and conceptually describe the abstract model and algorithms that consti-
tute our chosen approach and also present requirements as well as design considerations that
constitute the architectural fundament of the proposed context-sensitive replication framework.
The hypothesis motivating our work is that a combination of context-aware computing concepts
and semantic technologies to built a Semantic Web-based context-sensitive replication framework
for RDF data on mobile devices allows for increasing the accurateness of proactive and trans-
parent context-dependent information retrieval processes to better accommodate the information
needs of mobile users1. A central aspect of our approach is thus the reliance on technologies,
concepts, and languages that emerged in the Semantic Web domain and introducing such con-
cepts to mobile platforms in particular for the processing and replication of RDF data sets to
such platforms. Although this work emphasizes the use of semantic technologies for the rep-
resentation and processing of contextual information as outlined in Chapter 3, the formal and
conceptual descriptions of the framework’s main constituting components and workflows occur
principally independent from such technologies. The main contributions of this work, as out-
lined in Section 1.4, therefore are the specification of a formal model together with a conceptual
system architecture for the distributed acquisition, aggregation, consolidation, local storage, and
dissemination of independently acquired heterogeneous contextual information that serve as a
basis for the proactive and transparent replication of RDF data sets to mobile devices in order to
support the information needs of mobile users. Our approach demonstrates that a synthesis of
such concepts and technologies not only allows for the development of new sophisticated mobile

1As outlined in Section 1.1.1, 72% of mobile users find their information needs inadequately addressed whereas
a share of 58% can be satisfied by retrieving data from publicly available sources (cf. [KB06, SLGH08]). The
relevance of context in regard to the information needs of mobile users has also been investigated in related studies
such as [CS08].

89

Chapter 4. Approach 90

applications and services that could satisfy the user’s situational information needs in a proac-
tive, transparent, and ad-hoc manner but also leads to a new form of context-aware computing
that we have denoted as Semantic Web-based context-aware computing in [ZS12b].

In the remainder of this chapter, we therefore present a formal model of our approach together
with a formal definition of the orchestration logic for the dynamic orchestration of context ac-
quisition components called context providers based on a data description ontology. The data
description ontology allows to describe the data emitted by a context provider in a unified and
well-defined way and serves as a basis for the calculation of similarity scores in order to route data
between compatible context providers for context refinement, augmentation, and complementa-
tion. We algorithmically describe the process of deducing orchestration networks of compatible
context providers and also present a transactional processing model for the distributed and au-
tonomous acquisition and aggregation of context-relevant information while maintaining data
and process consistency as well as data accurateness and data completeness under consideration
of the peculiarities imposed by mobile operating system infrastructures. For the description of
the formal model underlying the conceptual system architecture, we use algebraic specifications
and symbols to refer to and denote constituting elements.

However, before we introduce the formal model and conceptual architecture of the proposed
framework and formally define its main constituting concepts and building blocks, we present
a number of requirements collected and aggregated from the relevant literature that serve as
design considerations of our system. We conclude this chapter with a summary and a discussion
of selected requirements we consider essential to our work that concern the completeness and
consistency of contextual information as well as the integrity of aggregation and processing
workflows. The concurrently operating transaction-based processing model formally introduced
in the penultimate section guarantees completeness, consistency, and accurateness of contextual
information and yields a deterministic processing behavior even in uncontrolled situations2. The
conceptual specification of the system’s architecture in conjunction with the formal model can
be used as a basis for an implementation of the proposed framework in a specific programming
language and for a specific mobile platform3.

4.1 Requirements and Design Considerations

The realization of context management and context processing functionality in form of a framework-
based approach is broadly suggested in the relevant literature since a framework-based archi-
tecture not only facilitates and stimulates context-aware application development, it further
enables the gathering, interpretation, and aggregation of contextual data in a structured, well-
defined, and controlled way [FMGI06]. The context-sensitive replication framework proposed in
this thesis has been developed in the course of the MobiSem project4 and extends such broadly
suggested framework-based approaches in that it has been specifically designed to operate on
mobile systems while making use of Semantic Web technologies to acquire, interpret, reuse, ag-
gregate, store, disseminate, and reason on contextual information independent of any application
or operating system-specific infrastructure. Semantic Web technologies and practices, which are
designed as an information processing infrastructure for heterogeneous environments, can help

2Mobile ad-hoc environments or ubiquitous environments are inherently considered as being unpredictable and
uncontrolled.

3In Chapter 5, we demonstrate the implementation of selected aspects defined in the formal model on the
Android platform.

4Information about the MobiSem project can be found at the official web site: http://www.mobisem.org.

http://www.mobisem.org

Chapter 4. Approach 91

in solving the issues outlined in Section 2.4 and 2.5, and are therefore a crucial constituent for
future context-aware systems operating in ubiquitous and mobile environments [ZS12b].

In the course of this chapter, we denote and refer to the system proposed in this thesis as
context framework or, more formally, as context-dependent replication framework. For the design
of this system, we have collected and consolidated a number of requirements and fundamental
properties of comparable systems being published in the relevant literature (cf. [DAS01, Win01,
BC04, HIMB05, EPR08]). These requirements have been adapted for mobile operating systems
and mobile platforms in particular and serve as design principles of our work. In the following,
we provide a consolidated overview of each requirement and briefly discuss the aspects of a
mobile context processing and management framework being addressed by a specific requirement;
we then present the high-level goals of our framework and outline its main advantages w.r.t.
comparable client-server-based approaches.

• Flexible system design and open system architecture. A context management framework for
mobile and ubiquitous computing environments must support the integration and exploita-
tion of dynamically discovered heterogeneous context sources at run-time using standard
technologies to handle technical, structural, and semantic heterogeneity. This requirement
not only accounts for the flexible integration of context sources but also concerns the frame-
work as such and the schemas used to describe and represent contextual information. It is
referred to as openness in [EPR08]. Moreover, a framework should be capable of adapting
its processing tasks and strategies according to operational circumstances and available
system resources.

• Open and flexible context representation models. The context descriptions produced by
a context framework should be based on a dynamic and flexible schema that allows for
incorporating contextual data that have been acquired from context sources that were not
anticipated at design time of a context framework. This process should be accompanied by
languages and vocabularies from the Semantic Web due to their openness, their adherence
to the open world assumption (cf. [DS06]), as well as their reliance on standard protocols
and techniques in order to facilitate the interoperability among context producing and
context consuming components. Additionally, it should be possible to describe new types
of contextual information with existing and individual semantic vocabularies so that those
descriptions can be processed by different context consumers.

• Minimal platform dependency. A context management framework for mobile device should
be easily deployable on existing mobile systems and infrastructures while taking into
account available system resources. This requirement is denoted as minimal commit-
ment [EPR08] or ease of development and configuration [HIMB05] where a context man-
agement framework should expose minimal technical restrictions or constraints for its adop-
tion and integration into existing system infrastructures so that it can be deployed on and
utilized by a multitude of different devices. It should be supported by the use of open
standards and standard technologies.

• Sensor abstraction. Due to the non-existence of a general model on acquiring and process-
ing context (cf. [DAS01, BC04, Dou04, BDR07, Teo08]) existing approaches suffer from
the hard-wired integration of sensor and driver logic into application code where sensor
details need to handled within the application logic. Application developers and software
engineers have to deal with context acquisition and processing in proprietary manners.
Decoupling context acquisition technologies from context processing and the application
logic by imposing a layered or middleware-based architecture offers greater flexibility and

Chapter 4. Approach 92

portability to a context management framework since sensor logic and API details are en-
capsulated and wrapped in dedicated components that offer common interfaces for their
utilization. This requirement is also denoted as separation of concerns [DAS01].

• Multi-granular interpretations. Context interpretation denotes the task of deriving valuable
information from low-level and raw sensorial data and serves as a prerequisite for trans-
forming these data into high-level context information (cf. Section 2.4.4), i.e., creating
qualitative assertions about context-relevant aspects using elements of a context ontology.
A context management framework therefore must support and allow for different interpre-
tations of contextual information in a transparent manner. Due to the fact that identical
information contained in context descriptions is interpreted and handled differently by
consuming applications, context descriptions must be reusable by those applications. The
integration of additional layers for context aggregation and refinement in the interpretation
process allows for deriving qualitative and high-level assertions from numerical observables
(cf. [CCDG05]).

• Flexible communication infrastructure. A context management framework must employ a
communication infrastructure that abstracts over the concrete location and protocol details
a context source exposes. One possible solution is to use dedicated components called
context providers ([BKL+08a, CRL+09, ZS10]) or sentient objects ([BC04]) to wrap context
sources that utilize a communication infrastructure to exchange contextual information
with a context framework; for instance, they map requests issued by the context framework
or context consumers to sensor APIs and vice versa and use different technologies such as
Remote Method Invocation (RMI), HTTP, SOAP, or other communication protocols to
communicate with a framework. For distributed context sources such as Web services or
remote repositories, this task is more fragile and requires the reliance on common and
standardized communication and transport protocols.

• Persistence and constant availability of contextual information. Acquired context data
must be constantly available to context consumers. Due to the fact that most of the
recently proposed context acquisition architectures are built on middleware technology
and are designed for distributed and ubiquitous environments, contextual data acquired
in a distributed manner need to be persisted until they can be processed and aggregated
with data acquired from other context sources. Therefore, efficient mechanisms for context
storage and context query are necessary since the time when a context consumer issues a
request for contextual data is in general unknown.

• Ad-hoc integration of context sources. This requirement is not discussed in detail in this
work as the ad-hoc integration of context sources during run-time requires the support of
application-specific context models to allow for dynamic context service discovery [WX06]
regardless of technical constraints and concrete applications operating on top of a context
framework. However, we assume that the context sources used for data replication tasks
are unlikely to change very frequently wherefore we will not treat this requirement in detail
in the course of this thesis; instead, it is subject to future research.

A context-sensitive RDF data replication framework targeted towards mobile platforms must
incorporate most if not all of these requirements to deal with unpredictably changing user con-
texts and tasks, and the ad-hoc character of mobile environments as well as the increasing
error-proneness of information systems operating in such environments. In particular, special
emphasis has to be given to the requirements of minimal platform dependency and sensor ab-
straction due to the diversity of mobile platforms and mobile operating systems as well as

Chapter 4. Approach 93

the heterogeneity of locally deployed sensors and their APIs. The conceptual system archi-
tecture and underlying abstract processing models presented in the following sections have
therefore been designed on a generic basis regardless of concrete technological components,
although the beneficial effects of deploying semantic technologies for the management and
processing of contextual information are acknowledged, primarily in more recent approaches
(e.g., [WZGP04, HMD05, EPR08, BKL+08a, ZS10]) and also emphasized in Chapter 2 in this
work. In particular in relation to the requirements of employing open and flexible context rep-
resentation models and providing support for the multi-granular interpretation of contextual
information, Semantic Web technologies facilitate the interoperability between autonomously
and independently operating context processing systems5, where created context models are
mutually exchanged in an ad-hoc manner; comparable approaches are presented and discussed
in, e.g., [RSP07, HDW09]. As mobile devices are operated in different contexts and acquire a
multitude of different context-relevant data, the previously mentioned requirements are partic-
ularly relevant for the context-sensitive RDF data replication framework proposed in this work.
The framework has been specifically designed for direct deployment on mobile devices and to
allow for an independent and autonomous acquisition, management, storage, and dissemination
of contextual information regardless of application-specific or client-server-based architectures
(cf. [BB08, BKL+08a, WRS+05]); its main goals can be summarized as follows:

• To provide a storage repository for semantic data on a mobile device. With the increasing
proliferation of services based on Semantic Web technologies, the need for mechanisms
to store, manipulate, and retrieve RDF data on mobile devices becomes apparent. The
local storage of RDF data on a mobile device not only reduces the dependency on a
permanent network connection, but also enables the implementation of more efficient search
and reasoning algorithms, and extends the user’s local information space.

• To make efficient use of available context information. Modern mobile devices provide
a magnitude of options to capture the user’s context, which can be used to infer future
information needs and adapt application and device behavior. A semantically appropriate
interpretation of these context data helps to build more user-oriented applications and
services and enhance the overall mobile user experience.

• To proactively provide context-relevant data on the device. As stated before, we cannot rely
on a permanent network connection in mobile scenarios. On the other hand, we can infer
future information needs from the user’s current context information and thus proactively
retrieve data from remote data sources to the mobile device that might become relevant in
the future, and buffer it using the local storage repository.

• To provide the technical infrastructure for high-level context processing. The dynamic and
flexible characteristic of our context framework enables the deployment of additional high-
level context recognition and utilization services on mobile devices to enable situation
awareness (cf. [ATH07, Geh08, LFWK08, SWB+08, THS09]). The framework facilitates
almost all aspects of a mobile context processing and management architecture and serves
as a foundation for the systematic management and exchange of context descriptions using
open semantic standards.

For the realization of these goals, we synthesized concepts from graph theory, distributed trans-
action management, and the Semantic Web to build an architectural infrastructure for mobile

5 The term system here is used instead of framework to indicate and denote a broader set of context producing
and context consuming components.

Chapter 4. Approach 94

systems that combines context acquisition, context management, and data replication tasks
to replicate data related to the user’s current and future information needs in a transparent
and proactive manner. Our approach exhibits two significant advantages compared to existing
server-based approaches:

(i) Contextual information is acquired, processed, and disseminated directly on a mobile device
and does not depend on the availability of external systems. This reduces security and
privacy issues since highly private data such as contact information or appointments do not
need to be transferred outside a mobile system. It also serves as a technical infrastructure
for the deployment of additional high-level context processing and recognition services.

(ii) Furthermore, the generic structure and system design allows for applying the framework
to a wide variety of application scenarios and adjusting it to specific replication or data
provisioning tasks. For instance, the framework is used in a subsequent project for the
proactive provision of patient-related data in the health-care domain.

In the next sections, we give an overview of the conceptual model underlying our framework and
we describe the conceptual workflow from acquiring context-relevant information towards the
local RDF data replication based on an analysis of the user’s current context, storing that data,
and making it available to external applications and services.

4.2 Conceptual Context Acquisition and Data Replication
Workflow

After having introduced design considerations and requirements of the proposed context-sensitive
RDF data replication framework, we now give an overview of the subjacent abstract context ac-
quisition and data replication workflow together with its main conceptual components. The
’⊕’-symbol is used to indicate both cooperations between components as well as amalgama-
tions between elements created by specific components; in particular, they exist between context
providers as well as between context and orchestration models (cf. Figure 4.1). For the de-
scription of the conceptual replication workflow, we do not differentiate between these types of
cooperations or amalgamations respectively in more detail, i.e., we use the same symbol to indi-
cate relationships between context providers as well as to indicate an aggregation of context and
orchestration models based on a particular logic or scheme; the aggregation of these elements is
formally defined in the next section.

We have decided to completely decouple the tasks of context acquisition and data replication (cf.
Figure 4.1) to enable a maximum of flexibility w.r.t. the processing of relevant data and adapt-
ing the proposed framework to specific application needs. Context-relevant data are retrieved
by dedicated components, which we designate context providers (cp) in the course of this work
and formally define in Section 4.3.3. Context providers act as wrappers around a multitude of
different context sources, which might be locally or remotely operating ubiquitous sensors, local
applications and data sources, or Web applications respectively Web services6. Context providers
acquire and collect context-relevant data from external7 sources, process them, and convert them

6More details about the different context sources are provided in Section 4.6.
7External in this context is used to denote sources that lie outside the replication framework’s computational

space, i.e., they operate or are operated independent from the framework in a self-contained manner.

Chapter 4. Approach 95

C
on

te
xt

 A
cq

ui
si

tio
n

W
or

kfl
ow

 w
f 1

O
rc

he
st

ra
tio

n
Tr

ee
 o

1

cp
1

cm
1

cm
2

cm
n

cp
2

cp
n

C
on

te
xt

 D
is

pa
tc

he
r

R
D

F
D

at
a

D
is

se
m

in
at

io
n

La
ye

r
-

R
D

F
C

on
te

nt

Pr
ov

id
er

C
on

te
xt

 A
cq

ui
si

tio
n

W
or

kfl
ow

 w
f k

O
rc

he
st

ra
tio

n
Tr

ee
 o

k

cp
1

cm
1

cm
2

cm
m

cp
2

cp
m

R
D

F
D

at
a

R
ep

lic
at

io
n

La
ye

r

dp
1

dp
l

Li
nk

ed

O
pe

n
Da

ta
Re

po
sit

or
y

Q
ue

ry
 L

an
gu

ag
e

e.
g.

 S
PA

RQ
L

dp
2

Ap
pl

ica
tio

n
Pr

og
ra

m
m

in
g

In
te

rfa
ce

 /
Re

m
ot

e
Pr

oc
ed

ur
e

Ca
lls

HT
TP

 R
eq

ue
st

 R
es

po
ns

e

(S
em

an
tic

)
W

eb

Se
rv

ice

Tr
ip

le
 S

to
re

fo

r R
DF

 D
at

a
Re

pl
ica

s
M

ob
ile

Ap

p

Ba
ck

up

M
an

ag
em

en
t

an
d

St
or

ag
e

La
ye

r
-

St
or

ag
e

of

co
nt

ex
t p

ro
vid

er
s,

da

ta
 p

ro
vid

er
s,

an

d
cr

ea
te

d
co

nt
ex

t m
od

el
s

Co
nt

ex
t a

nd

Da
ta

Pr

ov
id

er

Re
gi

st
ry

Co
nt

ex
t

M
od

el
s

C
on

te
xt

 C
on

fig
ur

at
io

n
(G

lo
ba

l C
on

te
xt

 M
od

el
)

...

...
... ...

...

...

⊕
⊕

⊕
⊕

⊕
⊕

Co
nt

ex
t M

od
el

 A
gg

re
ga

tio
n

an
d

Co
ns

ol
id

at
io

n

om
1

om
k

⊕
⊕

⊕
om

2
...

G
en

er
at

io
n

Pr
op

ag
at

io
n

⊕
⊕

⊕
⊕

⊕
⊕

M
ob

ile

Ap
p

M
ob

ile

Ap
p

C
lie

nt
s

Fr
am

e
w

or
ks

HT
TP

HT
TP

dp
3

RE
ST

fu
l

W
eb

Se

rv
ice

XM
L-

RP
C/

SO
AP

W
eb

 2
.0

Ap

pl
ica

tio
n

Figure 4.1: Conceptual architecture of the components involved in a data replication process

Chapter 4. Approach 96

into so-called context models, denoted as cm8 in Figure 4.1, on the basis of well-defined vocabu-
laries and schemas. A context model is a structured and well-defined representation of, in most
cases, low-level raw sensor data being described using elements from controlled vocabularies9. A
formal specification of the acquisition process together with detailed information regarding the
involved elements is given in the next section.

In order to augment independently acquired contextual information and to built more sophisti-
cated elaborations of the user’s current context, context providers are orchestrated in so-called
orchestration trees, denoted as o in Figure 4.1, that were derived from a dynamically calculated
orchestration matrix being created based on a pre-calculated compatibility matrix and a partic-
ular orchestration logic (cf. Section 4.3.5); in-depth details of the orchestration algorithms, the
calculation of both compatibility matrix and orchestration matrix, and the derivation of orches-
tration trees from the orchestration matrix is given in the Section 4.4 and 4.4.3. Consequently,
a prerequisite of the orchestration process is that context providers, per definition, must be able
to describe the data they emit and provide information about the contextual information they
acquire. To facilitate that process, we have developed a minimal and lightweight data descrip-
tion ontology context providers have to comply with in order to exhibit a structured description
of the elements their context models consist of (cf. Section 4.4.1). This information allows for
computing several compatibility scores that serve as a basis for computing the compatibility
matrix, which by itself serves as the basis for calculating the orchestration matrix and deducing
the orchestration trees.

Orchestration trees are static representations of a sequence of context acquisition activities, i.e.,
they specify how the context models emitted by the containing context providers can be com-
bined in a useful way to facilitate context augmentation and complementation. Those workflow
specifications need to be executed in controlled environments to ensure that the context providers
being orchestrated in an orchestration tree are executed independently and autonomous from
one another and that the replication framework remains in a consistent and deterministic state.
This decentralized organization and distributed execution of context acquisition workflows re-
quires a sophisticated execution and control infrastructure and thus has several implications on
the conceptual system design, which are discussed in Section 4.6. Therefore, orchestration trees
are embedded in so-called context acquisition workflows, denoted as wf in Figure 4.1, that are re-
sponsible for the controlled execution of technically separated and autonomous but conceptually,
i.e., in terms of their context models, related acquisition processes of the context providers em-
bedded within an orchestration tree. In the context of this work, context acquisition workflows
are regarded as discrete atomic units that consist of a distinct number of nested transactions
and initiate and control the acquisition processes of the context providers orchestrated within
the corresponding orchestration trees. They provide the necessary basis for combining and ag-
gregating independently acquired context models, symbolized by the ’⊕’-symbol in Figure 4.1.
These independently acquired context models are aggregated into a compound context acquisi-
tion model called orchestration model, being denoted as om in Figure 4.1, which represents an
aggregated compound of the context models emitted by the context providers orchestrated in
the corresponding orchestration tree.

8Please note, that the number used in the subscript of the symbols for both context providers (cp) and
context models (cm) indicates a local membership, i.e., two elements sharing the same symbol and subscript are
not considered identical as they were integrated in different orchestration trees or context acquisition workflows.
The subscripts used in Figure 4.1 hence serve as means to distinguish between elements of the same type that
were deployed in the same upper-level element.

9 By the term ’context model’, we refer to a concrete instance of a context model rather than to the underlying
scheme that is to be defined by each context provider individually. We provide more details about context models
as well as the distinction between context model instances and their underlying prescribing scheme in Section 4.3.2.

Chapter 4. Approach 97

The orchestration models by themselves are collected by the context dispatcher (cf. Section 4.3.8)
and aggregated to a global context model named context configuration (cf. Section 4.3.8) that
represents a complete description of the user’s current context. This global context model is
created on demand, i.e., it is created dynamically whenever a new orchestration model has been
aggregated from the context models emitted by the context providers orchestrated in an orches-
tration tree. During the aggregation process, which is performed completely automatically and
decoupled from other framework-specific processes, several reasoning and consolidation heuristics
are applied to built a more sophisticated and elaborated description of the user’s current context.
Detailed information about constituting algorithms and processes is given in Section 4.5.

The context configuration is then forwarded to the data providers, denoted as dp in Figure 4.1,
operating in the RDF data replication layer where the context configuration is analyzed and
used as a basis for replicating RDF data to the device. The data replication layer controls all
data providers deployed in an instance of the context framework, which, based on the results
of their analysis, initiate and adjust their data replication tasks accordingly. Just as context
providers, data providers wrap a specific data source, where no restrictions are impsoed on what
a data source might be: a data provider can replicate data from file objects located on the local
file system, from databases, from Web services and Web applications, as well as from Linked
Data sources exposed on the so-called Web of Data10. More information about data providers
together with a formal model of them are given in Section 4.3.10. The replicated data are stored
in a local triple store and made available through an RDF content provider operating in the
RDF data dissemination layer. This layer including the RDF content provider and the triple
store are described in Section 4.6.

The dissemination layer offers external clients controlled access to both replicated data stored
in the local triple store as well as to the context configuration so that context consumers are
able to continuously obtain a structured and consolidated representation of the user’s current
context. This allows other context management frameworks or context-sensitive services to either
process the information contained in the context configuration and complement their own context
models, as well as to adjust their services based on specific aspects of the user’s context thus
delivering more user-focused and user-friendly services. The RDF content provider also allows
locally operating mobile applications to access and utilize data replicas so that more sophisticated
applications and services can be built on top of the user’s current context. Detailed information
about the locally operating triple store and the dissemination of both replicated data as well
as the context configuration will be provided in Section 4.6.2 whereas [ZS12b] exhibits detailed
implementation-specific information of the RDF content provider.

A loose, data-based coupling between context providers and data providers is realized through the
context dispatcher, which is notified every time a context provider detects a change in a context
source it observes. The context dispatcher aggregates, consolidates, and reasons on context
information, and forwards them to the appropriate data provider components as described before.
An algorithmic description of the main tasks and the process model of the context dispatcher is
given in Section 4.6.

The management and storage layer hosts repositories for both context and data providers as well
as for emitted context models and created context configuration instances. Other framework
components can access the elements stored in these repositories in a controlled and uniform
way where the storage and management layer keeps track of changes applied to the repositories’
elements.

10According to recent studies related to the information needs of mobile users, an estimated amount of 58%
of such information needs can be satisfied through the provision of data replicated from publicly available data
sources (cf. [SLGH08]).

Chapter 4. Approach 98

4.3 Formal Model

In the previous section, we have informally described the conceptual workflow of acquiring and
aggregating contextual information and replicating RDF data being relevant to the user’s infor-
mation needs to the mobile device based on an analysis of a global representation of the user’s
current context – the context configuration11; we also gave some details regarding the character-
istics of the involved elements respectively components. In the present section, we now define the
main constituting elements of the proposed context-sensitive replication framework on a formal
basis using set theory and algebraic specifications and provide profound details regarding their
role and characteristics in data replication processes.

Before we start with the definition of the formal symbols, we introduce the concepts of sensor
and context source, which we consider fundamental to this work. We refer to a sensor as being
a physical or logical entity that captures raw sensorial data and produces a computational rep-
resentation together with software events in reaction to a real-world stimulus [BC04]. Sensors
are realized as hardware devices or software components, or a combination of both. Putting
this definition in a broader, more general context, we can regard sensors as context sources
that, from a technical perspective, can be anything ranging from physical sensors deployed in
ubiquitous environments, over software or logical sensors (in some works such sensors are called
virtual sensors), towards Web applications, services, and repositories offering context-relevant or
context-complementing information. As the work continues, the term context source is therefore
used to denote hardware or software entities that allow for acquiring information that have a
specific relationship to the user’s current real-world contexts. In consequence, we will refer to
the more general concept of context source rather than context sensor in the course of this work.

A fundamental design consideration of the proposed framework is the ability to acquire context-
relevant information from a wide variety of different context sources where no restrictions have
been made according to what a potential context source might be. As first outlined in the
previous section regarding the operationalization, that is, the integration of context sources
in the framework’s computational and processing space and using it for the exploitation of
contextual information, a context source needs to be wrapped by a context provider, which
offers unified and well-defined interfaces to the APIs exhibit by a context source as well as a
structured and well-defined description of the contextual information being emitted by a context
source. Following the conceptual description of context providers given in Section 4.2, we employ
two types of context providers: primary (i.e., active) and complementary (i.e., passive) context
providers. Primary context providers encapsulate a hardware or software sensor and become
active whenever a change in a context source is detected, i.e., they actively monitor the status of
a context source and autonomously capture sensorial stimuli. Complementary context providers
employ a different, reactive operation model; they react according to responses of primary context
providers and become active whenever a corresponding compatible primary context provider
emits a context model that can be refined or complemented in the course of their acquisition
workflows. The main purpose of complementary context providers therefore is to take the context
models emitted by primary context providers as input data for initiating their acquisition tasks
and thus performing a form of context augmentation or context complementation (cf. Section 3.4).

In the following, we give a formal definition of the concept of context models and context
providers as being defined and understood in the scope of the proposed framework together
with other relevant components involved in data replication processes. For the formal definition

11As outlined in Section 4.6, the context configuration resembles a consolidated and global representation of
the aggregated single context models.

Chapter 4. Approach 99

of the involved components, we follow a natural path that leads from the acquisition of contextual
information, towards their transformation and aggregation into the context configuration.

4.3.1 Symbols and Relations

We start this section with an introduction of the symbols that are considered relevant for and
constitute the formal model underlying the proposed framework. The symbols are introduced
in Definition 4.1 and will be thoroughly defined in their respective sub sections. For reasons of
clarity and comprehensibility, we summarized all the symbols used to describe the formal model
of the proposed context-dependent replication framework in Table 4.1. However, Table 4.1 lists
only those symbols that are considered as constituting elements with respect to the formal model;
symbols that are defined in the course of a definition of a main constituting element such as the set
of raw data tokens Σ, the set of symbolic data tokens Γ, or the set of states Q a context provider
can transition into are not included as such symbols serve as auxiliary elements for defining their
superordinate symbols. Furthermore, we list the set of relations R existing between selected
elements of the formal model in a separate table (Table 4.2) together with a more comprehensive
and detailed description. Please note that the formal model contains a number of additional
elements not depicted in the conceptual workflow as expounded in the previous section. The
purpose of those elements is discussed in detail in the respective sub sections.

Definition 4.1 (Symbols). Let CP denote the set of all context providers cp ∈ CP

currently deployed in a running instance of the proposed framework. Further, let
C denote the set of all complementary context providers c ∈ C and let P denote
the set of all primary context providers p ∈ P . Let S denote the set of all context
sources s ∈ S that are wrapped by a context provider cp ∈ CP irrespectively of their
concrete type, and let M denote the set of all context models m ∈ M emitted by
the context providers cp ∈ CP . D denotes the set of context descriptions d ∈ D

that encapsulate a context model m ∈ M and serve as means for the communication
of context models m ∈ M and for the inclusion of additional information regarding
the trustworthiness and quality of the encoded contextual information. Furthermore,
let O denote the set of all orchestration trees op ∈ O and let WF denote the set
of context acquisition workflows wfop

∈ WF that are responsible for the controlled
execution of the context providers cp ∈ CP orchestrated in the orchestration trees
op ∈ O. In this respect, let Mop

denote the compound and aggregated set of all context
models m ∈ M of the context providers cp ∈ CP orchestrated in an orchestration tree
op ∈ O and OM the entire set of orchestration models Mop

∈ OM . For convenience
reasons, let Cp denote the set of complementary context providers c ∈ C that are
orchestrated in an orchestration tree op ∈ O and Rp the set of relations that exists
between them. In addition, let MO denote the orchestration matrix that serves as a
basis for building the orchestration trees op ∈ O and MC the compatibility matrix
that records the compatibility scores computed between all cp ∈ CP on the basis of
their data descriptions ddesc. Finally, let CC denote the set of all created context
configurations cc ∈ CC and DP the set of all data providers dp ∈ DP .

Based on these conventions, we can define the overall set of context providers CP as being
the union of the set of primary context providers P and the set of complementary context
providers C with CP := P ∪ C where both sets P and C are disjunct. Based on the framework’s
configuration, the sets CP and P can be identical with CP = P in case only primary context

Chapter 4. Approach 100

Table 4.1: Symbols used in the formal model

Symbol Description
cp General symbol for a context provider irrespective of its type
p Primary context provider
c Complementary context provider
s Context source being wrapped by a context provider cp ∈ CP
m Context model emitted by a context provider cp in form of a context description
d Context description that wraps a context model m

ddesc Data description that specifies the vocabulary elements a context provider cp
uses for describing the context model m it emits and requires

dp Data provider
CP Set of all context providers cp deployed in a running instance of the framework
P Set of all primary context providers p
C Set of all complementary context providers c
S Set of all context sources s wrapped by a context provider cp ∈ CP
D Set of all context descriptions d

DP Set of all data providers dp
M Set of all context models m emitted by context providers cp ∈ CP
M Set of all possible combinations of asserted RDF statements that can be created

from the set of RDF resources U, blank nodes B, and literals L
Mp Set of context models m emitted by the primary context provider p ∈ P
Mc Set of context models m emitted by the complementary context provider c ∈ C
o, op General symbol for orchestration trees; the subscript op indicates the corre-

spondence to the primary context provider p ∈ P an o ∈ O refers to
O Set of all orchestration trees op corresponding to the primary context providers

p ∈ P
Vp Set of context providers cp ∈ CP that constitute an orchestration tree op ∈ O

that corresponds to a primary context provider p ∈ P
Cp Set of complementary context providers c ∈ Vp that are orchestrated in an

orchestration tree op ∈ O that corresponds to a primary context provider p ∈ P
Rp Set of relations r that exist between the context providers cp ∈ Vp orchestrated

in an orchestration tree op ∈ O
δ+

op
(cp) Set of relations r ∈ Rp that exist between cp and its adjacent context providers

cpsucc such that cpsucc is positive incident to cp over r with cp �= cpsucc

δ−
op

(cp) Set of relations r ∈ Rp that exist between cp and the preceding context provider
cpprec such that cp is positive incident to cpprec over r with cpprec �= cp

N+

op
(cp) Set of complementary context providers c ∈ Cp that are adjacent to a context

provider cp ∈ Vp for cp �= c and positive incident to cp over a set or relations
r ∈ Rp

N−
op

(cp) Set of context providers cpj ∈ V p to which a context provider cp ∈ Vp is
adjacent to for cp �= cpj

Mop
Compound context acquisition model of all context providers orchestrated in
an orchestration tree op ∈ O

OM Set of all compound context acquisition models Mop

wf, wfop
General symbol for a context acquisition workflow, wfop

indicates the orches-
tration tree a context acquisition workflow pertains to

WF Set of all context acquisition workflows wf
cc Context configuration

CC Set of all context configurations cc
Π Set of reasoning rules for creating a context configuration cc ∈ CC

MC Compatibility matrix containing numerical values that indicate the compati-
bilities between all context providers cp ∈ CP

MO |CP |× |CP | orchestration matrix that records adjacency relationships between
all cp ∈ CP and serves as a basis for deducing the orchestration trees op ∈ O

MA
op

|Vp| × |Vp| adjacency matrix of an orchestration tree op ∈ O

Chapter 4. Approach 101

Table 4.2: Relations existing between selected elements of the formal model

Relation Description
Remitted : CP × M is defined as the injective relation between the elements cp ∈ CP

and the context model instances m ∈ M they emit. A context
provider cp ∈ CP is able to emit several instances of context models
m ∈ M whereas a context model m ∈ M per definition corresponds
to only one distinct context provider cp ∈ CP .

Rcorresponds : P × O defines the bijective relationship between the primary context
providers p ∈ P and op ∈ O as for every primary context provider
p ∈ P there exists exactly one op ∈ O. To indicate this relation-
ship, we attach the name of a primary context provider p ∈ P to
its corresponding orchestration tree such that it is denoted as op.

RexecutedBy : O × WF is defined as the bijective relation existing between an orchestration
tree op ∈ O and the context acquisition workflow wfop

∈ WF
assigned to an orchestration tree op ∈ O that controls and monitors
the acquisition workflows of the context providers c ∈ C being
orchestrated in it.

Rcompose : O × OM is defined as the bijective relation existing between an orchestration
tree op ∈ O and the compounded context acquisition models Mop

∈
OM of its containing context providers p ∈ P and c ∈ C.

Rconvey : D × M is defined as an bijective relation that exists between a context
description d ∈ D and the context model m ∈ M emitted by a
context provider cp ∈ CP .

providers p ∈ P are deployed in a framework’s running instance whereas C is always a real
subset of CP since complementary context providers c ∈ C per definition require at least one
primary context provider p ∈ P to be operational. This aspect, among others, is formally
specified in Section 4.3.5 expounding the orchestration logic underlying an orchestration tree.
The dependencies existing between the sets CP, C, and P are expressed in Equation (4.1):

CP := P ∪ C with P ⊆ CP ∧ C ⊂ CP and P ∩ C = ∅ (4.1)

Furthermore, we define the relations listed in Table 4.2 as being existent between the differ-
ent elements constituting the formal model. Those relations represent dependencies and cor-
respondences between selected elements of the formal model where the specific semantic of
these relations is discussed in detail in the sections of the respective elements they refer to.
Moreover, since there exist distinct 1:1 relations between the sets P , O, OM , and WF , the
corresponding relations Rcorresponds, RexecutedBy, and Rcompose are transitive such that for the
relation (pi, opi

) ∈ Rcorresponds and (opi
, wfopi

) ∈ RexecutedBy, we can deduce due to the transi-
tive closure of these relations that there exists a relation (pi, wfopi

) between a primary context
provider pi ∈ P and a context acquisition workflow wfopi

∈ WF . In the same way, there exists
an implicit bijective relation (wfopi

, Mopi
) deduced from the transitive closure of the relations

(opi
, wfopi

) ∈ RexecutedBy and (opi
, Mopi

) ∈ Rcompose. Since those relations can be deduced
due to the transitivity of existing relations defined in the course of the formal model, the two
aforementioned relations have not been explicitly defined in Table 4.2.

Prior to defining a context provider cp ∈ CP , we give a formal definition of a context model m

as this definition will be used in nearly all subsequently following definitions.

Chapter 4. Approach 102

4.3.2 Context Model

As we emphasize the use of Semantic Web languages and technologies for the representation of
contextual information, we define a context model m ∈ M in technology-specific terms as being
an RDF graph consisting of a finite set of resources represented by their URIs and denoted as
U, a finite set of blank nodes B, and a finite set of literals L12. Those elements are the building
blocks of RDF statements, which we have formally defined in Definition 2.2. As a consequence, a
context model m ∈ M itself is an element from the power set M, which is defined as the cartesian
product of the union of U and B referring to the subject of an RDF statement, U referring to a
statement’s predicate, and the union of the sets U, B, and L that refer to the object of an RDF
statement. We therefore define a context model m ∈ M as follows:

Definition 4.2 (Context Model). Let m denote a context model created by a context
provider cp ∈ CP and let M denote the set of all context models m ∈ M emitted
by the context providers cp ∈ CP in the course of their acquisition workflows irre-
spectively of their concrete type. A context model m thus is an element from the
powerset M that is defined as the union of all possible context models that can be
created from combining the set of URIs U, blank nodes B, and literals L according to
the RDF data model structure (cf. [Bec04]) and semantics (cf. [HM04]) as expressed
in Equation (4.2):

m ∈ M where M := P(U ∪ B × U × U ∪ L ∪ B) (4.2)

Please note that the term ’context model’ refers to a concrete instance of a context model rather
than to the underlying scheme employed by a context provider cp ∈ CP to create a context model
instance it emits. We use and understand the term ’scheme’ in this thesis as it was defined in
the Linked Data context (cf. [HB11]) denoting the act of combining distinct elements (terms)
defined externally to the data source making use of such elements in order to describe the data
to be published by a data provider13. This definition perfectly applies to our concept of context
providers as they exactly operate according to the Linked Data principles (cf. [BL06a, BHBL08])
by providing a structured representation of excerpts of the universe of discourse that are described
with elements from well-defined, well-understood, and well-established semantic vocabularies
whose elements are specified in an axiomatic way using the Semantic Web languages, RDF,
RDFS, OWL, and OWL2. In consequence, we do not specify a general context model scheme in
the course of this work since this falls into the responsibility of each context provider cp ∈ CP

separately and will offer a maximum of flexibility in representing, exchanging, and integrating
contextual information.

In addition to the definition of the set M containing all emitted context models m ∈ M , we
define partitions of M denoted as Mp or Mc for every primary context provider p ∈ P and
complementary context provider c ∈ C depending on the type of context provider a partition
refers to. Hence, a partition Mcp contains only those context models m ∈ M that have been
emitted by the corresponding context provider cp ∈ CP . In consequence, the set Mpi

for instance
corresponds to a specific primary context provider pi ∈ P and contains only those context models
m ∈ M specifically emitted by the context provider pi ∈ P . All sets Mp and Mc of all context

12For the purpose of this model, no distinction is made between plain and typed literals (cf. [KC04]) as these
distinction is irrelevant for the formal definition of the context models m ∈ M.

13The phrase ’data provider’ is not to be confounded with the concept of a data provider as introduced and
defined in this work.

Chapter 4. Approach 103

providers cp ∈ CP are thus partitions of the set of all emitted context model m ∈ M such that
� �

p∈P

Mp

�
∪

� �

c∈C

Mc

�
= M. (4.3)

In order to relate a context model m ∈ M to the context provider cp ∈ CP it has been created
and emitted by, we explicitly express this relationship through the binary and injective relation
Remitted (cf. Table 4.2) existing between the set of context providers CP and the set of emitted
context models M such that Remitted ⊆ CP ×M . A context provider cp ∈ CP can emit multiple
context models m ∈ M whereas a context model m ∈ M per definition only corresponds to one
specific context provider cp ∈ CP that was responsible for its creation. This fact allows us to
define the sets Mp and Mc more precisely:

Mp :=
�

m ∈ M | ∃! p ∈ P : (p, m) ∈ Remitted

�
(4.4)

Mc :=
�

m ∈ M | ∃! c ∈ C : (c, m) ∈ Remitted

�
(4.5)

These definitions allow us to state that for any element m ∈ Mp ∨ m ∈ Mc there exists a
relation (p, m) ∈ Remitted or (c, m) ∈ Remitted between the corresponding primary respectively
complementary context providers p ∈ P , c ∈ C and a context model m ∈ M such that

∀p ∈ P ∃! Mp ⊆ M : m ∈ Mp ⇐⇒ (p, m) ∈ Remitted. (4.6)

In the same way, we can adapt Equation (4.6) for the sets Mc for all c ∈ C:

∀c ∈ C ∃! Mc ⊆ M : m ∈ Mc ⇐⇒ (c, m) ∈ Remitted (4.7)

Let further define two functions φcurrent : M −→ M and φprevious : M −→ M which return the
most recently emitted context model m ∈ M respectively the penultimately emitted one. This
distinction is important as it is the basis for establishing compensation strategies to circumvent
undefined states and indeterministic behavior caused by malfunctioning or temporarily unavail-
able context sources s ∈ S respectively context providers cp ∈ CP that wrap a context source
s ∈ S. Both functions are defined for any set of context models and hence also apply to all
partitions of M .

After having defined a context model m ∈ M emitted by a context provider cp ∈ CP on a formal
basis together with the set of relations existing between the constituting elements respectively
sets, we now define a context provider cp ∈ CP in more detail. Before we give a formal definition
of the concept of context provides as they are used and understood in the context of this work,
we provide some general information about context sources s ∈ S as well as the methods related
to how context-relevant data can be acquired from them.

4.3.3 Context Provider

Context sources in general employ different operation modes that influence the way how context-
relevant data can be retrieved from them. Most common approaches exhibit a push- or pull-based
mechanism, where a push-based mechanism informs its clients either on the basis of regular time
intervals or when a certain delta in terms of the values it offers is exceeded. For instance, a
location-based sensor slocation ∈ S may either provide its position in pre-defined time intervals

Chapter 4. Approach 104

or when a specific distance has been covered since its last notification; a temperature sensor
stemperature ∈ S may notify its clients only when the difference between the current temperature
T (tn) measured at time tn and the previously communicated temperature T (tn−1) measured
at time tn−1 is greater than a predefined constant ∆T such that

��T (tn) − T (tn−1)
�� > ∆T .

In a pull-based communication, the context consumer initiates the request to a context source
s ∈ S, which could be performed on basis of regular time intervals or on demand. However,
as such notification mechanisms are implementation-specific and thus being irrelevant for the
formal definition of context providers cp ∈ CP , we do not elaborate on them specifically in the
course of this chapter. Instead, we base our definitions on the values that are acquired from a
context source s ∈ S irrespectively of the concrete technological realization of the communication
protocol and mechanism used to gather such data. Due to the diversity of the context data space,
we rather suggest to use the notion of data tokens to refer to contextual data since a context-
relevant aspect does not necessarily have to be represented through distinct numerical values,
while the notion of tokens resembles a broader spectrum of potential information entities.

This perception finds expression in the definition of primary and complementary context providers
(cf. Definition 4.3 and Definition 4.4), which we define on the basis of automata theory, since we
perceive context providers cp ∈ CP as transducers that transform the raw data values emitted by
a context source s ∈ S into a structured and well-defined representation using vocabularies and
technologies from the Semantic Web. In contrast to fundamental automata theory (cf. [RS97])
where such raw data values are considered as elements σ from an input alphabet Σ and hence
are processed as a stream of characters σ0σ1 . . . σn ∈ Σ∗ constituting an input word ω ∈ Σ∗,
a context provider cp ∈ CP is capable of collecting and processing such raw data values as
a whole, and performing additional interpretation, transformation, and aggregation steps. We
denote such raw data values acquired from a context source s ∈ S as context data tokens.

As a consequence, we define a context provider cp ∈ CP on the basis of a non-deterministic
finite state transducer (NFST) that transforms a defined set of raw data tokens being mostly
sensorial values acquired from the context source s ∈ S it encapsulates into a context model
m ∈ M. Non-deterministic finite state transducers are a special field of automata theory that
enable a formal description and a systematic analysis of deterministic and non-deterministic state
models. As opposed to deterministic finite state machines, so-called acceptors, which generate
binary responses (in most cases on the basis of a boolean value space) in reaction to an input word
ω ∈ Σ∗ signaling either the acceptance or rejection of the input word ω, transducers transform a
defined set of input words using a deterministic or non-deterministic state model and a predefined
logic into output words consisting of elements defined in an output alphabet. In automata theory,
a transducer is defined as an abstract automaton or machine that reads a sequence of characters
from an input tape and, based on an analysis of these characters, generates a sequence of output
characters to be printed on the output tape. An essential aspect of transducers as defined in
automata theory is that the length of the input tape is equal to the length of the output tape,
i.e., the amount of characters to be read from the input tape is equal to the amount of characters
written to the output tape. However, this declaration does not comply with our definition of
context providers as we base our definition on the inclusion of ε-transitions that allow for a more
flexible specification of the incorporated processing logic and the transitions between specific
states (cf. Table 4.3). We consider that a necessary extension of our definition as the operation
environments from which context providers cp ∈ CP obtain their data are more divergent and
heterogeneous compared to closed or controlled environments. The inclusion of ε-transitions
allows for defining state transitions not being caused by the reading or by the retrieval of a raw
data token σ ∈ Σ respectively, but rather by the completion of a specific phase in the acquisition
process (e.g. aggregation of symbolic data tokens).

Chapter 4. Approach 105

After having expounded the necessary basis on which context providers are perceived in the
context of this work, we now provide a formal definition that is based on the formal definition of
non-deterministic finite state transducers as defined in automata theory. This definition applies
to both types of context providers in the same way even though we extend Definition 4.3 when
we provide a formal definition of complementary context providers c ∈ C as they require an
input context model m ∈ M in addition for performing their acquisition tasks.

Definition 4.3 (Context Provider). A context provider cp ∈ CP is defined on
the basis of a non-deterministic finite state transducer (NFST) being the 8-tuple
(Q, Σ, Γ, δ, λ, µ, q0, ddesc) that transforms accepted raw data tokens σ ∈ Σ acquired
from a context source s ∈ S a context provider wraps into a structured description
m ∈ M of the context-relevant aspect a context source s ∈ S represents. A context
provider cp = (Q, Σ, Γ, δ, λ, µ, q0, ddesc) consists of the following elements:

• Q is defined as a finite set of states q a context provider cp ∈ CP transitions into
during the process of acquiring contextual information and the transformation
of those information into a context model m ∈ M.

• Σ is the finite set of raw data tokens σ ∈ Σ retrieved from a context source
s ∈ S that are being accepted by a context provider cp ∈ CP with ε /∈ Σ. This
set corresponds to the input alphabet of state machines as defined in automata
theory.

• Γ is the finite set of symbolic context data tokens γ ∈ Γ, the so-called output
alphabet in automata theory, that contains the transformed raw data tokens
σ ∈ Σ and hence serves as a basis for creating a context model m ∈ M that a
context provider cp ∈ CP emits.

• δ : Q × Σ∗ ∪ {ε} −→ 2Q is a surjective state transition function between the
finite set of states Q and streams of accepted raw data tokens σ ∈ Σ a context
provider cp ∈ CP is capable to process.

• λ : Q×Σ∗ ∪{ε}×Q −→ Γ∗ is a transformation function that transforms streams
of raw data tokens σ ∈ Σ into streams of symbolic context data tokens γ ∈ Γ.

• µ : Q × Γ∗ ∪ {ε} −→ M defines a transformation and output function that
transforms streams of symbolic context data tokens γ ∈ Γ being created by a
context provider cp ∈ CP into a context model m ∈ M.

• q0 ∈ Q is the initial state of a context provider cp ∈ CP after its instantiation
and initialization.

• ddesc is defined as the description of the data, a context provider cp ∈ CP

needs as input for initiating its acquisition tasks or emits as output data. A
data description ddesc defines the vocabularies and vocabulary elements (terms)
a context provider makes use of for expressing its context model m ∈ M .

Please note that we do not define a separate finite set of final states F ⊆ Q that can be found
in some definitions in the related literature since both deterministic and non-deterministic finite
state transducer per definition do not require the explicit definition of such a set F as their

Chapter 4. Approach 106

primary objective lies in the production of output symbols14 rather than reaching a final state
q ∈ F .

Definition 4.3 defines a context provider on a general basis and formally specifies those aspects
that apply to both types of context providers. For complementary context providers c ∈ C, this
definition needs to be slightly adapted in order to take into account the aspect that complemen-
tary context providers are responsible for refining or complementing contextual information and
initiate their acquisition tasks as a result of the existence of a context model m ∈ M emitted by
a context provider cp ∈ CP to which a complementary context provider c ∈ C is compatible to.
We therefore define a complementary context provider c ∈ C as follows:

Definition 4.4 (Complementary Context Provider). A complementary context
provider c ∈ C is defined as the 9-tuple (Q, Σ, Γ, δ�, λ�, µ�, q0, ddesc, minput) where

• Q, Σ, Γ, q0, ddesc refer to the same symbols as defined in Definition 4.3.

• δ�, λ�, µ� correspond to δ, λ, µ defined in Definition 4.3 but in contrast perform
transition, transformation, and output functions relative to the information
contained in the input context model minput emitted by a compatible context
provider cp ∈ Vp for c �= cp.

• minput represents the context model m emitted by a compatible context provider
cp ∈ Vp that serves as input data for initiating the context acquisition process
of a compatible complementary context provider c ∈ Vp for c �= cp in order to
refine and complement the information represented in minput.

The initiation of the acquisition processes of complementary context providers c ∈ Vp

is governed by the orchestration logic (cf. Section 4.3.5) underlying the orchestration
trees op ∈ O in which context providers cp ∈ Vp are orchestrated. A complementary
context provider c ∈ Vp becomes active whenever a compatible context provider cp ∈
CP emits a context model m ∈ M to which c is adjacent to for c �= cp.

A context provider cp ∈ CP usually starts in a state q0 ∈ Q before it is able to receive raw data
tokens σ ∈ Σ from a context source s ∈ S. With every raw data token σ ∈ Σ or sequence of raw
data tokens ω ∈ Σ∗ received from a context source s ∈ S, a context provider cp ∈ CP proceeds
from its current state qi ∈ Q to a subsequently following, i.e., succeeding state qi+1 ∈ Q being
an element from the set 2Q defined by the transition function δ(qi, ω). As a consequence, for
every sequence of raw data tokens ω ∈

�
Σ∗ ∪ {ε}

�
and initial state qi, there exists a number of

potentially eligible following states qi+1 ∈ 2Q such that

qi+1 ∈ δ(qi, ω) where ω ∈
�
Σ∗ ∪ {ε}

�
(4.8)

In case all the data tokens σ ∈ Σ have been acquired from a context source s ∈ S, the processing
logic underlying a context provider cp ∈ CP can initiate a transition to another state qi+1 ∈ 2Q

by sending the ε element that causes, for instance, the aggregation of the transformed context-
relevant data tokens as represented by the state q4 (cf. Table 4.3) with δ(q1, ε) −→ q4. As
known from automata theory, ε-transitions allow for defining transitions from a state qi ∈ 2Q to
a state qi+1 ∈ 2Q independently of receiving and processing an element σ ∈ Σ from a context

14 According to our definition of context providers, the aggregation and analysis of such output symbols γ ∈ Γ
form a context model m ∈ M as opposed to automata theory where such output symbols written to the output
tape form an output word ω = γ0γ1 . . . γn where ω ∈ Γ∗.

Chapter 4. Approach 107

Table 4.3: List of the generic states q ∈ Q of a context provider cp ∈ CP

State Phase Description
q0 Initializing In this state, a context provider cp ∈ CP initiates the necessary

steps for establishing a connection to the context source s ∈ S it
wraps and retrieves data from.

q1 Receiving In q1, a context provider cp ∈ CP is ready to receive context data
tokens σ ∈ Σ emitted by a context source s ∈ S. Depending on
the underlying processing logic, a context provider cp ∈ CP might
capture a sequence of context data tokens ω = �σ0, σ1, . . . , σn� ∈ Σ∗

before it transitions to a state q2.
q2 Transforming When a context provider cp ∈ CP received data from a context

source s ∈ S, this data σ ∈ Σ is transformed to symbolic values
γ ∈ Γ that a context provider cp ∈ CP can interpret and process
in subsequently following steps q2+i.

q3 Clustering Clustering allows for buffering multiple elements γ ∈ Γ in case a
context provider cp ∈ CP supports the aggregation of, e.g., multi-
ple elements from a context data stream ω = �γ0, γ1, . . . , γn� ∈ Γ∗.

q4 Aggregating During the aggregation state, a context provider cp ∈ CP analy-
sis the symbolic values acquired from a context source s ∈ S and
transforms them into a more consolidated representation while con-
ducting data cleansing steps.

q5 Reasoning When the symbolic data have been cleansed, a context provider
cp ∈ CP can apply an individual set of reasoning heuristics in
order to augment the acquired data and to deduce relationships
between data elements not explicitly represented.

q6 Creating In the creating state, the internal representation of the acquired
symbolic data tokens is transformed into a context model m ∈ M
based on explicitly defined semantic vocabularies and a well-defined
schema employed by a context provider cp ∈ CP .

source s ∈ S. Through the inclusion of ε-transitions, the context acquisition and processing logic
underlying context providers can be realized in more flexible ways as their context acquisition
and processing logic is defined on a less rigid basis without loosing expressiveness or processing
capabilities.

However, as a supplement to the definitions of context providers, we define a set of general states
q ∈ Q defined in Table 4.3 that universally apply to context providers cp ∈ CP irrespectively
of their concrete type as well as of the type of context source s ∈ S being wrapped. Those
states q ∈ Q represent the different phases a context provider cp ∈ CP can transition into in the
course of acquiring contextual information and transforming those information into a context
model m ∈ M. They were derived from an analysis of the relevant literature regarding context
acquisition and context management reference architectures as discussed in Section 2.4.3. The
set of general states q ∈ Q deduced from related reference models can be extended or adapted as
needed depending on whether or not a concrete context provider cp ∈ CP provides support for a
specific aspect or functionality such as context data clustering. We have omitted states related
to failures or malfunctions of context providers cp ∈ CP respectively the context sources s ∈ S

they wrap for reasons of clarity and comprehensibility.

Table 4.3 is to be read as follows: when a context provider cp ∈ CP is in a state qi, for instance
in q0, it currently performs all operations necessary for its initialization; if these operations are
completed successfully, it moves on to a state qi+1. According to the initialization example, the
sequentially following state is q1 where the context provider is now ready to receive data from the

Chapter 4. Approach 108

context source s ∈ S it encapsulates. Please note that we define the formal model independently
from a concrete communication mechanism and protocol as these are implementation-specific
and depend on the concrete realization of a context source. In case a context provider cp ∈ CP

receives a specific sequence of raw data tokens ω ∈ Σ∗ or its internal logic15 initiates a transition
to another state qi+1 ∈ Q based on the positive evaluation of a specific transition condition
(which might also be context provider-specific), the context provider cp ∈ CP shifts to the state
q2 in which the recently received raw data tokens σ ∈ Σ are transformed into symbolic context
data tokens γ ∈ Γ so that they can be interpret by a context provider and further processed
in subsequent steps. When a raw data token σ ∈ Σ is to be transformed into a symbolic data
token γ ∈ Γ, this token might then be buffered for context clustering (cf. the TEA architecture
as introduced by [GSB02]), wherefore a context provider cp ∈ CP transitions into the state
q3 ∈ Q to better analyze acquired context-relevant data according to specific patterns, e.g.,
time-dependent transitions in context data. A context data cluster can then be aggregated
into a more consolidated representation while conducting data cleansing steps to better infer
on present context data patterns, which is performed in state q4 ∈ Q. Optionally, a context
provider cp ∈ CP might apply a set of individual reasoning heuristics or reasoning rules to infer
additional information and relationships not explicitly asserted in the contents of the consolidated
representation of context data. These steps are performed when a context provider cp ∈ CP

is in a state q5 ∈ Q. In the creating state q6 ∈ Q, the consolidated (internal) representation is
transformed into an RDF-based representation, the context model m ∈ M, that is an element
from the power set P of the vocabulary elements defined in the data description ddesc of the
context provider cp ∈ CP with P

�
Ucp ∪Bcp ×Ucp ×Ucp ∪Lcp ∪Bcp

�
⊆ M16. The transformation

of the internal symbolic context data tokens into a context model m ∈ M is conducted on the
basis of explicitly defined schema information and well-defined semantic vocabularies the choice
of which depends on the concrete realization of a context provider cp ∈ CP .

As outlined, context providers specify the data they require and provide in form of a data
description (see Section 4.4.1) that serves as a basis for routing context models m ∈ M between
compatible context providers cp ∈ CP . A data description allows for the computation of relations
existing between compatible context providers cp ∈ CP in terms of the contextual data they
both acquire and require for performing their acquisition tasks. These relations are analyzed
and computed by the context framework and recorded in the compatibility matrix MC (cf.
Section 4.4.2.4). Further details about this process are given in Section 4.4. In the following, we
provide a definition of the data description being referred to in the context provider’s definitions:

Definition 4.5 (Data Description). Let ddesc denote a data description of a context
provider cp ∈ CP that formally specifies the vocabulary elements a context provider
makes use of for describing the contextual information represented in the context
model m ∈ M it emits and the elements an input context model minput must con-
sist of so that it can be processed by a complementary context provider c ∈ C. A
data description is defined on the basis of a specific data description ontology (see
Section 4.4.1) and serves as a basis for determining the specific type of a context
provider, i.e., whether a context provider is a member of P or C.

The explicit specification of the vocabularies and the vocabulary elements a context provider
cp ∈ CP makes use of for describing the context models it emits and requires allows for computing

15A context provider is free to define its internal processing logic individually; this aspect is reflected in the
formal model.

16We added the symbol of the context provider a data description ddesc pertains to as subscript to the power
set to indicate this correspondence.

Chapter 4. Approach 109

compatibility scores in terms of the vocabulary elements used for the representation of contextual
information that enables a data-dependent orchestration of context providers cp ∈ CP for context
augmentation, refinement, and complementation. Therefore, the context framework analyzes the
data descriptions exposed by context providers and dynamically routes data between compatible
context providers based on the type of context information they provide and require. Detailed
information about this process as well as the structure of the data description ontology and the
elements it consists of will be given in Section 4.4.

To facilitate this kind of cooperation, context providers are orchestrated in so-called orchestra-
tion trees (see Section 4.3.4) that form directed acyclic graphs consisting of compatible context
providers cp ∈ Vp. Within such a graph, a primary context provider p ∈ P represents the starting
node while complementary context providers c ∈ Vp represent adjacent nodes. Edges represent
data flows between context providers, i.e., they indicate compatibility in terms of contextual data
so that the data emitted by one context provider can be further processed by adjacent context
providers. This aspect is described in detail in the next section.

4.3.4 Orchestration Trees

The framework cascades context providers within so-called orchestration trees that resemble
concepts of a workflow scheme. They allow for a controlled execution of combined context
acquisition workflows in a decoupled manner while maintaining data and process consistency
as well as data accurateness and data completeness with respect to the context providers cp ∈
CP currently deployed within an instance of the framework. This form of context provider
orchestration allows for an efficient acquisition and aggregation of contextual information while
taking into account mobile operating system peculiarities (see [FZ94, KLO+04]).

The compatibility scores computed from the context providers and their data descriptions are
recorded in a compatibility matrix MC that serves as a basis for cascading compatible context
providers. Compatible context providers are able to mutually process the context models m ∈ M

of other context providers as there exists a compatibility in terms of the vocabularies they make
use of for describing the data they acquire and emit as well as the data they require and com-
plement in the course of performing their acquisition tasks. Those compatibilities are reflected
in orchestration trees that resemble a formal specification of the acquisition workflow schemes
between compatible context providers depending on the context model elements specified in their
data descriptions. For instance, if a context provider cp1 is compatible to a context provider cp2

and cp2 itself is compatible to the context providers cp3 and cp4 such that the context model
m ∈ M emitted by the previously mentioned context provider is processed by the subsequent
context providers by means of minput (cf. Definition 4.4), they are orchestrated in an orchestra-
tion tree op ∈ O such that cp1 is precedent to cp2 and cp2, in turn, is predecessor of both cp3 and
cp4. In essence, an orchestration tree is a well-structured specification of a data-dependent con-
text acquisition workflow scheme between, in terms of their context models, compatible context
providers where the degree of compatibility is recorded as a numerical score in the compatibility
matrix MC being the result of an analysis of the context providers’ data descriptions. A formal
and algorithmic description of the orchestration process is given in Section 4.4.

For defining an orchestration tree o ∈ O, we make use of elements from graph theory and
represent an orchestration tree o ∈ O as a directed acyclic graph (DAG) defined as the quadruple
G = (V, E, α, ω) where V represent the graph’s vertices and corresponds to the context providers
cp ∈ CP being orchestrated within an orchestration tree o ∈ O. The set E represents the edges
of a graph and corresponds to the relations existing between compatible context providers as

Chapter 4. Approach 110

recorded in the orchestration matrix MO. α and ω are projections and specify the precedent
vertex (α(e)) as well as the succeeding or adjacent vertex (ω(e)) of a concrete edge e ∈ E existing
between two elements vi, vj ∈ V where vi �= vj . Therefore, α(e) represents the vertex vi ∈ V

corresponding to the tail of an edge e ∈ E and ω(e) the vertex vj connected with the head of
the edge e ∈ E for vi �= vj .

For each primary context provider p ∈ P , we can derive an orchestration tree op ∈ O from the
orchestration matrix MO (cf. Figure 4.8 on page 136) whose root element is always a primary
context provider p ∈ P and the adjacent nodes represent complementary context providers c ∈ C

that complement the data acquired by the corresponding primary context provider p ∈ P .

As a consequence, there exists per definition always a 1:1 relationship between a primary context
provider p ∈ P and its corresponding orchestration tree op ∈ O where this relationship is
expressed through the bijective relation Rcorresponds (cf. Table 4.2) existing for all p ∈ P and
o ∈ O where |O| = |P |. Hence, for every p ∈ P there exists a direct equivalent o ∈ O which is
denoted as op to indicate the 1:1 correspondence between elements o ∈ O and p ∈ P such that

∀p ∈ P ∃! o ∈ O : (p, op) ∈ Rcorresponds (4.9)

By using the formal notation of directed acyclic graphs as a basis for formally defining the struc-
tural orchestration of compatible context providers in terms of the context-relevant data they
require and emit, and by considering the fact that there always exists a 1:1-relationship between
a primary context provider p ∈ P and an orchestration tree op ∈ O such that p ∼Rcorresponds

op

where |Rcorresponds| = |O| = |P |, we formally define an orchestration tree op ∈ O as follows:

Definition 4.6 (Orchestration Tree). An orchestration tree op ∈ O for a specific
primary context provider p ∈ P is defined as the quadruple op = (Vp, Rp, α, ω) with
the following properties:

1. Vp is defined as the finite and non-empty set of the primary context provider
p and its compatible adjacent complementary context providers c ∈ C deduced
from the orchestration matrix MO and the compatibility matrix MC .

2. Rp is defined as the set of relations r that exist between the context provider p

and compatible complementary context provider c ∈ Vp where r ∈ Rp is defined
as the tuple

r ∈
�

{p ∈ Vp} ×
�
Vp\{p}

��
∪

�
Vp\{p}

�2

(4.10)

3. α : Rp → Vp and ω : Rp → Vp are projections where α(r) is the starting
or direct preceding context provider and ω(r) the ending or direct succeeding
context provider17of the relation r ∈ Rp. α(r) and ω(r) are adjacent to each
other for a relation r ∈ Rp while being incident to the relation r ∈ Rp.

The definition of the two projections α : Rp → Vp and ω : Rp → Vp allows us to define the set
of context providers p, c ∈ Vp orchestrated within an orchestration tree op ∈ O more precisely;
we therefore introduce the finite set Cp ⊂ Vp that denotes the set of complementary context
providers c ∈ C that are orchestrated in the orchestration tree op ∈ O of the corresponding
primary context provider p ∈ P . On a formal level, we define Cp on the basis of the incident

17As per Definition 4.4, a succeeding, i.e., a context provider cp ∈ Vp that is positively incident to a relation
r ∈ Rp such that ω(r) = cp is always a complementary context provider.

Chapter 4. Approach 111

relations r ∈ Rp in which a complementary context provider ci ∈ C is adjacent to a preceding
context provider cj ∈ C for i �= j such that:

Cp :=
�

ω(r) : r ∈ Rp

�
=⇒ Cp =

�

r∈Rp

ω(r) (4.11)

As a consequence, Equation (4.11) allows us to formally define Vp as the union of the primary
context provider p ∈ P and the complementary context providers c ∈ Cp:

Vp :=
�

p ∈ P : α(r) = p
�

∪ Cp where r ∈ Rp (4.12)

In addition, from the postulation that a context provider cp ∈ CP can only be part of one
specific orchestration tree op ∈ O, we can deduce that any two sets Vpi

and Vpj
where i �= j are

disjunct with Vpi
∩ Vpj

= ∅. As a logical consequence, the union of all sets Vp is a subset of the
set CP :

|P |�

i=1

Vpi
⊆ CP (4.13)

Based on the equations (4.12) and (4.13), any two sets Cpi
and Cpj

where i �= j are also disjunct
and thus Cpi

∩ Cpj
= ∅. Consequently, as a set Cp is a real subset of Vp with Cp ⊂ Vp, the union

over all sets Cp is a subset of the set C:

|P |�

i=1

Cpi
⊆ C (4.14)

A corollary of the disjointedness of any sets Cp for all p ∈ P and Equation (4.14) is that any
two sets Vpi

and Vpj
for i �= j are consequently also pairwise disjunct; this aspect is formulated

in Equation (4.15): �

p∈P

Vp = ∅ (4.15)

After having defined the set Vp more precisely, we now define a number of additional sets and
functions that are necessary for the formulation of the orchestration rules, i.e., the orchestration
logic that serve as a basis for building the orchestration trees op ∈ O. For the following definitions,
let v ∈ Vp represent an arbitrary element referring to either a primary context provider p ∈ Vp

or a complementary context provider c ∈ Vp. With this convention, let δ+

op
(v) return the set of

relations r ∈ Rp to which a context provider v ∈ Vp is positively incident such that α(r) = v.
Hence, δ+

op
(vi) returns all outbound relations r ∈ Rp that are incident to a context provider

vi ∈ Vp such that ∃ r ∈ Rp : α(r) = vi ∧ ω(r) = vj for i �= j where vj ∈ Vp is a compatible
complementary context provider being adjacent to vi; thus, we can define δ+

op
(v) : Vp −→ Rp as

follows:
δ+

op
(v) :=

�
r ∈ Rp : α(r) = v

�
(4.16)

Furthermore, let δ−
op

(v) return the set of relations r ∈ Rp to which a context provider v ∈ Vp is
incident to such that ω(r) = v; hence, δ−

op
(vi) refers to the inbound relations to which a context

provider vi ∈ Vp is adjacent to a preceding context provider vj ∈ Vp such that ∃ r ∈ Rp : α(r) =
vj ∧ ω(r) = vi for i �= j. Consequently, δ−

op
(v) : Vp −→ Rp is defined as:

δ−
op

(v) :=
�

r ∈ Rp : ω(r) = v
�

(4.17)

Chapter 4. Approach 112

Generally, the sum of the results of both functions δ+

op
(v) and δ−

op
(v) is also denoted as the valency

or degree of a vertex v ∈ V pertaining to a graph G = (V, E).

Moreover, let N+

op
(v) : Rp −→ Vp denote the set of neighbors to v ∈ Vp that are incident to the

relations r ∈ δ+

op
(v) such that α(r) = v wherefore the result of N+

op
(vi) is the set of complementary

context providers vj ∈ Vp that are adjacent to the context provider vi ∈ Vp for i �= j. Thus, we
define the set N+

op
(v) as follows:

N+

op
(v) :=

�
ω(r) : r ∈ δ+

op
(v)

�
(4.18)

In the same way, let N−
op

(vi) denote the set of context provider vj ∈ Vp that are incident to a
relation r ∈ δ−

op
(vi) such that ω(r) = vi; therefore N−

op
(vi) represents the set of context providers

vj ∈ Vp to which a context provider vi ∈ Vp is adjacent to for i �= j. As a consequence, we define
the set N−

op
(v) as follows:

N−
op

(v) :=
�

α(r) : r ∈ δ−
op

(v)
�

(4.19)

In consequence, both sets N+

op
: Rp −→ Vp and N−

op
: Rp −→ Vp are defined as the results of a

projection existing between the sets Rp and Vp of an orchestration tree op ∈ O.

4.3.5 Formal Definition of the Orchestration Logic

Based on the previous definitions about orchestration trees, we now formally define the orches-
tration logic underlying an orchestration tree op ∈ O in an axiomatic way. These axioms or
orchestration rules serve as a basis for building the orchestration trees op ∈ O deduced from the
orchestration matrix MO and are mandatory for the correct interpretation and processing of the
context acquisition workflows constituted by the containing context providers p, c ∈ Vp:

1. As an orchestration tree op ∈ O per definition always has a primary context provider
p ∈ Vp as its root respectively starting element, such primary context provider p ∈ Vp is
not adjacent to any other context provider such that ω(r) = p. This aspect is formulated
in Equation (4.20):

∀p ∈ Vp ∧ p ∈ P � r ∈ Rp : ω(r) = p (4.20)

Consequently, the set of relations r ∈ Rp a primary context provider p ∈ Vp is incident to
such that ω(r) = p is empty. Thus, also the set of its neighbors N−

op
(p) to which p ∈ Vp is

adjacent to is empty:

δ−
op

(p) = ∅ =⇒ N−
op

(p) = ∅ for all p ∈ Vp (4.21)

2. Due to the fact that any two sets Vpi
and Vpj

are pairwise disjunct for all p ∈ P and i �= j

(see Equation (4.15)), any complementary context provider ci ∈ Vp can as a corollary only
be adjacent to one specific context provider cj ∈ Vp for i �= j such that ∃! r ∈ Rp : ω(r) = ci.
As of Equation (4.17) and (4.19), the sets δ−

op
(c) and N−

op
(c) for all complementary context

providers c ∈ Cp are thus: ��δ−
op

(c)
�� =

��N−
op

(c)
�� = 1 (4.22)

Since an orchestration tree op ∈ O is defined as a directed acyclic graph op = (Vp, Rp, α, ω)
(cf. Definition 4.6) where each complementary context provider c ∈ Cp can only be adjacent
to one specific context provider, we can deduce that a complementary context provider

Chapter 4. Approach 113

c ∈ Vp can never have two or more preceding context providers vi, vj ∈ Vp where c �= vi, vj

and i �= j:
∀c ∈ Cp ∃! ri ∈ Rp : ω(ri) = c for 1 ≤ i ≤ |R| (4.23)

3. Based on Equation (4.23) and due to the fact that an orchestration tree op ∈ O is defined
as a directed acyclic graph op = (Vp, Rp, α, ω), a context provider cp ∈ Vp

18 can never
be adjacent to itself, that is, be both predecessor and successor of one particular relation
r ∈ Rp. A context provider p, c ∈ Vp can per definition not consume the context model m

it produces; therefore, we define the following convention:

∀r ∈ Rp : α(r) �= ω(r) (4.24)

4. In addition to the equations (4.15), (4.23), and (4.24) and due to the fact that an orches-
tration tree op ∈ O is defined on the basis of a directed acyclic graph, there does not exist
a cyclic path between the context providers p, c ∈ Vp: Therefore, let ψp denote a path of
an orchestration tree op ∈ O and defined as follows:

ψp ∈ Vp ×
�
Vp \ p

�|Rp−1| (4.25)

Moreover, let ψ[i] be a lookup function that returns the context provider located at the
i-th position in ψp where 1 ≤ i ≤ |Rp|. The lookup function together with Equation (4.25)
allows us to define the non-cyclic requirement of orchestration trees op ∈ O on a formal
basis:

∀ ψp ∈
�

Vp ×
�
Vp \ p

�|Rp−1|
�
�ψ[i], ψ[j] : ψ[i] = ψ[j] for i �= j (4.26)

5. There might be situations in which there exists no complementary context providers c ∈ C

that refine the data emitted by a primary context provider p ∈ Vp in a running instance
of the replication framework where Cp = ∅ and |Vp| = 1, that is, Vp consists of only one
primary context provider p ∈ P, Vp. We treat such a degenerated orchestration tree that
consist of only a starting or root node p ∈ Vp while exhibiting no other relations r ∈ Rp to
any complementary context providers as a special case in which

δ+

op
(p) = δ−

op
(p) = N+

op
(p) = N−

op
(p) = ∅. (4.27)

Although such an orchestration tree opi
∈ O represents a special case, it is treated equally

compared to orchestration trees opj
∈ O in which Cpj

�= ∅ for pi �= pj .

With Definition 4.6 and the set of rules constituting the underlying orchestration logic, an
orchestration tree op ∈ O can be expressed by means of an adjacency tableau, as exemplarily
depicted in Figure 4.2, that represents the relations r ∈ Rp that exist between the adjacent
context providers p, c ∈ Vp being orchestrated in the orchestration tree op ∈ O together with
α(ri ∈ Rp) and ω(ri ∈ Rp) iff Cp �= ∅. In addition, the definition of the two functions α : Rp −→
Vp and ω : Rp −→ Vp allows for expressing a relation ri ∈ Rp as ri =

�
α(ri), ω(ri)

�
that serves

as a basis for building the adjacency tableau for an orchestration tree op ∈ O being created for
a primary context provider p ∈ P .

The adjacency tableau depicted in Figure 4.2 shows the relations r ∈ Rp1 for an exemplary or-
chestration tree op1 ∈ O that exist between the context providers p1, c1,2,4,5,8 ∈ Vp1 orchestrated

18Please note that we use the symbol cp in this definition as this requirement applies to both a primary context
provider p ∈ Vp as well as a complementary context provider c ∈ Vp.

Chapter 4. Approach 114

α ω

r1 p1 c1

r2 p1 c2

r3 c2 c4

r4 c2 c5

r5 c5 c8

Figure 4.2: Example of an adjacency tableau created from the elements r ∈ Rp for a context
provider p ∈ P

within this exemplary orchestration tree. In this example, the set Vp1 consists of six context
providers with Vp1 = {p1, c1, c2, c4, c5, c8} and the following concrete relations r ∈ Rp1 that exist
between them: Rp1 =

�
r1 = (p1, c1), r2 = (p1, c2), r3 = (c2, c4), r4 = (c2, c5), r5 = (c5, c8)

�
.

For instance, the function α(r3) for the relation r3 ∈ Rp1 returns the preceding context provider
α(r3) = c2, and the function ω(r3) = c4 the succeeding context provider c4 ∈ Vp1 of the re-
lation r3 ∈ Rp1 , i.e., those context providers that are incident to the relation r3 ∈ Rp1 . This
relation indicates that there exists a compatibility in terms of context models between these
two context providers where the context model m ∈ M, Mc2 created by the preceding context
provider c2 ∈ Vp1 is consumed by a succeeding context provider c4 ∈ Vp1 . In the same way,
the function δ+

op
(c2) returns all outbound relations r ∈ Rp1 to which c2 is incident to such that

α(r) = c2. For c2, these relations are δ+

op
(c2) = {r3, r4}. Likewise, the set of neighbors N+

op
(c2)

being adjacent to the given context provider c2 ∈ Vp is defined by Equation (4.18) and therefore
N+

op
(c2) = {c4, c5}. In addition, the set of incident relations and precedent context providers for

the given context provider c2 from the present example are δ−
op

(c2) = {r2} and N−
op

(c2) = {p1},
which is the primary context provider p1 ∈ P for the orchestration tree op1 .

The adjacency tableau (cf. Figure 4.2) used to describe the structure of an orchestration tree
op1 ∈ O can also be transformed into an |Vp| × |Vp| adjacency matrix MA which we denote as
MA

op
for a primary context provider p ∈ P where MA

op

�
α(ri), ω(ri)

�
= 1 in case there exists a

relation ri ∈ Rp between two context providers α(ri), ω(ri) ∈ Vp where α(ri) �= ω(ri). A matrix
coefficient is thus defined as follows:

MA
op

�
α(ri), ω(ri)

�
=

�
1 ⇐⇒ ri ∈ Rp

0 otherwise
(4.28)

4.3.6 Compounded Context Acquisition Model

An orchestration tree op ∈ O for a primary context provider p ∈ P is considered as an atomic unit
(cf. Section 4.5), which, when all acquisition tasks of the contained context providers p, c ∈ Vp

have finished, provides a compound context acquisition model denoted as Mop
that is composed

of and aggregated from the most recently emitted context models m ∈ M of the context providers
p, c ∈ Vp orchestrated in the orchestration tree op ∈ O. Since op ∈ O denotes the orchestration
tree corresponding to a primary context provider p ∈ P , let Mop

therefore denote the com-
pounded context model aggregated from the context models m ∈ M acquired by the context
providers p, c ∈ Vp. Based on the Equations (4.4) and (4.5), we define the aggregated context
acquisition model Mop

∈ OM corresponding to an orchestration tree op ∈ O as the union of the
most recently emitted context models m indicated by the function φcurrent : M −→ M applied
to the set of emitted context models Mp and Mc of the containing context providers p, c ∈ Vp.

Chapter 4. Approach 115

Definition 4.7 (Compounded Context Acquisition Model). Let Mo denote a gen-
eral compound context acquisition model and let Mop

∈ OM denote a compounded
context acquisition model corresponding to the orchestration tree op ∈ O that is
composed of the most recently emitted context models m ∈ M created by the
context providers p, c ∈ Vp orchestrated in op. It is created when all context
providers p, c ∈ Vp have emitted their context models m ∈ Mp or m ∈ Mc for
all c ∈ Cp. The set Mop

is therefore defined as the union of the currently emit-
ted context model m ∈ φcurrent(Mp) and the currently emitted context models
m ∈ φcurrent(Mc) : ∀c ∈ Cp and formally expressed in Equation (4.29):

Mop
:=

�
φcurrent(Mc) : c ∈ Cp

�
∪ φcurrent(Mp) (4.29)

Furthermore, let OM denote the set of all compounded context acquisition models Mop
. As there

exists a 1:1 relationship between an orchestration tree op ∈ O and its corresponding compound
context acquisition model Mop

∈ OM aggregated from the single context models m ∈ Mop
,

we define the binary bijective relationship Racquires : O × OM (cf. Table 4.2) between them as
follows:

∀op ∈ O ∃! Mop
∈ OM : (op, Mop

) ∈ Racquires (4.30)

Based on Equation (4.4) and (4.5) and due to the fact that the sets Mp and Mc, for all p ∈ P

and c ∈ C, are partitions of M and their union is thus a subset of M (see Equation (4.3)) we
can as a corollary state that the union of all sets Mop

∈ OM must also be a subset of M :
�

p∈P

Mop
⊆ M (4.31)

Note that any two sets Mopi
, Mopj

∈ OM for i �= j do not necessarily have to be disjunct
such that

�|O|
i=1

Mopi
�= ∅ as the instances of two different context providers cpi, cpj ∈ CP for

i �= j can deliver an identical context model instance m ∈ M although orchestrated in different
orchestration trees opi

, opj
∈ O. However, it is the context dispatcher’s task (cf. Figure 4.10 on

page 158) to recognize and merge such models.

4.3.7 Context Acquisition Workflow

As discussed in Section 4.3.4, orchestration trees op ∈ O are autonomous, self-contained, and
dynamically created representations of context acquisition workflow schemes that specify the
composition of compatible context providers p, c ∈ Vp into logical units for context refinement,
complementation, and augmentation. This requires that an orchestration tree op ∈ O needs to
be deployed in an execution environment19 that is able to control and monitor the acquisition
processes of the orchestrated context providers p, c ∈ Vp on the basis of a specific and pre-
defined processing logic (which will be discussed in Section 4.5). This task is carried out by
context acquisition workflows, denoted as wf (cf. Table 4.1), which represent a controlled and
autonomously operating environment for the execution of the elementary context acquisition
workflows of the context providers p, c ∈ Vp orchestrated in an orchestration tree op ∈ O.
Therefore, we define a context acquisition workflow wf ∈ WF as follows:

19Such execution environments are called sandbox in other works and related domains.

Chapter 4. Approach 116

Definition 4.8 (Context Acquisition Workflow). Let wf denote a context acquisition
workflow and let WF denote the set of all context acquisition workflows wf ∈ WF

currently existing in a running instance of the proposed framework. Let us further de-
note the context acquisition workflow for an orchestration tree op ∈ O as wfop

∈ WF

to indicate this correspondence. Since there exists a binary 1:1 relationship between
an orchestration tree op ∈ O and its corresponding context acquisition workflow
wfop

∈ WF , let the relation RexecutedBy : O × WF (cf. Table 4.2) define such a
relation. The relation RexecutedBy is bijective as there exists for any given point in
time tn exactly one relation ri ∈ RexecutedBy between a concrete context acquisition
workflow wfop

∈ WF and the corresponding orchestration tree op ∈ O it offers its
execution environment to. This fact is postulated in Equation (4.32):

∀op ∈ O ∃! wfop
∈ WF : (op, wfop

) ∈ RexecutedBy (4.32)

This formal definition admittedly is rather general as a context acquisition workflow wf ∈
WF is principally an implementation-specific construct to monitor and control the execution
of the elementary context acquisition tasks of the containing context providers p, c ∈ Vp of the
corresponding orchestration tree op ∈ O. A context acquisition workflow wfop

∈ WF becomes
active whenever the primary context provider p ∈ P of its associated orchestration tree op ∈ O

detects a change in the contextual data it acquires and, as a consequence of that change, emits
an new context model m ∈ M, Mp. Since an orchestration tree op ∈ O is a tree-based structured
specification of a context acquisition workflow scheme, a context acquisition workflow wf ∈ WF

can be regarded as an interpreter and compiler of such a workflow specification as it is able to
initiate and monitor the respective context acquisition tasks while ensuring that parallel running
context provider acquisition workflows do not interfere and that the context framework remains
in a deterministic and controlled state. Further information about context acquisition workflows
are given in Section 4.5 including an algorithmic specification of the processing logic underlying
a context acquisition workflow.

4.3.8 Context Configuration

When the context models m ∈ M of all context providers cp ∈ Vp being part of all orchestration
trees op ∈ O were acquired successfully, a global context model, the so-called context configuration
is created. The context configuration is an aggregated and consolidated representation of all
acquired context models m ∈ M contained in the compound context acquisition models Mop

∈
OM that correspond to the orchestration trees op ∈ O and serves as mean to built a global and
coherent model of the user’s current context. In Definition 4.9, we define a context configuration
on a formal basis:

Chapter 4. Approach 117

Definition 4.9 (Context Configuration). Let cc be an instance of a context config-
uration and CC be the set of all context configuration instances cc ∈ CC created
by a running instance of the replication framework. An instance of a context config-
uration cc ∈ CC is the result of a 2-parametric function fconsolidate : Mk × Πl −→
CC20that takes an arbitrary but finite amount of context models m ∈ M and ap-
plies a finite number of reasoning rules π ∈ Π, where k represents the amount of
context models pertaining to the union of all compound context acquisition models
Mop

∈ OM and l represents a finite number of reasoning rules π ∈ Π:

fconsolidate : Mk × Πl −→ CC where k =

������

�

p∈P

Mop

������
, l ≤ |Π| (4.33)

The function fconsolidate processes the context models m contained in the compound context ac-
quisition models Mop

∈ OM of all orchestration trees op ∈ O and infers additional information or
consolidates existing information by applying reasoning techniques and a distinct amount of rea-
soning rules π ∈ Π. The application of reasoning rules π ∈ Π to the context models m contained
in the compound context acquisition models Mop

∈ OM cause the creation of an updated, i.e.,
consolidated set of compound context acquisition models that incorporates a distinct number of
inferred statements in addition to the set of asserted statements explicitly represented by the
context models m ∈ Mop

. Moreover, a reasoning rule π ∈ Π might also cause the complete merg-
ing of two autonomously acquired context model as illustrated in Figure 5.7 on page 183, where
location-based information is merged into a common sub graph. As a consequence, an instance
of a context configuration cc ∈ CC is the result of the function fconsolidate : Mk × Πl −→ CC

and hence also a member of M.

Furthermore, we likewise define two functions φcurrent : CC −→ CC and φprevious : CC −→
CC for the set of context configuration instances CC, where φcurrent(CC) returns the most
recently created context configuration instance ccτi+1 ∈ CC and φprevious(CC) the previously
created context configuration instance ccτi

∈ CC by the function fconsolidate : Mk × Πl −→ CC.
This allows context consumers to reason about changes respectively transitions in the global
representation of the user’s context between two different points in time τi and τi+1 where
φprevious(CC) refers to a context configuration instance valid at time τi and φcurrent(CC) to an
instance valid at time τi+1

21.

4.3.9 Context Description

Context providers cp ∈ CP exchange the context models m ∈ M they create and emit through
a context description d ∈ D that not only contains the context model m ∈ M as such but
also additional information necessary for its processing and aggregation. A context description
thus serves as a "transportation vehicle" for communicating contextual information represented
in context models m ∈ M where there exists a 1:1 relation between an emitted context model
m ∈ M and the context description d ∈ D it is wrapped by. Let the relation Rconvey : D × M

therefore denote the relationship existing between an emitted context model m ∈ M and the
20The function fconsolidate : Mk × Πl −→ CC in this context is defined to perform both aggregation and

consolidation heuristics.
21We assume that τi is represented as an absolute value (e.g., in milliseconds) calculated from a specific and

fixed point τ0 in time where τ0 ≤ τi ≤ τi+1.

Chapter 4. Approach 118

context description d ∈ D conveying m. In the following, we formally define a context description
d and the set of all context descriptions D:

Definition 4.10 (Context Description). A context description d ∈ D is defined
as a 5-tuple (cp, m, ρ, σ, τ) where m ∈ M represents the context model emitted by
the context provider cp ∈ CP ; ρ represents status information and σ a status code
that allows for adjusting processing and aggregation tasks based on the status of
the corresponding context provider cp ∈ CP at the time tn when the context model
m ∈ M was created. The symbol τ denotes the time stamp when the context model
m ∈ M was emitted for facilitating synchronization purposes.

The distinction between a context description d ∈ D and a context model m ∈ M is important as
it allows for the specification of additional information associated with the acquisition process in
which a context model m ∈ M was created and to deal with the diversity and heterogenous na-
ture of context sources as such. Several works (e.g. [BS03, KMK+03, BTC06, PvHS07, SWvS07,
MTD08]) suggest to include a mechanism related to the determination of the quality and trust-
worthiness of acquired contextual information, which is particularly important for ubiquitous
computing environments in which a multitude of different and heterogeneous context sources
have to be exploited dynamically. The concept of Quality of Context (QoS) thus elaborates
around one of the most prevalent problems of context-aware computing, that is, the circum-
stance that real-world situations can not be represented 100% accurate wherefore contextual
information is inherently vague, incomplete, and inaccurate [PvHS07]. Context descriptions in
particular are therefore means to specify such Quality of Context indicators (e.g., a selection
of indicators such as precision, freshness, temporal resolution, spatial resolution, and probability
of correctness has been specified in [PvHS07]) that may not directly refer to the contextual
information represented in a context model m ∈ M but facilitates subsequent processing and
aggregation tasks as they allow for specifying meta information related to the information rep-
resented by a context model m ∈ M itself as well as to the context source s ∈ S the context
information originated from. By analyzing such data, a context consumer can elaborate on the
trustworthiness and quality of acquired contextual information and adjust its processing tasks
accordingly.

4.3.10 Data Providers

When a new instance of a context configuration cc ∈ CC is built from the compound context
acquisition models Mop

∈ OM using the aggregation and consolidation function fmerge : M ×
Π −→ CC, it is forwarded to data providers dp ∈ DP that analyze the global representation of
the user’s current context represented by a context configuration cc ∈ CC and adapt and initiate
their data replication tasks accordingly. In accordance to the definition of context providers (cf.
Definition 4.3) we also make use of concepts from automata theory for defining data providers.
As data providers replicate data to the mobile device as a result of an analysis of the current
context configuration instance cc ∈ CC representing the user’s current context, they can be
regarded as transducers and hence are defined as minimal deterministic finite state transducers
(DFST):

Chapter 4. Approach 119

Definition 4.11 (Data Provider). A data provider dp ∈ DP is a minimal determin-
istic finite state transducer defined by the 6-tuple (Q, E, minput, mreplica, δ, q0) that
allows for ε-transitions and consists of the following elements:

• Q is a set of states q ∈ Q into which a data provider dp ∈ DP transitions to in
the course of replicating data to a mobile device.

• E is defined as a set of events e ∈ E, which, when an event e occurs, causes a
transition from a current sate qi ∈ Q into a subsequent state qi+1 ∈ Q.

• minput ∈ M denotes the context model that serves as input data for initiating
a data replication task performed by a data provider dp ∈ DP . Usually, minput

corresponds to a context configuration cc ∈ CC.

• mreplica represents the RDF data being replicated to the mobile device.

• δ : Q × E ∪ {ε} −→ Q is a transition function that, based on the occurrence of
a specific event e ∈ E, defines a transition into a subsequently following state
qi+1 ∈ Q.

• q0 is the initial state of a data provider dp ∈ DP before it initiates its data
replication workflow.

We refer to minput ∈ M in the previous definition instead of cc ∈ CC as instances of context
configurations exhibit the same characteristics as context models and as a corollary can be
regarded as complex context models. We also included ε-transitions in the definition of the
transition function δ : Q × E ∪ {ε} −→ Q as a transition from a state qi ∈ Q into qi+1 ∈ Q might
also be conducted independently from the occurrence of a specific event e ∈ E. In Section 4.6
and 5.2, we provide a more technically focused description of data providers.

After having defined the elements constituting the formal model on a theoretical basis, we now
provide a formal definition of the building process underlying the orchestration trees op ∈ O.

4.4 Formal Model of the Orchestration Process

The idea of orchestrating context providers is to augment and complement contextual information
to build richer, more expressive, and elaborated context descriptions while maintaining data and
processing consistency as well as data accurateness and data completeness. The orchestration of
context providers cp ∈ CP enables an augmentation of the context-relevant information space
acquired by a primary context provider p ∈ P through a set of compatible complementary context
provider c ∈ Vp that take the context model m ∈ Mp emitted by p ∈ P as input data for initiating
their context acquisition tasks in order to mutually complement the information represented in
m ∈ Mp. Based on an analysis of the data description ddesc of a context provider cp ∈ CP ,
we calculate a similarity indicator expressed numerically in a similarity score that indicates the
degree of compatibility existing between two context providers cpi, cpj ∈ CP for cpi �= cpj based
on the vocabulary elements they use for representing contextual data. The rationale behind
the proposed orchestration approach is that the contextual data a context provider delivers
can be explicitly represented using vocabularies and ontologies from the Semantic Web. We
therefore assume the existence of appropriate vocabularies that can be used for describing the
data a context provider emits (e.g. [CPFJ04, KHK+04, Pre04, WZGP04, MYS05]). For complex

Chapter 4. Approach 120

contextual constellations, different RDF vocabularies can be combined. We further assume that
the vocabulary elements a context provider uses to describe and represent its data can serve as
indicators for the type of context data it emits. If, for instance, a context provider makes use of
the FOAF vocabulary, we can infer that it delivers personal or person-related data representing
the social relationships and concerns of the user (e.g., the attendees of a meeting collected from
the user’s calendar, the user’s friends etc). In this section, we now formally define and describe
the relevant steps that constitute the building process and the deduction of orchestration trees
op ∈ O. Generally, the building process can be compartmentalized in nine steps, which constitute
as follows:

1. Compartmentalization of the set of context providers cp ∈ CP into two partitions P and
C depending on the vocabulary terms specified in the input and output sections of their
data descriptions (cf. Section 4.4.1).

2. Creation of inverted term indices I from the vocabulary elements (terms t) specified in the
input and output sections of the data description of each context provider cp ∈ CP .

3. Creation of a merged inverted term index Imerged from the inverted term indices I for a pair
of context providers cpi, cpj ∈ CP for i �= j their compatibility score is to be computed.

4. Transformation of the inverted term indices I and merged inverted term index imerged

into inverted term index vectors �V index that serve as vector representations of the terms t

defined in the inverted term indices.

5. Calculation of several similarity scores between pairs of context providers cpi, cpj ∈ CP

for cpi �= cpj from the inverted term index vectors of their data descriptions ddesc.

6. Aggregation of the similarity scores calculated from the inverted term indices vectors of
the context providers cp ∈ CP into a compatibility vector �VCompatibility.

7. Calculation of a compatibility matrix MC on the basis of an analysis of the compatibility
vectors �VCompatibility for each pair of context providers cpi, cpj ∈ CP for i �= j.

8. Transformation of the compatibility matrix MC into the orchestration matrix MO record-
ing the adjacent relations existing between compatibly context providers cpi, cpj ∈ CP for
i �= j.

9. Deduction of the orchestration trees op ∈ O from the orchestration matrix MO for each
primary context provider p ∈ P .

The compatibility score computation is not commutative wherefore
�
|CP |2 − |CP |

�
−

�
|P |2 − |P |

�

combinations are necessary for computing the compatibility scores for |CP | context providers.
Step 1 to 3 is described in Section 4.4.2.1. Section 4.4.2.2 outlines the transformation into
inverted term index vectors (step 4). The similarity scores calculation and aggregation into
compatibility vectors (step 5 and 6) is treated in Section 4.4.2.3. Section 4.4.2.4 details the
transformation of the compatibility matrix MC into the orchestration matrix MO (step 7 and 8)
whereas Section 4.4.3 elaborates on the deduction of orchestration trees op ∈ O together with
the necessary algorithms (step 9).

Before we describe the previously mentioned steps in building an orchestration tree op ∈ O on a
formal and theoretic basis, we give detailed insights into the structure and constituting terms of
the data description ontology in order to provide the reader with basic knowledge on which the
orchestration steps are built upon.

Chapter 4. Approach 121

Table 4.4: Core classes of the data description ontology

Local Name rdf:type rdfs:SubClassOf
ddesc:ContextProvider rdfs:Class -

ddesc:Specification rdfs:Class -

ddesc:InputSpecification rdfs:Container ddesc:Specification

ddesc:OutputSpecification rdfs:Class ddesc:Specification

ddesc:VocabularySpecification rdfs:Class ddesc:Specification

ddesc:ConceptSpecification rdfs:Container ddesc:VocabularySpecification

ddesc:PropertySpecification rdfs:Class ddesc:VocabularySpecification

ddesc:Namespace rdfs:Class -

4.4.1 Data Description Ontology

We have defined a lightweight data description ontology that consists of a set of minimal22

vocabulary elements and a set of rules that define the structure of a data description and the
scope of its elements. We first introduce the classes and properties being defined in the data
description ontology before we provide insights on how these elements can be used to specify
a context provider’s data description. We complement this description by means of a concrete
example of a data description defined for a complementary context provider c ∈ C that extracts
contact data from acquired calendar data.

Table 4.4 and Figure 4.4 list the core classes that constitute a data description together with
information about their specific type, indicated by the rdf:type property, and the classes they
are inherited from (rdfs:subClassOf) forming the structure of the data description schema.
The ddsec:ContextProvider class is used to describe a specific context provider cp ∈ CP

being identified through its UUID so that it can be integrated in the orchestration process. The
type of all specification classes defined in the data description ontology is represented by the
ddesc:Specification class that serves as super class for the specification of the vocabularies
used for the input and output context model, indicated by the ddesc:InputSpecification and
ddesc:OutputSpecification classes, as well as for the concrete specification of the vocabulary
elements, indicated by the ddesc:VocabularySpecification class. The ddesc:InputSpecifi-
cation class refers to the data description subgraph that describes the vocabulary elements that
the input context model has to be built upon so that it can be processed by a context provider,
whereas the ddesc:OutputSpecification class allows for specifying the vocabulary elements
the context model created by a context provider consists of. A vocabulary specification itself is
super class of the ddesc:ConceptSpecification and ddesc:PropertySpecification classes
that allow for specifying detailed vocabulary elements being relevant for the specification of a
data description. The last element in Table 4.4 is the ddesc:Namespace class, which allows for
defining the vocabularies’ namespaces.

In addition, Table 4.5 lists the properties being defined in the course of the data description
ontology together with their rdfs:domain and rdfs:range values that define how a property is
related to the classes defined in Table 4.4. These properties are essential for the specification of
a data description as they define the structure a data description has to comply with in order
to integrate the context provider it describes in the orchestration process. The ddesc:input

22Minimal in this context refers to the minimal set of constituting elements and rules necessary for defining
the underlying schema and semantics of the data description ontology so that a data-dependent orchestration of
compatible context providers can be realized.

Chapter 4. Approach 122

Table 4.5: Domain and range values of the data description ontology properties

Property Domain Range
ddesc:input ddesc:ContextProvider ddesc:InputSpecification

ddesc:output ddesc:ContextProvider ddesc:OutputSpecification

ddesc:vocabulary ddesc:Specification ddesc:VocabularySpecification

ddesc:namespace ddesc:VocabularySpecification ddesc:Namespace

ddesc:concepts ddesc:VocabularySpecification ddesc:ConceptSpecification

ddesc:properties ddesc:VocabularySpecification ddesc:PropertySpecification

ddesc:mandatory ddesc:VocabularySpecification ddesc:Namespace

ddesc:optional ddesc:VocabularySpecification ddesc:Namespace

and ddesc:output properties exist between resources that can be identified as members of the
class ddesc:ContextProvider and resources that specify the elements of the input and out-
put sections of a data description, indicated by the classes ddesc:InputSpecification and
ddesc:OutputSpecification respectively. They allow to refer to a subgraph of the data de-
scription as being the input specification respectively output specification of a context provider.
The ddesc:vocabulary property has been defined for both the ddesc:InputSpecification and
ddesc:OutputSpecification classes and identifies the resources used as domain values (in the
relevant statements) as members of the ddesc:VocabularySpecification class, which can be
deduced via inferencing. The ddesc:VocabularySpecification class is the domain of the three
properties ddesc:namespace, ddesc:concepts, and ddesc:properties that define the neces-
sary vocabulary elements in detail. The classes these properties specify as rdfs:range values re-
fer to their respective names. The ddesc:mandatory and ddesc:optional properties have been
defined for both ddesc:ConceptSpecification and ddesc:PropertySpecification classes
and allow for defining those vocabulary terms that are considered as mandatory or optional
for the representation of a context model. The range of both properties is the ddesc:Namespace
class as these properties’ values reference concrete vocabulary terms.

After having defined the classes and properties constituting the data description ontology, we
now describe how these elements can be used to constitute a data description of a context
provider so that it can be integrated in the orchestration process. In general, a data description
consists of two main parts: an input description indicated by the ddesc:input property, and
an output description indicated by ddesc:output property. The former specifies the data a
context provider needs for performing its acquisition tasks whereas the later defines the elements
used to describe the data a context provider emits. Both input and output specification are
defined on the basis of the same schema; they contain a vocabulary specification—indicated by
the ddesc:vocabulary property—that specifies the most relevant elements of a vocabulary such
as its namespace, concepts, and properties in more detail.

An input specification may contain multiple ddesc:vocabulary properties, covering the case
that context providers may be capable of processing data described with different vocabularies.
Multiple vocabulary properties are interpreted in terms of the orchestration logic as alterna-
tives, that is, they are interpreted as being connected with a logical or. This allows to specify
vocabularies a context provider is capable to process in separate ddesc:InputSpecification
sub graphs. An output specification per definition defines only one vocabulary specification sub-
graph although it might be imaginable that a context provider offers the opportunity to configure
the vocabulary and thus the terms used to render its context model.

Chapter 4. Approach 123

1 DATA_DESCRIPTION ::= SPECIFICATION ;
2

3 SPECIFICATION ::= [INPUT_SPECIFICATION] | OUTPUT_SPECIFICATION ;
4

5 INPUT_SPECIFICATION ::= VOCABULARY_SPECIFICATION ;
6 OUTPUT_SPECIFICATION ::= VOCABULARY_SPECIFICATION ;
7

8 VOCABULARY_SPECIFICATION ::= NAMESPACE , CONCEPTS , PROPERTIES ;
9

10 CONCEPTS ::= MANDATORY , OPTIONAL ;
11 PROPERTIES ::= MANDATORY , OPTIONAL ;
12

13 MANDATORY ::= { URI } ;
14 OPTIONAL ::= { URI } ;
15 NAMESPACE ::= { URI } ;

Figure 4.3: Structure of the data description ontology represented in EBNF

A vocabulary specification consists of three parts: the ddesc:namespace property, which holds
the vocabulary’s namespace that is used for an upper-level orchestration, and the ddesc:concepts
and ddesc:properties statements, which specify mandatory and optional concepts and proper-
ties that the context provider processes. Mandatory elements (indicated by the ddsec:mandatory-
property) are those that are inevitable for a complementary context provider to perform its ac-
quisition tasks. Optional elements (indicated by the ddsec:optional-property) refer to those
elements that a context provider is capable to process but they are not necessarily needed for
a successful execution of the context provider’s acquisition activities. Those specifications allow
for a detailed, element-level orchestration of context providers. A vocabulary specification may
contain the namespaces of multiple vocabularies in case the terms of two (or more) vocabularies
are being used for the description of the contextual information contained in a context model.

Additionally, a data description specifies the namespaces and terms that the context provider
emits as output data (indicated by the ddesc:output property). This property is mandatory
for all context providers. The output description follows the schema of the input description,
consisting of parts for vocabulary, concepts, and properties. In contrast to the input specification,
the output specification may consist only of mandatory elements23.

We use an Extended Backus-Naur Form (EBNF) like notation for representing the main struc-
tural aspects of the data description ontology represented by its main classes and properties as
listed in Table 4.4 and 4.5. It is to be read as follows: a data description consists of a specification
section which itself consists of an optional input section called input specification and exactly
one output section called output specification. Both input and output specification consist of a
vocabulary specification that by itself consist of a namespace section, a concepts section, and a
properties section. Both concepts and properties section consist of a mandatory and an optional
section. These sections contain an arbitrary number of terms represented by their URIs. Please
note that this notation of the core structural elements defined by the data description ontology
is a rather reduced form and disregards the properties as well as relationships and constraints
defined between the constituting terms. Instead, this structural (E)BNF-based notation should
give the reader an understanding of the basic structure of a context provider’s data description
represented using the data description ontology.

Figure 4.5 depicts an excerpt of an exemplary data description being defined for a complementary
context provider that extracts contact data from acquired calendar data. The complementary

23According to the RDF semantics it is possible to specify optional data, although they will not be considered
by the orchestration framework in its current version.

Chapter 4. Approach 124

Figure 4.4: Structural composition of elements constituting the data description ontology

context provider is capable to process input context models the content of which is described
using the NEPOMUK Calendar Ontology24, indicated by the namespace http://www.semantic-
desktop.org/ontologies/ncal# in line 5. The terms specified in line 7 are considered manda-
tory, i.e., the data in the input context model must be described using these terms. In other
words, the context provider is only capable to extract contact data from calendar data being
described with the specified terms. In addition, the complementary context provider may also
process data being described with the terms specified in conjunction with the ddesc:optional
property in line 8. The lines 10 to 12 describe these facts for the properties being defined in
the NEPOMUK Calendar Ontology, which are relevant for the processing of the input model.
The elements constituting the context model emitted by the context provider are specified in the
lines 16 to 25; the context provider uses elements from the FOAF Ontology25 to represent the
contact data extracted from the calendar items contained in the input context model. As de-
scribed in the previous paragraph regarding the structure and semantics of the data description
elements, the output specification does not specify any optional concepts or properties.

4.4.2 Computing Compatibility Metrics between Context Providers

This section describes the transformation of the context providers’ data descriptions into in-
verted term indices vectors that serve as a basis for computing the overall compatibility scores

24NEPOMUK Calendar Ontology: http://www.semanticdesktop.org/ontologies/ncal/

25FOAF Vocabulary Specification: http://xmlns.com/foaf/spec/

http://www.semanticdesktop.org/ontologies/ncal/
http://xmlns.com/foaf/spec/

Chapter 4. Approach 125

1 <urn:uuid:b772a3a2-46d4-4c43-8f71-7080915ddba7>
2 a ddesc:ContextProvider ;
3 ddesc:input [
4 ddesc:vocabulary [
5 ddesc:namespace <http://www.semanticdesktop.org/ontologies/ncal#> ;
6 ddesc:concepts [
7 ddesc:mandatory ncal:Attendee, ncal:Calendar, ncal:Event ;
8 ddesc:optional ncal:Organizer, ncal:EventStatus
9] ;

10 ddesc:properties [
11 ddesc:mandatory ncal:member, ncal:method ;
12 ddesc:optional ncal:eventStatus
13]
14]
15] ;
16 ddesc:output [
17 ddesc:vocabulary [
18 ddesc:namespace <http://xmlns.com/foaf/0.1/> ;
19 ddesc:concepts [
20 ddesc:mandatory foaf:Organization, foaf:Person
21] ;
22 ddesc:properties [
23 ddesc:mandatory foaf:knows, foaf:status, foaf:name
24]
25]
26] .

Figure 4.5: Exemplary data description for a complementary context provider for extracting
contact data from calendar entries

between the context providers cp ∈ CP . The compatibility scores are recorded in a compatibility
matrix MC from which the the orchestration matrix MO is computed that serves as a basis for
deducing the orchestration trees op ∈ O. In this section, we therefore describe the basic routines
and algorithms underlying this process.

For the following description, we presuppose the existence of the partitions P and C resulting
from a classification of the set of context providers CP . Please note that the basic algorithms
described in this section do not consider rdfs:subClassOf or rdfs:subPropertyOf relation-
ships between terms defined in the respective vocabularies. More specifically, further equiva-
lence indicators defined in OWL such as owl:equivalentClass, owl:equivalentProperty, or
owl:sameAs are also not considered. Such an advanced form of compatibility analysis taking
into account the semantics and logic calculuses from distinct vocabulary elements (used for de-
scribing the contextual information represented in a context model) that were defined on the
basis of axiomatically defined Semantic Web language elements are out of the scope of our work
as this is primarily a branch of ontology alignment (cf. [DMDH02, MBDH02, CSC04]), ontology
mapping (cf. [DMD+03, CSH06]), and (semantic) web service alignment respectively.

4.4.2.1 Creation of Inverted Term Indices

For calculating the compatibility score between two context providers cpi, cpj ∈ CP , the terms
being relevant for the compatibility score calculation defined in the data descriptions are rep-
resented in the form of inverted term indices (cf. [MRS08]). In a first step, we therefore create
the inverted term indices, denoted as I, for the context providers their compatibility is to be
computed by retrieving the terms t specified in the relevant parts of their data descriptions.

Chapter 4. Approach 126

Table 4.6: Symbols and descriptions of the inverted term indices

Symbol Description

I
Coutput

mandatory(cp) denotes the inverted term index for the concepts specified in the manda-
tory part (ddesc:mandatory) of the output part (ddesc:output) defined
in the data description ddesc for a context provider cp ∈ CP .

I
Poutput

mandatory(cp) denotes the inverted term index for the properties specified in the manda-
tory part (ddesc:mandatory) of the output part (ddesc:output) defined
in the data description ddesc for a context provider cp ∈ CP .

I
Cinput

mandatory(c) denotes the inverted term index for the concepts specified in the manda-
tory part (ddesc:mandatory) of the input part (ddesc:input) defined in
the data description ddesc for a complementary context provider c ∈ C.

I
Pinput

mandatory(c) denotes the inverted term index for the properties specified in the manda-
tory part (ddesc:mandatory) of the input part (ddesc:input) defined in
the data description ddesc for a complementary context provider c ∈ C.

I
Cinput

optional(c) denotes the inverted term index for the concepts specified in the optional
part (ddesc:optional) of the input part (ddesc:input) defined in the
data description ddesc for a complementary context provider c ∈ C.

I
Pinput

optional(c) denotes the inverted term index for the properties specified in the optional
part (ddesc:optional) of the input part (ddesc:input) defined in the
data description ddesc for a complementary context provider c ∈ C.

Therefore, let I be an ordered list26 of terms t and defined as an n-tuple �t1, t2, . . . , tn� where
n refers to the number of unique terms specified in the respective parts of the data description
ddesc of the corresponding context provider cp ∈ CP :

I := �t1, t2, . . . , tn� (4.34)

As an inverted term index I is defined on the basis of set theory and as we presume that the
vocabularies’ terms are defined on the basis of the URI addressing scheme, i.e., each term t is
represented by a unique URI, a term t occurs maximally once in I. Therefore, we define the
following condition for all terms t represented in an inverted term index I:

∀t ∈ I � ti, tj : ti = tj for i �= j (4.35)

In order to distinguish between the different types of inverted term indices relevant for the
compatibility calculation and the terms defined in the respective sections of a data description
(cf. Figure 4.3 and Table 4.4), the corresponding part an inverted term index refers to is added
as superscript and subscript to the inverted term index symbol I. For instance, an inverted
term index of the concepts specified in the output section of a data description is thus denoted
as ICoutput whereas the inverted term index for the properties specified in the input section of
a data description is denoted as IPinput . Moreover, to distinguish whether an inverted term
index I refers to a mandatory or optional specification part of a data description, we add the
corresponding label as subscript. The mandatory terms specified in the output specification of a
data description are thus represented by the inverted term index I

Coutput

mandatory. Table 4.6 provides
an overview of the set of inverted term indices necessary for the compatibility score calculation
together with a description of the aspects and data description sections they refer to.

26Naturally, the elements of an inverted term index are sorted in alphabetic order.

Chapter 4. Approach 127

For example, the inverted term index I
Poutput

mandatory(c) represents the mandatory properties specified
in the output section of the exemplary data description ddesc for a complementary context
provider c ∈ C depicted in Figure 4.5 would be ��foaf :name�, �foaf :knows�, �foaf :status��27.
This inverted term index shows a real simple case whereas for context providers deployed in
productive systems, the corresponding data descriptions are likely to be more complex and
comprise an order of magnitude more terms.

In a next step, the inverted term indices I of two context providers cpi, cpj ∈ CP for i �= j their
compatibility score is to be computed are pairwise merged into a compound inverted term index
using a two-parametric fmerge : I × I → I function; we call this index merged inverted term
index Imerged. The function fmerge

�
I(cpi), I(cpj)

�
aggregates the terms t of the two inverted

term indices I(cpi) and I(cpj) into Imerged while considering the sequential order of terms t and
their identity, i.e., if a term t is an element of both tuples I(cpi), I(cpj), t occurs only once in the
merged inverted term index Imerged(cpi, cpj). Therefore, let Imerged be an ordered set of terms t

and defined as the result of the function fmerge

�
I(cpi), I(cpj)

�
for the inverted term indices I of

two context providers cpi, cpj ∈ CP with compliance of Equation (4.35):

Imerged(cpi, cpj) := fmerge

�
I(cpi), I(cpj)

�
(4.36)

For computing the overall compatibility score between two context providers cpi, cpj ∈ CP for
i �= j, the following merged inverted term indices Imerged(cpi, cpj), represented by Equation
(4.37) - (4.40), are created from the inverted term indices I(cpi) and I(cpj) of their respective
context providers cpi, cpj ∈ CP (cf. Table 4.6):

I
Cmerged

mandatory(cpi, cpj) = fmerge

�
I

Coutput

mandatory(cpi), I
Cinput

mandatory(cpj)
�

(4.37)

I
Pmerged

mandatory(cpi, cpj) = fmerge

�
I

Poutput

mandatory(cpi), I
Pinput

mandatory(cpj)
�

(4.38)

I
Cmerged

optional (cpi, cpj) = fmerge

�
I

Coutput

mandatory(cpi), I
Cinput

optional(cpj)
�

(4.39)

I
Pmerged

optional(cpi, cpj) = fmerge

�
I

Poutput

mandatory(cpi), I
Pinput

optional(cpj)
�

(4.40)

Depending on whether the merged inverted term index is to be created from the inverted term
indices representing the concepts’ or properties’ section of a data description, these indicators
are added as superscripts. Furthermore, the corresponding mandatory or optional sub graphs28

are added as subscripts.

For example, let T be the set of terms t ∈ T used in the data descriptions of two context providers
cpi, cpj ∈ CP for i �= j where no distinction is necessary regarding the specific data description
sections they refer to. Furthermore, let’s assume that I(cpi) and I(cpj) contain the following
terms t ∈ T specified in the respective parts of the data descriptions: I(cpi) := �t2, t3, t6, t7�
and I(cpj) := �t1, t2, t5, t7, t9�. The merged inverted term index Imerged of the two context
providers cpi, cpj ∈ CP is hence the union of the two inverted term indices Imerged(cpi, cpj) =
�t1, t2, t3, t5, t6, t7, t9�.

27For reasons of clarity and comprehensibility we use a shorthand notion for the corresponding namespaces.
28As data descriptions are represented as RDF graphs, we use the terms ’section’, ’sub section’, and ’sub graph’

synonymously.

Chapter 4. Approach 128

4.4.2.2 Transformation into Inverted Term Index Vectors

For the compatibility scores calculations, we use a multi-dimensional vector space model in
which an inverted term index I(cpi) of a context provider cpi ∈ CP and thus the terms t

specified in the relevant part of its data description (see Table 4.6) are transformed into a vector
representation �v1, v2, . . . , vn� ∈ {0, 1}n that serves as a basis for deriving the inverted term index
vectors of both context providers cpi, cpj ∈ CP their compatibility score is to be computed. As
an inverted term index I29 represents an ordered sequence of terms t, it can be represented
by the binary inverted term indices vector �V = �vt1 , vt2 , . . . , vt|Imerged|� ∈ {0, 1}|Imerged| where
each vector component vt refers to a term t being a member of the merged inverted term index
Imerged(cpi, cpj) representing the union of the inverted term indices I(cpi) and I(cpj). Therefore,
let �V index(cpi) denote the inverted term index vector calculated from an inverted term index
Iindex(cpi) of the corresponding context provider cpi ∈ CP and the merged inverted term index
Imerged(cpi, cpj) for cpi, cpj ∈ CP where i �= j30:

�V index(cpi) :=
�

vt1 , vt2 , . . . , vt|Imerged(cpi,cpj)|

�
∈ {0, 1}|Imerged

(cpi,cpj)| (4.41)

For determining the value of a vector component vt, we transform inverted term indices Iindex to
a set notation that allows for computing the intersection between the terms t contained in both
the inverted term index I(cpi) and the merged inverted term index Imerged(cpi, cpj). Therefore,
let TIindex(cpi) and TImerged(cpi, cpj) include those terms t, that are contained in the respective
inverted term indices. A term t is a member of Tindex, iff the predicate containedIn(term, index)
evaluates to true:

TIindex(cpi) :=
�

t : containedIn
�
t, Iindex(cpi)

��
(4.42)

TImerged(cpi, cpj) :=
�

t : containedIn
�
t, Imerged(cpi, cpj)

��
(4.43)

On the basis of Equation (4.42) and (4.43), the value of a vector component vt of an inverted
term index vector �V index(cp) is defined by the following equation:

vt :=
�

1 : t ∈
�
TIindex(cpi) ∩ TImerged(cpi, cpj)

�

0 : otherwise
(4.44)

The value of each vector component vt indicates the existence of a term t specified in the
inverted term index I(cp) a vector �V (cp) refers to. A vector component vt = 1 in case the term
t is contained in the inverted term index I(cp) of the corresponding context provider cp ∈ CP

and vt = 0 in case the term t is not present in I(cp). Furthermore, the sequence of the vector
components vt corresponds to the sequence of terms t specified in the respective merged inverted
term index Imerged(cpi, cpj) and the respective inverted term index I(cpi) for cpi. A term t thus
serves as index for a vector component and refers to the component vt corresponding to t. For
instance, the inverted term index vector of an inverted term index I(cpi) for a context provider
cpi from the previous example is thus �V (cpi) =

�
t1 : 0, t2 : 1, t3 : 1, t5 : 0, t6 : 1, t7 : 1, t9 : 0

�
as

only those terms t, where the value of the corresponding vector components vt is 1, are contained
in the inverted term index I(cpi).

29For reasons of clarity and comprehensibility we omit the use superscripts and subscripts for the explanations
given in this paragraph as these deliberations apply to all types of inverted term indices I likewise.

30 For the general definition of the vector representation �V of an inverted term index I, the use of superscripts
and subscripts usually applied to the symbols of inverted term indices and their respective vector representations
has been omitted; instead the superscript index is used for both symbol I and �V to indicate the supplementation
with the respective indices.

Chapter 4. Approach 129

Referring to Equation (4.37) - (4.40), an inverted term index vector �V index is created for every
inverted term index I outlined in Table 4.6. The rules for the use of superscripts and subscripts
expounded in Section 4.4.2.1 also apply for the symbols of the inverted term index vectors. In
consequence, let �V

Coutput

mandatory(cp) be the vector created from the inverted term index I
Coutput

mandatory

of the concepts specified in the mandatory section of the data description ddesc of the con-
text provider cp ∈ CP and let �V

Cinput

mandatory(cp), �V
Poutput

mandatory(cp), �V
Pinput

mandatory(c), �V
Cinput

optional(cp), and
�V

Pinput

optional(cp) be the inverted term index vectors for the other types of inverted term indices.
Hence, each vector symbol corresponds to exactly one inverted term index symbol defined in
Table 4.6.

4.4.2.3 Calculation of Compatibility Scores

A well-known and standard way in information retrieval for quantifying the similarity be-
tween different documents is to compute the cosine similarity of their vector representations
(cf. [MRS08]). However, as relevant sections of a context provider’s data description are repre-
sented as inverted term indices, we can adopt this methodology for the calculation of a similarity
score between two context providers cpi, cpj ∈ CP for i �= j on the basis of the vector represen-
tations �V index of their inverted term indices Iindex. The cosine similarity calculation formula is
expressed in Equation (4.45)31 where n refers to the number of vector components vt constituting
an inverted term index vector �V index(cp) for a context provider cp ∈ CP :

sim
�
�V (cpi), �V (cpj)

�
=

�V (cpi) · �V (cpj)���V (cpi)
�����V (cpj)

�� =
�n

k=1
�V (cpi)k ×

�n
k=1

�V (cpj)k�
�n

k=1

�
�V (cpi)k

�2

×
�

�n
k=1

�
�V (cpj)k

�2

(4.45)

For each combination of context providers cpi, cpj ∈ CP where i �= j their overall compatibility
is to be determined, four different compatibility scores are computed using Equation (4.45), as
defined by the Equation (4.46) - (4.49):

sim
�
�V

Coutput

mandatory(cpi), �V
Cinput

mandatory(cpj)
�

(4.46)

sim
�
�V

Poutput

mandatory(cpi), �V
Pinput

mandatory(cpj)
�

(4.47)

sim
�
�V

Coutput

mandatory(cpi), �V
Cinput

optional(cpj)
�

(4.48)

sim
�
�V

Poutput

mandatory(cpi), �V
Pinput

optional(cpj)
�

(4.49)

These compatibility scores are recorded in a compatibility vector �VCompatibility(cpi, cpj) that con-
tains the compatibility scores (cosine similarities) calculated between the vector representations
of the inverted term indices of mandatory concepts and properties specified in the output and
input sections as well as for the terms specified in the optional sections of the input specifica-
tion (cf. Section 4.4.1). The vector component v1 hence represents the cosine similarity score
computed by Equation (4.46), v2 the score computed by Equation (4.47) and so forth.

Furthermore, a compatibility vector �VCompatibility(cpi, cpj) contains two additional components
v5 = θC ∈ {0, 1} and v6 = θP ∈ {0, 1} indicating the degree of overlap between the inverted term
indexes of cpi and cpj regarding their mandatory concepts and properties (cf. Equation (4.37)

31For readability reasons, we omitted the use of indices for the vector representations of the inverted term
indices in Equation (4.45).

Chapter 4. Approach 130

and (4.38)). For the calculation of θC and θP , we use an adapted notation as defined in Equa-
tion (4.42) and (4.43) as these allow us to compute the degree of term intersection between
two inverted term indices. Therefore, let the predicate containedIn(term, index) qualify those
terms t that are contained in an inverted term index:

θC =
�

1 ⇐⇒ ∀t containedIn
�
t, I

Cinput

mandatory(cpj)
�

: containedIn
�
t, I

Coutput

mandatory(cpi)
�

0 otherwise
(4.50)

θP =
�

1 ⇐⇒ ∀t containedIn
�
t, I

Pinput

mandatory(cpj)
�

: containedIn
�
t, I

Poutput

mandatory(cpi)
�

0 otherwise
(4.51)

A value of 1 indicates that all terms t defined in the input part of the data description of
cpj are contained in the output part of the data description of cpi. More specifically, θC = 1
signals that all the concepts specified in I

Cinput

mandatory(cpj) are also specified in I
Coutput

mandatory(cpi) and
therefore the result of the cosine similarity calculation sim

�
�V

Coutput

mandatory(cpi), �V
Cinput

mandatory(cpj)
�

is
to be interpreted as a complete conformity and full compatibility respectively. This indicator is
necessary as the concepts’ or properties’ specifications of two context providers cpi, cpj ∈ CP

might be completely compatible although their compatibility score is < 1, which is the case when,
for instance, the output specification of either concepts or properties of cpi is more extensive
than the input specification of cpj , i.e., the set of terms required by a context provider cpj ∈ CP

to be used in the context model m ∈ Mcpi
it consumes is a real subset of the set of terms a

context provider cpi ∈ CP uses to describe the contextual information contained in the context
model m ∈ Mcpi

it emits.

In consequence, a compatibility vector �VCompatibility(cpi, cpj) containing the compatibility scores
computed from the vector representations �V index(cpi) and �V index(cpi) of the inverted term in-
dices of two context providers cpi, cpj ∈ CP consists of six vector components, as defined in
Equation (4.46) - (4.51), and is defined as follows32:

�VCompatibility(cpi, cpj) =

sim
�
�V

Coutput

mandatory(cpi), �V
Cinput

mandatory(cpj)
�

sim
�
�V

Poutput

mandatory(cpi), �V
Pinput

mandatory(cpj)
�

sim
�
�V

Coutput

mandatory(cpi), �V
Cinput

optional(cpj)
�

sim
�
�V

Poutput

mandatory(cpi), �V
Pinput

optional(cpj)
�

θC

θP

(4.52)

For instance, a compatibility vector �VCompatibility(cpi, cpj) containing the similarity scores for
two context providers cpi, cpj ∈ CP for i �= j could consist of the following compatibility scores:

�VCompatibility(cpi, cpj) = [0.707 0.982 0.128 0.000 1 0]

With reference to Equation (4.46), the first value represents the compatibility score computed
for the mandatory concepts specified in the input and output sections of the data descriptions
of cpi, cpj ∈ CP . A value of 0.707 indicates that both context providers specify a different
set of terms t in the corresponding sections of their data description, i.e., there exists no full
correspondence between the terms t contained in I

Cinput

mandatory(cpj) and I
Coutput

mandatory(cpi). However
as θC = 1, the compatibility score represented by v1 is to be interpreted as a full compatibility

32For reasons of clarity and comprehensibility, the vector components of the compatibility vector
�VCompatibility(cpi, cpj) are specified in a column vector representation in Equation (4.52).

Chapter 4. Approach 131

regarding the corresponding inverted term indices although the calculated similarity score of their
vector representations is < 1 . The value of the second vector component v2 = 0.982 indicates
that both context providers specify different sets of properties and as θP = 0, I

Pinput

mandatory(cpj) �
I

Poutput

mandatory(cpi) wherefore this compatibility score is not to be interpreted as full compatibility
regarding the specification of mandatory properties. The vector components v3 = 0.128 and
v4 = 0.000 represent the compatibility scores calculated for the optional concepts and properties
cpj is able to process.

The individual values of the compatibility vector components are then aggregated into a final
compound compatibility score that quantifies the overall degree of compatibility of two context
providers cpi, cpj ∈ CP and is calculated on the basis of a linear combination of the single
compatibility scores recorded in the corresponding compatibility vector �VCompatibility(cpi, cpj).
The final compatibility scores are computed for all possible combinations, i.e., pairs of context
providers cpi, cpj ∈ CP for i �= j and are recorded in the compatibility matrix MC . However,
there exist plenty of possible calculation heuristics that might be adapted to meet the require-
ments of domain or application-specific settings. In the following, we outline a simple method for
calculating the overall compatibility score between two context providers cpi, cpj ∈ CP for i �= j

on the basis of a linear combination of the arithmetic means of the corresponding compatibility
vector’s components (cf. Equation (4.52)) for the case that both θC and θP are 0:

sim
�
�V

Coutput

mandatory(cpi), �V
Cinput

mandatory(cpj)
�

+ sim
�
�V

Poutput

mandatory(cpi), �V
Pinput

mandatory(cpj)
�

2 iff θC , θP = 0

In case θC(cpi, cpj) = 1, the compatibility score sim
�
�V

Coutput

mandatory(cpi), �V
Cinput

mandatory(cpj)
�

is replaced
by the value 1; for θP (cpi, cpj) = 1, sim

�
�V

Poutput

mandatory(cpi), �V
Pinput

mandatory(cpj)
�

= 1 in the equation
above. Iff there is a full compatibility w.r.t. the mandatory scores (cf. Equation (4.46) and (4.47))
a possible solution is to further consider the scores computed for the optional terms (cf. Equa-
tion (4.48) and (4.49)) to further differentiate between identical compatibility scores computed
on the basis of the mandatory terms’ specification. This allows for selecting and orchestrating
the most appropriate context provider, i.e., the context provider with the highest overall score
from a set of context providers that have identical compatibility scores computed on the basis
of their mandatory terms for a given context provider. The following equation depicts a simple
calculation heuristic that integrates the optional compatibility scores into the calculation of the
overall compatibility score between two context providers cpi, cpj ∈ CP for i �= j iff θC = θP = 1:

1 +
sim

�
�V

Coutput

mandatory(cpi), �V
Cinput

optional(cpj)
�

+ sim
�
�V

Poutput

mandatory(cpi), �V
Pinput

optional(cpj)
�

2 iff θC , θP = 1

The above equation represents the calculation for the inverse case where θC = θP = 1 and has
to be adapted accordingly in case only one of the two subset indicators θC or θP is 1 or in case
the value of both indicators is 0. The final result of the compatibility score calculation is then
integrated in the compatibility matrix MC as a matrix coefficient of the row and column indexes
representing the two context providers cpi and cpj .

4.4.2.4 Creation of Compatibility Matrix MC and Orchestration Matrix MO

The compatibility matrix MC contains the final compatibility scores of all possible pairs of con-
text providers cpi, cpj ∈ CP . It is defined as a |CP | × |CP |-matrix composed from the set of
all context providers cp ∈ CP deployed in a running instance of the context framework. The

Chapter 4. Approach 132

matrix coefficient of a row i and a column j indicates the degree of compatibility computed for
the context provider cpi ∈ CP represented by the i-th row and the context provider cpj ∈ CP

represented by the j-th column. A matrix coefficient MC [cpi, cpj] thus represents the overall
compatibility score computed for the two context providers cpi and cpj where cpi is the emitting
and cpj the receiving context provider of a context model m ∈ Mcpi

. According to the compati-
bility score calculation method introduced in Section 4.4.2.3, a matrix coefficient MC [i, j] >= 1
indicates a full compatibility between the context provider cpi ∈ CP represented in the i-th row
and the context provider cpj ∈ CP represented by the j-th column of the compatibility ma-
trix MC . This means that the context model m ∈ Mcpi

emitted by cpi contains at minimum all
mandatory concepts and properties cpj specified in the input section of its data description and
requires the contextual information contained in the context model m ∈ Mcpi

to be described
with for its further refinement and complementation. In such a case, the corresponding matrix
coefficient in the orchestration matrix MO is set to 1 as a relation r can be established between
them (cf. Section 4.3.4). A matrix coefficient MC [i, j] < 1 signals that two context providers
cpi, cpj ∈ CP are not entirely compatible as there is a mismatch or misalignment between the
set of terms they regard mandatory in the output and input sections of their data descriptions.

The orchestration matrix MO is defined as a |CP | × |CP | adjacency matrix which specifies the
relations r ∈ R existing between the context providers cp ∈ CP deduced from the compatibility
matrix MC where R is the superset of all relations that can be deduced from MO (see Equa-
tion (4.54)). A matrix coefficient MO

�
α(ri), ω(ri)

�
between two context providers α(ri), ω(ri)

being incident to a relation ri ∈ R is 1 in case a relation can be established between them as
a result of an analysis of their compatibility score. The coefficient value 0 indicates that no
relation r ∈ R exists between two context providers α(r), ω(r) ∈ CP which is to be interpreted
as an incompatibility.

After the compatibility matrix MC has been created, it is analyzed and transformed into the
orchestration matrix MO; Algorithm 1 describes this process. The algorithm requires a compati-
bility matrix MC and a threshold value that determines the value at which two context providers
cpi, cpj ∈ CP are considered compatible as input parameters. A common threshold value is 1.

Algorithm 1: Transforming the compatibility matrix MC into the orchestration matrix MO

Data: Compatibility Matrix MC , Threshold threshold
Result: Orchestration Matrix MO

1 Initialize(MO) /* set all coefficients to 0 */
2 for i = 1 to |CP | do
3 for j = 1 to |CP | do
4 if MC [i, j] >= threshold then
5 if

�
MC [1 . . . |CP |, j]max < MC [i, j]

�
AND

� �i
k=1

MO[k, j] < 1
�

then
6 MO[i, j] ← 1
7 end
8 end
9 end

10 end

In a first step, the orchestration matrix MO is initialized by setting the values of all its ma-
trix coefficients to 0. For each possible combination of context providers cpi, cpj ∈ CP , we
check whether the value of the corresponding matrix coefficient indicated by the i-th row and
j-th column is equal to or above the predefined threshold. If this is the case, the condition in
line 5 assesses whether the current coefficient MC [i, j] exhibits the greatest value in the current
column j of the compatibility matrix MC [1 . . . |CP |, j] and whether there does not exist any

Chapter 4. Approach 133

0 0 0 1.02 1.73 0.24 0.00 0.08
0 0 0 0.45 0.03 0.56 0.88 1.04
0 0 0 0.02 0.01 0.01 0.00 0.01
0 0 0 0 0.05 0.12 0.01 0.13
0 0 0 0.02 0 1.44 1.00 0.77
0 0 0 0.45 0.09 0 0.01 0.01
0 0 0 0.10 0.01 0.03 0 0.68
0 0 0 0.02 0.17 0.06 0.01 0

=⇒

0 0 0 1 1 0 0 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 1 1 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

Figure 4.6: Example of a compatibility matrix MC and the corresponding orchestration
matrix MO

coefficient value > 0 in the corresponding column of the orchestration matrix MO[1 . . . |CP |, j].
If both conditions evaluate to true, the corresponding coefficient in the orchestration matrix
MO[i, j] is set to 1, otherwise the matrix coefficient remains in its default value 0. The value 0
indicates no compatibility at all and is per definition set for identical context providers or be-
tween primary context providers p ∈ P as those per definition (cf. Definition 4.3 and 4.4) can not
mutually complement or refine their context models m ∈ M . However, in case no overall com-
patibility score between two context providers cpi, cpj ∈ CP was computed, i.e., no compatibility
vector �VCompatibility(cpi, cpj) exists, the corresponding matrix coefficient MO[cpi, cpj] is set to 0
per default. Figure 4.633 depicts an exemplary compatibility matrix MC and the corresponding
orchestration matrix MO generated using the steps defined in Algorithm 1 for three primary
context providers p1, p2, p3 ∈ P and five complementary context providers c1, c2, c3, c4, c5 ∈ C,
from which the three orchestration trees op1,2,3 ∈ O depicted in Figure 4.8 can be deduced.

4.4.3 Building Orchestration Trees

As formally defined in the previous section for building the orchestration trees, the context
framework analyzes the data description of each context provider cp ∈ CP and computes a
compatibility matrix MC that serves as a basis for deducing an orchestration matrix MO that
defines the adjacency relationships between compatible context providers p, c ∈ Vp on the basis
of the compatibility scores. In this section, we formally define the graph G represented by
the orchestration matrix MO. Therefore, let G(V, R) denote the graph represented by the
orchestration matrix MO where V represents the set of context providers cp ∈ CP that exhibit
relations to other context providers being members of the set CP and thus can be orchestrated
in an orchestration tree op ∈ O. Therefore, V (G) is defined as the union of all sets Vp for all
op ∈ O and p ∈ P :

V (G) :=
�

p∈P

Vp (4.53)

R(G) denotes the set of relations r ∈ R existing for the graph G(V, R) that can be derived from
the compatibility matrix MC and that exist between compatible context providers cp ∈ V, CP .
Similar to Equation (4.53), R(G) is defined as the union of all sets Rp for all op ∈ O and p ∈ P :

R(G) :=
�

p∈P

Rp (4.54)

33For reasons of clarity and comprehensibility we have rounded the compatibility scores to two digits after the
period.

Chapter 4. Approach 134

As a consequence, every orchestration tree op ∈ O is a partition of the full orchestration graph
G(V, R) of all orchestration trees op ∈ O and all context providers p, c ∈ Vp orchestrated within
them. Therefore, all orchestration trees op ∈ O can be regarded as partitions of the set of nodes
V (G) of the full orchestration graph G(V, R) with Vp1 , . . . , Vp|O| ⊆ V (G) and Vpi

∩ Vpj
= ∅ for

i �= j. Consequently, an orchestration tree op ∈ O is a subgraph G[Vp] of the graph G(V, R)
being induced through the set Vp where op ∈ O � G.

Under this consideration, we can conceive an instance of a context configuration cc ∈ CC as the
result of an aggregation or consolidation function faggregate : G(V, R) −→ OM over the entire
graph G(V, R) with V (G) :=

�|P |
i=1

Vpi
and R(G) :=

�|P |
i=1

Rpi
that merges and consolidates the

context models emitted by the context providers c, p ∈ V being orchestrated in the orchestration
trees op ∈ O, which together constitute the full orchestration graph G(V, R).

Algorithm 2: Deducing the orchestration trees op ∈ O from the orchestration matrix MO

Data: Orchestration Matrix MO

Result: Deduction and initialization of orchestration trees op ∈ O for all p ∈ P

1 foreach p ∈ P do
2 Vp ← { } ; Rp ← { } ;
3 Vp ← Vp ∪ {p} ;
4 Instantiate(op ∈ O) ;
5 end
6 for j = 1 to |CP | do // Iterate over all columns in MO

7 for i = 1 to |CP | do // Iterate over all rows in MO

8 if MO[i, j] == 1 then
9 Rp ← Rp ∪

��
cp[i], cp[j]

��
; // Create and add tuple r =

�
cp[i], cp[j]

�

10 Traverse (i, j) ;
11 end
12 end
13 end

Function Traverse(row i, initial index z)
Data: row index i, index of context provider to add z
Result: Add cp[z] to the set Vcp[i] of its corresponding primary context provider cp[i]

1 if cp[i] ∈ P then
2 Vcp[i] ← Vcp[i] ∪

�
cp[z]

�
; // Add cp[z] to Vcp[i] of its primary context provider

3 else
4 for k = 1 to |CP | do
5 if MO[k, i] == 1 then
6 Traverse (k, z) ; // Traverse MO until cp[k] ∈ P
7 end
8 end
9 end

The adjacency relationships represented by the orchestration matrix MO serves as a basis for
deducing the orchestration trees op ∈ O of primary context providers p ∈ P and compatible
complementary context providers c ∈ C where one op ∈ O is deduced for each p ∈ P . The
orchestration matrix MO contains a separate row and column for every element p ∈ P and
c ∈ C. Algorithm 2 describes the necessary steps for deducing the orchestration trees op ∈ O

from the orchestration matrix MO. Since every row respectively column pertains to one distinct
context provider cp ∈ CP , we make use of a lookup function cp[i] that refers to the context
provider cp ∈ CP represented by the index i.

Chapter 4. Approach 135

p1 p2 p3 c1 c2 c3 c4 c5

p1 0 0 0 1 1 0 0 0
p2 0 0 0 0 0 0 0 1
p3 0 0 0 0 0 0 0 0
c1 0 0 0 0 0 0 0 0
c2 0 0 0 0 0 1 1 0
c3 0 0 0 0 0 0 0 0
c4 0 0 0 0 0 0 0 0
c5 0 0 0 0 0 0 0 0

≡

0 0 0 1 1 0 0 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 1 1 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

Figure 4.7: Example of an adjacency tableau and corresponding orchestration matrix MO

for eight context providers p1,...,3 ∈ P and c1,...,5 ∈ C

In a first step, we instantiate a new instance of an orchestration tree op ∈ O for every primary
context provider p ∈ P deployed in a running instance of the context framework and initialize
the sets Vp and Rp; moreover, p is added to the set of constituting context providers Vp (line 1
to 5). On each position where the matrix coefficient MO[i, j] == 1, a new tuple r consisting of
the context provider cp[i], represented by row index i, and context provider cp[j], represented by
the column index j, is created and added to Rp (line 10). The algorithm furthermore evaluates
whether the context provider cp[i] represented in the current row i is a member of the set of
primary context providers P or a member of the set of complementary context providers C (line
1-2 in Function Traverse34). In case cp[i] is a member of the set of primary context providers
P , the context provider cp[z] ∈ CP represented in the z-th row becomes a member of the set
Vcp[i] of the corresponding primary context provider cp[i]. If cp[i] is not a member of P , the
algorithm memorizes the column index of the initial context provider in a variable z, sets the
new column index to the value of the corresponding row index i, and recursively reinitiates the
traversing process until a new matrix coefficient with value 1 is discovered (line 4 to 8 in Function
Traverse). Basically, the row index i of the current matrix coefficient MO[i, j] becomes the new
column index in case the context provider represented in the i-th row is not a member of P .
This allows us to retrieve all the context providers c ∈ C that constitute the set Cp ⊂ Vp of a
primary context provider p ∈ P . However, the algorithm for deducing the orchestration trees
op ∈ O from the orchestration matrix MO requires the existence of a fixed assignment of context
providers cp ∈ CP and indices.

Figure 4.7 depicts an example of an orchestration matrix containing three primary context
providers p1,...,3 ∈ P and five complementary context provider c1,...,5 ∈ C. Each row repre-
sents a particular context provider cp ∈ CP where the matrix coefficients in each row indicate a
relationship to the context provider given in each column in case its value is set to 1. Likewise, 0
indicates no relationship r ∈ R(G) between the context provider of the current row and the con-
text provider of the current column. As expounded in Definition 4.3 and 4.4, primary context
providers p ∈ P can not be connected among each other, i.e., primary context providers p ∈ P

always have complementary context providers c ∈ C as successors. Complementary context
providers c ∈ C in contrast can be connected among each other in a non-cyclic way.

As an example, let there be three primary context providers p1,...,3 and five complementary
context providers c1,...,5 deployed within a running instance of the framework. By analyzing the
data descriptions exposed by each context provider (cf. Section 4.4.1), the adjacency tableau
and corresponding orchestration matrix MO depicted in Figure 4.7 can be created based on the
compatibility indicators computed using the methodology expounded in Section 4.4.2. The first

34The function Traverse is part of Algorithm 2 but specified separately for reasons of comprehensibility and
recursive requests.

Chapter 4. Approach 136

p1

c1 c2

c3 c4

r1 r2

r4 r5

(a) Orchestration Tree op1 ∈ O

p2

c5

r3

(b) Orchestration
Tree op2 ∈ O

p3

(c) Orchestration
Tree op3 ∈ O

Figure 2: Correspondence between the relations r ∈ Rp constituting the struc-
ture of an orchestration tree op ∈ O and the corresponding transactions t ∈ Tp

p1

c1 c2

c3 c4

c5

r1 ∼= t1 r2

r3 r4

r5

p3

c1 c2

c3 c4

c5

r1 ∼= t1 r2

r3 r4

r5

Figure 3: Correspondence between the relations r ∈ Rp constituting the struc-
ture of an orchestration tree op ∈ O and the corresponding transactions t ∈ Tp

- with parbox-command

2

Figure 4.8: Orchestration trees op1 , op2 , and op3 derived from the orchestration matrix MO

depicted in Figure 4.7

three rows represent those complementary context providers c ∈ C that are adjacent to the three
primary context providers p1, p2, and p3 and take their context models as input. For instance, p1

has two complementary context providers c1 and c2 as direct successors that refine and augment
the context model m ∈ Mp1 delivered by p1 ∈ P .

The values in row 4 show the direct successors of the first complementary context provider c1.
Since the matrix coefficients in the entire row are set to 0, there exist no relationships to other
complementary context providers. c2 in line 5 for instance has two adjacent context providers c3

and c4, which both do not have any further successors that take their context models as input for
their acquisition tasks. By analyzing the given orchestration matrix MO, the orchestration trees
op ∈ O depicted in Figure 4.8 can be derived for each primary context provider p1,...,3 ∈ P 35

using the steps outlined in Algorithm 2. Orchestration trees in general represent atomic units of
context acquisition workflow schemes wf ∈ WF . In Section 4.5 we propose a working model for
processing the context providers orchestrated in an orchestration tree op ∈ O respectively the
data they create and emit.

4.5 A Transaction-based Processing Model for Context
Acquisition Workflows

After having introduced the formal model of the context-dependent RDF data replication frame-
work together with a formal description of the orchestration logic and an algorithmic description
of the orchestration process, we now present a transaction-based processing model for the ac-
quisition of contextual information, the aggregation of such information into compound context
acquisition models, and their transformation into a context configuration that represents the
user’s current context. The transaction-based model builds on the previous elaborations under-
taken in the formal model and guarantees context consistency, accurateness, and completeness
while taking into account mobile information system’s peculiarities (see [FZ94, KLO+04]). We
define the transaction-based processing model on the basis of a formalism developed for the
formal description of extended transaction model properties36 discussed in [CR91a, CR91c] and

35The orchestration tree o3 ∈ O for context provider p3 ∈ P can be considered a special case of an orchestration
tree that only contains a root element and no further adjacent elements. This case is discussed in Section 4.3.5

36Extended refers to the various models proposed as extensions to the traditional transaction model.

Chapter 4. Approach 137

denoted as ACTA37. One significant problem of the basic transaction model adopted by many
traditional databases is that it does not scale in terms of both functionality and performance
when an application consists of multiple distributedly operating activities that collaborate in an
autonomous and self-contained manner [CR94]. ACTA, among other frameworks proposed for
the axiomatic description of extended transaction model properties, is a first-order logic-based
formalism that takes into account the nature of interactions existing between extended transac-
tions and allows for characterizing their semantics, the types of dependencies existing between
them, as well as their effects on involved transactional objects [CR90, CR94]. For the formal
definition of the transactional processing model, however, we use it’s core elements as those
provide the necessary expressiveness to define the constituting elements with the compellable
precision rather than making use of ACTA’s full set of description primitives.

In the remainder of this section, we first outline some preliminaries which we consider funda-
mental for the transaction-based processing model presented in this section. We further define
the main elements of the model, provide definitions of the dependencies that exists between the
transactions constituting the model, and outline conditions being relevant for the transaction
management primitives proposed by our model in an axiomatic way. We complete this section
with a definition of the algorithms that are responsible for the acquisition and aggregation of
the contextual information represented in the context models emitted by context providers for
building a new instance of the context configuration which we conceive as a transit RDF-based
manifestation of the user’s current context.

4.5.1 Preliminaries

Primary context providers p ∈ P are defined independent of the transaction-based processing
model. This is due to the way how they acquire and provide contextual information, their
operational behavior which can be described as autonomous and proactive (cf. Definition 4.3),
and how they interact with the framework. The availability of a new context model mp emitted
by a primary context provider p ∈ P causes the instantiation of a new instance of a context
acquisition workflow wfop

∈ WF and initiates the invocation of the context acquisition activities
of all compatible complementary context providers c ∈ Cp orchestrated in the corresponding
orchestration tree op ∈ O.

Every single activity carried out by a complementary context provider c ∈ Vp to gather con-
textual information from the context source s ∈ S it encapsulates is executed in a dedicated,
self-contained, and independent context acquisition process38 that controls and coordinates the
operations appertaining to the acquisition, representation, and dissemination of contextual infor-
mation. All acquisition activities defined by a context provider are encapsulated in one context
acquisition process where the actual acquisition logic is defined external to the processing model.
We use this term to distinguish it from context acquisition workflows (cf. Definition 4.8) which
represent the sum of all context acquisition processes of the context providers cp ∈ Vp orches-
trated in an orchestration tree op ∈ O. We regard every single context acquisition process,
denoted as cap(c) in the following, as a single atomic transaction [GR92] that is completely
decoupled and executed independently from other context acquisition processes. Context ac-
quisition processes are instantiated and executed on demand after the context model mcpi

of a
37The framework’s name is deduced from the latin word ‘acta’ meaning ‘actions’.
38For reasons for clarity and distinguishability, we denote the entire set of operations carried out by a com-

plementary context provider c ∈ Cp to create and emit a context model as context acquisition process in order
to distinguish it from the set of all context acquisition processes pertaining to a context acquisition workflow
wfop

∈ W F .

Chapter 4. Approach 138

preceding context provider cpi ∈ N−
op

(cpj) was emitted. All the activities carried out by a con-
text provider cp ∈ Vp to transform the contextual information it acquires into a context model
m ∈ Mcp, and to emit this context model for context augmentation and refinement are processed
by the framework as one isolated transaction that either commits or aborts as a whole.

In this work, we therefore define a transaction as an atomic, self-contained, and autonomous
process that involves all the necessary activities related to the acquisition, interpretation, clus-
tering, transformation, consolidation, and dissemination of contextual information in form of an
RDF-based context model that can be used by compatible context providers c ∈ Cp for context
refinement and augmentation. Technically, a transaction ensures that all operations involved in
a context acquisition process of a context provider p, c ∈ Vp are executed correctly and that only
valid and consistent context models m emitted by cp ∈ Vp are added to the compound context
acquisition model Mop

∈ OM . In this respect, any context acquisition process cap(cp) resulting
in the dissemination of a context model m ∈ Mop

is regarded an elementary or nested transaction
w.r.t. the context acquisition workflow wfop

∈ WP specified by an orchestration tree op ∈ O it
belongs to. As a corollary, a context acquisition workflow wfop

∈ WF that controls and moni-
tors the context acquisition processes of the containing context providers cp ∈ Vp and which is
responsible for the aggregation of the emitted context models into a compound context acquisi-
tion model Mop

∈ OM is regarded as one global transaction that consists of a distinct number
of nested transactions that correspond to the elementary context acquisition processes cap(c) of
the context providers c ∈ Vp. In this respect, a context acquisition workflow wfop

∈ WF ensures
that all nested transactions are executed consistently and that the context models m ∈ M emit-
ted by the orchestrated context providers cp ∈ Vp are aggregated to a compound context model
Mop

∈ OM in a consistent and coherent manner.

To sustain this requirement, all nested transactions have a temporal constant assigned to them
that determine a time frame in which a transaction must finish its acquisition activities and
invoke a commit event, i.e., in which all the single operations pertaining to the acquisition of
contextual information from a context source s ∈ S must be completed. This constant is a
necessary constituent to sustain a deterministic runtime behavior regarding the single context
acquisition processes carried out within a context acquisition workflow wfop

∈ WF , which would
be difficult if transactions were conceded an arbitrary amount of time for the acquisition and
dissemination of contextual information.

At any point in time, multiple context acquisition workflows wfop
∈ WF might be active while

there is a 1:1:1-relationship between a primary context provider p ∈ P , the corresponding orches-
tration tree op ∈ O, and its context acquisition workflow wfp ∈ WF . Every context acquisition
workflow is considered an atomic unit where the containing context providers cp ∈ Vpi

acquire
their context models independently from context providers cp ∈ Vpj

where Vpi
∩ Vpj

= ∅. These
concepts resemble the idea of the atomicity and isolation properties defined in the ACID paradigm
for database transactions [GR92]. In that sense, the context models m ∈ Mop

acquired within
the course of their corresponding context acquisition processes are considered as atomic units
where only the corresponding compound context model Mop

∈ OM is updated as a whole for
the creation of a new instance of the context configuration cc.

As a consequence, there exists exactly one distinct context acquisition workflow wfop
∈ WF

for an orchestration tree op ∈ O at any given point in time, i.e., one orchestration tree op ∈ O

can not be executed by two different context acquisition workflows wfi, wfj ∈ WF and due to
the transitive closure on the relations between the sets P , O, and WF , there does not exist
two different global transactions for the same op ∈ O for i �= j. Furthermore, the set of all
compound context acquisition models OM is regarded as the data basis from which the containing

Chapter 4. Approach 139

compound context acquisition models Mop
∈ OM are aggregated and transformed into the

context configuration cc ∈ CC. The sequence of global transactions and thus the sequence of
context acquisition workflows causes a context configuration to transition from a state qi to a
new state qi+1 that represents an updated manifestation of the user’s current context.

The set of compound context acquisition models OM always contains exactly one concrete
instance of a compound context model Mop

pertaining to an orchestration tree op ∈ O. If a
context acquisition workflow wfop

∈ WF also pertaining to op ∈ O initiates the creation of a
new compound context model M

�

op

39, the previously created compound context acquisition model
Mop

which is already a member of OM is replaced by M
�

op
so that OM always contains only the

most recently created compound context acquisition models. More precisely, this means that a
compound context model Mopi

∈ OM created by a context acquisition workflow wfopi
∈ WF at

a time τi
40 is replaced by a compound context model M �

opi

∈ OM created by the same context
acquisition workflow wfopi

∈ WF at a time τi+1. Hence, the sets O, WF , P , and OM always
contain the same amount of members where |P | = |O| = |WF | = |OM |.

One rationale of the processing model is that it employs a reactive behavior, i.e., the aggregation
and consolidation process the result of which is a new context configuration instance cc ∈ CC

is only initiated, iff a new compound context acquisition model Mop
∈ OM is available. This

means that an updated version of the context configuration is not created unless a new compound
context acquisition model Mop

∈ OM was created and its pertaining global transaction was
committed. Unless no new or updated contextual information has been acquired, the latest
context configuration resembles a valid representation of the user’s surrounding context.

For convenience reasons, we add the symbol of the context provider that emitted a context model
as subscript to the symbol representing a context model (cf. Table 4.1). Hence, let mcp denote a
context model emitted by context provider cp ∈ CP . To add a temporal dimension to elements
of the formal processing model, we use inverted commas as a complement to an element’s symbol
as this allows us to distinguish between different instances of the same element that have been
created or modified at different points in time; for instance, let m�

cp denote the instance of a
context model m pertaining to a context provider cp that has been emitted after mcp.

In the following, we formally define the main constituting elements of the transaction-based
processing model and present its main algorithms for the distributed acquisition and aggregation
of contextual information. We base our definitions on elements defined by the ACTA formal
framework and abridge or adapt them if necessary. Table 4.7 summarizes the symbols which
have been used for defining the transaction-based processing model presented in this work.

4.5.2 Definition of Transactions

A fundamental element of the transactional processing model is the 1-to-1 correspondence that
exists between the relations r ∈ Rp representing the structure of an orchestration tree op ∈ O and
the transactions in which the context acquisition processes of the constituting complementary
context providers c ∈ Cp are executed. In this respect, the context acquisition workflow wfop

∈
WF of an orchestration tree op ∈ O is considered as one global transaction that consists of a
number of nested or elementary transactions (cf. Section 4.5.1), that is, all the context acquisition

39For reasons of distinguishability, we denote the most recently created compound context acquisition model
as M

�
op

in order to distinguish it from the previously created compound context acquisition model Mop
which is

already a member of OM .
40We use the symbol τ for designating a specific point in time to distinguish it from transactions which we

denote as t.

Chapter 4. Approach 140

Table 4.7: Symbols used in the transactional processing model

Symbol Description
t A nested or elementary transaction
T Set of transactions t ∈ T
Tp Distinct set of transactions t ∈ Tp that correspond to the set of relations Rp of

the orchestration tree op

GTp Global transaction corresponding to an orchestration tree op ∈ O and its con-
text acquisition workflow wfop

∈ WF respectively
cap(c) Context acquisition process of the complementary context provider c ∈ Cp that

executes all context acquisition activities defined by a context provider c ∈ Cp.
ob Object that is created, modified, or deleted in the course of a transaction

through an operation
opt Atomic operation executed in the course of a transaction t ∈ T

opt[ob] Operation op applied to an object ob in the course of a transaction t ∈ T
OPt Set of atomic operations op ∈ OPt that are defined for and can be executed by

a transaction t
OEt Set of object events that can be invoked by a transaction t
SEt Set of significant events defined by the transaction model for the transactions

t ∈ Tp

IEt Set of initiation events related to the invocation of a transaction t ∈ Tp

TEt Set of termination events related to the invocation of a transaction t ∈ Tp

SEGTp Set of significant events defined by the proposed transaction model that can
only be invoked on global transactions GTp

IEGTp Set of initiation events that can only be invoked on global transactions GTp

TEGTp Set of termination events that can only be invoked on global transactions GTp

� Event created as a result of the execution of an operation op in the course of a
transaction t ∈ T on an object ob

� → �� Indicates that the invocation of an object- or significant event �� is the result
of the invocation of an event �

τ Temporal constant indicating the duration in which a transaction t ∈ Tp must
complete its acquisition operations, i.e., in which a termination event � ∈ TEt

must be invoked
�,�� ,��� Inverted commas are used to indicate temporal aspects between element in-

stances, e.g., a context model m was emitted previous to a context model m�

N+

T (t) Represents the set of transactions tsucc ∈ T being adjacent to t such that tsucc

succeeds t
N−

T (t) Represents the set of transactions tprec ∈ T being adjacent to t such that tprec

precedes t
H, Ht Event history of both object events and significant events where the partition

Ht ⊆ H contains only those events invoked by a transaction t

processes cap(c) of its constituting context providers c ∈ cp are regarded as nested transactions t

that together constitute a global transaction. As a consequence, for every single relation r ∈ Rp

of an orchestration op ∈ O there exists exactly one distinct transaction t. We equate the concepts
of relations and transactions in this work, as a relation per definition (cf. Section 4.3) represents a
context acquisition process between two compatible context providers cpi, cpj ∈ Vp for cpi �= cpj

that is initiated based on the existence of a context model m emitted by a preceding context
provider cpi ∈ N−

op
(cpj). Therefore, let the symbol t represent a transaction and be defined

as an ordered list of atomic operations op ∈ OP , where OP is defined as the set of all atomic
operations defined by the framework’s processing model. Hence, a transaction t is an element
from the set of all eligible combinations of atomic operations OP n which are defined by the
framework’s internal acquisition model (cf. Table 4.3) and constitute the necessary elements for
acquiring, transforming, and disseminating contextual information in form of a context model m.
Formally, a transaction t can thus be defined as an n-tuple of operations op ∈ OP as expressed

Chapter 4. Approach 141

p1

c1 c2

c3 c4

c5

r1 r2

r3 r4

r5

(a) Orchestration Tree op1 ∈ O with five
relations r1...5 ∈ Rp1 and six context
providers p, c ∈ Vp1

t∗0

t1 t2

t3 t4

t5

Invocation Sequence

Structural Dependency

(b) Constituting structure of the global
transaction GTp1 corresponding to
op1 ∈ O depicted in (a)

Figure 1: Correspondence between the relations r ∈ Rp constituting the struc-
ture of an orchestration tree op ∈ O and the corresponding transactions t ∈ Tp

Lorem ipsum dolor sit amet, consetetur sadipscing elitr, sed diam nonumy
eirmod tempor invidunt ut labore et dolore magna aliquyam erat, sed diam
voluptua. At vero eos et accusam et justo duo dolores et ea rebum. Stet clita
kasd gubergren, no sea takimata sanctus est Lorem ipsum dolor sit amet. Lorem
ipsum dolor sit amet, consetetur sadipscing elitr, sed diam nonumy eirmod
tempor invidunt ut labore et dolore magna aliquyam erat, sed diam voluptua. At
vero eos et accusam et justo duo dolores et ea rebum. Stet clita kasd gubergren,
no sea takimata sanctus est Lorem ipsum dolor sit amet.

Lorem ipsum dolor sit amet, consetetur sadipscing elitr, sed diam nonumy
eirmod tempor invidunt ut labore et dolore magna aliquyam erat, sed diam
voluptua. At vero eos et accusam et justo duo dolores et ea rebum. Stet clita
kasd gubergren, no sea takimata sanctus est Lorem ipsum dolor sit amet. Lorem
ipsum dolor sit amet, consetetur sadipscing elitr, sed diam nonumy eirmod
tempor invidunt ut labore et dolore magna aliquyam erat, sed diam voluptua. At
vero eos et accusam et justo duo dolores et ea rebum. Stet clita kasd gubergren,
no sea takimata sanctus est Lorem ipsum dolor sit amet.

1

Figure 4.9: Correspondence between the relations r ∈ Rp constituting the structure of an
orchestration tree op ∈ O and the corresponding transactions t ∈ Tp

in Equation (4.55):
t :=

�
op0, op1, . . . , opn

�
∈ OP n . (4.55)

Furthermore, let T be the general symbol for a set of transactions t ∈ T where Tp specifically
represents the set of transactions t ∈ Tp that correspond to a concrete orchestration tree op ∈ O

respectively to the set of relations Rp that embody its structure. We explicitly express this
correspondence through tuples (ti, ri) of a relation R

Tp,Rp

Corresponds that is introduced as an addition
to the relations defined in Table 4.2. The relation R

Tp,Rp

Corresponds serves as a mean for formally
expressing the correspondence that exists between relations r ∈ Rp and transactions t ∈ Tp. As
there corresponds per convention exactly one set Tp to one set of relations Rp ∈ R(G) where
|Rp| = |Tp|, let R

Tp,Rp

Corresponds thus represent this 1-to-1 correspondence and be defined as the real
subset of the Cartesian product of the sets Tp and Rp:

R
Tp,Rp

Corresponds ⊂ Tp × Rp (4.56)

Every relation r ∈ Rp corresponds to exactly one transaction t ∈ Tp, that is, for every relation
r ∈ Rp there exists one distinct transaction t ∈ Tp that corresponds to r as depicted in Figure 4.9.
With Equation (4.56), this requirement is postulated in the following equation which we consider
fundamental to the transaction-based processing model:

∃! r ∈ Rp ∧ ∃! t ∈ Tp : (t, r) ∈ R
Tp,Rp

Corresponds (4.57)

∀r ∈ Rp ∃! t ∈ Tp : (t, r) ∈ R
Tp,Rp

Corresponds (4.58)

As a consequence, Equation (4.56) and (4.57) introduce the necessary elements that allow us to
define the set of transactions Tp on a formal basis:

Tp :=
�

t | ∃ r ∈ Rp : (t, r) ∈ R
Tp,Rp

Corresponds

�
(4.59)

As already expounded in Section 4.5.1, the contextual information emitted by the context

Chapter 4. Approach 142

providers p, c ∈ Vp as a result of the execution of their context acquisition processes are ac-
quired and aggregated in the course of a global transaction. Therefore, let the symbol GTp

represent a global transaction defined over the set of nested transactions Tp and formally ex-
pressed as the quadruple GTp :=

�
t∗
0
, Tp, Cp, wfop

�
where t∗

0
represents the initiating transaction,

Tp represents the set of nested transactions t a global transaction consists of, Cp represents the
set of complementary context provider c ∈ Cp the context acquisition processes of which are ex-
ecuted by the nested transactions t ∈ Tp, and wfop

represents the context acquisition workflow
through which a global transaction is executed.

The initiating transaction t∗
0

/∈ Tp corresponds to the primary context provider an orchestration
tree and context acquisition workflow pertains to and is defined as a special transaction since
the acquisition behavior of a primary context provider is different from that of a complementary
context provider and defined independent from the processing model primitives. By treating the
acquisition and dissemination of a context model mp by a primary context provider p ∈ P as
events that occurred in a special transaction t∗

0
, the occurrence of the emit event can be used as

an invocation of a global transaction GTp , if and only if a number of conditions are fulfilled (see
Equation (4.75) and Algorithm 3).

The sequence of transactions t ∈ Tp invoked by a global transaction GTp partially corresponds to
the structure of the relations r ∈ Rp of its pertaining orchestration tree op ∈ O, i.e., the structural
composition of context providers p, c ∈ Cp defined by the relations r ∈ Rp of an orchestration
tree op ∈ O is per definition partially reflected in the invocation sequence of their corresponding
transactions t ∈ Tp: if two relations ri, rj ∈ Rp are adjacent to one another such that ω(ri) =
α(rj), the invocation order of their corresponding transactions always invokes ti ∈ Tp prior to
tj ∈ Tp, where tj is only invoked when ti successfully committed beforehand, otherwise tj aborts
(cf. Section 4.5.4). However, there exists only a partial correspondence between the composition
structure of context providers p, c ∈ Vp orchestrated in op ∈ O and the invocation sequence of
their corresponding transactions t ∈ Tp as they are, depending on the structure encoded in the
relations r ∈ Rp, invoked in parallel and operate independently and autonomously from one
another. Thus, it is inherently impossible to determine their runtime behavior at design time.
Referring to the orchestration tree illustrated in Figure 4.9, the transaction t5 representing the
context acquisition process of c5 can invoke a commit event prior to c1 although transaction t1

had been started prior to t5.

In general, there exists a bijective relationship between a transaction t ∈ Tp and the context
model m emitted by a context provider c ∈ Cp. The result of an instantiation of a transaction
t ∈ Tp is always the creation and dissemination of a context model m, if and only if t committed
successfully. As a corollary, the number of transactions t ∈ Tp that have invoked a commit event
is always equal to the number of context models m ∈ Mop

\mp as the context model mp emitted
by the primary context provider p ∈ Vp is processed external to the transactional model due to
the operational behavior of p.

Any wfop
∈ WF that represents a running instance of the context acquisition workflow specified

by an orchestration tree op ∈ O is executed as a global transaction GTp where its sub transactions
t ∈ Tp are used to encapsulate and execute the context acquisition processes of the context
providers c ∈ Cp orchestrated in op. Let the relation RG,O

Corresponds ⊂ G × O represent the
correspondence that exists between the orchestration trees op ∈ O and the global transactions
GTp of their context acquisition workflows. Furthermore, each context acquisition workflow
wfop

∈ WF and thus each global transaction GTp is executed in an isolated manner and is
processed by the context framework as a single atomic unit that either commits or aborts as a

Chapter 4. Approach 143

whole41 (cf. [GR92]). In case of a commit or a partial commit (cf. Section 4.5.4), the pertaining
compound context acquisition model Mop

is added to the set of compound context models OM .
Therefore, we postulate that set-theoretically there exists one distinct global transaction GTp for
every op ∈ O and any wfop

∈ WF respectively:

∀op ∈ O ∃! GTp : (GTp , op) ∈ RG,O
Corresponds (4.60)

In addition, let N+

Tp
(t) and N−

Tp
(t) represent structural dependencies (cf. Section 4.5.4) that exist

between the transactions t ∈ Tp where N+

Tp
(t) represents those transactions tsucc ∈ Tp that are

adjacent to t ∈ Tp such that tsucc succeeds t, and N−
Tp

(t) represents opposite transactions tprec

that precede t. In consequence, N+

Tp
(t) represents those transactions tsucc ∈ Tp that exhibit a

structural dependency to t such that (tsucc S D t) holds (cf. Equation (4.64)) where a transaction
tsucc can first begin when tsucc either commits or aborts. N+

Tp
(t) is defined in Equation (4.61)

for i �= j and t �= tsucc:

N+

Tp
(t) :=

�
tsucc ∈ Tp

�� ∃ri, rj ∈ Rp : ω(ri) = α(rj)

∧
�
(t, ri) ∈ R

Tp,Rp

Corresponds

∧ (tsucc, rj) ∈ R
Tp,Rp

Corresponds

��
(4.61)

In the same way, let N−
Tp

(t) represent the opposite case and contain only those transactions tprec

that precede t such that the invocation of a begin event on t requires a commitment or abortion
of tprec. Equation (4.62) formally defines N−

Tp
(t) for i �= j and t �= tprec:

N−
Tp

(t) :=
�

tprec ∈ Tp

�� ∃ri, rj ∈ Rp : ω(ri) = α(rj)

∧
�
(tprec, ri) ∈ R

Tp,Rp

Corresponds

∧ (t, rj) ∈ R
Tp,Rp

Corresponds

��
(4.62)

4.5.3 Events and Event Histories

Analogous to the ACTA framework, we distinguish between events invoked by the execution of
operations on objects, so-called object events and events that are caused by the invocation of
transaction management primitives termed significant events (cf. [CR94]). An object event � is
the result of the invocation of an operation op on an object ob being specific to that object. The
operations and hence the events are determined by the type of object an operation is executed
on in the course of a transaction t. Thus, let the invocation42 of an object event � ∈ OEt on
an object ob ∈ OB through the execution of an operation op by a transaction t expressed as
opt[ob] ∈ OEt where OEt represents the set of object events “that can be invoked by t” [CR94].

Significant events, in contrast, are represented by the symbol SEt or SEGTp and can be invoked
on transactions defined in the transaction model. The subscript refers to the specific type of
transaction a set of significant events is defined for. Furthermore, the set of significant events SEt

is compartmentalized into initiation events IEt and termination events TEt where IEt∩TEt = ∅
41In addition to the usual termination events (commit and abort), we have defined a partial commit event (cf.

Section 4.5.3) that allows a global transaction to commit even if not all of its nested transactions committed (cf.
Equation (4.78)).

42We use the term ‘invocation’ analogous to its definition in the ACTA formalism, meaning to “cause an event
to occur” [CR94].

Chapter 4. Approach 144

and IEt ∪ TEt ⊆ SEt
43. IEt and TEt define events that are related to the invocation and

termination of a transaction t ∈ Tp whereas IEGTp and TEGTp define equivalent events for global
transactions GTp . Similar to the ACTA model, we perceive a transaction t ∈ T as in progress
if t has been invoked by an execution event defined in IEt and has not yet been terminated by
the execution of a termination event � ∈ TEt.

For global transactions, we have extended the set of initiation events TEt and introduce a special
form of commit operation, which we call partial commit. A PartialCommitGTp ∈ TEGTp refers
to situations in which only a subset of the transactions t defined in T initiate a commit event
Committ ∈ H. This is relevant for situations in which context sources s ∈ S and, as a consequence,
the context providers cp ∈ CP that wrap those context sources become temporarily unavailable
or deliver corrupted or incomplete data. In those cases, a global transaction GTp can invoke a
PartialCommitGTp ∈ TEGTp where only those context models m ∈ Mop

will be considered for
the creation of a new instance of a context configuration cc ∈ CC the corresponding transactions
t ∈ Tp of which have committed successfully. The rationale behind is that it is at least better to
have incomplete information rather than to discard all context-relevant information acquired so
far in the course of a context acquisition workflow wfop

∈ WF . Whether or not a partial commit
is invoked on a global transaction GTp depends on the current configuration of a framework’s
instance and might vary w.r.t. the current application scenario the framework is used in as in
some situations it might be more useful to accept only completely aggregated context acquisition
models.

In addition, we stipulate that every transaction t ∈ T or global transaction GTp starts with a
Begin and finishes with either a Commit or an Abort event. Global transactions GTp in addition
might also finish with a PartialCommitGTp event. We define the following significant events:

• SEt := {Begin, Commit, Abort}

• IEt := {Begin}

• TEt := {Commit, Abort}

• SEGTp := SEt ∪ {PartialCommit}

• IEGTp := IEt

• TEGTp := TEt ∪ {PartialCommit}

The effects of operations op ∈ OPt executed by a transaction t ∈ Tp for creating a context model
mc are only made permanent when a Committ ∈ TEt event on the enclosing transaction t ∈ Tp

was invoked. As a consequence, the invocation of an emit event � ∈ OEt through the execution
of the emit operation on a context model mc by a transaction t with emitt[mc] ∈ OEt does
not automatically cause the context model mc to become a member of the set Mop

. Instead,
only the invocation of a Committ ∈ TEt event on the transaction t ∈ Tp with mc ∈ Mop

⇒
Committ ∈ H can initiate the propagation of mc and actuate its utilization by compatible context
providers csucc ∈ N+

op
(c) for context aggregation, augmentation, and refinement in the course

of the controlling context acquisition workflow wfop
∈ WF . In consequence, the contextual

information represented by the context models m ∈ Mop
can only be aggregated into a new

instance of a context configuration cc ∈ CC through the invocation of a CommitGTp event on the
enclosing global transaction GTp (see Algorithm 7).

43Please note that these relationships also apply to significant events SE
G

Tp defined for global transactions.

Chapter 4. Approach 145

A fundamental concept in the ACTA formalism regarding the effects of concurrently executed
transactions on other transactions as well as on objects is that of histories [BHG87, Bha99] that
act as a mechanism to describe the correctness of the transaction management primitives of a
transaction model through the properties of the history produced by a transaction model [CR94].
A history, denoted by the symbol H and defined for a set of concurrently executed transactions
t ∈ T , thus “contains all events, significant events, and object events invoked by the transactions
in T and indicate the (partial) order in which these events occur” [CR94]44.

To indicate temporal dependencies between transactions, ACTA defines the predicate � → ��

as a complement to the definition of histories that allows to axiomatically express temporal
relationships between events �, �� ∈ H; the predicate evaluates to true, if the occurrence of an
event � precedes the occurrence of event �� in H. An event � is a member of the history H and
Ht if it was invoked by a transaction t ∈ Tp; in this respect, let �t denote the invocation of an
event � in a transaction t with � ∈ H ⇒ ∃ t ∈ Tp : �t ∈ H.

In addition, let ConditionH denote a condition that must be fulfilled for � to be a member of H.
For � ∈ H ⇒ ConditionH , ConditionH represents the necessary condition for � to be in H; for
ConditionH ⇒ (� ∈ H), ConditionH represents the sufficient condition for � to be a member of
H (see [CR94]).

Moreover, we use the ’⇒’-symbol in compliance with the ACTA formalism to denote an impli-
cation between an event � and the conditions that must be satisfied to initiate the invocation of
�, irrespectively whether � is an event caused by the execution of an operation op on an object
ob or a significant event invoked by the execution of a transaction model primitive operation.

4.5.4 Dependencies between Transactions

As expounded previously, one benefit of the ACTA formalism is—besides its capability to define
dependencies in general—that it allows for the definition of constraints on dependencies between
concurrently operating transactions in an axiomatic way while considering interaction and col-
laboration semantics. On the basis of the ACTA framework, we define the dependencies that are
discussed in this section as being relevant for the transaction-based acquisition and dissemination
of contextual information. However, we distinguish between the following types of dependencies:

• Structural or logical dependency that exists between transactions t ∈ Tp

• Commit dependency that exists between transactions t ∈ Tp and GTp

• Abort and weak-abort dependency that exists between nested transactions t ∈ Tp and
global transactions GTp

• Begin and termination dependency for global transactions GTp and nested transactions
t ∈ Tp

• Serial dependency that exists between nested transactions t ∈ Tp

In the following, we formally define the dependencies being relevant for the transaction-based
acquisition and dissemination of contextual information; these definitions have been motivated
by related works such as [CR91b, CR94, STS98]:

44Moreover, the ACTA formalism further distinguishes between a complete history denoted by the symbol H,
and the current history represented by the symbol Hct, and between projections of H called subhistories that
satisfy a specific criterion defined for H.

Chapter 4. Approach 146

• Structural Dependency (tj S D ti): The structural composition of context providers p, c ∈
Vp in an orchestration tree op ∈ O expressed through the relations r ∈ Rp can be directly
mapped to the logical structure, i.e., the structural or logical dependencies that exist
between the transactions t ∈ Tp. S D thus indicates a structural dependency between a
pair of transactions ti, tj ∈ Tp that is deduced from the composition of context providers
p, c ∈ Vp in an orchestration tree op ∈ O and the relations r ∈ Rp that define its structure.
A structural dependency (tj S D ti) exists between two transactions ti, tj ∈ T if and only
if there exists an ri, rj ∈ Rp such that ω(ri) = α(rj) for i �= j:

(tj S D ti) ⇒ ∃ ri, rj ∈ Rp : ω(ri) = α(rj) (4.63)

The logical structure of transactions t ∈ Tp deduced from the structural composition of
context providers p, c ∈ Vp implies that a transaction tj can neither invoke a Begintj

event
unless any other than its preceding transaction ti ∈ N−

Tp
(tj) either commits or aborts,

nor that any of the succeeding transactions tsucc ∈ N+

Tp
(tj) can invoke a Begintsucc

event
prior to a termination of tj , iff the corresponding relation ri precedes rj such that ri ∈
δ−

op

�
α(rj)

�
. This means that if two relations ri, rj ∈ Rp are adjacent to one another such

that ω(ri) = α(rj) for i �= j (cf. Equation (4.63)), the same holds for the pertaining
transactions ti, tj ∈ Tp with (ti, ri) ∈ R

Tp,Rp

Corresponds and (tj , rj) ∈ R
Tp,Rp

Corresponds:

∃ ti, tj ∈ Tp, ti �= tj , (tj S D ti) ⇐⇒ ∃ ri, rj ∈ Rp, ri �= rj

∧ (ti, ri) ∈ R
Tp,Rp

Corresponds

∧ (tj , rj) ∈ R
Tp,Rp

Corresponds

(4.64)

• Commit Dependency (tj C D ti): A commit dependency exists between two transactions
ti, tj ∈ Tp, if and only if there exists a Structural Dependency between ti, tj ∈ Tp such that
(tj S D ti), and both tuples (ri, ti) as well as (rj , tj) are members of the set R

Tp,Rp

Corresponds.
This dependency is formally expressed in Equation (4.65):

∃(tj C D ti) ⇐⇒ ∃ (tj S D ti) : ti, tj ∈ Tp, ti �= tj

∧ (ti, ri) ∈ R
Tp,Rp

Corresponds

∧ (tj , rj) ∈ R
Tp,Rp

Corresponds

(4.65)

A commit dependency between two transactions ti, tj ∈ Tp implies that the invocation of
a commit event Committj

∈ H requires the precedent commitment of ti, i.e., tj can only
commit, if and only if ti committed before. With reference to the ACTA formal framework,
this dependency is defined as follows45:

Committj
∈ H ⇒

�
Committi

∈ H ⇒ (Committi
→ Committj

)
�

(4.66)

• Begin Dependency (t BD GTp): A transaction t ∈ Tp can only begin if the corresponding
global transaction GTp has begun, i.e., the initiation of any nested transaction t ∈ Tp

requires the initiation of GTp :

∀t ∈ Tp : Begint ∈ H ⇒ BeginGTp ∈ H ∧
�
BeginGTp → Begint

�
(4.67)

• Weak-Abort Dependency (tj W A D ti): A weak-abort dependency between two transac-
tions ti, tj ∈ Tp implies, that a commitment of transaction ti precedes the abortion of a

45See Definition 2.3.1 on page 455.

Chapter 4. Approach 147

transaction tj in the history H (cf. [STS98]):

Aborttj
∈ H ⇒

��
(Committi

∈ H) ∧ (Aborttj
∈ H)

�
⇒

�
Committi

→ Aborttj

��
(4.68)

• Abort Dependency (tj A D ti): An abort dependency (tj A D ti) between two transactions
ti, tj ∈ Tp says that if ti aborts so does tj :

Aborttj
∈ H ⇒

�
(Abortti

∈ H) ⇒ (Abortti
→ Aborttj

)
�

(4.69)

On the other hand, an abortion of tj does not necessarily need to be caused by an abortion
of ti, i.e., ti might commit successfully while tj aborts (cf. Weak-Abort Dependency). As a
consequence, if a transaction t ∈ Tp aborts, any transaction tsucc ∈ N+

Tp
(t) and subsequently

following transactions also abort:

∀t, tsucc ∈ Tp, t �= tsucc : Aborttsucc
∈ H ⇒ Abortt ∈ H (4.70)

• Serial Dependency (tj S D ti)46: A transaction tj ∈ Tp can not begin until its preceding
transaction ti ∈ N−

Tp
(tj) either commits or aborts for ti �= tj :

Begintj
∈ H ⇒

�
(Committi

→ Begintj
) ∨ (Abortti

→ Begintj
)
�

(4.71)

In addition, a global transaction GTp can not initiate a termination event � ∈ TEGTp unless all
of its nested transactions t ∈ Tp have initiated a termination event �t ∈ TEt. This dependency is
commonly designated as Termination Dependency (GTp T D Tp) and exists between the nested
transactions t ∈ Tp and GTp , i.e., a global transaction GTp can neither invoke a commit nor
abort event unless all of its nested transactions either commit or abort:

�
(CommitGTp ∈ H) ∨ (AbortGTp ∈ H)

�
⇒ ∀t ∈ Tp

�
(Committ ∈ H) ∨ (Abortt ∈ H)

�
(4.72)

More specifically, if all nested transactions t ∈ Tp commit, then the corresponding global trans-
action GTp also commits; in the ACTA model, this dependency is denoted as a Strong-Commit
Dependency [CR91b] and is formally defined in Equation (4.73):

CommitGTp ∈ H ⇒ ∀t ∈ Tp

�
(Committ ∈ H) ∧ (Committ → CommitGTp)

�
(4.73)

Two transactions ti, tj ∈ T are considered concurrent transactions if their corresponding relations
ri, rj ∈ Rp with (ti, ri) ∈ R

Tp,Rp

Corresponds ∧ (tj , rj) ∈ R
Tp,Rp

Corresponds fulfill the following condition:
α(ri) = α(rj) for i �= j, that is, a context provider p, c ∈ Rp is positive incident to both
relations ri, rj ∈ Rp and fulfills the previously stated condition. In consequence, ti, tj ∈ Tp are
executed concurrently if each of them exhibits a structural dependency to a preceding transaction
tprev ∈

�
N−

Tp
(ti) ∩ N−

Tp
(tj)

�
where N−

Tp
(ti) = N−

Tp
(tj), i.e., if there exists a structural dependency

(ti S D tprev) between tprev and ti as well as between tprev and tj with (tj C D tprev). As
expounded in Equation (4.65), two transactions ti, tj ∈ Tp are commit dependent if a commit
of tj requires a commit of ti for i �= j; ti, tj are independent and thus processed concurrently if
both ti and tj can commit or abort independently from each other.

In the following, we define the conditions that must be fulfilled to invoke a significant event on
a nested transaction t ∈ Tp or a global transaction GTp in an axiomatic way. For the following

46The Serial Dependency closely correlates with the Structural Dependency (cf. Equation (4.63) and (4.64)).

Chapter 4. Approach 148

definitions, we introduce the shorthand notation mt that refers to the context model m emitted
by the context provider α(r) that is positive incident to the relation r ∈ Rp which corresponds to
the transaction t ∈ Tp with (t, r) ∈ R

Tp,Rp

Corresponds. A transaction t ∈ T and GT terminates when
either a Committ ∈ TEt or an Abortt ∈ TEt event was invoked whereas a global transaction GTp

might, depending on a framework’s configuration, also invoke a PartialCommitGTp event (cf.
Section 4.5.3). The conditions that must be fulfilled for either of the invocation and termination
events differ between global transactions GTp and nested transactions t ∈ T wherefore we define
the corresponding axioms separately:

(1) A transaction t ∈ T begins when its preceding transaction tprec ∈ N−
Tp

(t) has invoked a
commit event and when the context model mtprec

emitted by the corresponding context
provider α(rprec) with

�
tprec, rprec

�
∈ R

Tp,Rp

Corresponds is a member of Mop
. Furthermore, the

begin of a nested transaction t ∈ Tp always requires the invocation of a BeginGTp ∈ H event
of its corresponding global transaction GTp :

Begint ∈ H ⇒
�
(Committprec

∈ H) ∧ (BeginGTp ∈ H) ∧ (mtprec
∈ Mop

)
�

(4.74)

(2) A global transaction GTp initiates a begin BeginGTp ∈ IEGTp
if the corresponding primary

context provider p ∈ P detects a change in the context source s ∈ S it encapsulates and
emits an updated instance of a context model mp:

BeginGTp ∈ H ⇒ emitt∗
0
[mp] ∈ H (4.75)

(3) A nested transaction t ∈ T commits, (i) if the context acquisition process of the pertaining
complementary context provider c ∈ Cp finished in a time < τmax, (ii) if an emit operation
emitt[mc] ∈ H was invoked on the context model mc created as a result of the context acqui-
sition process, and (iii) if mc becomes a member of the set of compound context acquisition
models Mop

:

Committ ∈ H ⇒
�
(emitt[mc] ∈ H) ∧ (mcp ∈ Mop

) ∧ (τmax ≥ τstop − τstart)
�

(4.76)

(4) A global transaction GTp commits if all of its pertaining transactions t ∈ Tp commit and if
their commitment precedes the commitment of GTp :

CommitGTp ∈ H ⇒ ∀t ∈ Tp :
�
(Committ ∈ H) ∧ (Committ → CommitGTp)

�
(4.77)

(5) A global transaction GTp
partially commits if there exists at least one nested transaction

t ∈ Tp that has invoked a Committ ∈ H event and the context model mt of which is a member
of the set of compound context acquisition model Mop

47:

PartialCommitGTp ∈ H ⇒ ∃t ∈ Tp :
�
(Committ ∈ H) ∧ (mt ∈ Mop

)
�

(4.78)

(6) A nested transaction t ∈ Tp aborts in any of the following cases:

Abortt ∈ H ⇒
�
¬(emitt[mc] ∈ H) ∨ ¬(mc ∈ Mop

) ∨ (τmax < τstop − τstart)
�

(4.79)
47The constraints which transactions t ∈ T have to commit in order to invoke a partial commit on a global

transaction PartialCommit
G

Tp can be defined individually among framework instances. Please note that this is
a special case and overlaps with the conditions to invoke an Abort

G
Tp ∈ T E

G
Tp event (cf. Equation (4.80)).

Chapter 4. Approach 149

(7) A global transaction GTp aborts if at least one nested transaction t ∈ Tp has invoked an
abort event, i.e., if at least one nested transaction t ∈ Tp has not invoked a commit event:

AbortGTp ∈ H ⇒ ∃t ∈ Tp : (Abortt ∈ H) (4.80)

After having propound the necessary formal basis of a transaction-based processing model for
the acquisition, dissemination, and aggregation of independently acquired contextual informa-
tion while making full use of the ACID properties (cf. [GR92]), we now present an algorithmic
description of the corresponding processing model and workflows.

4.5.5 Processing Context Acquisition Workflows

Algorithm 3 describes one of the elementary aspects of the context framework, that is, its reactive
behavior related to the processing of available contextual information. The rationale behind is
that the context framework autonomously and independently from any user action updates
the semi-structured representation of the user’s real world context in a proactive fashion by
analyzing changes in terms of the acquired contextual information and initiating aggregation
and consolidation tasks when appropriate.

Algorithm 3: Steps related to the initiation of a global transaction GTp

Precondition: Dissemination of a context model mp by a primary context provider p ∈ P
Result: Invocation of a BeginGTp ∈ H event on GTp or rejection of context model mp

1 if emitt∗
0
[mp] ∈ H then

2 if (�wfop
∈ WF : isRunning(wfop

)) then
3 if (CommitGTp /∈ H) ∧ (mp /∈ Mop

) then
4 initialize[Mop

]
5 Mop

← (Mop
∪ mp)

6 Begin[GTp]
7 else if

�
(CommitGTp ∈ H) ∨ (mp ∈ Mop

)
�

∧ (∃ wf �= wfop
: isRunning(wf)) then

8 reset[Mop
] /* Remove all m ∈ Mop

from Mop
*/

9 replace[mp]
10 Begin[GTp]
11 end
12 else
13 rejectt∗

0
[mp]

14 end
15 end

A new context acquisition workflow is initiated whenever a primary context provider p ∈ P

emits a new context model m ∈ Mp indicated when the predicate emit[mp] becomes a member
of H (line 1). As the availability of a new context model mp usually initiates a new instance
of a context acquisition workflow wfop

, the algorithm evaluates whether there exists an already
running instance of a context acquisition workflow wfop

∈ WF pertaining to p and op ∈ O

respectively (line 2). This evaluation is mandatory because a primary context provider p ∈ P

might, due to its autonomous and self-contained behavior, emit a new context model m�
p ∈ Mp

immediately after mp ∈ Mp while the corresponding context acquisition workflow wfop
∈ WF

and thus the global transaction GTp have not yet completed. If this is not the case and neither a
CommitGTp event in H nor a context model mp ∈ Mop

exists, the compound context acquisition
model Mop

pertaining to p is initialized and mp becomes a member of Mop
. As result, the

Chapter 4. Approach 150

corresponding global transaction GTp is initiated (line 3-6). If a global transaction GTp pertaining
to the context acquisition workflow wfop

∈ WF has previously invoked a CommitGTp event and
there exists both, a complete compound context acquisition model Mop

∈ OM as a result of
the invocation of a commit event and other context acquisition workflows that run in parallel,
the compound context acquisition model Mop

∈ OM can be updated with the recently emitted
context model mp. Based on this event, a new context acquisition workflow wfop

is initiated
to update the acquired contextual information. In consequence, the current instance of Mop

is
reset, i.e., all acquired context models m ∈ Mop

are removed and will be replaced by updated
context models m�

c without violating consistency and completeness requirements (line 7-11). In
any other cases, mp is rejected so that a new context configuration creation process can be
initiated48.

Algorithm 4: Processing a context model mt emitted by a transaction t ∈ Tp

Precondition: Existence of an emit operation emitt[mt] ∈ M in history H
Result: Invocation of a significant event �t ∈ SEt on transaction t ∈ Tp

1 if (emitt[mt] ∈ H) ∧ (t ∈ Tp) ∧ (mt ∈ M) then
2 if

�
∃ wfop

∈ WF : isRunning(wfop
)
�

∧
�
BeginGTp ∈ H

�
then

3 if (mt /∈ Mop
) ∨ (Committ /∈ H) then

4 Mop
← (Mop

∪ mt)
5 Commit[t]
6 foreach tsucc ∈ N+

Tp
(t) :

�
(tsucc C D t) ∧ (tsucc S D t)

�
do

7 Begin[tsucc]
8 end
9 else

10 reject[mt]
11 Abort[t]
12 end
13 else
14 if

�
�wfop

∈ WF : isRunning(wfop
)
�

∨
�
BeginGTp /∈ H

�
then

15 reject[mt]
16 if Begint ∈ H then Abort[t]
17 end
18 end
19 else
20 if Abortt ∈ H then
21 foreach tsucc ∈ N+

Tp
(t) : (tsucc A D t) do

22 Abortt[tsucc]
23 end
24 end
25 end

Algorithm 4 describes the workflow of processing a recently emitted context model mt ∈ M
by a complementary context provider c ∈ Cp in the course of a transaction t ∈ Tp. If the
emitt[mt] ∈ H event invoked by a context provider c ∈ Cp in transaction t pertains to a currently
running instance of a context acquisition workflow wfop

∈ WF and if a BeginGTp

∈ H event on
the pertaining global transaction GTp has already been invoked, then mt becomes a new member
of the compound context acquisition model Mop

and t thus commits (line 1-5). If succeeding
transactions tsucc ∈ N+

Tp
(t) that exhibit a Commit Dependency as well as a Serial Dependency

to t (cf. Equation (4.65) and (4.71)) do exist, those transactions can execute a Begin[tsucc]
48Depending on the configuration of a framework instance, an updated context model emitted by a primary

context provider can also be buffered in the context description queue (see Section 4.6.2) and processed when the
corresponding global transaction GTp has invoked a termination event.

Chapter 4. Approach 151

operation and initiate their context acquisition processes (line 6-8). If mt is already a member
of Mop

or the corresponding transaction has already invoked a Committ event in the course of
the same context acquisition workflow instance, then mt is rejected and t aborts (line 10-11).
In case there is no context acquisition workflow running where t pertains to, mt ∈ M is rejected
and an Abort[t] operation is executed on t (line 14-16). Furthermore, in case an Abortt event on
t is a member of the history H while one or more conditions specified in line 1 do not evaluate to
true, all the succeeding transactions tsucc ∈ N+

Tp
(t) that exhibit an Abort Dependency to t with

(tsucc A D t) (cf. Equation (4.70)) also abort since succeeding transactions per Equation (4.65)
and (4.71) can invoke a Committsucc

event only if t commits (line 20-24).

Algorithm 5: Conditions for the invocation of a termination event on global transactions
Precondition: All transactions t ∈ Tp have invoked a termination event � ∈ TEt

Result: Invocation of a termination event on the enclosing global transaction GTp

1 if ∀t ∈ Tp :
�
∃ �t ∈ H ∧ �t ∈ TEt

�
then

2 if ∀t ∈ Tp : Committ ∈ H then
3 Commit[GTp]
4 else if ∃t ∈ Tp :

�
(Committ ∈ H) ∧ (mt ∈ Mop

)
�

then
5 PartialCommit[GTp]
6 else if �t ∈ Tp : (Committ ∈ H) then
7 Abort[GTp]
8 end
9 end

10 end
11 end

Algorithm 5 describes the workflow and conditions that must be fulfilled in order to invoke a
termination event � ∈ TEGTp on a global transaction GTp . A termination event on a global
transaction is invoked if a termination event has been invoked on all nested transactions t ∈ Tp

(cf. Equation (4.72)); Algorithm 5 evaluates this in line 1. In case all transactions t ∈ Tp have
invoked a Committ event, a global transaction GTp also commits (cf. Equation (4.73)). With
the introduction of a partial commit as an extension of the set of termination events TEGTp ,
it is possible to define individual conditions that cause the invocation of a PartialCommitGTp

event on a global transaction GTp . However, for reasons of simplicity we stipulated that at least
one transaction t ∈ Tp must have invoked a Committ event in order to enable the invocation of
a PartialCommitGTp event on the enclosing global transaction GTp . If all nested transactions
t ∈ Tp aborted, so does GTp .

The initiation of a global transaction GTp requires the invocation of a BeginGTp ∈ IEGTp event
on GTp and the availability of a context model mp emitted by the corresponding primary context
provider p ∈ P where mp has already been added as a member to the set of compound context
acquisition models Mop

. Algorithm 6 distinguishes between two cases where in the first case (line
2-6), there exist transactions t ∈ Tp that exhibit a Begin Dependency (cf. Equation (4.67)) to a
global transaction GTp . In this case, GTp consists of a set of nested transactions t ∈ Tp wherefore
their context acquisition processes need to be monitored by a context acquisition workflow wfop

being instantiated in line 3. Each nested transaction t ∈ Tp that exhibit a Begin Dependency to
GTp is then invoked through a BeginGTp event (line 4-6). If a global transaction GTp does not
consist of a set of nested context acquisition processes, it can invoke a termination event instantly
after its initiation and does not require an instantiation of a context acquisition workflow for
monitoring the context acquisition processes of nested transactions (line 8-12). Depending on a
positive or negative evaluation of the condition specified in line 8 which indirectly complies with
Equation (4.72) and (4.73), a global transaction GTp either commits or aborts. Please note that

Chapter 4. Approach 152

Algorithm 6: Steps performed by GTp after its invocation with BeginGTp ∈ IEGTp

Precondition: Existence of an invocation event on a global transaction GTp in history H
Result: Invocation of a termination event � ∈ TEGTp on a global transaction GTp

1 if
�
(BeginGTp ∈ H) ∧ (mp ∈ Mop

)
�

then
2 if

�
(Tp �= ∅) ∧ (∃ t ∈ Tp : (t BD GTp))

�
then

3 instantiateGTp [wfop
]

4 foreach t ∈ Tp : (t BD GTp) do
5 BeginGTp [t]
6 end
7 else
8 if (Tp = ∅) ∧

�
� t ∈ Tp : (t BD GTp)

�
then

9 Commit[GTp]
10 else
11 Abort[GTp]
12 end
13 end
14 else
15 if (BeginGTp ∈ H) ∧ ¬(AbortGTp ∈ H) then
16 Abort[GTp]
17 end
18 end

a partial commit is not considered by Algorithm 4 as it can only be invoked in case there exist
nested transactions t ∈ Tp. In case a BeginGTp event is contained in the history H but there
does not exist a context model mp ∈ Mop

, GTp also aborts.

Algorithm 7: Instantiation of succeeding transactions tsucc ∈ N+

Tp
(t)

Precondition: Existence of a Committ ∈ H event of transaction t ∈ Tp

Result: Invocation of an instantiation or termination event for transactions tsucc ∈ N+

Tp
(t)

1 if
�
(Committ ∈ H) ∧ (mt ∈ Mop

) ∧ (BeginGTp ∈ H)
�

then
2 foreach tsucc ∈ N+

Tp
(t) do

3 Begin[tsucc]
4 end
5 else
6 if

�
(Abortt ∈ H) ∨ ¬(mt ∈ Mop

)
�

then
7 foreach tsucc ∈ N+

Tp
(t) do

8 Abort[tsucc]
9 end

10 end
11 end

The workflow and conditions that must be fulfilled for the invocation of a transaction t ∈ Tp

are described by Algorithm 7. The specified conditions comply with Equation (4.74), (4.76),
and (4.79). As there exists a Commit Dependency (cf. Equation (4.67)) between a transaction
t and its succeeding transactions tsucc ∈ N+

Tp
(t), the inclusion of a Committ event in history H

together with the availability of a context model mt ∈ Mop
emitted by the preceding context

provider in t causes the invocation of a Begin[tsucc] event on all succeeding transactions tsucc ∈
N+

Tp
(t) that exhibit both a Commit Dependency and Serial Dependency to t (line 1-4). Based

on Equation (4.79) an abortion of t causes all of its succeeding transactions tsucc ∈ N+

Tp
(t) that

exhibit an Abort Dependency to t (cf. Equation (4.70)) to abort too (line 6-10).

Chapter 4. Approach 153

Algorithm 8: Operations related to the instantiation of a context acquisition process by t ∈ Tp

Data: Transaction t, Time frame τ
Result: Disseminating of context model mt or invocation of an Abortt event

1 if
�
(Begint ∈ H) ∧ (mtprec

∈ Mop
)
�

then
2 acquiret[mtprec

∈ Mop
]

3 instantiatet[cap(ct)]
4 initializet[cap(ct), mtprec

]
5 initiatet[cap(ct)]
6 joint[cap(ct), τ]
7 if context model was acquired successfully and is ready for dissemination then
8 emitt[mt] // Send context model to Mop

9 else
10 Abort[t]
11 end
12 end

When a Begint event was invoked on a transaction t, the context acquisition process cap(c) of the
corresponding complementary context provider c ∈ Cp is instantiated and initiated. Algorithm 8
describes the necessary operations being concerned with the acquisition and dissemination of
contextual information gathered from a context source s ∈ S wrapped by c. In a first step,
the context model mtprec

emitted by its preceding context provider49 is acquired from the set of
compound context acquisition models Mop

(line 2). In case this acquisition was successful, a new
instance of a context acquisition process cap(ct) is created (line 3) and initialized by passing the
context provider ct ∈ Cp pertaining to a transaction t together with the context model mtprec

of
its preceding context provider as parameters to it (line 4). The initiation of a context acquisition
process cap(ct) causes the context provider ct to execute all of its operations relating to the
acquisition of contextual information from the context source s it encapsulates. Usually this is
performed in a decoupled and concurrent fashion where cap acts as a separate and self-contained
runtime environment50 that allows a context provider c ∈ Cp to execute its context acquisition
operations independently from a transaction t as well as concurrently running transactions per-
taining to other context providers; the operation joint[cap(ct), τ] in line 6 represents this aspect,
where a transaction t concedes a context provider ct a particular time frame τ in which ct must
complete all of its acquisition operations ∈ OPt. If all contextual information have been acquired
successfully within the specified time frame, a transaction executes an emitt[mt] operation sig-
naling that a context model mt is ready to be added as a member to the compound context
acquisition model Mop

(line 8). If a context provider ct was not able to finish its acquisition
operations within τ or became temporarily unavailable respectively malfunctioning during the
acquisition process, transaction t initiates an Abort operation on itself signaling that a context
acquisition process could not be completed successfully (line 11). As outlined by Algorithm 7,
the initiation of an Abort operation on a transaction t causes all of its succeeding transactions
tsucc ∈ N+

Tp
(t) which exhibit both a Serial Dependency and Abort Dependency to t to abort, too.

If a primary context provider p ∈ P that has already emitted its context model mp so that
mp ∈ Mop

emits an updated version of its context model m�
p, its already stored context model

mp ∈ Mop
can be replaced by an updated version m�

p without violating consistency requirements
if and only if other context acquisition workflows wf ∈ WF are running in parallel and Cp =
Rp = ∅. The same applies to primary context providers p ∈ P with compatible complementary

49We presuppose that the preceding context provider acquired its context model mtprec
during the execution

of transaction tprec – see Equation (4.67) and (4.71).
50Usually this is realized using threads in a programing language.

Chapter 4. Approach 154

Algorithm 9: Building a new instance of a context configuration cc ∈ CC

Precondition: There exist one or more context acquisition workflows that finished successfully
between two consecutively following instances of context configuration cc ∈ CC

Result: Creation of a new instance of a context configuration cc ∈ CC

1 if
�
�wfop

∈ WF : isRunning(wfop
)
�

∧
�
∃ GTp : (CommitGTp ∈ H ∨ PartialCommitGTp ∈ H)

�

then
2 acquire compound context acquisition models Mop

∈ OM // collect all Mop
∈ OM

3 if ∃m ∈ M : ¬(isUpdated(m)) then
4 retrieve unaltered context models from M
5 end
6 cc ← fmerge(OM, Π)
7 send cc to replication manager
8 notify data provider dp ∈ DP
9 reset H, WF, OM

10 end

context providers c ∈ Cp the context acquisition workflows wfop
∈ WF of which are already

finished, that is, the emitted context models m ∈ Mop
are already aggregated to a compound

context acquisition model Mop
. In this case, a new global transaction GTp and thus a new

instance of a context acquisition workflow wfop
will be instantiated and the context models

m ∈ Mop
constituting the recently created compound context acquisition model Mop

will be
replaced by updated context models m�

cp.

Algorithm 9 describes the steps related to the building of a new instance of a context configuration
cc ∈ CC. In case a context acquisition workflow wfopi

∈ WF has finished, the context framework
checks whether there exist further context acquisition workflows wfopj

∈ WF where i �= j the
corresponding global transactions of which have not invoked a termination event yet (line 1).
If all acquisition workflows have finished, the acquired compound context acquisition models
can be aggregated to a new instance of a context configuration cc by initiating the merging
and consolidation process (cf. Equation (4.33)) in which all updated context models m ∈ M

as well as all unaltered context models are collected (line 2-6). Unaltered context models are
those that pertain to compound context acquisition models the corresponding global transactions
and context acquisition workflows respectively have not been initiated between two iterations of
context configurations cci, ccj ∈ CC created at consecutively following points in time τi, τj where
τj > τi as their initiating primary context providers p ∈ P have not observed any context updates
in the context sources s ∈ S they encapsulate. According to the conceptual system architecture
proposed in Section 4.6, updated context models are retrieved from the model manager whereas
unaltered context models are retrieved from the context description queue51 which contains those
context models that have been processed and aggregated by the context dispatcher in previous
processing iterations. Both sets of context models are then aggregated where consolidation
and reasoning rules are applied by a lightweight rule reasoner that is described in the conceptual
architecture. After a new instance of the context configuration is built, it will be forwarded to the
replication manager to initiate the replication tasks of the deployed data providers. Furthermore,
the sets of context acquisition workflows WF and compound context acquisition models OM as
well as the history H are reset, i.e., existing elements are removed (line 7-9).

51The context description queue is a data structure that hosts different versions of emitted context models
and allows to revert to previously emitted context models for compensation purposes in case a context provider
becomes temporarily unavailable and, hence, is unable to emit a context model.

Chapter 4. Approach 155

4.6 Conceptual Architecture

4.6.1 Concepts and Features

For realizing the design considerations outlined at the beginning of this chapter, it is necessary to
combine the processing of context information with the local replication of remote data sources.
However, it is also necessary to keep the framework design as flexible as possible: it depends
on the capabilities of the mobile device which context information can be tracked. Further, the
user’s information needs might evolve over time, hence the chosen approach cannot be restricted
to a fixed set of remote data sources and should be flexible enough to enable the dynamic
integration of new potential context sources on the fly. In the following, we highlight the main
features exhibited by the conceptual architecture proposed in the current section in condensed
form. These set of features are deduced from the requirements, design considerations, and the
formal model discussed in the previous sections and serve as fundamentals of the proof-of-concept
implementation being realized as a substantial part of the MobiSem project52:

• Acquisition. The acquisition architecture of the framework allows for acquiring context-
relevant data from a wide variety of sources, ranging from locally deployed hardware and
software sensors, over sensors located in ubiquitous environments, towards Web 2.0 APIs
for retrieving data related to a user’s personal or social networks. Raw sensor data acquired
from such context sources are represented in form of RDF-based context description (cf.
Section 4.4.1) and transformed into high-level context descriptions using concepts and
languages from the Semantic Web.

• Representation. The architectural design of the context framework53 has been drafted to
impose minimal to none restrictions regarding the representation of contextual data and
allows for using individual vocabularies and heuristics for explicitly representing context-
related data semantics and reasoning on contextual data. Therefore, it emphasizes the use
of standardized Semantic Web-based knowledge representation frameworks and languages
such as RDF, RDFS, and OWL facilitating the reuse, exchange, and interoperability of
context-relevant data.

• Aggregation. The capabilities to reuse, exchange, and augment contextual information to
built richer and more elaborated context models are fundamental principles of the proposed
framework and the underlying conceptual models. Context descriptions can be mutually
refined and complemented with additional data in well-defined and controlled processes.
Since context descriptions are represented as RDF graphs using standardized, well-known,
and open Semantic Web vocabularies, their data semantics is understood across compo-
nents.

• Orchestration. The implementation of an orchestration framework that analyzes the con-
text providers’ data descriptions and use them as a basis for cascading compatible context
providers in orchestration workflows to dynamically route contextual information descrip-
tions between them in order to refine and complement the contextual information space of
the user is one of the main features of the framework. The orchestration framework thus

52MobiSem project website: http://mobisem.org

53We use the term ’context framework’ as an abbreviated notion for the proposed context-sensitive RDF
data replication framework as the main focus of our work lies on the acquisition, processing, and management
of contextual information on mobile platforms (including its representation and interpretation) rather than on
design and specification of specific replication heuristics or replication strategies.

http://mobisem.org

Chapter 4. Approach 156

has been designed to allow for the integration of individual orchestration rules and capa-
bility metrics for computing the compatibility matrix MC and deriving the orchestration
matrix MO. These matrices are dynamically and transparently re-created whenever a new
context provider is integrated into the framework. We also decoupled the orchestration
logic from the execution logic so that context providers can be orchestrated independently
from their subsequent execution.

• Consolidation. To maintain context data consistency, data accurateness, and data com-
pleteness, context descriptions are collected and processed in a central place to guarantee
consistency among context descriptions and acquisition processes while taking into account
technical and operating system peculiarities of today’s mobile platforms. Although there is
no centralized control of context acquisition processes, contextual information is collected,
aggregated, consolidated, and stored in a central component and repository. The feature
of consolidation also covers the topic of compensation management as particularly in dy-
namic and mobile environments, the proper functionality of context providers as well as
the sensors and services they wrap can never be universally guaranteed; it may happen
that components become temporarily unavailable or that context providers emit incom-
plete or inaccurate data. Therefore, the context framework employs a set of compensation
strategies to minimize the impact of such situations and to sustain a proper functionality
of the context framework’s processes.

• Reasoning. In order to consolidate the multitude of heterogeneous context information and
to built a global, consistent, and coherent context model representing the user’s current
context, rule-based reasoning techniques are applied for context augmentation, aggregation,
and the detection of context data inconsistencies. Since reasoning in general and on mobile
platforms in particular is rather resource consuming, we employ a lightweight, forward-
chaining rule reasoner where context-relevant reasoning rules are specified at design time.
However, the reasoning component is currently in prototypical status and only allows for
specifying hard-coded rules.

• Dissemination. User context is forwarded to other components deployed in the framework
in an automated and transparent manner using a push-based notification mechanism. Ad-
ditionally, external context services can request a model of the user’s current context via an
elementary HTTP server. The context framework exposes a communication infrastructure
that allows other application or processes currently running on a mobile device to acquire
context-relevant information via well-defined and transparent interfaces.

• Replication. Data is replicated in a transparent and automated fashion to the device
where no restrictions are imposed upon the data sources nor a specific data representation
scheme. The spectrum of potential data sources might range from files located on local or
remote file systems, databases, web repositories, towards web applications and Linked Data
sets [ZS11]. Data replication processes are completely decoupled from context acquisition
processes, which is manifested in the absence of a direct connection between context and
data providers. Mobile applications can access data replicas from a local triple store in a
controlled and uniform way.

• Storage. The framework incorporates a persistence layer that allows for storing replicated
data sets in a local database from where data replicas can be accessed and utilized by inter-
nal components. The persistence layer also includes support for Named Graphs [CBHS05]
to address and distinguish among data replicas and contains projections for transforming
RDF graphs into a relational database scheme and vice versa.

Chapter 4. Approach 157

• Data Access and Provision. Access to replicated data stored in the local SQLite database
is provided via an Android content provider that has been adapted for RDF data provision
and storage. The RDF content provider assigns a unique URI to each replicated data sets
and and offers external applications multi-granular access for utilizing the data contained
in data replicas. It also incorporates an update and synchronization control mechanism
that allows external applications to issue updates on data replicas without overwriting or
compromising pristine data replicas.

The orchestration process can be configured to either perform a loose orchestration on the
namespace level, or a detailed one by considering concepts and properties given by the con-
text providers’ data descriptions. When a new context provider is found in the system, the
orchestration manager analyzes its data description and based on its configuration integrates
the context provider in the orchestration graph G(V, R). The compatibility score for each pair of
context providers cpi, cpj ∈ CP for i �= j is computed by a matching algorithm based on config-
urable scores for correspondences on the namespace, concept, and property levels. The algorithm
for computing the compatibility score (cf. Section 4.4.2.3) for each pair of context providers
cpi, cpj ∈ CP for i �= j is built upon configurable scores for calculating the correspondences on
the namespace, concept, and property levels. However, to make full use of the axiomatically
defined semantics of RDF/RDFS and OWL elements, the arithmetic calculation of compatibil-
ity scores can be extended through the inclusion of RDFS semantics such as rdfs:subClassOf
relationships. For instance, if one context provider cpi ∈ CP emits foaf:Person instances and
another context provider cpj ∈ CP requires foaf:Agent instances as input data, the orches-
tration framework might be able to detect that compatibility between these differing concepts
since foaf:Person is a subclass of foaf:Agent according to the FOAF ontology [BM07]. While
running completely decoupled from other framework processes, rebalancing the orchestration
graph G(V, R) as a result of the orchestration process does not affect context acquisition tasks
as such.

Figure 4.10 depicts a graphical illustration of the conceptual architecture and its main constitut-
ing components. The design principles of our proposed framework are based on the assumption
of a homogeneous, locally deployed context-aware infrastructure where functional and techno-
logical compatibility is guaranteed by design. Context in general can be acquired implicitly and
explicitly (cf. Chapter 2); the conceptual framework presented here allows for both forms of
context acquisition although we focus on the implicit acquisition. In the following, we give an
overview of each component of the conceptual system architecture of the proposed replication
framework.

4.6.2 Components

4.6.2.1 Context Provider

A context provider captures a specific and relevant contextual aspect of the user’s current context.
A contextual aspect is represented in a structured and well-defined ways using semantic tech-
nologies (RDF, RDFS, OWL) to facilitate the exchange and integration of context information.
The conceptual design of the replication framework allows to acquire contextual information
from a wide variety of context sources and sensors. In this work, we refer to a sensor that
emits context-relevant data as it was defined in [BC04]. Those sources are wrapped by con-
text providers as expounded in Section 4.2, which employ two operation modes. Active context
providers are primary and self-contained components that encapsulate a hardware or software

Chapter 4. Approach 158

D
a
ta

P

ro
v
id

e
r

D
a
ta

P

ro
v
id

e
r

T
ri

p
le

 S
to

re

L
O

D
R

e
p
o
s
it
o
ry

W
e
b
 2

.0
A

p
p
lic

a
ti
o
n

S
e
m

a
n
ti
c

W
e
b

S
e
rv

ic
e

Q
u
e
ry

 L
a
n
g
u
a
g
e

e
.g

.
S

P
A

R
Q

L

 A
P

I
/
R

P
C

 -

R
e
m

o
te

P

ro
c
e
d
u
re

 C
a
lls

H
T

T
P

R

e
q
u
e
s
t/

R
e
s
p
o
n
s
e

L
o
w

-l
e
v
e
l

C
o
n
te

x
t

A
c
q
u
is

it
io

n

(p
a
s
s
iv

e
)

C
o

n
te

x
t

P
ro

v
id

e
r

P
h
y
s
ic

a
l

S
e
n
s
o
rs

(a
c
ti
v
e
)

C
o

n
te

x
t

P
ro

v
id

e
r

L
o
g
ic

a
l
/

S
o
ft
w

a
re

S

e
n
s
o
rs

(a
c
ti
v
e
)

C
o

n
te

x
t

P
ro

v
id

e
r

C
o
n
te

x
t
P

ro
v
id

e
r

O
rc

h
e
s
tr

a
ti
o
n

D
a
ta

P

ro
v
id

e
r

R
D

F
G

ra
p
h
s

R
D

F
-b

a
s
e
d

C
o
n
te

x
t

D
e
s
c
ri
p
ti
o
n
s

A
g
g
re

g
a
te

d
 a

n
d

C
o
n
s
o
lid

a
te

d

C
o
n
te

x
t
M

o
d
e
l

R
e
p
lic

a
te

d

R
D

F
 D

a
ta

R
D

F

C
o

n
te

n
t

P
ro

v
id

e
r

M
o
b
ile

A

p
p
lic

a
ti
o
n

M
o
b
ile

A

p
p
lic

a
ti
o
n

M
o
b
ile

A

p
p
lic

a
ti
o
n

C
o

n
te

x
t

C
o

n
fi

g
u

ra
ti

o
n

(G
lo

b
a
l
C

o
n
te

x
t
M

o
d
e
l)

R
e
p

li
c
a
ti

o
n

M

a
n

a
g

e
r

O
rc

h
e
s
tr

a
ti

o
n

F

ra
m

e
w

o
rk

C

o
n

te
x
t

D
is

p
a
tc

h
e
r

M
o

d
e
l

M
a
n

a
g

e
r

W
o

rk
fl

o
w

M

a
n

a
g

e
r

Aggregation

Consolidation

Reasoning

Dissemination

R
e
g

is
tr

y
(C

o
n
te

x
t
P

ro
v
id

e
r

a
n
d

D
a
ta

 P
ro

v
id

e
r

)

Figure 4.10: Conceptual architecture of the proposed context-dependent RDF data replica-
tion framework

Chapter 4. Approach 159

sensor and operate independently and autonomously. They provide contextual information in
a proactive manner and become active whenever a change in the corresponding context source
is detected. Passive context providers are complementary and reactive components that react
according to changes in primary context providers and become active when a corresponding
primary context provider delivers an updated context model. They complement the contextual
data retrieved from primary context providers by taking these context descriptions as input for
initiating their acquisition tasks thus performing a form of context augmentation.

To provide the necessary flexibility in acquiring context-relevant data, context providers im-
plement their own logic and heuristics for transforming any kind of input data (either senso-
rial or web-based content) into an RDF-based context description by using well-defined and
well-accepted semantic vocabularies. As previously outlined, the acquisition of contextual data
should not be restricted to capture sensorial data exclusively since the Internet and Web 2.0
applications in particular provide excellent sources for gathering context-relevant data. Context
providers therefore are able to request data from four different types of sources:

(i) Hardware sensors that are integrated into the mobile system such as GPS module, luminos-
ity sensor, camera etc. Most modern mobile platforms provide specific APIs for accessing
and utilizing locally deployed hardware sensors capturing physical context (e.g., location,
inclination, orientation, etc.).

(ii) Ubiquitous sensors or devices that are located in the physical environment [GSB02]. Such
sensors must provide open accessible interfaces based on open network and access protocols
and allow for acquiring mostly physical context.

(iii) Software or logical sensors wrap interfaces or APIs of local data sources mostly for com-
plementing primarily acquired context information (e.g., Web services, APIs, online repos-
itories, etc.) and allow for monitoring user or application behavior to deduce on the type
of data that is relevant to the user in a specific situation.

(iv) Web applications such as Facebook54, LinkedIn55 etc. often contain useful information w.r.t
the users’ social relationships. Online and Linked Data repositories in particular provide
magnitudes of freely available context-relevant data that can be exploited for complement-
ing sensorially captured data.

By employing logical sensors, the acquisition of user-related contexts is emphasized. Such sensors
can be adjusted towards a particular system infrastructure to gather context-relevant information
by monitoring system processes to deduce information about the currently running applications
as well as the data they operate on56. Context providers can make use of context descriptions
from other context providers as well as external data sources; e.g., a component may use the GPS
coordinates provided by another context provider to look up names of the current location using
an external service57. A context provider describes the data it acquires but does not specify how
these data are acquired.

54
http://developers.facebook.com/

55
http://developer.linkedin.com/index.jspa

56For the prototype implemented as a proof-of-concept, we developed software sensors that track user queries
issued to various mobile applications such as browsers or the internal ‘quicksearch’-function on an Android device.

57See Figure 5.5 in Section 5.2 for an example.

http://developers.facebook.com/
http://developer.linkedin.com/index.jspa

Chapter 4. Approach 160

4.6.2.2 Context Dispatcher

The context dispatcher is the central component within the context framework. It handles
the communication between context providers and propagates context models between them.
Before propagating updated context descriptions to data provider components, the dispatcher
performs additional processing on the data, like inference and consolidation (cf. Algorithm 9).
Currently, the reasoning component uses (i) a generic lightweight rule-based reasoner, which
allows to specify conditions under which new triples are added to the knowledge base, and
(ii) hard-coded rules which are expressed by implementing a Java interface. The combination
of these two mechanisms can, for instance, be used to specify that if one resource has multi-
ple values for a functional property, the values denote the same resource (the corresponding
rule (A :ifp X) ∧ (A :ifp Y) ⇒ (X owl:sameAs Y) can be interpreted by the rule-based rea-
soner), and that multiple resources that are related via a owl:sameAs property can be merged
into a single resource in order to simplify further processing (a corresponding algorithm can be
implemented as a Java class and integrated into the reasoning process).

Context descriptions are forwarded not only to data providers, but also back to context providers,
so that they are enabled to mutually reuse and augment their context descriptions58.

Communication between the context providers and the context dispatcher is realized via a context
description queue that not only buffers the most recent context updates, but also stores previous
revisions of context updates for compensation strategies in case a context source is temporarily
not available or malfunctioning. In such cases, the context dispatcher can revert to previously
committed context description to continue the context acquisition process. However, the context
dispatcher employs some logic to maintain consistency among aggregated context descriptions.

4.6.2.3 Context Description Queue

Context providers communicate with the context dispatcher via the context description queue.
The purpose of the context description queue is to buffer a context provider’s recently emitted
context descriptions depending on the status of the context dispatcher in order to resemble an
asynchronous communication style as well as to serve as a means for implementing compensation
management strategies. Whenever a context description together with the containing context
model is sent to the context dispatcher, it is buffered in the context description queue until the
context dispatcher is ready to process the context description and store the containing context
model in the model manager. It implements specific logic for the management and exchange
of context models to enable the recovery of lost descriptions and also serves as a compensation
repository in case of temporarily unavailable context sources or malfunctioning context providers.
Therefore, it not only stores different revisions of a context description but also implements a
specific processing logic that allows the context framework to revert to previous context models
in order to sustain the proper execution of context acquisition workflows and processes. In case
a context provider becomes temporarily unavailable or malfunctioning and as a consequence is
unable to emit a context model, the missing context model can be replaced by an earlier revision
– although at the cost violating consistency requirement for reasons of context completeness (see
Section 4.7). This is particularly relevant for orchestration trees in which multiple complementary
context providers are orchestrated for context augmentation and refinement.

58Figure 5.5 depicts an example of augmenting GPS-coordinates with data from the http://www.geonames.org

web service.

http://www.geonames.org

Chapter 4. Approach 161

4.6.2.4 Model Manager

The model manager is used for storing and tracking the context providers’ context models that
have been acquired in the course of context acquisition workflow. For every context provider
deployed in an instance of the replication framework, the model manager exhibits a specific
data structure59 in order to store the most recently emitted context model together with status
information related to its acquisition activities. Whenever the context dispatcher successfully
acquired a context description from the context description queue and processed the contained
context model, it is stored in the model manager until a new instance of the context configuration
is created. In this sense, the model manager acts as a both a controlling instance as well as a
repository for context models processed by the context dispatcher.

4.6.2.5 Orchestration Framework

The orchestration framework handles all the tasks related to the computation of the compatibil-
ity scores and the creation of the corresponding orchestration trees being described in Section 4.4
and 4.4.3. It dynamically orchestrates compatible context providers by analyzing their data de-
scriptions as described in the respective sections. The orchestration framework can be configured
to either perform a loose orchestration on the namespace level, or a detailed one by considering
concepts and properties given by the context providers’ data descriptions. When a new context
provider is found in the system, the orchestration framework analyzes its data description and
based on its configuration integrates the context provider in a proper orchestration tree. While
running completely decoupled from the context framework, rebalancing the orchestration graph
does not affect context acquisition tasks as such.

The compatibility score for each pair of context providers is computed on the basis of config-
urable scores for indicating correspondences on the namespace, concept, and property levels.
The orchestration algorithm performs an arithmetic matching based on data similarities and
is additionally capable of including RDFS semantics such as rdfs:subClassOf relationships.
For instance, if one context provider emits foaf:Person instances and another context provider
requires foaf:Agent instances as input data, the matching algorithm detects the compatibility
between these differing concepts since foaf:Person is a subclass of foaf:Agent according to
the FOAF ontology [BM07].

4.6.2.6 Workflow Manager

The workflow manager is responsible for the management and coordination of the context acqui-
sition workflows as well as the context providers’ context acquisition processes that control and
manage the acquisition activities of the context providers pertaining to an orchestration tree in
order to sustain a deterministic and consistent behavior. Whenever a primary context provider
emits a new context model, the workflow manager instantiates the corresponding global trans-
action and context acquisition workflow described in Algorithm 6 and controls the execution
of the context acquisition processes. When all context acquisition workflows have finished, the
workflow manager sets the corresponding entries in the model manager and notifies the context
dispatcher that a new instance of the context configuration can be created.

59Technical details of the data structure implemented in the model manager together with further details are
given in the MobiSem System Documentation [SZ10b].

Chapter 4. Approach 162

4.6.2.7 Registry

The registry is the central storage and registration component where all context and data
providers deployed in the framework must register in order to be integrated in acquisition and
replication workflows. It uses separate hosting data structures and provides access to both pri-
mary and complementary context providers as well as data providers via dedicated methods and
interfaces. It automatically notifies the orchestration framework whenever a new context provider
has been registered so that it can be automatically orchestrated with compatible providers.

4.6.2.8 Context Configuration

The context configuration represents an aggregated version of all context providers’ context mod-
els received by the context dispatcher. It is created when all context acquisition workflows being
executed between the creation processes of two consecutive context configuration instances have
been completed, i.e., when the corresponding global transactions have invoked a termination
event (cf. Section 4.5.3) and the acquired context models are ready to be aggregated and consol-
idated. The context dispatcher then collects updated context models, aggregates them, applies
reasoning rules as described before, and creates a new instance of the context configuration while
maintaining context completeness, consistency, and accuracy.

4.6.2.9 Replication Manager

The replication manager controls and orchestrates all data replication tasks. It operates com-
pletely decoupled from the other framework components and gets notified by the context dis-
patcher whenever a new instance of a context configuration has been created. The replication
manager is responsible for the instantiation of data provider control threads, which provide a
runtime environment for the execution of the acquisition operations specified in a context ac-
quisition process and encapsulating transaction; they control and monitor data replication tasks
and propagate the context configuration to each data provider. The replication manager also
receives notifications about changed data replicas in order to initiate write-back and synchro-
nization operations.

4.6.2.10 Data Providers

Data providers are responsible for handling RDF data replication tasks; they replicate data
of any kind to the mobile device and can request data from virtually any internal or external
data source or generate data replicas themselves. Data provider components operate completely
decoupled and independent from each other. Each data provider is assigned a named graph and
unique identifier that is used as part of the addressing scheme it makes use of to store replicas
in the local triple store. Data providers adjust and initiate their data replication tasks based
on the analysis of the context configuration that they receive by the replication manager. For
instance, a data provider may act upon changes of the current location and retrieve information
about nearby points of interest.

In addition to the default data providers that merely retrieve data from remote sources and store
them in the triple store, we have implemented a selective checkout data provider that makes use
of a partial versioning mechanism for RDF triples based on triple bitmaps [Sch10] as well as a

Chapter 4. Approach 163

write-back data provider that synchronizes the partially replicated data back to the repository,
if the latter supports write operations (see Section 5.2).

4.6.2.11 Triple Store

Modern mobile platforms provide transparent access to persistent storage devices (e.g., flash
memory cards) through a file system API. Therefore, the most straightforward way to store
RDF data on a mobile device is to serialize it into a file on such a device using a standard
RDF serialization format, like RDF/XML or N3. While this storage mechanism is extremely
fast compared to DB-backed mobile storage solutions (cf. Chapter 6), it also has the significant
disadvantage that RDF graphs must be completely loaded into the mobile device’s working
memory (RAM) before they can be further processed (e.g., before a SPARQL query can be
issued). Alternatively, triples can be stored in a relational database, which causes an increase of
read and write times but provides the possibility for structured queries over the data.

Our triple store implementation is designed to be a lightweight, efficient storage and retrieval
mechanism for RDF triples. It abstracts over the concrete storage mechanism that is used
by the mobile platform60 and provides support for named graphs [CBHS05], persistence, and
RDF serialization and de-serialization. It employs a normalized table layout (cf. [AMMH09])
where resources, literals, and blank nodes are stored in separate tables61. Regardless of which
actual storage solution is used, it can be wrapped by a Java class that maps all read and write
access methods to corresponding operations on the underlying physical representation (either
flat files or a relational model). Currently, our triple store implementation does not perform
in-memory buffering or caching. However, it can be wrapped by an additional in-memory Graph
instance (which provides faster access) that regularly synchronizes itself with the database-backed
instance.

4.6.2.12 RDF Content Provider

Applications can use RDF content provider to access data stored in the device’s local triple store.
The RDF content provider assigns to each replicated graph a unique URI, which can be used to
access and retrieve the data contained in the graph. It exposes insert, update, delete and query
methods and offers multi-grained access to data replicas, i.e., applications can access all replicas
cached in the database, a specific replica, or a specific resource including all adhering triples of
a specific replica.62 In the background, the RDF content provider hides the details of context
processing and data replication from applications; from the outside the replication framework
looks like a common triple store whose data are regularly updated.

For our proof-of-concept implementation being described in more detail in [SZ10b], the RDF
content provider is designed as a specialized Android Content Provider (see [RLMM09]) that is
complemented with RDF processing and management capabilities to support the system-wide
provision of RDF data replicas. It contains a number of projections for transforming RDF graphs
into the relational database schema of the locally deployed SQLite database and vice versa. It

60Most mobile systems use specific storage systems such as the Record Management System (J2ME compatible
devices) or a SQLite database (Google Android).

61A discussion regarding other database layouts for storing RDF triples including their advantages and limita-
tions can be found in [HBS08].

62This functionality is implemented through an Android Content Provider that allows for defining explicit URI
schemes for data replicas through which operating system-wide data access and data utilization is offered. By
exposing distinct URIs (e.g. content://org.mobisem.rdfprovider/graph#<graphid>) triples can be retrieved,
added, deleted, and updated.

Chapter 4. Approach 164

exposes a common interface applications can use for performing query, update, insert, and delete
operations on replicated data. The RDF content provider has been extended with named graphs
support [CBHS05] and exposes configurable content URIs that allow for addressing specific parts
of data replicas.

4.7 Discussion and Summary

After having defined our approach on a formal, algorithmic, and conceptual basis, we discuss a
number of aspects and characteristics exhibited by the chosen approach that we consider essential
for the aggregation and processing of contextual information.

• Completeness of Contextual Information

The aspect of completeness is defined in relation to the context-relevant information space
represented by the context sources s ∈ S. In general, it determines that all the contextual
information acquired by the context providers p, c ∈ Vp orchestrated in orchestration trees
op ∈ O should be aggregated into compound context acquisition models Mop

∈ OM and
be reflected in an instance of a context configuration cc ∈ CC. Completeness specifically
defines that at any given point in time τi, an instance of a context configuration ccτi

∈
CC contains the context models of all context providers cp ∈ Vp orchestrated within the
orchestration trees op ∈ O deployed in a running instance of the framework. However,
the aggregation algorithms, as outlined in Section 4.5, are defined on the principle of
processing contextual information efficiently w.r.t. the available mobile operating system
resources wherefore only the most recently acquired compound context acquisition models
Mop

∈ OM are integrated in the creation process of a context configuration cc ∈ CC. In
combination with the reactive processing model, there might be situations in which only a
designated number of context providers p ∈ P have updated their context models between
the creation of two subsequent instances of context configurations ccτi

, ccτi+1 ∈ CC. If only
updated context information would be aggregated, an instance of a context configuration
cc ∈ CC would contain an incomplete representation of the user’s context with respect to
the entire set of primary context providers p ∈ P and thus cp ∈ Vp.

To illustrate this case, let P � be a partition of P and contain only those primary context
providers that have emitted an updated context model between two subsequently created
context configuration instances ccτi

, ccτi+1 ∈ CC where P � ∩ (P\P �) = ∅. If, as a conse-
quence, only those compound context acquisition models Mop

pertaining to the primary
context providers p ∈ P � would be included in the creation process of a new instance of a
context configuration, ccτi+1 would contain an incomplete set of context information w.r.t.
to entire context-relevant information space represented by the context sources s ∈ S.

To circumvent this, an instance of a context configuration cc ∈ CC hence contains the
context models of all context providers cp ∈ Vp orchestrated within the orchestration trees
op ∈ O, even the context models of those context providers, which have not created an
updated instance of their context models between the creation process of ccτi

, ccτi+1 ∈ CC

(cf. Algorithm 9). As a consequence, a context consumer thus always receives a complete
representation of the user’s current context including both the most recent context updates
as well as infrequently changing context data acquired from previous context updates.

In addition, the aspect of completeness is especially important in situations when during
a context acquisition process, a context provider is malfunctioning or suddenly becomes

Chapter 4. Approach 165

unavailable. In such situations, the framework is able to recover previously acquired con-
text information from the context description queue and integrate those information into
aggregation processes to maintain the aspect of completeness and to create a complete
description of the user’s current context.

• Data and Processing Consistency

Consistency is a well-known ACID property for database transactions that guarantees a
reliable, predictable, and deterministic execution of the operations pertaining to a trans-
action when those operations comply to the rules defined in a transaction model [GR92].
The proposed transaction-based processing model presented in Section 4.5 obeys to the
consistency property and incorporates a consistency control on the basis of an extended
transaction model to avoid inconsistencies on data and process level when processing and
aggregating concurrently and distributedly acquired context information. It guarantees
accurateness, trustworthiness, and reliability w.r.t. the data and activities involved in the
context acquisition processes of context providers, which is considered a central aspect
of distributedly operating context-aware systems (cf. [CEM03]). The transaction-based
processing model facilitates and comprises two consistency dimensions:

– Data consistency refers to the consistency of aggregated context-relevant data con-
tained in a context model in terms of avoiding ambiguous, contradictory, incompatible,
or outdated data as exemplified by the subsequently presented example.

– Processing consistency refers to the fact that context acquisition processes and work-
flows are processed identically and independently from specific context provider in-
stances regardless of temporal, contextual, technical, or external conditions.

In general, a context model should not contain any outdated, unreliable, or contradictory
data. The following example illustrates the emergence of data inconsistencies that might
occur during the aggregation process of context models emitted by the context providers
cp ∈ Vp orchestrated in an orchestration tree op ∈ O. Let assume the existence of three
context providers p1, c2, c3 ∈ Vp1 currently deployed in a running instance of the context
framework that are sequentially orchestrated in a way such that c2 receives a context model
mp1 ∈ M from p1, and c3 receives a context model mc2 ∈ M from c2. For this purpose, let
assume that p1 provides the geo-coordinates of the current position, c2 transforms physical
geo-coordinates into a location ID using a service such as GeoNames.org63, and c3 takes a
location ID to query for points of interests (POIs) that are situated around a given location
and represent them in its context model mc3 ∈ M.

Let us further assume that p1 acquires its context model mp1 ∈ M at a certain point
in time τi. c2 thus receives mp1 at time τi+1 where τi < τi+1 and initiates its context
acquisition process instantaneously. When c2 has successfully updated its context model
mc2 ∈ M at a point in time τi+2, where τi+2 > τi+1 > τi, it is forwarded to c3 to retrieve
POIs related to the current location ID.

If p1 creates and emits a new, updated context model m�
p1 ∈ M during the time c2 is

performing its acquisition activities, c2 operates on the basis of the previous context model
mp1 ∈ M, which is further used as input data for c3. This situation would introduce a
context model inconsistency as c2 is performing its context acquisition tasks on the basis
of the previously emitted context model mp1 that contains superseded geo coordinates. As
a consequence, a context configuration cc created by the context dispatcher would contain
inconsistent data since the POIs retrieved by c3 and the location ID created by c2 do not

63GeoNames web service: http://www.geonames.org/export/ws-overview.html

http://www.geonames.org/export/ws-overview.html

Chapter 4. Approach 166

correspond to the recently acquired geo-coordinates represented in the updated context
model m�

p1 of p1.

To avoid such data inconsistencies, the transaction-based processing model considers all
context acquisition processes conducted within the course of a context acquisition work-
flow wfop

as constituents of a global transaction and therefore locks the corresponding
primary context provider p ∈ Vp as well as orchestrated complementary context providers
c ∈ Cp that have already emitted a context model so that no context updates can be propa-
gated during the context acquisition processes of adjacent context providers csucc ∈ N+

op
(c)

that are currently in progress. When a context acquisition workflow wfop
∈ WF has

been executed successfully and the corresponding global transaction GTp has invoked a
CommitGTp ∈ H event, the locks of all context providers cp ∈ Vp are released so that new
instances of emitted context models can be processed by the context dispatcher.

Consistency also concerns the synchronicity between different autonomous context acqui-
sition workflows. Recent works therefore aim to apply the technique of location finger-
prints [ACC09] where each context information fragment might be annotated with a unique
location fingerprint to identify the location from where a certain contextual aspect has been
acquired. Other related works apply a temporal synchronization raster for the acquisition
of contextual data, where the time a context value is usable within the system is considered
as a determining factor.

In addition to data consistency, consistency among context acquisition and aggregation
processes is another important aspect – especially in unpredictable, indeterministic, and
frequently changing situations. The replication framework must exhibit a consistent and
deterministic behavior in case a failure occurs during a context acquisition process which
causes a context provider to become temporarily unavailable or to lose connection to the
context source it encapsulates. Moreover, if a specific behavior is repeated multiple times,
the framework must behave identically and deterministically. Processing consistency also
ensures that the same context-relevant information items are processed identically, i.e, the
context acquisition processes of every context provider are executed and processed accord-
ing to a consistent and coherent processing logic (cf. Section 4.3.5 and Section 4.5). It
further ensures that all context acquisition workflows are executed and controlled iden-
tically regardless of specific context provider instances orchestrated in the corresponding
orchestration trees. Consistency also concerns the orchestration processes in such way that
for an identical set of data descriptions, identical compatibility scores and thus orchestra-
tion trees are calculated and created.

In addition, the inclusion of time frames that span a temporal scope in which a comple-
mentary context provider c ∈ Cp must have completed its acquisition activities helps in
maintaining a deterministic runtime behavior of context acquisition processes and enclosing
workflows. If a context provider c ∈ Cp is unable to finish its acquisition activities within
its predefined time frame, the context dispatcher assumes that the context provider is mal-
functioning or temporarily unavailable and, as a consequence, unable to emit a context
model wherefore it aborts the corresponding transaction t ∈ Tp (cf. Section 4.5).

• Up-to-dateness of Context Representations

A context configuration instance should always represent the most accurate description
of the user’s current context and contain the latest acquired context information when
requested by a context consumer. This implies that the most recent context updates are to
be included in the creation process of a context configuration instance cc ∈ CC regardless
of a specific point in time. The proposed transaction-based processing model supports the

Chapter 4. Approach 167

aspect of up-to-dateness through the concurrent execution of both context acquisition work-
flows wfop

∈ WF as well as context acquisition processes pertaining to such workflows in
the form of transactions while considering consistency requirements and ACID properties.
Furthermore, the process of creating a new instance of a context configuration is accelerated
as only those compound context acquisition models Mop

∈ OM are updated, the corre-
sponding workflows wfop

∈ WF and global transactions GTp of which have been executed
successfully during two subsequently created context configuration instances. However, to
comply with consistency requirements, there is often a trade-off to be made between the
aspects of up-to-dateness and data consistency since updated contextual information can
only be incorporated into local information structures created and processed during the ex-
ecution of context aggregation workflows when conflicts or contradictions between already
existent and acquired data can be precluded (cf. data consistency example discussed in the
previous aspect). This means that while a context acquisition workflow wfop

∈ WF is cur-
rently in progress, context updates acquired by containing context providers cp ∈ Vp that
have already emitted a context model and invoked a Committ ∈ H event on the executing
transaction are rejected (cf. Algorithm 4). However, the context description queue incor-
porates a mechanism that locally buffers such updates and allows the context dispatcher to
process them when both the corresponding acquisition workflow has been finished and the
pertaining global transaction has invoked a termination event � ∈ TEGTp (cf. Algorithm 5
and Section 4.6.2).

• Reactiveness of Processing Context Updates

The aspect of reactiveness specifically determines how fast the context framework is able
to react on context changes manifested in context model updates, even when there exist
other concurrently running context acquisition processes and context acquisition workflows.
It ensures that the time a context update is detected and the time it is acquired and
processed by the context dispatcher is reduced to the necessary minimum. Reactiveness
is related to the requirement of Up-to-dateness since a context configuration instance as
global representation of the user’s context should always contain the most recent context
updates. In this respect, the formal model proposed in this chapter tries to minimize the
amount of time that lies between the detection of a context update and its transformation
into a context model, and the time needed for an integration into the creation process of a
new context configuration instance. Since reactiveness and up-to-dateness are contrary to
the requirement of data consistency, the implicitly incorporated lock mechanism reflected
by the processing model accounts for both the minimization of aggregation and processing
times while avoiding the inclusion and emergence of contradictions, inconsistencies, and
inaccurate contextual data.

For instance, if a primary context provider p ∈ P detects a context information update
and emits an updated context model m�

p ∈ M but the context acquisition processes of
the complementary context providers c ∈ Cp are still in progress, the recently emitted
updated context model m�

p is rejected and buffered in the context description queue until
all of the orchestrated context providers c ∈ Cp have finished their acquisition activities
(cf. Algorithm 3). The framework therefore treats a context acquisition workflow wfop

∈
WF as a single atomic transaction (cf. Section 4.5.1) and automatically locks the context
acquisition processes cap(c) of pertaining context providers c ∈ Cp that have already
emitted their context models64 so that no conflicting context updates are propagated while
acquisition workflows are in progress. Due to efficiency reasons, it is not necessary to
lock the context acquisition processes of context providers pertaining to unconcerned and

64This concerns context providers, the corresponding transactions of which have invoked a Committ ∈ H event.

Chapter 4. Approach 168

concurrently running context acquisition workflows as the context providers orchestrated
in the orchestration trees op ∈ O are per default disjunct (cf. Equation (4.15)). However,
the adaptive lock mechanism defined in the course of the processing model locks only
the context acquisition processes of those context providers that pertain to the context
acquisition workflow of their orchestration tree op ∈ O being currently in progress in order
to not influence the reactiveness of context acquisition processes pertaining to context
providers orchestrated in other orchestration trees.

Reactiveness also accounts for the time interval that lies between the detection and process-
ing of a context update, and its propagation to complementary context providers c ∈ Cp

via the context dispatcher. The faster the context dispatcher is able to react on context
updates and propagate updated context models to compatible context providers, the more
unlikely it is that a context update becomes superseded and obsoleted. Therefore, the
processing model was designed to minimize reaction times while not violating consistency
requirements.

• Computational Effort and Memory Consumption

The computational expenses and memory consumption associated with processing of con-
text acquisition processes and workflows should be adjusted to the available system re-
sources of mobile information systems and platforms (cf. Section 7.2). Ideally, computa-
tional processes are self-adaptive and allow, e.g., to exclude complex reasoning algorithms
from aggregation processes in case of limited processing power to keep response times ac-
ceptable. The computational effort for the proposed framework is relatively high due to the
complex concurrency- and necessary consistency-control mechanisms needed for the execu-
tion of multiple simultaneously running context acquisition processes and workflows while
avoiding the emergence of context data heterogeneities, inconsistencies, and contradic-
tions. Moreover, transforming contextual information into RDF-based context models on
the basis of Semantic Web-based description frameworks and reasoning engines consumes
considerable amounts of memory capacity and computational power (see Chapter 6) as
RDF is inherently a rather resource-intensive data format.

To keep the processing load of a framework balanced, the inclusion of feedback loops in
acquisition and computation-intensive processes is favorable in order to adjust process-
ing capacities with respect to technical conditions and available system resources (cf. Sec-
tion 7.2). For instance, complex and computationally expensive reasoning heuristics should
not be performed in case of low memory capacity to keep the amount of inferred triples
small. As evident from the evaluation of mobile RDF frameworks (cf. Chapter 6), current
RDF processing frameworks are only capable of handling RDF models of comparably small
triple sizes efficiently. Therefore, it is important to reach a trade-off between the size of
a context model and the computational effort needed to create a model. On the other
hand, in case of the availability of extensive computational resources, a framework might
make use of a more complex and comprehensive redundancy management to minimize the
impact of component malfunctions or acquisition failures. The framework presented in
this chapter exhibits a relatively basic redundancy management that operates on the basis
of the context descriptions being buffered in the context description queue and allows to
revert to previously emitted context models in case of transmission failures or a loss of a
complete context description to maintain the aspect of completeness (cf. Section 4.6.2.3).

In this chapter, we have presented the foundations of our approach manifested in form of a formal
model of its main constituents, a formal and algorithmic description of the orchestration logic
and the deduction of orchestration trees, a transaction-based processing model for contextual

Chapter 4. Approach 169

information and context acquisition workflows, and a conceptual system architecture including
implementation-relevant details when appropriate. At the beginning of this chapter, we provided
a consolidated collection of requirements which we consider fundamental for a context-sensitive
RDF data replication framework for mobile devices, and which were acquired in the course of an
analysis of related works. Those requirements serve as design considerations of our approach.

An elementary aspect of our approach is the orchestration of compatible context providers in
orchestration networks, which we denote orchestration trees, and which allow for a controlled
acquisition and aggregation of compatible contextual information for context augmentation and
context refinement. Those compatibilities are computed on the basis of data descriptions that
specify input and output data required by a context provider to perform its acquisition tasks. By
analyzing the context providers’ data descriptions, we calculate several individual compatibility
scores between pairs of context providers, where the aggregated score indicates the degree of
compatibility that exists between two context providers in terms of the contextual data they
both emit and possibly require. The final scores are recorded in a compatibility and orchestration
matrix from which the orchestration trees are deduced.

In addition to the formal model, we also defined a transaction-based processing model for the
acquisition, aggregation, and transformation of contextual information while preserving con-
sistency, accurateness, and completeness requirements as well as taking into account mobile
information system’s peculiarities. We defined the processing model on the basis of the ACTA
formalism that allows for a characterization of the nature of interactions and their semantics, the
types of dependencies that exist between them, as well as the effects of transactions on involved
transactional objects. The transactional processing model treats context acquisition workflows
as global transactions and the context acquisition processes pertaining to the complementary
context providers orchestrated in an orchestration tree as nested or elementary transactions. Its
main feature is its reactive behavior as a new instance of a context configuration is created only
in case a context provider detected an updated in the context source it observers and emits an
updated context model as result. The processing model guarantees that the creation process
of a context configuration instance does not interfere with existing acquisition and aggregation
process and that consistency and completeness requirements are preserved.

As conclusion of this chapter, we presented a conceptual system architecture and discussed se-
lected aspects of the proposed approach that concern the completeness of contextual information,
data and process consistency, the accurateness of aggregated contextual information as well as
the reactiveness of context acquisition workflows and the computational effort needed in process-
ing and controlling context acquisition workflows. The proposed framework works independently
from existing mobile applications and rather provide them with the necessary information. From
the perspective of an application, the proposed framework looks like a normal triple store that
is regularly updated with local or remote data from various sources while being easily integrable
in existing systems and application infrastructures.

Chapter 5

Implementation and Case Study

“Context is key in the development of new services that will impact social inclusion for the
emerging information society.”

Coutaz et al., Context is Key (2005)

After having introduced the formal model and conceptual architecture of our approach in the
previous chapter, we now present selected aspects regarding the implementation of a proof-of-
concept prototype as well as a case study that is built upon the prototype in this chapter.
We particularly focus on the underlying class structure of context and data providers that al-
lows to integrate such components with a minimum of necessary adaptation work as most of
the acquisition and replication-related behavior of context and data providers (cf. Section 4.3
and 4.5) is encapsulated in abstract super classes. This allows developers to focus on logic and
implementation-specific details being relevant for the acquisition, transformation, and consolida-
tion of contextual information while all processing- and management-related tasks are handled
automatically by the framework. Section 5.2 and 5.3 thus present merely a small excerpt of
the proof-of-concept prototype; extensive details regarding the implementation of the most rel-
evant components as well as on the realization of the constituting algorithms and concepts are
presented in [SZ10b, SZ10a, ZS12b]:

• In [SZ10b] we document the main concepts related to the acquisition, processing, manage-
ment, and dissemination of contextual information together with the main algorithms for
the (partial) replication of RDF graphs and their processing on the mobile device. This
includes algorithms for the versioning, selection, partial replication, and back-writing of
RDF graphs, which are also discussed in [Sch10].

• In [SZ10a] we give in-depth details about the implementation of the context framework.
We specifically describe the entire system and its package infrastructure as well as aspects
related to the orchestration of context providers, processing context models, controlling
and managing context acquisition workflows, and the communication infrastructure imple-
mented between the framework components. We also provide a practical guide on how to
develop context and data providers and integrate them properly in the framework.

• In [ZS12b] we address the aspects of disseminating and utilizing contextual information
in general and RDF data replicas in particular and also provide an efficient concept for

171

Chapter 5. Implementation and Case Study 172

the processing of context descriptions by mapping context processing states to unique bit-
based patterns. We further present implementation details of the RDF content provider
and illustrate how mobile applications can access and retrieve RDF data replicas via the
interfaces provided by the RDF content provider.

However, the framework is designed as infrastructure and can be adapted to a wide array of
potential application scenarios. In the second part of this chapter, we therefore present a typical
use case of a mobile knowledge worker that is constantly provided with information related to
her current location as well as the people she is likely to meet in the near future. We have
focused on a rather general use case centered around the proactive provision of location-based
data as this type of context information is the most relevant for mobile users (cf. [BZD02, Bar03,
RVW05, HSMY08, SVLO+11]).

5.1 Development Platform

We have chosen to implement the proposed framework on the Google Android platform1 since
the underlying operating system and application model provide substantial advantages com-
pared to other mobile operating system architectures such as J2ME. Android itself is an open
software stack and operating environment for running Java applications on the Dalvik Virtual
Machine which is especially optimized for mobile environments. It includes a lightweight rela-
tional SQLite database that offers dedicated libraries for its utilization within application and
services to store data persistently. Such data can be shared across applications in a controlled
manner using Android’s inter-process communication model. In contrast to the hard-wired ap-
plication models of desktop operating systems, Android offers an intend-based application model
that allows an application to specify a certain kind of functionality it requires for data processing
where the operating system chooses the application that best matches. Android resembles some
well-established software design patters such as the Model-View-Controller (MVC) pattern to
separate application logic from user interface design and underlying data models. It provides
access to the core system operating functions through standard APIs as well as a complete mul-
titasking environment where each application is executed within its own thread, thus providing
the possibility to implement background services, like a synchronization process that is auto-
matically activated when the mobile device has online connectivity to its home network (e.g.,
by automatically establishing a VPN connection within a public wireless local area network).
Access to core-system libraries and functions is offered via native APIs that can be used by
both native and non-native applications. Android employs an equal, non-prioritized execution
policy for native and non-native applications that are executed in the same runtime, and offers
a complete multithreading environment where applications can place computationally expensive
tasks in separate threads, e.g., to maintain user interface and application responsiveness [Mei10].

The Android operating system consists of a Linux-based system kernel, a middleware, key ap-
plications, and a set of API libraries for accessing native system functions and natively deployed
hardware sensors [And10]. It was released in 2007 under the auspices of the Open Handset Al-
liance2, a coalition of 79 technology and mobile companies3 and has gained noticeable attention
not only in the mobile software development industry but also in the mobile computing research
community since it represents a new generation of mobile application development platform

1Official homepage of the Android platform: http://developer.android.com

2Open Handset Alliance: http://www.openhandsetalliance.com/

3see http://www.openhandsetalliance.com/oha_faq.html

http://developer.android.com
http://www.openhandsetalliance.com/
http://www.openhandsetalliance.com/oha_faq.html

Chapter 5. Implementation and Case Study 173

and software development environment [RLMM09]. One of the key architectural features of the
Android platform is the open communication infrastructure where application can reuse function-
ality and exchange data in a controlled and flexible way. Android includes a highly specialized
virtual machine that was designed for low-powered handheld devices as those devices usually
“lag behind their desktop counterparts in memory and speed by eight to ten years” [HKM+10].
In contrast to conventional Java virtual machines which use a stack-based architecture for data
storage, the Dalvik VM is built upon a register-based architecture and transforms generated Java
classes into a performance and memory-optimized Dalvik-specific file format (.dex-file) whose
space compared to conventional .jar archives is reduced by the factor 2 [HKM+10].

As opposed to other conventional mobile development platforms, the Android operating consists
of four main components, which are briefly introduced in the following as they embody essen-
tial constituents mandatory for the realization of crucial aspects of the conceptual architecture
presented in Section 4.6:

• Activities. Activities are the building blocks of Android applications and correspond to
a single UI screen. Activities are self-contained pieces of executable code and are either
instantiated by the operating system via Intents or by the user [RLMM09].

• Services. Android services can be compared to services on desktop computers that execute
a certain piece of code and run in the background. Services usually do not expose a user
interface and their lifetime ends when the device is shut down. A typical example of
a service is a music-player that remains active even when the user switches to another
application. Persistent background tasks are usually executed as services.

• Broadcast and Intent Receivers. Broadcast receivers listen for system-wide events issued
by the operating system or other applications and respond to those events. They allow
applications or services to receive Intents by executing an Intent Receiver that processes
the data or requests issued from other applications. Applications or services expose their
functionality via Intent Receivers that specify which type of request the application or
service can satisfy. The Android operating system automatically routes such requests to
those components that can handle them most appropriately. Intents are a central concept
for the inter-application communication and interaction.

• Content Providers. Content providers are used to share data between applications or
services. They expose a standard URI-based interface that can be system-wide requested
to receive data from a content provider. If an application queries for data, the operating
system automatically selects the most appropriate content provider among all registered
providers. Application and services can register their content provider using a specific URI
such as content://framework/rdf/context where components can consume such data by
issuing requests to an exposed URI. In case there are multiple content providers registered
for the same URI, the system will choose the most appropriate one.

The application model underlying the Android platform allows for a loose coupling of mobile
applications and constituting activities which can be dynamically added, removed, or substituted
by other Activities depending on the user’s needs. Together with the concepts of Intents and
URIs, Android offers a flexible execution environment [RLMM09]. This environment provides
the following opportunities regarding the deployment of a replication framework that exhibits
necessary functionality for an efficient acquisition, management, storage, and dissemination of
context information:

Chapter 5. Implementation and Case Study 174

• Ad-hoc discovery and exploitation of context sources A discovery service can be deployed
to constantly scan the environment for exploitable context sensors and ubiquitous devices
in order to facilitate their integration into the acquisition space of the context framework.

• Deployment of the context framework as part of the infrastructure A context framework
can be realized as a background service that is executed transparently and autonomously
from the user while not affecting any of their tasks nor requiring explicit user attention.

• Dissemination and provision of RDF data replicas via well-defined interfaces The concept
of content providers can be adapted to allow for the controlled and fine-grained provision
of replicated data sets as well as for the provision and utilization of context data.

• Non-disruptive user notification and interaction requests Broadcast receivers can notify
the user about relevant events in a non-disruptive manner while providing specialized
configuration views in case explicit user inputs are necessary, e.g., for acquiring permissions
related to the integration of recently discovered ubiquitous sensors.

• Utilization and exploitation of locally deployed sensors and infrastructure functions The
open and uniform architecture of the Android operating system allows for a broad and
system-wide utilization of locally deployed sensors on a mobile device where native APIs
offer uniform and controlled access to those peripheral hardware.

The context framework is realized as a Java-based Android application and can either be deployed
as an application or as a (background) service. It encompasses the entire context processing and
management life cycle, i.e., context acquisition, representation, interpretation, aggregation, con-
solidation, context reasoning, context dissemination, context storage, and context provision and
utilization. Each aspect is implemented in separate packages and expose dedicated interfaces for
its utilization, adaptation, and extension. The framework in general is responsible for executing
and maintaining context processing, context management, and context storage workflows in a
controlled and deterministic manner.

5.2 Implementation of Context and Data Providers

In this section, be give a brief overview of the abstract classes and interfaces pertaining to context
and data providers. They specify the necessary member variables and methods every context
and data provider must implement for its proper integration into the context framework and the
context acquisition and orchestration workflows, as well as for the replication workflows initiated
by the replication manager.

All the basic data of context and data providers such as name, identifier, data description,
and status information are held in the AbstractBasicProvider class and specified by the
IBasicProvider interface as depicted in Figure 5.1. It represents the skeleton that allows every
context and data provider to be integrated in the respective workflows. The AbstractContextProvider
class implements methods regarding the communication with the context description queue and
the context dispatcher as well as for the creation and management of the context providers’ con-
text models. The method declarations defined in the IContextProvider interface represent a
minimum functionality a context provider must exhibit and are to be implemented or delegated
to concrete context provider implementations. Primary context providers must be inherited from
the abstract class ActiveContextProvider whereas complementary context providers are de-
duced from the abstract class PassiveContextProvider. Both classes are by itself subclasses of

Chapter 5. Implementation and Case Study 175

Co
nt

ex
tP

ro
vi

de
rS

tru
ct

ur
e

20
12

/0
5/

11
 p

ow
er

ed
 b

y
A

sta
h

#
 s

et
Pr

ov
io

us
C

on
te

xt
M

od
el

(m
od

el
 :

 M
od

el
)

:
vo

id
#

 g
et

Pr
ev

io
us

C
on

te
xt

M
od

el
()

 :
 v

oi
d

#
 s

et
C

ur
re

nt
C

on
te

xt
M

od
el

(m
od

el
 :

 M
od

el
)

:
vo

id
#

 g
et

C
ur

re
nt

C
on

te
xt

M
od

el
()

 :
 M

od
el

-
d

es
cr

ip
tio

nQ
ue

ue
 :

 C
on

te
xt

D
es

cr
ip

tio
nQ

ue
ue

-
p

re
vi

ou
sC

on
te

xt
 :

 M
od

el
-

cu
rr

en
tC

on
te

xt
 :

 M
od

el

A
bs
tr
ac
tC
on
te
xt
Pr
ov
id
er

#
 u

p
d

at
eD

at
aI

m
p

l(t
ar

ge
tM

od
el

 :
 M

od
el

)
:

vo
id

#
 u

p
d

at
eC

on
te

xt
Im

p
l()

 :
 v

oi
d

+
 r

ep
lic

at
e(

ta
rg

et
M

od
el

 :
 M

od
el

)
:

vo
id

+
 s

et
C

on
te

xt
C

on
fig

ur
at

io
n(

co
nt

ex
t

:
M

od
el

)
:

vo
id

-
m

D
at

aR
ep

lic
at

io
nU

ri
 :

 U
R

I
-

co
nt

ex
tR

es
ou

rc
e

:
R

es
ou

rc
e

-
co

nt
ex

tM
od

el
 :

 M
od

el
-

re
p

lic
at

e
:

b
oo

le
an

A
bs
tr
ac
tD
at
aP
ro
vi
de
r

#
 c

re
at

eP
ro

vi
d

er
D

es
cr

ip
tio

n(
)

:
vo

id

-
en

ab
le

d
 :

 b
oo

le
an

-
na

m
e

:
St

ri
ng

-
uu

id
 :

 U
U

ID
-

co
nt

ex
tD

es
cr

ip
tio

n
:

M
od

el

A
bs
tr
ac
tB
as
ic
Pr
ov
id
er

+
 g

et
C

on
te

xt
M

od
el

()
 :

 M
od

el
+

 d
et

ec
tC

on
te

xt
()

 :
 M

od
el

+
 c

on
te

xt
C

ha
ng

ed
()

 :
 b

oo
le

an

<
<

in
te

rf
ac

e>
>

IC
on
te
xt
Pr
ov
id
er

+
 s

et
En

ab
le

d
(e

na
b

le
d

 :
 b

oo
le

an
)

:
vo

id
+

 g
et

En
ab

le
d

()
 :

 b
oo

le
an

+
 s

et
D

es
cr

ip
tio

n(
d

es
cr

ip
tio

n
:

M
od

el
)

:
vo

id
+

 g
et

D
es

cr
ip

tio
n(

)
:

M
od

el
+

 g
et

Id
()

 :
 U

U
ID

+
 s

et
N

am
e(

na
m

e
:

St
ri

ng
)

:
vo

id
+

 g
et

N
am

e(
)

:
St

ri
ng

<
<

in
te

rf
ac

e>
>

IB
as
ic
Pr
ov
id
er

+
 u

p
d

at
eD

at
a(

m
od

el
 :

 M
od

el
)

:
vo

id
+

 s
et

C
on

te
xt

(c
on

te
xt

 :
 M

od
el

)
:

vo
id

<
<

in
te

rf
ac

e>
>

ID
at
aP
ro
vi
de
r

+
 g

et
C

ur
re

nt
R

ev
is

io
n(

)
:

in
t

+
 g

et
La

te
st

R
ev

is
io

n(
d

at
a

:
M

od
el

)
:

b
oo

le
an

+
 c

om
m

it(
m

od
el

 :
 M

od
el

)
:

vo
id

+
 c

he
ck

ou
t(

re
vi

si
on

 :
 in

t)
 :

 M
od

el
+

 c
he

ck
ou

t(
)

:
M

od
el

<
<

in
te

rf
ac

e>
>

IS
el
ec
ti
ve
C
he
ck
ou
tD
at
aP
ro
vi
de
r

+
 w

ri
te

Ba
ck

(d
at

a
:

M
od

el
)

:
b

oo
le

an

<
<

in
te

rf
ac

e>
>

IW
ri
te
Ba
ck
D
at
aP
ro
vi
de
r

-
no

tif
yC

on
te

xt
C

ha
ng

ed
()

 :
 v

oi
d

#
 b

ui
ld

R
D

FM
od

el
Im

p
l()

 :
 v

oi
d

#
 d

et
ec

tC
on

te
xt

Im
p

l()
 :

 v
oi

d

-
ru

nn
in

g
:

b
oo

le
an

A
ct
iv
eC
on
te
xt
Pr
ov
id
er

+
 s

et
In

p
ut

M
od

el
(m

od
el

 :
 M

od
el

)
:

vo
id

-
no

tif
yC

on
te

xt
C

ha
ng

ed
()

 :
 v

oi
d

+
 d

et
ec

tC
on

te
xt

(m
od

el
 :

 M
od

el
)

:
vo

id
#

 b
ui

ld
R

d
fM

od
el

Im
p

l()
 :

 v
oi

d
#

 d
et

ec
tC

on
te

xt
Im

p
l(i

np
ut

 :
 M

od
el

)
:

vo
id

-
in

p
ut

C
on

te
xt

 :
 M

od
el

Pa
ss
iv
eC
on
te
xt
Pr
ov
id
er

<
<

re
al

iz
e>

>

<
<

re
al

iz
e>

>

G
PS
C
on
te
xt
Pr
ov
id
er

G
eo
na
m
es
C
on
te
xt
Pr
ov
id
er

G
oo
gl
eC
al
en
da
rC
on
te
xt
Pr
ov
id
er

Lo
ca
lA
dd
re
ss
bo
ok
C
on
te
xt
Pr
ov
id
er

D
Bp
ed
ia
Lo
ca
ti
on
Pr
ov
id
er

M
ob
iS
em

D
at
aP
ro
vi
de
r

Se
le
ct
iv
eH
om

eb
as
eD
at
aP
ro
vi
de
r

Si
nd
ic
eT
op
Re
su
lt
sD
at
aP
ro
vi
de
r

<
<

re
al

iz
e>

>

<
<

re
al

iz
e>

>

<
<

re
al

iz
e>

>

Figure 5.1: Conceptual class infrastructure for context and data providers

Chapter 5. Implementation and Case Study 176

AbstractContextProvider and implement the specific behavior for each provider type. More-
over, they declare the abstract methods (i) detectContextImpl() in which the concrete acquisi-
tion logic is to be implemented, i.e., the methods and variables used to acquire context-relevant
data from a context source, and (ii) buildRdfModelImpl() which holds the code for building
the RDF-based context models emitted by a context provider. These abstract methods must be
implemented in each concrete context provider individually and provides them with the oppor-
tunity to make use of individual acquisition techniques, communication protocols, interpretation
and reasoning heuristics etc. As expounded in Section 4.2 and 4.6, primary context providers
acquire context-relevant data independently from any request in a proactive and autonomous
manner and, hence, run in a separate thread instance where their super class includes the infras-
tructure for their control. Complementary context providers initiate their context acquisition
processes when they were notified by the ContextDispatcher about the availability of a required
context input model emitted by a compatible context provider to which they are adjacent (cf.
Equation (4.22) and (4.23)).

The generic functionality of data providers is implemented in the abstract class AbstractDataProvider
that is a subclass of AbstractBasicProvider. It contains member variables for storing the con-
text configuration and specifies the two abstract method declarations updateContextImpl() and
updateDataImpl() that must be implemented by concrete data providers. The updateContextImpl()
method allows a data provider to implement its individual processing logic and heuristics for
analyzing the context configuration. The concrete replication code that is executed by a data
provider after analyzing the context configuration must be implemented in the updateDataImpl()
method, which is called by the replication manager to initiate a replication workflow. We decided
to decouple the analyzation and replication process so that a data provider can perform additional
processing before it initiates its replication workflow. The two interfaces ISelectiveCheckoutDataProvider
and IWriteBackDataProvider contain method declarations for more complex data replication
tasks, e.g., for replicating only subsets of data sets [Sch10] or bidirectional synchronization of
replicated data.

For the case study, we implemented a number of concrete context providers, which are briefly
presented in the following:

• GPSContextProvider is a primary (active) context provider that utilizes the device’s in-
ternal GPS module for retrieving GPS coordinates. It can further be configured to use a
WiFi-based location ascertainment method. The GPS context provider returns its data as
latitude and longitude coordinates using the W3C WGS84 vocabulary4.

• GeonamesContextProvider is a complementary (passive) context provider that is able
to interpret geographical coordinates expressed using the W3C WGS84 vocabulary and
requests the GeoNames web service5 in order to resolve the GPS coordinates to a concrete
geographical location identified by a GeoNames URI. Therefore, it is an ideal complement
to the GPSContextProvider the output of which is enriched with a unique location ID
being in addition to physical GPS coordinates that is also used in other data sets such as
DBpedia (cf.[LBK+09]); however, this context provider is capable of processing arbitrary
GPS coordinates independently from the source such coordinates were acquired.

• GoogleCalendarContextProvider is a primary (active) context provider that retrieves
appointments from the user’s calendar within a configurable time span (e.g., 72 hours)
starting from the current time. For all events, a set of metadata are extracted and added to

4W3C WGS84 vocabulary: http://www.w3.org/2003/01/geo/

5GeoNames: http://www.geonames.org/

http://www.w3.org/2003/01/geo/
http://www.geonames.org/

Chapter 5. Implementation and Case Study 177

1 // handle location updates
2 // (called by Android location manager)
3 public void onLocationChanged(Location location) {
4 this.location = location;
5 }
6

7 @Override
8 // detect context model
9 // (called by ActiveContextProvider)

10 protected void detectContextImpl() {
11 // read data from the location object provided by a location sensor
12 double lat = this.location.getLatitude();
13 double lon = this.location.getLongitude();
14 String gpsProviderType = this.location.getProvider();
15

16

17 // clear context model
18 this.getCurrentContextModel().removeAll();
19

20 // create new context resources
21 Resource context = getCurrentContextModel().createResource();
22 context.addProperty(RDF.type, Vocabulary.Mobisem.CONTEXT);
23 Resource location = getCurrentContextModel().createResource();
24 context.addProperty(Vocabulary.Mobisem.CURRENT_LOCATION, location);
25

26 // attach coordinates to location resource
27 location.addProperty(Vocabulary.Geo.LAT, lat);
28 location.addProperty(Vocabulary.Geo.LONG, lon);
29 if (gpsProviderType != null)
30 location.addProperty(
31 Vocabulary.Mobisem.LOCATION_PROVIDER_TYPE, gpsProviderType);
32 }

Figure 5.2: Code snippet of GPSContextProvider, converting location data into an RDF-
based context model

the context model, such as an event’s name, start and end time, date, location descriptions
associated to an event, and information about each event’s attendees. It uses terms from
the popular Dublin Core vocabulary6 as well as the NEPOMUK calendar ontology7 for
modeling extracted metadata.

• LocalAddressbookContextProvider is a primary (active) context provider that exposes
the contacts found in the user’s local address book to make them available for relevant and
interested data providers. Properties like name, email addresses, phone numbers, postal
addresses, and instant messaging contact IDs are extracted and inserted into the context
model, where they are expressed using the renowned FOAF vocabulary8.

Typically, context providers convert their input data to an RDF model that represents this data
in machine-processable form. Ideally, context providers use standardized, publicly available, and
well-accepted vocabularies for this purpose in order to enable interoperability between communi-
cating partners. As an example, Figure 5.2 shows how the GPSContextProvider builds a simple
RDF model representing GPS coordinates obtained from the device’s location sensor. In this
example, the context provider registers itself as a location listener in the Android location subsys-
tem; in consequence, the onLocationChanged() method is called every time the device’s location

6Dublin Core vocabulary: http://purl.org/dc/terms/

7NEPOMUK calendar ontology: http://www.semanticdesktop.org/ontologies/2007/04/02/ncal/

8FOAF vocabulary: http://xmlns.com/foaf/0.1/

http://purl.org/dc/terms/
http://www.semanticdesktop.org/ontologies/2007/04/02/ncal/
http://xmlns.com/foaf/0.1/

Chapter 5. Implementation and Case Study 178

changes. In this case, the context provider buffers the most recent Location object. In turn, the
detectContextImpl() method is regularly invoked by the ActiveContextProvider class. It
creates a resource of type mobisem:Context and uses the property mobisem:currentLocation
to associate the context with another resource, representing the actual location. This second
resource is described with two properties for the latitude and longitude values, as well as one
property for the type of the used location provider, if applicable.

Data providers are built upon the AbstractBasicProvider class and the IBasicProvider in-
terface. Both components define methods and method declarations, and implement generic
behavior that is common to both context and data providers. Data providers are responsible
for handling all data replication tasks. They retrieve the context configuration from the repli-
cation manager which signals them to initiate their replication tasks based on their analysis of
the relevant contextual aspects (cf. Definition 2.5) contained in the context configuration. Each
data provider wraps a specific data source and replicates data to the local triple store built
on top of the SQLite data base deployed on the Android platform. The framework does not
impose any restrictions on the data sources to be wrapped by data providers; they can wrap a
remote file system object, a remote data base, web services and web applications respectively,
or generate data themselves. For instance, a data provider may act upon changes of the current
location and retrieve information about nearby points of interest. Each data provider is assigned
a named graph under which it stores its data in the triple store. The only requirement exposed
is that replicated data must be available as RDF. The following concrete data providers were
implemented for the case study:

• DBpediaLocationDataProvider is able to process geo coordinates as well as Geonames ids
of location resources (which are taken from the context configuration). For all resources
of type geonames:Feature, the data provider retrieves relevant location information from
the DBpedia data set by querying the DBpedia SPARQL endpoint for relevant resources,
based on their label. For all returned resources, descriptive triples are stored on the mobile
device.

• MobiSemDataProvider is the default data provider for replicating data from a (versioned)
MobiSem repository [SZ09a, SZ09b] to the mobile device. Through this client-/server-based
infrastructure, any data source that can be expressed as RDF triples (e.g., file systems,
relational data bases, etc.) can be exposed as versioned RDF graph repository, and can be
replicated to a mobile device. For this purpose, a REST-style protocol has been developed
that is used to specify additional metadata (like context information or the current graph
version) in the form of additional HTTP headers. In addition to serving and versioning
RDF graphs, the MobiSem repository is able to perform ranking and selection of RDF
triples based on a context model that may be sent from the client alongside a checkout
request. In this case, only parts of RDF graphs are replicated to the mobile device, saving
transmission and storage capacity [SZ09a]. The SelectiveHomebaseDataProvider, in
addition to providing support for such partial replicas, enables the client to write changes
to replicated data back to the remote repository, which then takes care of merging and
conflict detection [Sch10].

• SindiceTopResultsDataProvider extracts possible search terms from the context config-
uration by analyzing all literals found therein. It tokenizes the literals and constructs a
list of most frequent keywords, which are in turn sent to the Sindice.com Semantic Web
indexing service. From there it retrieves the top results and converts them into an RDF
model, which is then stored on the mobile device. Optionally, the data provider is able
to retrieve more information about the top results by de-referencing the resource URIs,

Chapter 5. Implementation and Case Study 179

according to Linked Data principles (cf. [BL06a, BHBL08]). Any data retrieved via this
option is also replicated and stored in the mobile device’s triple store.

To illustrate the basic functionality of a data provider, we describe the relevant methods of the
DBpediaLocationDataProvider in more detail (see Figure 5.3). It consists of two major meth-
ods: the first one, updateContextImpl(), is called by the data provider’s implementation base
class (AbstractDataProvider) whenever it receives an updated context model from the context
dispatcher (cf. Figure 5.1). In this method, the data provider analyzes the context configuration
passed as a µJena RDF model and iterates over all resources of type geonames:Feature; i.e., all
logical locations. For all these resources, it extracts the labels and stores them in a list of resource
labels. In the second method, updateDataImpl() (which is again called by the implementation
base class whenever the data provider is requested to update data) a SPARQL DESCRIBE query
is constructed that incorporates all resource labels (in this example we assume the user is in-
terested only in information in English). Additionally it restricts the query to resources of type
dbpedia-owl:Place. This query is sent to the DBpedia query endpoint, and the results are read
into the targetModel variable, which represents a reference to the named graph used to store a
data replica in the triple store.

Since DBpedia provides a large amount of information about locations (including names, de-
scriptions, geographic and statistical data, as well as links to related persons, buildings, and
events) such a data provider can be of great use in the case of our motivating example (cf. Sec-
tion 1.2). The user will be enabled to browse relevant information about the places that she will
visit during an upcoming trip without the need to actually search for it. By matching location
information with a user’s interests (which could be derived from the Web browsing history, or
tags the user has used to annotate multimedia content such as photos) the system could recom-
mend points of interests in a proactive way; by combining location data with publicly available
personal profiles (e.g., from FOAF data) a user could be notified of people that live in cities
the user is going to visit, and based on their interests it could suggest meetings with potential
customers or cooperation partners.

5.3 Case Study

Referring to our motivating example (cf. Section 1.2), a component that provides location infor-
mation can be used to update information while a user is on travel. It can be used for a variety of
purposes, including the provisioning of general information about a location a person is visiting.
Furthermore, it could be combined with information about personal interests in order to suggest
points to visit in the user’s spare time, or it could be combined with his calendar information in
order to suggest public transport routes to the address where an event takes place.

To demonstrate the feasibility of our architecture, we have implemented a set of context and
data providers on top of our prototypical framework implementation. The selection and design
of these components is based on the assumption that the information needs of a mobile user
depend on their current context (e.g., their location) as well as their future context. However,
we want to emphasize that this framework is to be considered as an infrastructure upon which
end-user applications that provide specific functionality, based on specific context information
and replicated data, can be built.

Chapter 5. Implementation and Case Study 180

1 // analyze the current context model (stored in this.contextModel)
2 // called when a new instance of the context configuration is propagated
3 // to the replication manager by the context dispatcher
4 @Override
5 protected void updateContextImpl() {
6 this.currentResourceLabels = new ArrayList<String>();
7

8 // iterate over all geonames features in the context model
9 StmtIterator si1 = this.contextModel.listStatements(

10 null, RDF.type, GEONAMES_Feature);
11 while(si1.hasNext()) {
12 Resource featureResource = si1.nextStatement().getSubject();
13

14 // iterate over all statements of these features
15 StmtIterator si2 = this.contextModel.listStatements(
16 featureResource, null, (RDFNode) null);
17 while(si2.hasNext()) {
18 // check if a label property is attached
19 Statement s = si2.nextStatement();
20 if(s.getObject().isLiteral() &&
21 ! this.currentResourceLabels.contains(s.getString())) {
22 this.currentResourceLabels.add(s.getString());
23 }
24 }
25 }
26 }
27

28 // update data from the remove data source
29 // called whenever a data provider is requested to replicate data
30 // from the remote data source
31 @Override
32 protected void updateDataImpl(Model targetModel) {
33 // construct DESCRIBE query for all location resources
34 StringBuffer queryBuffer = new StringBuffer();
35 queryBuffer.append("DESCRIBE ?concept WHERE { \n");
36 for(String featureLabel: this.currentResourceLabels) {
37 queryBuffer.append("{" +
38 "?concept rdfs:label \"" + featureLabel + "\"@en . " +
39 "?concept rdf:type dbpedia-owl:Place . " +
40 "} UNION \n");
41 }
42 queryBuffer.append("{} }");
43

44 // send query to DBpedia
45 String url = "http://dbpedia.org/sparql?query=" + URLEncoder.encode(
46 queryBuffer.toString());
47 HttpGet method = new HttpGet(url);
48 method.addHeader("Accept", "text/plain"); // accept only N-TRIPLES
49 try {
50 // execute request
51 HttpResponse response = new DefaultHttpClient().execute(method);
52 // read model into targetModel for further processing by abstract superclass
53 this.targetModel.read(response.getEntity().getContent(), "N-TRIPLE");
54 } catch (Exception e) {
55 // error handling
56 }
57 }

Figure 5.3: Code snippet of the DBpediaLocationDataProvider, querying DBpedia for data
about location resources

Chapter 5. Implementation and Case Study 181

1 @prefix context: <http://www.mobisem.org/2009/01/context#> .
2 @prefix geo: <http://www.w3.org/2003/01/geo/wgs84_pos#> .
3

4 [] a context:Context ;
5 context:currentLocation [
6 geo:lat "48.175443" ;
7 geo:long "16.375493" .
8] .

Figure 5.4: Geographical coordinates as returned by the GPSContextProvider (Turtle nota-
tion)

As outlined in Section 5.1, the implementation of the proof-of-concept prototype is based on the
Android platform and uses the µJena Framework (cf. Section 3.3.2) to process RDF graphs9.
In the following, we demonstrate how the proposed context-sensitive replication framework can
be used to proactively provide RDF data from remotely operating data sources to the mobile
device. Our objective is to permanently equip the user with data about the locations they are
going to visit, about people they are likely to meet in the upcoming days, as well as people
that are based near the user’s current position. To accomplish this, different kinds of contextual
information are utilized, including the device’s current position and the user’s calendar data.

5.3.1 Context Acquisition

For conducting the case study, we have implemented three distinct context providers on top of
the proof-of-concept implementation of the framework: first, a primary location context provider
(GPSContextProvider) uses the device’s built-in GPS sensor to track geographical coordinates.
It returns them in form of context descriptions that contain a context:currentLocation prop-
erty (cf. Figure 5.4) to describe the coordinates of the current location using the WGS84 Geo
Positioning vocabulary10 that is built upon the World Geodetic System Scheme 8411.

Second, a complementary context provider (GeonamesContextProvider) uses the GeoNames
service12 to resolve GPS coordinates to geographical entities. This component receives context
updates from the context dispatcher, extracts properties that represent geographical coordi-
nates, and returns information retrieved from the web service—in our example, a reference to a
geographical entity as well as its name (cf. Figure 5.5).

In parallel, a third primary context provider (GoogleCalendarContextProvider) regularly scans
the user’s calendar and extracts all appointments within the next 72 hours. From these appoint-
ments the e-mail addresses of all participants are extracted and returned, as depicted in Fig-
ure 5.6 (in this case, two e-mail addresses are returned). Further, the locations of appointments
are extracted and are returned as GeoNames features. This context provider uses terms from
the NEPOMUK ontologies13 and from FOAF to describe the extracted resources.

The context dispatcher—which receives notifications and updated instances of the context models
emitted by the context providers every time a context property value changes—buffers, combines,
and enriches the context models with additional information in case a new instance of the

9As shown in Chapter 6, µJena exposes a very weak performance compared to other RDF frameworks; however,
more efficient implementations have been made available only recently. We plan to port our proof-of-concept
implementation towards a more efficient RDF framework in the near future.

10WGS84 Geo Positioning: an RDF vocabulary: http://www.w3.org/2003/01/geo/wgs84_pos#

11World Geodetic System 1984 (WGS 84): http://earth-info.nga.mil/GandG/wgs84/index.html

12Geonames web service: http://www.geonames.org

13Overview of the NEPOMUK ontologies: http://www.semanticdesktop.org/ontologies

http://www.w3.org/2003/01/geo/wgs84_pos#
http://earth-info.nga.mil/GandG/wgs84/index.html
http://www.geonames.org
http://www.semanticdesktop.org/ontologies

Chapter 5. Implementation and Case Study 182

1 @prefix context: <http://www.mobisem.org/2009/01/context#> .
2 @prefix geonames: <http://www.geonames.org/ontology#> .
3 @prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .
4

5 [] a context:Context ;
6 context:currentLocation [
7 geonames:nearby <http://sws.geonames.org/2761369/> .
8] .
9 <http://sws.geonames.org/2761369/> a geonames:Feature ;

10 rdfs:label "Vienna" .

Figure 5.5: Context description as returned by the GeonamesContextProvider (Turtle nota-
tion)

1 @prefix context: <http://www.mobisem.org/2009/01/context#> .
2 @prefix ncal: <http://www.semanticdesktop.org/ontologies/2007/04/02/ncal#> .
3 @prefix foaf: <http://xmlns.com/foaf/0.1/> .
4 @prefix geonames: <http://www.geonames.org/ontology#> .
5 @prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .
6

7 [] a context:Context ;
8 context:upcomingEvent [ncal:attendee
9 [foaf:mbox <mailto:bernhard.schandl@univie.ac.at>] ,

10 [foaf:mbox <mailto:stefan.zander@univie.ac.at>] ;
11 ncal:location [a geonames:Feature ; rdfs:label "Munich"] .
12] .

Figure 5.6: Context retrieved from the user’s calendar by GoogleCalendarContextProvider

context configuration is to be created (cf. Section 4.3 and 4.5). It merges all resources typed as
context:Context into a single RDF model serving as new instance of a context configuration,
assigns it a unique URI so that it can be referenced by other components or context models, and
adds a timestamp as well as a link to the preceding context configuration instance. Moreover, it
applies simple inference rules to the acquired and aggregated context models: for example, the
context:currentLocation property has been defined as functional property (since we assume
that the user can be at only one location at the same time), from which the lightweight rule-based
reasoner (cf. Section 4.6.2) can deduce that the two anonymous location resources returned by
the different context providers are actually identical respectively refer to the same location and
can likewise be merged, as shown in Figure 5.7.

The context dispatcher propagates this new instance of the context configuration via the repli-
cation manager to all data providers deployed in the system whenever a contextual change has
been acquired successfully by a context acquisition workflow (cf. Algorithm 9). It is then up to
each data provider to decide whether to initiate a new replication task, and which information
from the current context configuration instance they use for this purpose.

5.3.2 Data Provisioning

To simulate data sets being replicated in a real-world setting, we have implemented a number of
data providers that address different information needs of mobile users and replicate data from
different Linked Data sources to the mobile device. The SindiceTopResultsDataProvider
uses the Sindice Semantic Web index14 to retrieve information from FOAF descriptions being

14Sindice Semantic Web search engine: http://sindice.com

http://sindice.com

Chapter 5. Implementation and Case Study 183

1 @prefix context: <http://www.mobisem.org/2009/01/context#> .
2 @prefix geo: <http://www.w3.org/2003/01/geo/wgs84_pos#> .
3 @prefix ncal: <http://www.semanticdesktop.org/ontologies/2007/04/02/ncal#> .
4 @prefix foaf: <http://xmlns.com/foaf/0.1/> .
5 @prefix geonames: <http://www.geonames.org/ontology#> .
6 @prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .
7

8 <urn:uuid:baac630a-5cdb-4c79-92e6-6ce3d07419bc>
9 a context:Context ;

10 context:timestamp "2009-06-16T15:58:22"^^xsd:dateTime ;
11 context:previous <urn:uuid:d3ee316b-5704-4893-acb9-df1495c79011> ;
12 context:currentLocation [
13 geo:lat "48.175443" ;
14 geo:long "16.375493" ;
15 geonames:nearby <http://sws.geonames.org/2761369/> .
16] ;
17 context:upcomingEvent [ncal:attendee
18 [foaf:mbox <mailto:bernhard.schandl@univie.ac.at>] ,
19 [foaf:mbox <mailto:stefan.zander@univie.ac.at>] ;
20 ncal:location [a geonames:Feature ; rdfs:label "Munich"] .
21] .
22 <http://sws.geonames.org/2761369/>
23 a geonames:Feature ;
24 rdfs:label "Vienna"@en .

Figure 5.7: Aggregated context models that constitute a context configuration instance

1 DESCRIBE ?c WHERE {
2 { ?c rdfs:label ?l .
3 ?l bif:contains "Vienna" .
4 ?c rdf:type dbpedia-owl:Place .
5 } UNION
6 { ?c rdfs:label ?l .
7 ?l bif:contains "Salzburg" .
8 ?c rdf:type dbpedia-owl:Place .
9 } UNION

10 { ?c rdfs:label ?l .
11 ?l bif:contains "Munich" .
12 ?c rdf:type dbpedia-owl:Place .
13 }
14 }

Figure 5.8: An example SPARQL query produced by the DBpediaLocationDataProvider

distributed across the Web on the basis of the e-mail addresses extracted from the context
models of the GoogleCalendarContextProvider. This includes names, contact and location
information, as well as personal interests of the user’s prospective business partners. Also, it
includes the social network of the meeting participants and is therefore valuable information for
business negotiations as well as smalltalk.

A second data provider retrieves triples about people that are based near the user’s current
location by looking up resources that are foaf:based_near the current and future locations.
In a business context, this information allows a knowledge worker or business consultant to
increase the effectiveness of their trip by scheduling additional meetings with these persons
without additional travel costs.

The DBpediaLocationDataProvider as third data provider returns additional data from the
DBpedia data set about the user’s current and future locations, by reusing the GeoNames URI

Chapter 5. Implementation and Case Study 184

provided by the GeonamesContextProvider. By doing so, the user is automatically equipped
with information about the locations they will visit, and about points of interests in their
vicinity. Those data sets can be further interlinked with data sets from other services such
as an event database or a review repository using the GeoNames URI. A code excerpt from the
DBpediaLocationDataProvider is depicted in Figure 5.3.

From an initial analysis, we can expect a significant effect on the amount of potentially inter-
ested data that is to be replicated to a mobile device. For instance, the public DBpedia data set
contains information about around 462,000 places. While no detailed information is available,
from the overall size of the data set we can estimate that these places are described by around 88
million triples15. By analyzing the user’s calendar and querying DBpedia for corresponding re-
sources, this amount of data can be significantly reduced. For instance, if the context framework
detects three locations in the user’s calendar, it can convert them into a SPARQL query (cf.
Figure 5.3) and query the DBpedia data set. In case the user’s upcoming events within the next
72 hours take place in Vienna, Salzburg, and Munich, the corresponding query (cf. Figure 5.8)
yields around 8,500 triples, which can be handled by common state-of-the-art smartphones (cf.
Chapter 6).

All replicated data are persisted by the RDF content provider (cf. Section 4.6.2.12) that wraps
and encapsulates well-defined interfaces for accessing or modifying locally deployed triple stores,
data bases, or other storage systems (cf. Section 4.6.2). The RDF content provider per default
either serializes RDF graphs into flat files, which is a very performant way for persisting RDF
data directly on the local file system, however, accompanied with the loss of query functionality
as those file-based serialization graphs need to be loaded to the memory first before a graph
can be queried. Alternatively and as envisaged by the conceptual architecture (cf. Section 4.6),
replicated RDF data are stored as RDF graphs into a custom triple store or into the default
triple store that is backed by a SQLite database natively deployed in the Android operating
system. The table layout of the default triple store applies the normalized triple store approach;
i.e., it stores triples within a Triple table that holds references to separate tables for resources
and literals. Moreover, it provides lightweight support for named graphs; therefore the relational
schema contains a separate Graph table and allows to access data replicas on different levels of
granularity.

Any application built on top of this framework is now enabled to directly access these data via
the RDF content provider. It could, for instance, iterate over all resources that are typed as
foaf:Person and provide a list of names and phone numbers, disburdening the user from the
need to manually search for these data in case they will miss an appointment and needs to notify
the participants. The proposed context-sensitive RDF data replication framework entirely hides
all context processing steps: an application is presented with a simple view on the triple store
which is at any time populated with context-relevant information replicated from related data
sources.

5.4 Summary

In this chapter, we have presented aspects related to the development platform of our proof-of-
concept prototype together with the class and interface structure of context and data providers.
Our design approach relieves 3rd-party developers that aim to utilize the framework from the
necessity of having to deal with processing and management-specific aspects; instead developers

15DBpedia 3.6 release notes: http://blog.dbpedia.org/2011/01/17/dbpedia-36-released/

http://blog.dbpedia.org/2011/01/17/dbpedia-36-released/

Chapter 5. Implementation and Case Study 185

can focus on key aspects related to the acquisition of contextual information or on the replica-
tion logic, i.e., the business logic for retrieving data from external data sources as a result of
the analysis of the context configuration. However, we only presented a comparatively small
excerpt of our proof-of-concept implementation but included references to more detailed and
comprehensive elaborations of the framework’s software architecture and the software-specific
implementation of the framework’s algorithms and concepts.

In the second part of this chapter, we have presented a case study that is based upon the
information needs of a typical mobile knowledge worker or business consultant that is reliant on
her mobile device for managing her business-related information assets. We implemented and
introduced a number of context and data providers that acquire context-relevant information
from the location sensor deployed on a mobile device as well as from the user’s calendar and
combines and aggregates such information in order to constantly provide the user with high-level
information about her current location and the people she is likely to meet in the near future.
As the framework is designed as an infrastructure that needs to be adapted to specific use cases
and application scenarios, we focused on a use case that is centered around the provision of
location-based information as this type of context information is most relevant for mobile users
(cf. [BZD02, Bar03, RVW05, HSMY08, SVLO+11]). The case study shows that a significant
amount of information that exhibits no direct relationship to the user’s current and future
context does not need to be considered by the user when browsing for information that is of no
relevance to her; this in consequence minimizes cognitive load and explicit user attention when
searching for information.

Chapter 6

Evaluation of the Processing
Efficiency of RDF Data Replicas

“The problem is never how to get new, innovative thoughts into your mind, but how to get old
ones out. Every mind is a building filled with archaic furniture. Clean out a corner of your mind
and creativity will instantly fill it.”

Dee Ward Hock (* 1929)

In the resource-limited context of mobile devices, the efficient processing of RDF data in general
and RDF data replicas in particular for the proactive provision of context-relevant information is
crucial. In order to obtain insights related to the processing efficiency of local RDF data replicas
on modern mobile platforms using the proposed context-sensitive replication framework as de-
scribed in Chapter 4, we have carried out a performance evaluation based on the three existing
mobile RDF frameworks Androjena, µJena, and Mobile RDF (cf. Section 3.3.2), conducted on
four technically differing mobile devices (cf. Table 6.1). We analyze the runtime behavior of
typical RDF processing operations applied to local RDF data replicas to assess whether data
replicas can be processed on current mobile devices in reasonable time using currently available
RDF frameworks. The analysis comprises benchmarks related to parsing, storing, and querying
RDF documents, i.e., in-memory representations of RDF data replicas, as well as adding and
removing distinct elements (subjects, predicates, objects) to/from RDF graphs of varying sizes.
Additionally, we also conducted benchmarks related to the creation of in-memory RDF models,
as these are necessary for the creation of the single context models as well as for the transforma-
tion and aggregation of those models into a new context configuration instance (cf. Section 4.3.8)
to which reasoning and consolidation heuristics are applied in subsequent processing steps.

The evaluation exclusively concentrates on the three currently available Java-based RDF frame-
works for mobile platforms introduced and analyzed in Section 3.3.2 that are compatible to the
Android SDK1. We excluded the XML/RDF parsers introduced in Section 3.3.1 as they lack
fundamental RDF processing capabilities as discussed in Section 3.3.4. Furthermore, we did not
include the two RDF infrastructure frameworks2 RDF on the Go and SWIP that have been
introduced in Section 3.3.3 in this evaluation since they either exist as an implementation of a

1Android SDK: http://developer.android.com/sdk/index.html

2RDF infrastructure frameworks offer additional functionality such as querying or persistence on top of existing
RDF frameworks.

187

http://developer.android.com/sdk/index.html

Chapter 6. Evaluation 188

specific platform-dependent technology (SWIP) or have been released after our evaluation has
been conducted (RDF on the Go).

We specifically focused on the Android platform since it is an open platform and, compared
to other mobile platforms, incorporates a number of advantages and unique concepts that have
been utilized for the acquisition and processing of context-relevant information (see Section 5.1
for a discussion). Therefore, we exclusively concentrated on those RDF frameworks that are
available for or are compatible to the Android platform as this is the development platform of
our prototype. Additionally, the growing popularity of Android as one of the leading mobile
development platforms to date is unmistakably evident.

All evaluation benchmarks have been conducted on four technically varying mobile devices.
Those devices have been carefully chosen for the evaluation as they represent different device
classes that correspond to distinct mobile market segments (entry-level, middle-class, and high-
level) and differ in their technical capabilities, hardware and software features, and runtime
environments. This selection allows for extrapolating on how well the replication framework
performs on devices pertaining to a particular market segment in combination with a particular
RDF framework. Additionally, it allows us to generally ascertain the processing efficiency of
small and comparably large data replicas containing several thousand RDF triples on technically
varying devices from different market segments using a specific RDF framework. To verify and
substantiate our findings, we included two technically equivalent devices in this evaluation, the
Samsung Galaxy S I9000 and the Dell Streak 53, to gather insights whether the replication
framework exhibits a similar performance behavior on devices equipped with different CPUs.

The remainder of this Chapter is structured as follows: in Section 6.1, we give an overview
of the test environment and introduce the devices used throughout this evaluation. Details
regarding our test respectively benchmark setup are outlined in Section 6.2, which also provides
some details of the test data used in the benchmarks to simulate live data being replicated in
real-world conditions. The results of each benchmark are presented and thoroughly discussed in
Section 6.3, which is structured according to the operations being analyzed in the course of this
evaluation. This section also contains detailed graphical illustrations of the results acquired in
each benchmark. Finally, we discuss and summarize our findings in Section 6.4.

6.1 Test Environment

In the following, we provide a short overview of the devices included in the evaluation. Further
technical details of each device can be found in the corresponding footnotes.

The HTC G14, released in 2008, was one of the first commercially available Android devices and
represents the entry-level device class. It contains a 32-bit Qualcomm MSM7201A RISC CPU
that runs with a clock speed of 350 MHz. Tests on this device were performed with the standard
memory capacity of 192 MB under the Android operating system version 1.6 update 4.

The Motorola Milestone5 was released in December 2009 and represents the middle-class of
Android devices. It runs on a 32-bit TI OMAP3430 Superscalar ARM Cortex-A8 RISC CPU
with a nominal clock speed of 600 MHz. The evaluation benchmarks were performed with the
standard memory capacity of 256 MB under the Android operating system version 2.1 update 1.

3We use the denomination ’Dell Streak’ in the course of this chapter.
4Technical specification of the Android HTC G1: http://www.htc.com/www/product/g1/specification.html

5Technical specification of the Motorola Milestone: http://www.motorola.com/Consumers/XW-EN/

Consumer-Products-and-Services/Mobile-Phones/ci.Motorola-MILESTONE-XW-EN.alt

http://www.htc.com/www/product/g1/specification.html
http://www.motorola.com/Consumers/XW-EN/Consumer-Products-and-Services/Mobile-Phones/ci.Motorola-MILESTONE-XW-EN.alt
http://www.motorola.com/Consumers/XW-EN/Consumer-Products-and-Services/Mobile-Phones/ci.Motorola-MILESTONE-XW-EN.alt

Chapter 6. Evaluation 189

Table 6.1: Overview of the Android Devices’ Specification

HTC G1 (1) Motorola Milestone (2)
Processor Qualcomm MSM7201A™ TI OMAP3430 ARM Cortex A8
Clock speed in MHz 350 MHz 600 MHz
Memory Capacity (RAM) 192 MB 256 MB
OS Version Android 1.6-update4 Android 2.1-update1
Release 09/2008 12/2009
Market segment Entry-level Middle-level

Samsung Galaxy S I9000 (3) Dell Streak 5 (4)
Processor Qualcomm S5PC111 Qualcomm QSD 8250 Snapdragon
Clock speed in GHz 1 GHz 1 GHz
Memory Capacity (RAM) 512 MB 512 MB
OS Version Android 2.2 Android 2.2.1
Release 06/2010 10/2010
Market segment Upper-/Top-level Upper-/Top-level

The Samsung Galaxy S I90006 smartphone, which was released in Summer 2010, represents the
former latest generation of mobile devices and thus the high- or upper-level market segment.
It uses a Qualcomm S5PC111 ARMv7-compatible CPU named “Hummingbird” with a nominal
clock speed of max. 1 GHz paired with a PowerVR SGX540 GPU chip. This device uses 512
MB main memory and runs the Android system version 2.2.

The Dell Streak 57 also adheres to the high- or upper-level mobile market segment and represents
a hybrid combination of smartphone and tablet device with a 5-inch display. It was released in
October 2010 and incorporates a 1GHz Qualcomm QSD 8250 Snapdragon processing unit that
features an ARMv7 instruction set. The CPU is manufactured in a 65 nanometer semiconductor
technology process and equipped with an Adreon 200 GPU chip. The Dell Streak has 512 MB
ROM together with 512 MB main memory built in. All tests on this device were performed
under the Android operating system version 2.2.1.

6.2 Test Setup

An important factor for the efficient processing of RDF data replicas is the time needed to cre-
ate, load, parse, and store an RDF model in-memory, as this is usually the basis for further
computation, analysis, inference, or transmission of data over a network. We therefore analyzed
the creation, parsing, storage, and query time for RDF models8 of various sizes and also ascer-
tained the execution time of modification operations such as the insertion and removal of distinct
elements. In particular, we measured such operations for RDF models of the following sizes:

10, 20, 50, 100, 200, 500, 1000, 2,000, 5,000, 10,000, 20,000, 50,000, 100,000

This list represents the different model sizes that are involved in the context processing and data
replication tasks performed by the presented framework described in Chapter 4.6. Typically, a

6Technical specification of the Samsung Galaxy S I9000: http://pdadb.net/index.php?m=specs&id=2298&c=

samsung_gt-i9000_galaxy_s_16gb

7Technical specification of the Dell Streak 5: http://www.dell.com/de/p/mobile-streak/pd

8We use the terms ’RDF model’ or ’RDF graph’ to refer to in-memory representations of RDF data replicas.

http://pdadb.net/index.php?m=specs&id=2298&c=samsung_gt-i9000_galaxy_s_16gb
http://pdadb.net/index.php?m=specs&id=2298&c=samsung_gt-i9000_galaxy_s_16gb
http://www.dell.com/de/p/mobile-streak/pd

Chapter 6. Evaluation 190

single context provider emits very small models in the range of 10 to 100 triples, while a complete
context configuration model that has been aggregated from the context descriptions of the single
context providers may have several hundred to thousand triples in total. Data that are replicated
from external sources may in principle be of arbitrary size, therefore we have scaled our tests up
to 100,000 triples in a single RDF model.

The distribution of distinct subject, predicate, and object nodes has been estimated based on an
analysis of the 2009 Billion Triple Challenge data set [Sch10]. In these data we can observe that
typically RDF data sets have a very high number of distinct object values and a low number of
distinct predicates, while the number of distinct subjects ranges in between these boundaries.
All benchmarks were performed on the mobile devices during regular usage of a device where
the usual system processes were running in parallel to our tests.

6.2.1 Test data

To obtain results that reflect real-world replication scenarios, we make use of data sets hosted
within the DBpedia project for this evaluation. The DBpedia database contains lots of useful
information that might be replicated to a mobile device based on the user’s current context and
information needs. These data sets have been extracted and aggregated from the Wikipedia
project and are available as structured information being published under the GNU General
Public license9 wherefore they are used for the simulation of data that are replicated under
real-world conditions. Figure 6.1 depicts an excerpt of the DBpedia test data set used for this
evaluation being serialized in N-Triples format, which represents relevant information about
well-known persons extracted from a specific database dump10 of the DBpedia database.

This data set contains information about persons being identified using a DBpedia-specific URI
(e.g. http://dbpedia.org/resource/Aristotle) and relevant information about them encoded
in predicates and objects represented through terms from the DBpedia ontology11 and other onto-
logical vocabularies such as Dublin Core12 (e.g. http://purl.org/dc/elements/1.1/description),
or as plain or typed literal values (e.g. "Greek philosopher"@en). This information has been
extracted from different Wikipedia pages and interlinked with related data from other data sets.

6.2.2 Preparation of Test Data

The data sets retrieved from the DBpedia dump have been split in several data chunks of varying
sizes ranging from 10 to 100,000 triples and serve as representations of different data replicas be-
ing processed during the execution of the benchmark instances, i.e., the data contained in a data
chunk can be considered as data replicated to the mobile device by one or more data providers.
Before data chunks are transferred to a mobile device, they were transformed into different RDF
serialization formats using the tool Any23 13 in order to execute the benchmarks with all se-
rialization formats supported by an RDF framework; for instance, the Androjena framework
supports the three major RDF formats RDF/XML, N3, and N-Triples (cf. Figure 3.1). Having
the test data available in multiple serialization formats allows us to obtain information whether
differences in terms of parsing and saving performance depending on a concrete serialization
format exist for a framework and which format yields best performance results.

9Information about the GNU General Public license: http://www.gnu.org/copyleft/gpl.html

10The database dump was retrieved from: http://downloads.dbpedia.org/3.6/en/persondata_en.nt.bz2

11The DBpedia Ontology: http://wiki.dbpedia.org/Ontology

12The Dublin Core® Metadata Initiative: http://dublincore.org/documents/dcmi-terms/

13Any23 tool: http://developers.any23.org/

http://www.gnu.org/copyleft/gpl.html
http://downloads.dbpedia.org/3.6/en/persondata_en.nt.bz2
http://wiki.dbpedia.org/Ontology
http://dublincore.org/documents/dcmi-terms/
http://developers.any23.org/

Chapter 6. Evaluation 191

1 [...]
2 <http://dbpedia.org/resource/Aristotle>
3 <http://dbpedia.org/ontology/deathPlace>
4 <http://dbpedia.org/resource/Chalcis> .
5 <http://dbpedia.org/resource/Aristotle>
6 <http://dbpedia.org/ontology/birthPlace>
7 <http://dbpedia.org/resource/Stageira> .
8 <http://dbpedia.org/resource/Aristotle>
9 <http://purl.org/dc/elements/1.1/description>

10 "Greek philosopher"@en .
11 <http://dbpedia.org/resource/Aristotle>
12 <http://www.w3.org/1999/02/22-rdf-syntax-ns#type>
13 <http://xmlns.com/foaf/0.1/Person> .
14 <http://dbpedia.org/resource/Aristotle>
15 <http://xmlns.com/foaf/0.1/name> "Aristotle"@en .
16 <http://dbpedia.org/resource/Abraham_Lincoln>
17 <http://dbpedia.org/ontology/deathPlace>
18 <http://dbpedia.org/resource/Washington,_D.C.> .
19 <http://dbpedia.org/resource/Abraham_Lincoln>
20 <http://dbpedia.org/ontology/deathDate>
21 "1865-04-15"^^<http://www.w3.org/2001/XMLSchema#date> .
22 <http://dbpedia.org/resource/Abraham_Lincoln>
23 <http://dbpedia.org/ontology/birthPlace>
24 <http://dbpedia.org/resource/Kentucky> .
25 <http://dbpedia.org/resource/Abraham_Lincoln>
26 <http://dbpedia.org/ontology/birthDate>
27 "1809-02-12"^^<http://www.w3.org/2001/XMLSchema#date> .
28 <http://dbpedia.org/resource/Abraham_Lincoln>
29 <http://purl.org/dc/elements/1.1/description>
30 "16th President of the United States of America"@en .
31 <http://dbpedia.org/resource/Abraham_Lincoln>
32 <http://www.w3.org/1999/02/22-rdf-syntax-ns#type>
33 <http://xmlns.com/foaf/0.1/Person> .
34 [...]

Figure 6.1: An excerpt of the DBpedia test data set used for the performance evaluation

In order to eliminate technical discrepancies resulting from differing network connection quality
and network latencies as well as different storage infrastructures and other aspects, and to make
the test data constantly available during the benchmark processes, they have been copied to
an SD card installed in each device prior to each benchmark. Before a concrete instance of a
benchmark is executed, the data replicas are copied from the SD card to the internal non-volatile
memory of a device from where they are then parsed and transformed into workable in-memory
models. This procedure allows us to neutralize technological differences that exist between SD
cards in terms of access times as well as read-/write performance.

6.2.3 Recording of Benchmark Results

All benchmark results as well as failures that emerged during the execution of a benchmark
instance were logged in separate log files in order to automatically reprocess and analyze them
afterwards using statistical applications such as MATLAB14, R15, or DataGraph16. This allows
for calculating several statistic measures such as the arithmetic mean, the standard deviation,

14MATLAB: http://www.mathworks.com/products/matlab/

15The R project for statistical computing: http://www.r-project.org/

16DataGraph: http://www.visualdatatools.com/DataGraph/

http://www.mathworks.com/products/matlab/
http://www.r-project.org/
http://www.visualdatatools.com/DataGraph/

Chapter 6. Evaluation 192

as well as the processed RDF triples per one second, which is a normalized representation of the
general RDF processing performance of a framework.

All benchmarks were performed by a special benchmark application that executes the corre-
sponding framework functions and RDF processing operations introduced in Section 6.3. The
benchmark application was locally deployed on each device and runs in parallel to the replica-
tion framework as well as system and user processes. It initiates and monitors the execution of
replication tasks as well as modification operations on RDF data replicas and stores the results
in corresponding log files. Those files are hosted solely on the SD card to avert influences on
consecutive benchmarks as well as benchmarks that are executed on the internal memeory. The
general workflow of the benchmark process is conceptually outlined in Algorithm 10.

Algorithm 10: Conceptual workflow of the evaluation benchmarks
Data: benchmark method m, data replica r, serialization format f , RDF framework fw
Result: benchmark results of each run stored in corresponding log file
Set Frameworks ← �fw1, . . . , fwk� ;
foreach fw ∈ Frameworks do

Set Formats ← IdentifySupportedSerializationFormats(�f1, . . . , fl�) ;
foreach fi ∈ Formats do

Set Replicas ← CopyDataChunksToInternalMemory(�rfi

1
, . . . , rfi

m�) ;
InitializeBenchmarkInstance(fw,fi,m,...) ;
Set logfile ← CreateLogfile(fw,fi) ;
foreach rfi

j ∈ Replicas do
LoadReplicaIntoMainMemory(rfi

j) ;
while current run < number of iterations + 1 do

InitializeCurrentInstance(...) ;
Set result ← ExecuteBenchmark(m, rfi

j) ;
StoreResultInLogfile(i, result, logfile) ;
CleanUp → InitiateGarbageCollector() ;

end
RemoveReplicaFromMainMemory(rfi

j) ;
end
CloseLogfile(logfile) ;
RemoveDataChunkFromInternalMemory(�rfi

1
, . . . , rfi

m�) ;
end

end

For each framework, device, serialization format, and operation (cf. Section 6.3), we measured
the total amount of time needed in milliseconds to finish an operation successfully. From these
measurements we calculated the standard deviation between different benchmark iterations for
each size as well as the number of triples that the particular combination of a device and a
framework is able to process within one second. Each benchmark was repeated ten times to
minimize variations among consecutively conducted benchmark instances.

All benchmarks had been executed in normal operation mode after restarting the devices to
ensure identical runtime conditions. This setting allows us to simulate real-world conditions.
At the end of each benchmark, all files and data that had been created during a test run were
deleted and the test environment was reseted to avert influences on consecutive benchmarks.

Chapter 6. Evaluation 193

6.3 Results

In order to evaluate the practical applicability of our approach, we conducted the subsequently
listed benchmarks. Each benchmark is described in detail in a separate section (given in brackets)
followed by a discussion and interpretation of the acquired results. In addition to usual operations
related to the parsing and serialization of data being replicated to the mobile device, we also
analyzed operations that concern modifications applied to RDF data replicas since data that
are replicated according to specific contextual constellations are usually modified in subsequent
steps rather than merely stored locally. In particular, we analyzed the runtime behavior of the
following operations, which are extensively discussed in the listed sections:

• Parsing RDF data replicas (Section 6.3.1)

• Storing RDF data replicas (Section 6.3.2)

• Inserting data in RDF data replicas (Section 6.3.3)

• Removing data from RDF data replicas (Section 6.3.4)

• Retrieving distinct elements from RDF data replicas (Section 6.3.5)

• Constructing in-memory RDF graphs (Section 6.3.6)

At the beginning of each section, we provide a short overview of the benchmark’s setting, its
objectives, as well as the specific aspects that had been analyzed. This overview is complemented
by an algorithmic description of the major steps involved in conducting a specific operation being
benchmarked. For each benchmark, we discuss, interpret, and summarize the results w.r.t. the
involved devices and frameworks, and visualize the acquired values in form of plotted data
graphs17 located in the corresponding sub sections. The detailed values of each benchmark
instance together with further statistical calculations such as standard deviation and processed
triples per second ratios can be found in the respective tables located in Appendix A.

6.3.1 Parsing RDF Data Replicas

In the parsing benchmark, we measured the total amount of time needed to parse and create
a workable in-memory representation of an RDF data replica. These measurements allow us
to obtain insights regarding the parsing performance of each framework on different classes of
mobile devices. Furthermore, it allows us to assess whether large data replicas can be transformed
and processed in reasonable amounts of time. If a framework supports multiple serialization
formats, we repeated the parsing benchmark for each format separately to see whether there
exist significant differences in parsing performance across serialization formats.

During an instance of a benchmark run, a data replica of specific size and serialization format is
loaded from the internal memory to the RAM and parsed into a framework-specific in-memory
model to which query, insertion, or removal operations can be applied (the runtime behavior of
such operations is discussed in the Sections 6.3.3, 6.3.4, and 6.3.5). The workflow of the parsing
benchmark is conceptually described in Algorithm 11.

17However, in some data graphs the labels RDF/XML, N3, and N-TRIPLE refer to the different serialization formats
supported by the Androjena framework. For readability issues we excluded the name ‘Androjena’ and just referred
to the respective serialization formats.

Chapter 6. Evaluation 194

Algorithm 11: Parsing data replicas
Set Formats ← IdentifySupportedSerializationFormats(�f1, . . . , fl�) ;
foreach fi ∈ Formats do

Set Replicas ← CopyDataChunksToInternalMemory(�rfi

1
, . . . , rfi

m�) ;
foreach rfi

j ∈ Replicas do
CopyReplicaToInternalMemory(rfi

j) ;
while current run k < number of iterations + 1 do

Set t0 ← System.getCurrentTimeMillis() ;
Set model ← ParseDataReplica(LoadDataReplica(rfi

j)) ;
Set t1 ← System.getCurrentTimeMillis() ;
WriteResultsToLogfile(t1 − t0, fi, rfi

j , k, !model.isEmpty()) ;
CleanUp → InitiateGarbageCollector() ;

end
RemoveReplicaFromInternalMemory(rfi

j) ;
end

end

The results of the parsing benchmark compartmentalized by framework and serialization format
are depicted in Figure 6.2, 6.3, and 6.4. The plotted graphs represent the parsing performance
measured in processed triples per second ratios for transforming RDF data replicas of particular
sizes into workable in-memory representations of RDF graphs. The size of the data replicas
is marked on the x-axis; the processed triples per second ratios are displayed along the y-axis.
In addition, we also included an illustration of the parsing performance compartmentalized by
device at the end of this section, which is depicted in Figure 6.5.

6.3.1.1 Androjena

Using the Androjena framework, we were able to parse data replicas containing a maximum of
5,000 triples18 on the HTC G1, 20,000 triples on the Motorola Milestone, 50,000 triples on the
Samsung Galaxy S I9000, and 100,000 triples on the Dell Streak, depending on the serializa-
tion format. The Androjena framework, as opposed to µJena and Mobile RDF, supports the
three most popular RDF serialization formats RDF/XML, N-Triples, and N3 (see Section 3.3.4)
wherefore benchmarks have been executed for each format separately.

Androjena yields best parsing performance when RDF replicas are serialized using the N-Triples
format, followed by N3 and RDF/XML (see Figure 6.2). The cumulated average storage per-
formance per serialization format across all replicas and devices amounts to 695.85 triples per
second using the N-Triples format, 390.02 triples per second using the N3 format, and 292.41
triples per second using the RDF/XML format. Analyzing the cumulated average processed
triples per second ratios over all devices revealed that N3 serialized data replicas are parsed by
the factor 1.33 faster than replicas being serialized in the RDF/XML format; by parsing data
that is serialized in the N-Triples format instead of N3, the overall parsing performance over all
devices growth by the factor 1.78.

Looking specifically at the parsing performance per serialization format and device, the average
processed triples per second performance across all data replicas serialized in the RDF/XML-
format account to 88.22 triples per second on the HTC G1 (see Table A.1), 279.74 triples per

18During some benchmarks, we were able to process RDF data replicas containing up to 10,000 triples (e.g., in
Section 6.3.5.1).

Chapter 6. Evaluation 195

RDF/XML

N3

N-TRIPLES

Pr
oc

es
se

d
Tr

ip
le

s
pe

r S
ec

on
d

0

200

400

600

800

1000

1200

1400

1600

1800

2000

2200

Pr
oc

es
se

d
Tr

ip
le

s
pe

r S
ec

on
d

0

100

200

300

400

500

600

700

800

900

1000

1100

Pr
oc

es
se

d
Tr

ip
le

s
pe

r S
ec

on
d

0

50

100

150

200

250

300

350

400

450

500

550

600

650

700

of Triples
10 20 50 100 200 500 1000 2000 5000 10000 20000 50000 100000

Parsing Performance of RDF Data Replicas - Androjena Framework

HTC G1
Motorola Milestone
Samsung Galaxy S I9000
Dell Streak

Figure 6.2: Parsing performance of the Androjena framework depending on the serialization
format

Chapter 6. Evaluation 196

second on the Motorola Milestone (see Table A.2), 450.77 triples per second on the Samsung
Galaxy S I9000 (see Table A.3), and 350.93 triples per second on the Dell Streak (see Table A.4).
Using the N3 serialization format, average parsing performance across all data replicas grows
by the factor 1.46 on the HTC G1, by the factor 1.25 on the Motorola Milestone, by the factor
1.39 on the Samsung Galaxy S I9000, and by the factor 1.28 on the Dell Streak. Parsing data
replicas serialized in N-Triples-format, triples per second ratios grows by the factor 1.62 on the
HTC G1, factor 1.35 on the Motorola Milestone, factor 1.76 on the Samsung Galaxy S I9000,
and factor 2.19 on the Dell Streak. As these numbers indicate, the slowest parsing performance
per serialization format was measurable for RDF/XML serialized data replicas (see Figure 6.2).
Additionally, the lowest parsing performance per device was measured on the HTC G1 across
all serialization formats (see Figure 6.5).

The parsing performance of Androjena is significantly slower for smaller data replicas irrespec-
tively of the serialization format and device; for instance, the average triples per second ratios
across all serialization formats almost grow by the factor 13.05 on the Samsung Galaxy S I9000
when replicas containing 2,000 triples instead of 10 triples are parsed. However, the increase in
processed triples per second performance is observable on all devices and formats, although less
distinctive on devices from the low- and middle-market segment. As a consequence, for compa-
rably small data replicas the sizes of which range between 10 and 200 triples (usually on faster
devices, these numbers scale up to 2,000 triples), we could notice a constant increase in parsing
performance on all devices and for all serialization formats. The highest parsing performance
could be measured for data replicas whose sizes lie between 1,000 and 5,000 triples depending
on the device and serialization format.

The parsing performance in terms of triples per second ratios begins to decrease again for larger
data replicas with more than 2,000 to 5,000 triples, depending on the device and serialization
format. However, we observed a greater variance in processed triples per second ratios on the two
more powerful devices, which was not that distinctive on the HTC G1 and the Motorola Milestone
where processed triples per second ratios scale more moderately and remain relatively constant
for larger data replicas. This behavior might be attributed to the weaker CPU performance
and the smaller physical main memory installed in the HTC G1 and the Motorola Milestone.
Additionally, we could see that the parsing performance of the Androjena framework scales
relatively well with available processor power as well as with available physical main memory
although it was not possible to parse data replicas with 100,000 triples on the Samsung Galaxy.

In summary, Androjena attains the highest parsing performance on the Samsung Galaxy S
I9000; the average parsing performance across all data replicas and serialization formats was
approx. 1.23 times faster than on the Dell Streak. Comparing the average parsing performance
of Androjena across all serialization formats on the Samsung Galaxy S I9000 to the HTC G1
and the Motorola Milestone, parsing operations finish by the factor 5.14 faster on the Samsung
Galaxy compared to the HTC G1 and by the factor 1.99 faster compared to the Motorola
Milestone. In consequence, the average processed triples per second ratios across all data replicas
and serialization formats almost double between devices from different mobile market segments
using the Androjena framework.

In summary, Androjena benefits from increased processing power and yields best parsing results
in terms of processed triples per second ratios with RDF graphs containing around 2,000 triples.
However, we were not able to notice a remarkable difference between the different serialization
formats on newer mobile device with graphs smaller than 100 triples, i.e., perceivable differences
in benchmark results among different serialization formats can first be noticed on newer mobile
devices for graphs with more than 100 triples.

Chapter 6. Evaluation 197

N-TRIPLES

Pr
oc

es
se

d
Tr

ip
le

s
pe

r S
ec

on
d

0

100

200

300

400

500

600

700

800

900

1000

1100

1200

1300

1400

1500

of Triples
10 20 50 100 200 500 1000 2000 5000

Parsing Performance of RDF Data Replicas - μJena

HTC G1
Motorola Milestone
Samsung Galaxy S I9000
Dell Streak

Figure 6.3: Parsing performance per device using the µJena framework

6.3.1.2 µJena

The size of data replicas that can be parsed with the µJena framework is significantly lower
compared to the other RDF frameworks: in total, we were not able to parse data replicas with
more than 5,000 triples on any device. On less powerful devices, however, data replicas have to be
reduced to 1,000 triples (Motorola Milestone) respectively 2,000 triples (HTC G1). Furthermore,
µJena is capable of processing N-Triples-serialized data only.

A dramatic decrease in parsing performance on all devices was observable for parsing data
replicas that contain 20 or more triples (see Figure 6.3); for instance, processed triples per
second performance diminish from 617.28 triples per second for parsing 10 triples to 52.27 triples
per second for parsing replicas containing 20 triples on the Motorola Milestone. This dramatic
decrease was also visible on the two upper-segment devices: for identical data replica sizes,
parsing performance dropped by the factor 6.27 on the Dell Streak and by the factor 4.09 on the
Samsung Galaxy S I9000. When data replicas containing more than 20 triples are processed, the
decrease was still measurable but not that dramatic. However, decreases in parsing performance
were less distinctive on more powerful devices but still noticeable. In this respect, we can
observe that there exists a strong dependency in parsing performance and data replica sizes
using the µJena framework as illustrated in Figure 6.3. Moreover, an extraordinary behavior
was observable on the Motorola Milestone where the parsing performance starts to increase
for data replicas containing more than 200 triples. This behavior was not visible on the other
devices.

In general, the average parsing performance in terms of processed triples per second ratios across
all data replicas amounts to 64,78 triples per second on the HTC G1 (see Table A.1), 115.30
triples per second on the Motorola Milestone (see Table A.2), 318.99 triples per second on the
Samsung Galaxy S I9000 (see Table A.3), and 355.83 triples per second on the Dell Streak

Chapter 6. Evaluation 198

RDF-XML

Pr
oc

es
se

d
Tr

ip
le

s
pe

r S
ec

on
d

0

200

400

600

800

1000

1200

1400

1600

1800

2000

2200

2400

of Triples
10 20 50 100 200 500 1000 2000 5000 10000 20000

Parsing Performance of RDF Data Replicas - Mobile RDF

HTC G1
Motorola Milestone
Samsung Galaxy S I9000
Dell Streak

Figure 6.4: Parsing performance per device using the Mobile RDF framework

(see Table A.4). However, the fastest parsing performance on average over all data replicas
was measurable on the Dell Streak, which lies by the factor 1.12 above the numbers acquired
on the Samsung Galaxy S I9000. Compared to the Motorola Milestone and the HTC G1, the
parsing performance on the Dell Streak increases by the factor 3.09 and 5.49 respectively. In
addition, parsing performance on the Motorola Milestone increases by the factor 1.78 compared
to the HTC G1. As these numbers indicate, the parsing performance of the µJena framework
correlates with available processor power although it does not make efficient use of the larger
physical main memory installed on the two upper-level devices. However, significant differences
according to the variance of the acquired processed triples per second ratios among all devices
were not identifiable.

In summary, µJena scales reasonably well with available processing power and yields best parsing
results in terms of triples per second ratios with very small RDF graphs containing not more than
10 triples. With growing data replicas, parsing performance drops considerably; for instance, the
triples per second ratios differ by the factor 115.10 between the smallest data replica containing
10 triples and the largest data replica containing 5,000 triples on the Dell Streak. Altogether,
this behavior renders µJena inappropriate for processing larger data replicas.

6.3.1.3 Mobile RDF

The size of data replicas that can be parsed with the Mobile RDF framework accounts to 5,000
triples on the HTC G1 and 20,000 triples on the other devices. Moreover, Mobile RDF is capable
of processing RDF/XML-serialized RDF documents only.

Chapter 6. Evaluation 199

The average parsing performance across all data replicas serialized in the RDF/XML-format
account to 243.15 triples per second on the HTC G1 (see Table A.1), 579.77 triples per second
on the Motorola Milestone (see Table A.2), 1,254.22 triples per second on the Samsung Galaxy
S I9000 (see Table A.3), and 1,047.80 triples per second on the Dell Streak (see Table A.4).

These numbers indicate that the Mobile RDF framework performs parsing operations most
rapidly on the Samsung Galaxy S I9000 (see Figure 6.4): the average parsing performance across
all data replicas was approximately 1.20 times higher than on the Dell Streak. Comparing the
parsing performance of Mobile RDF on the Samsung Galaxy S I9000 to the HTC G1 and the
Motorola Milestone, parsing operations finish by the factor 5.16 faster on the Samsung Galaxy
compared to the HTC G1 and by the factor 2.16 faster compared to the Motorola Milestone.
These results indicate that Mobile RDF scales reasonably well with available processing power:
the average triples per second ratios across all data replicas almost double between devices from
different mobile market segments using the Mobile RDF framework. Furthermore, we could
identify a stronger growth in triples per second rations on the two more powerful devices, which
was not that distinctive on the HTC G1 and the Motorola Milestone.

In total, Mobile RDF achieves best parsing results in terms of triples per second ratios on the
Samsung Galaxy S I9000 with RDF graphs containing around 5,000 triples. In general, the high-
est triples per second ratios have been measured for parsing comparably large data replicas con-
taining between 5,000 and 10,000 triples. With growing data replica sizes, parsing performance
increase steadily and reaches its maximum when parsing 5,000 triples on the two upper-level
devices; however, parsing performance starts to decrease for replicas containing 10,000 or 20,000
triples (see Figure 6.4).

The variance in processed triples per second ratios as visible on the µJena framework was not
that distinctive on the Mobile RDF framework; for instance, the triples per second ratios differ
by the factor 15.78 between to lowest and highest measured ratio on the Samsung Galaxy S I9000
and by the factor 7.56 on the Dell Streak. On the µJena framework, by way of comparison, these
factors count up to 90.43 on the Samsung Galaxy and 115.10 on the Dell Streak. Comparing
the variance between the lowest and highest processed triples per second values on the two less
powerful devices reveals that parsing performance differs by the factor 2,38 on the HTC G1
and by the factor 4,88 on the Motorola Milestone. As a result, we can see that the variance in
processed triples per second ratios is less distinctive on devices from the lower- and middle-market
segment compared to devices placed at the upper-market segment.

6.3.1.4 Summary

Androjena, µJena, and Mobile RDF all scale reasonably well with available processing power
where Mobile RDF turns out to be the fastest RDF framework in terms of parsing performance,
especially for larger RDF graphs with more than 200 to 500 triples. This behavior was more
distinctive on less powerful devices such as the HTC G1 or the Motorola Milestone but dissolved
on recent, more powerful devices such as the Samsung Galaxy or the Dell Streak (see Figure 6.5).
The best performance results could be measured with RDF graphs containing around 5,000 to
10,000 triples on the Samsung Galaxy S I9000. By contrast, µJena yields best performance results
with very small data replicas and loses substantial processing performance with increasing data
replica sizes. This considerable drop in parsing performance was observable on all devices (see
Figure 6.5) and renders µJena inappropriate for the processing of data replicas. Considering the
different serialization formats supported by Androjena, the best parsing results were measured
with data replicas serialized in the N-Triples format followed by N3 and RDF/XML.

Chapter 6. Evaluation 200

HTC G1 Motorola Milestone

Samsung Galaxy S I9000 Dell Streak

Pr
oc

es
se

d
Tr

ip
le

s
pe

r S
ec

on
d

0

200

400

600

800

1000

1200

1400

1600

1800

2000

2200

2400

Pr
oc

es
se

d
Tr

ip
le

s
pe

r S
ec

on
d

0

50

100

150

200

250

300

350

400

450

500

550

600

650

700

750

800

850

of Triples
10 20 50 100 200 500 1000 2000 5000 10000 20000 50000

of Triples
10 20 50 100 200 500 1000 2000 5000 10000 20000 50000100000

Parsing Performance per Device

Androjena - RDF/XML
Androjena - N3
Androjena - N-Triples
μJena - N-Triples
Mobile RDF - RDF/XML

Serialization Formats

Figure 6.5: Parsing performance compartmentalized by device and serialization format

Chapter 6. Evaluation 201

6.3.2 Serialization and Storage of RDF Data Replicas

In the serialization and storage benchmark, we measured the total amount of time needed to store
data replicas on the local filesystem of a mobile device using a specific mobile RDF framework
and serialization format. We recorded the time the serialization operation takes to transform a
workable in-memory representation of an RDF data replica into a concrete serialization format
and write it into a file object on the local filesystem. These measurements allow us to obtain
insights regarding the storage performance of the available mobile RDF frameworks on different
classes of mobile devices, particularly for large data replicas. Furthermore, we also recorded the
file size of each stored replica depending on the supported serialization formats to see whether
there exist significant differences in storage and serialization performance across different serial-
ization formats and how the physical file size of a stored data replica correlates to the measured
runtimes of a storage operation. If a framework supports multiple serialization formats, the
storage benchmark has been conducted for each format separately.

For the storage and serialization benchmark, RDF data replicas had been copied from the SD
card to the internal memory from which they were parsed and transformed into workable in-
memory models before the serialization and storage operations of a framework are applied. These
models are then translated into a concrete serialization format and wrote to file objects created
on the local file system of the mobile device using a FileOutputStream19. When all the data
contained in a replica had been stored, the file object was closed and removed from the local
file system (a device’s internal memory) to avoid influences on consecutive benchmarks. The
conceptual workflow of the storage and serialization benchmark is described in Algorithm 12:

Algorithm 12: Storing data replicas
Set Formats ← IdentifySupportedSerializationFormats(�f1, . . . , fl�) ;
foreach fi ∈ Formats do

Set Replicas ← CopyDataChunksToInternalMemory(�rfi

1
, . . . , rfi

m�) ;
foreach rfi

j ∈ Replicas do
LoadReplicaToInternalMemory(rfi

j) ;
while current run < number of iterations + 1 do

Set model ← ParseDataReplica(rfi

j) ;
Set t0 ← System.getCurrentTimeMillis() ;
Set file ← CreateFileObjectOnLocalFileSystem() ;
WriteModelToLocalFileSystem(file, SerializeInMemoryModel(model, fi)) ;
CloseLocalFileObject(file) ;
Set t1 ← System.getCurrentTimeMillis() ;
WriteResultsToLogfile(t1 − t0, file.getSize(), model.countTriples(), fi) ;
RemoveFileFromFileSystem(file) ;
CleanUp → InitiateGarbageCollector() ;

end
RemoveReplicaFromInternalMemory(rfi

j) ;
end

end

The results of the storage and serialization benchmark compartmentalized by framework and
serialization format are depicted in Figure 6.6, 6.7, and 6.8. The plotted graphs represent the
storage performance measured in processed triples per second ratios for writing data replicas of
particular sizes to file objects on the local filesystem. The size of the data replicas is marked on

19Javadoc of the FileOutputStream class: http://download.oracle.com/javase/1.4.2/docs/api/java/io/

FileOutputStream.html

http://download.oracle.com/javase/1.4.2/docs/api/java/io/FileOutputStream.html
http://download.oracle.com/javase/1.4.2/docs/api/java/io/FileOutputStream.html

Chapter 6. Evaluation 202

the x-axis; the processed triples per second ratios are displayed along the y-axis. In addition,
we also included an illustration of the storage performance compartmentalized by device at the
end of this section, which is depicted in Figure 6.9.

6.3.2.1 Androjena

Since Androjena supports the three most popular RDF serialization formats, we measured the
storage performance for each format separately and compared them against each other to see
whether the differences in parsing performance are also visible for writing RDF replicas to the
local file system of a mobile device. Additionally, we compared the storage runtimes of each
format to see which format yields the fastest storage times. We were able to process data
replicas containing 2,000 triples on the HTC G1, 20,000 triples on the Motorola Milestone,
50,000 triples on the Samsung Galaxy S I9000, and 100,000 triples on the Dell Streak depending
on the serialization format. As a result, the size of the data replicas that can be serialized and
stored using the Androjena framework correlates with the amount of physical main memory
installed on a device.

Androjena yields best storage performance when RDF data are serialized using the N3 format,
followed by RDF/XML and N-Triples (see Figure 6.6). The cumulated average storage per-
formance per serialization format across all replicas and devices amounts to 630.34 triples per
second using the N3 format, 348.53 triples per second using the RDF/XML format, and 169.05
triples per second using the N-Triples format. Looking specifically at the storage performance
per serialization format and device, the average storage performance in terms of processed triples
per second for the N-Triples format accounts to 50.82 triples per second on the HTC G1 (see
Table A.5), 136.81 triples per second on the Motorola Milestone (see Table A.5), 248.62 triples
per second on the Samsung Galaxy S I9000 (see Table A.5), and 239.93 triples per second on
the Dell Streak (see Table A.5). Using the RDF/XML serialization format, average serialization
and storage performance grows by the factor 1.71 on the HTC G1, by the factor 2.26 on the
Motorola Milestone, by the factor 2.22 on the Samsung Galaxy S I9000, and by the factor 1.86
on the Dell Streak. Storing data replicas serialized in N3 format, triples per second ratios grows
by the factor 2.07 on the HTC G1, by the factor 2.03 on the Motorola Milestone, by the factor
1.82 on the Samsung Galaxy S I9000, and by the factor 1.59 on the Dell Streak.

As these numbers indicate, the slowest storage performance was measurable for N-Triples-
serialized data. The average triples per second ratios of the N-Triples format for all devices
and replicas compared to the RDF/XML and the N3 format were approximately 2 times respec-
tively 4 times lower. Hence, we can observe that triples per second ratios almost double from
one serialization format to another. As obvious, the growth in terms of triples per second per-
formance from RDF/XML to N3-serialized data is not that distinctive on the two more powerful
devices. Additionally, the lowest storage performance was measured on the HTC G1 across all
serialization formats.

The storage performance of Androjena is significantly slower for smaller data replicas irrespec-
tively of the serialization format; for instance, triples per second ratios almost grow by the factor
7.18 on the Samsung Galaxy S I9000 when replicas containing 500 triples instead of 10 triples
are serialized in RDF/XML format (see Figure 6.6). However, the increase in triples per second
performance is observable on all devices and formats. As a consequence, for comparably small
data replicas whose sizes range between 10 and 200 triples, we could notice a constant increase
in storage performance on all devices and for all serialization formats. The highest storage per-
formance could be measured for data replicas whose size lies between 200 and 2,000 triples. We

Chapter 6. Evaluation 203

RDF/XML

N3

N-TRIPLES

Pr
oc

es
se

d
Tr

ip
le

s
pe

r S
ec

on
d

0

50

100

150

200

250

300

350

400

Pr
oc

es
se

d
Tr

ip
le

s
pe

r S
ec

on
d

0

100

200

300

400

500

600

700

800

900

1000

1100

1200

1300

1400

1500

1600

Pr
oc

es
se

d
Tr

ip
le

s
pe

r S
ec

on
d

0

50

100

150

200

250

300

350

400

450

500

550

600

650

700

750

800

of Triples
10 20 50 100 200 500 1000 2000 5000 10000 20000 50000 100000

Serialization and Storage of RDF Data Replicas - Androjena

HTC G1
Motorola Milestone
Samsung Galaxy S I9000
Dell Streak

Figure 6.6: Serialization and storage performance of the Androjena framework separated by
serialization format

Chapter 6. Evaluation 204

believe that the reasons for this runtime behavior can be found in the efforts related to the
creation and closing of file objects on the local filesystem.

The storage performance in terms of triples per second ratios begins to decrease again for larger
data models with more than 500 to 2,000 triples depending on the device. The slowest storage
performance was measurable on the HTC G1 where triples per second ratios across all serial-
ization formats were approximately 3.38 times lower compared to the Motorola Milestone and
5.68 times lower compared to the Samsung Galaxy S I9000. Furthermore, the Samsung Galaxy
stores RDF models 1.68 times faster than the Motorola Milestone and 1.29 times faster than the
Dell Streak on average. However, we observed a greater variance in processed triples per second
ratios on the two more powerful devices, which was not that distinctive on the HTC G1 and the
Motorola Milestone where processed triples per second ratios remain relatively constant (with a
few exceptions – see Figure 6.6). Additionally, we could see that the storage and serialization
performance of the Androjena framework scales relatively well with available processor power as
well as with available physical main memory.

In summary, Androjena’s saving performance scales reasonably well w.r.t. available processing
power where best results could be achieved on the Samsung Galaxy S I9000: total storage times
were almost six times faster compared to those measured on the HTC G1 for all serialization
formats and data replicas. Serializing RDF graphs in the N3 format yields the best triples
per second ratios, followed by RDF/XML and N-Triple. The best storage performance results
irrespectively of the serialization format could be measured with graphs of sizes between 100 and
2,000 triples depending on the device.

6.3.2.2 µJena

The size of data replicas that can be serialized and stored using the µJena framework is sig-
nificantly lower compared to data replicas stored using one of the other RDF frameworks. As
a consequence, we were not able to process data replicas with more than 5,000 triples on any
device. Moreover, on the Motorola Milestone data replicas have to be reduced to 1,000 triples to
be processable using the µJena framework despite its larger main memory compared to the HTC
G1, which was able to process data replicas containing 2,000 triples. The storage benchmark
was conducted with data replicas serialized in N-Triples format since this is the only format sup-
ported by µJena (cf. Section 3.3.2). Although by far the least competitive framework in terms
of creation and parsing performance, µJena yields the best average storage performance on the
Motorola Milestone and the Dell Streak (see Figure 6.9).

As visible on the Androjena framework, storage performance grows with increasing replica sizes;
the slowest storage performance in terms of triples per second ratios was measurable for very
small replicas containing 10 to 20 triples. Processing performance constantly grows for data
replicas the size of which lies in the range of 10 to 200 triples. For data replicas that exceed this
size, triples per second performance begins to drop and start to raise again for models containing
1,000 or more triples depending on the device (see Figure 6.7).

Unsurprisingly, the lowest storage performance was measurable on the HTC G1 where processed
triples per second ratios range between 282.49 triples/sec. and 428.27 triples/sec. and cumulate
to 383.14 triples/sec. in average (see Table A.5). However, the µJena framework shows the least
variance in processed triples per second ratios over all data replicas and devices (see Figure 6.9).
Processed triples per second ratios range between 316.46 triples/sec. and 811.03 triples/sec.
on the Samsung Galaxy S I9000 and 390.63 triples/sec. to 1,050.42 triples/sec. on the Dell

Chapter 6. Evaluation 205

N-TRIPLES
Pr

oc
es

se
d

Tr
ip

le
s

pe
r S

ec
on

d

200

300

400

500

600

700

800

900

1000

1100

1200

1300

1400

of Triples
10 20 50 100 200 500 1000 2000 5000

Serialization and Storage of RDF Data Replicas - μJena

HTC G1
Motorola Milestone
Samsung Galaxy S I9000
Dell Streak

Figure 6.7: Serialization and storage performance using the µJena framework

Streak, resulting in an average ratio of 688.21 triples/sec. and 830.74 triples/sec. respectively
(see Table A.7 and A.8).

However, the highest storage performance could be measured on one of the less powerful devices
in terms of processor speed and memory capacity, the Motorola Milestone, where processed
triples per second ratios range between 990.10 and 1,331.56. The average triples per second
ratios across all data replicas amount to 1,169.52 triples per second thus being 1.70 times higher
than the numbers measured on the Samsung Galaxy S I9000 and 1.41 times higher than those
numbers obtained from the Dell Streak (see Table A.6). The average triples per second ratios
across all data replicas of the remaining devices account to 383.14 on the HTC G1, 688.21 on
the Samsung Galaxy S I9000, and 830.74 on the Dell Streak. As visible from these results,
the storage and serialization performance of data replicas using the µJena framework does not
directly correlate with available processor speed. Additionally, the variance in processed triples
per second ratios is less distinctive on the devices from the lower-market segment.

6.3.2.3 Mobile RDF

The storage and serialization benchmark has been conducted with data replicas serialized in
RDF/XML format since this is the one and only format supported by the Mobile RDF framework.
Furthermore, the Mobile RDF framework allows to process data replicas containing 10,000 triples
on the HTC G1 and larger replicas containing 20,000 triples on the other devices. Although the
Samsung Galaxy S I9000 and the Dell Streak incorporate 512 MB of physical main memory
compared to 256 MB built into the Motorola Milestone, it was not possible to process data
replicas beyond the margin of 20,000 triples. Hence, a doubling of physical main memory from

Chapter 6. Evaluation 206

RDF/XML

Pr
oc

es
se

d
Tr

ip
le

s
pe

r S
ec

on
d

0

200

400

600

800

1000

1200

1400

1600

1800

2000

of Triples
10 20 50 100 200 500 1000 2000 5000 10000 20000

Serialization and Storage of RDF Data Replicas - Mobile RDF

HTC G1
Motorola Milestone
Samsung Galaxy S I9000
Dell Streak

Figure 6.8: Serialization and storage performance using the Mobile RDF framework

256 MB to 512 MB, as opposed to the increase from 192 MB to 256 MB, does not result in the
capability to process larger data replicas.

As visible on the other two frameworks, the triples per second performance ratios increase with
growing data replica’ sizes. The slowest storage performance in terms of triples per second ratios
was measurable for the smallest data replica sizes. The storage performance constantly grows
for data replicas the size of which ranges between 10 and 500 or 1,000 triples depending on the
device. The highest triples per second ratios were measurable for data replicas that contain
between 500 and 5,000 triples (see Figure 6.8). For data replicas that exceed this triple range,
storage performance considerably drops. However, this behavior was observable on the two
upper-level devices only, whereas on the Motorola Milestone, triples per second ratios remain
constant for data replicas containing 10,000 or 20,000 triples. Additionally, a higher variance in
terms of processed triples per second was observable on the two upper-level devices; this variance
was not that distinctive on the two less powerful devices. On the HTC G1, for instance, we could
notice an almost constant increase in storage performance with growing data replicas.

Mobile RDF scales reasonably well with available processing power where best results could be
achieved on the Samsung Galaxy S I9000 and the Dell Streak (see Table A.7 and A.8); total
storage times were 9.14 times faster on the Samsung Galaxy compared to those measured on
the HTC G1. Although the Samsung Galaxy shows the highest average triples per second ratio,
the highest absolute ratios were measured on the Dell Streak. In summary, the average triples
per second ratios across all data replicas account to 115.74 triples/sec. on the HTC G1 (see
Table A.5), 543.54 triples/sec. on the Motorola Milestone (see Table A.6), 978.87 triples/sec. on
the Dell Streak, and 1,057.48 triples/sec. on the Samsung Galaxy S I9000.

Chapter 6. Evaluation 207

HTC G1 Motorola Milestone

Samsung Galaxy S I9000 Dell Streak

Pr
oc

es
se

d
Tr

ip
le

s
pe

r S
ec

on
d

0

200

400

600

800

1000

1200

1400

1600

1800

2000

Pr
oc

es
se

d
Tr

ip
le

s
pe

r S
ec

on
d

0

100

200

300

400

500

600

700

800

900

1000

1100

1200

1300

1400

1500

of Triples
10 20 50 100 200 500 1000 2000 5000 10000 20000

of Triples
10 20 50 100 200 500 1000 2000 5000 10000 20000 50000100000

Serialization and Storage Performance per Device and Format

Androjena - RDF/XML
Androjena - N3
Androjena - N-Triples
μJena - N-Triples
Mobile RDF - RDF/XML

Serialization Formats

Figure 6.9: Serialization and storage performance compartmentalized by device and serial-
ization format

Chapter 6. Evaluation 208

AndrojenaAndrojenaAndrojena MicroJena Mobile RDFMobile RDFMobile RDFMobile RDF
! # of Triples

Format " RDF/XML N3 N-Triples N-Triples RDF/XML(1) RDF/XML(2) RDF/XML(3) RDF/XML(4)

10 1.847 1.385 1.232 1.228 2.678 2.682 2.672 2.678

20 3.472 2.763 2.456 2.448 4.645 4.649 4.639 4.645

50 3.912 4.597 5.804 5.789 6.253 6.257 6.247 6.253

100 7.395 9.243 11.910 11.864 11.864 11.868 11.858 11.864

200 14.411 18.340 23.613 23.521 22.905 22.909 22.899 22.905

500 36.039 46.066 59.775 59.473 56.469 56.473 56.463 56.469

1.000 71.760 91.909 119.616 119.060 111.862 111.866 111.856 111.862

2.000 142.261 182.734 237.096 290.670 221.991 221.995 221.985 221.991

5.000 369.764 459.150 593.851 731.670 555.956 555.960 555.950 555.956

10.000 738.095 917.167 1.187.884 1.110.229 1.110.233 1.110.223 1.110.229

20.000 1.412.416 1.832.181 2.379.020 2.217.582 2.217.572 2.217.578

50.000 3.542.782 5.929.186

100.000 11.843.279
(1) HTC G1 (2) Milestone (3) Galaxy (4) Dell Streak

Table 6.2: File sizes in bytes of locally stored RDF data replicas depending on RDF frame-
work and serialization format

6.3.2.4 File Sizes of RDF Data Replicas Serialization Sizes

As visible from Figure 3.1 on page 71, the Androjena framework allows to store RDF graphs in
three different serialization formats: RDF/XML, N3, and N-Triple. The smallest file sizes had
been measured for data replicas being serialized in RDF/XML format, followed by N3, and the
N-Triples format (cf. Table 6.2 and Figure 6.10). Surprisingly, the file sizes of N3-serialized data
replicas are larger than those serialized with the RDF/XML format although N3 was defined
as a more compact and human-readable format [BL06b] that offers a number of abbreviations
and short-hand notations for RDF data (cf. [N3P]). The reasons for that fact might be found
in a probably immature implementation of the N3 serialization algorithm. On the other hand,
Androjena’s N3 implementation yields the best storage performance in terms of processed triples
per second ratios on all devices. As expected, the largest file sizes were measured for the N-
Triples format that also exhibits the slowest storage performance over all serialization formats
using the Androjena framework (cf. Figure 6.6). Additionally, no variations in terms of file sizes
could be observed among devices, i.e., each replica stored in a particular serialization format
exhibits the same file size in bytes on all devices.

The µJena framework allows to store RDF graphs in N-Triples format only, where the file
size of RDF data replicas containing between 10 and 1,000 triples is slightly smaller compared
to N-Triples serialized data replicas using the Androjena framework. However, the file sizes
substantially grow for data replicas the size of which lies between 2,000 and 5,000 triples compared
to Androjena. Additionally, µJena also shows no variations in file sizes among different devices.

The serialization algorithm implemented in Mobile RDF, in contrast, produces slightly different
file sizes on the included devices for identical data replicas (see Table 6.2). Although Mobile RDF
only supports the RDF/XML format, the data replicas stored using the Mobile RDF framework
exhibit a significantly higher file size compared to the RDF/XML-serialized data replicas stored
with the Androjena framework (see Figure 6.10).

The file sizes of the data replicas in bytes measured for each framework and supported serializa-
tion format are depicted in Figure 6.10. As results indicate, although the storage performance of
RDF/XML-serialized data of the Mobile RDF framework is higher compared to Androjena, the

Chapter 6. Evaluation 209

Fi
le

si
ze

 in
 B

yt
es

103

104

105

106

107

of Triples
10 20 50 100 200 500 1000 2000 5000 10000 20000 50000 100000

Serialization and Storage of RDF Data Replicas - Filesizes

Androjena - RDF/XML
Androjena - N3
Androjena - N-Triples
μJena - N-Triples
Mobile RDF - RDF/XML

Figure 6.10: File sizes in bytes of RDF data replicas stored on the local file system depending
on the serialization formats supported by involved RDF frameworks

file sizes of data replicas being stored using the Androjena framework are significantly smaller, in
particular for data replicas containing 20,000 and more triples (up to 40% for identical replicas).

6.3.2.5 Summary

As Androjena is the one and only framework to date that supports multiple serialization formats,
best performance results had been measured with N3-serialized data replicas, which offer the
second best triples per file size ratio, i.e, amount of contained triples per file size in bytes. The
best triples per file size ratio was measured for data replicas being serialized in the RDF/XML
format. N-Triple serializations not only yields slowest storage performance, they also produce
the largest file sizes. Storage times of all frameworks are relatively linear with the amount
of triples to be stored, i.e, we could observe a linear scaling between storage runtimes and the
amount of triples to be saved on all three frameworks and on each device. However, no significant
difference w.r.t. the file sizes between the different frameworks and serialization formats could
be found, which indicates that storage algorithms do not make use of, e.g., QNames. File sizes
of the serialized data replicas are rather similar among all frameworks and devices. Although
µJena lies considerably behind the other two frameworks in terms of parsing performance (cf.
Section 6.3.1.2), it achieves the highest storage performance over all frameworks on the HTC
G1 and the Motorola Milestone as well as in total. The overall storage performance amounts to
767.90 triples/sec. compared to 673.91 triples/sec. and 630.34 triples/sec. measured on the Dell
Streak and the Samsung Galaxy S I9000. However, the highest absolute values were measured

Chapter 6. Evaluation 210

on the Dell Streak using the Mobile RDF framework the performance of which is almost similar
to the Androjena framework.

6.3.3 Adding Data to RDF Data Replicas

In the course of the insertion benchmark, we measured the total amount of time needed to add
a distinct number of triples to RDF data replicas of varying sizes20. The data replicas had been
copied from the SD card to the internal memory of a device prior to the execution of the insertion
benchmark. The data replicas are then parsed and transformed into workable in-memory RDF
models to which triples of distinct sizes are added. For each combination of framework and
device, we measured the total amount of time needed to insert data sets containing 1, 10, 100,
500, and 1,000 triples. However, a distinction according to different serialization formats was not
regarded since all measured operations were performed to in-memory RDF models exclusively
wherefore concrete serialization formats are negligible. Algorithm 13 provides an overview of all
the relevant steps performed in the course of the insertion benchmark21. To distinguish RDF
data replicas from RDF models containing the triples to be inserted in the data replicas, such
models are denoted as ‘data sets’ or ‘RDF data models’ throughout this section.

Algorithm 13: Inserting triples into an in-memory RDF graph
Set Datasets ← �d1, . . . , d5� ;
Set d1 ← 1 triple ;
Set d2 ← 10 triples ;
Set d3 ← 100 triples ;
Set d4 ← 500 triples ;
Set d5 ← 1000 triples ;
Set Replicas ← CopyDataChunksToInternalMemory(�r1, . . . , rm�) ;
foreach replica ri ∈ Replicas do

foreach dataset dj ∈ Datasets do
while current run < number of iterations + 1 do

Set model ← ParseDataReplica(LoadDataReplica(ri)) ;
Set t0 ← System.getCurrentTimeMillis() ;
InsertDataset(dj → model) ;
AssertTrue((model.size()t0 + dj .size()) == model.size()t1) ;
Set t1 ← System.getCurrentTimeMillis() ;
WriteResultsToLogfile(t1 − t0, model.countTriples(), dj .size()) ;
RemoveReplicaFromMainMemory(ri) ;
CleanUp → InitiateGarbageCollector() ;

end
end

end
RemoveReplicasFromInternalMemory(�r1, . . . , rm�) ;

The results of the insertion benchmark compartmentalized by framework, device, and data set
size are depicted in Figure 6.11, 6.12, and 6.13. The plotted graphs represent the insertion
performance measured in processed triples per second ratios for adding a particular number of
triples to data replicas of varying sizes. The size of the data replicas is marked on the x-axis;
the processed triples per second ratios are displayed both linearly and logarithmically along the

20During the insertion benchmark, a strange behavior was observable: while some benchmarks finished suc-
cessfully for rather large replicas with more than 20,000 triples, other tests failed, probably due to variances in
running system and user processes that consume different amounts of main memory.

21For readability issues, we omitted initialization as well as detailed logging operations.

Chapter 6. Evaluation 211

y-axis, depending on the framework. Additionally, we provide statistics related to the insertion
performance separated by data set size and framework for each device at the end of this section.
These statistics are depicted in Figure 6.14, 6.15, 6.16, and 6.17.

6.3.3.1 Androjena

Using the Androjena framework, we were able to add triples to data replicas containing a max-
imum of 5,000 triples on the HTC G1, 20,000 triples on the Motorola Milestone, 50,000 triples
on the Samsung Galaxy S I9000, and 100,000 triples on the Dell Streak.

Insertion times for 1 triple range between 1.3 and 1.6 milliseconds on the HTC G1 (cf. Table A.9),
and 0.1 to 1.0 milliseconds on the other, more powerful devices for all data replica sizes (cf.
Table A.10, A.11, and A.12). Hence, insertion times remain relatively stable on all data replicas
for a particular triple size – even for very large data replicas. As a result, insertion operations
are not dependent on or influenced by the size of data replicas and are executed with nearly
constant triples per second ratios.

Increasing the data set sizes to 10 or 100 triples, we can observe that insertion times also
increase nearly linearly by the factor 10 on all devices. In this respect, the amount of triples to
be inserted scales almost linearly with the total time needed to complete the insertion operation.
For instance, an increase of the triples to be inserted by the factor ten (e.g., from 10 triples to
100 triples) resulted in an increase of the total time needed for completing the insert operation
by the factor 8 to 10 in average depending on the device (see Figure 6.11). An identical behavior
is observable if the number of triples to be inserted was increased from 100 to 500 triples where
insertion times grew by the factor 5.

The average processed triples per one second ratios range between 568.67 triples/sec. and 689.97
triples/sec. on the HTC G1, 2,171.31 triples/sec. and 2,797.98 triples/sec. on the Motorola
Milestone, 3,680.56 triples/sec. and 5,706.98 triples/sec. on the Samsung Galaxy S I9000, and
4,093.19 triples/sec. and 6,056.55 triples/sec. on the Dell Streak (see Figure 6.11). Only when
large data sets containing 1,000 triples or more are inserted into data replicas of 100,000 triples,
a substantial decrease of processed triples per second ratios was observable on the Samsung
Galaxy S I9000 and the Dell Streak (cf. Table A.11 and A.12).

However, on the Samsung Galaxy S I9000 we could observe that Androjena yields the best
processed triples per second performance when data sets containing several hundred triples are
inserted; for instance, adding 100 triples yields a processed triples per second ratio of 5,706.98
in average on all data replicas, which was the highest value among all measurements for larger
data sets to be inserted22 (see Figure 6.16).

On the two low and middle-segment devices, the highest triples per second performance can be
observed when inserting very small models containing not more than 10 triples, whereas on the
two upper-segment devices, the highest triple per second performance was observable when data
sets of 100 respectively 500 triples were inserted.

In total, the best average performance results have been measured on the Dell Streak where
the average processed triple per second ratios in total, i.e., among all data replicas and inserted

22 Although the measured average triples per second ratios for inserting 1 triple are slightly higher on the
Dell Streak, we do not elaborate on those numbers here any further due to measuring inaccuracies attributed to
the limited precision of Java-based measurement methods for comparably short execution times, so-called micro
benchmarks [Goe05]. For a discussion related to the problematics of performance benchmarks in general and
micro benchmarks in particular see [Goe04, Goe05].

Chapter 6. Evaluation 212

HTC G1 Motorola Milestone

Samsung Galaxy S I9000 Dell Streak

Pr
oc

es
se

d
Tr

ip
le

s
pe

r S
ec

on
d

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

11000

Pr
oc

es
se

d
Tr

ip
le

s
pe

r S
ec

on
d

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

5500

6000

6500

7000

7500

of Triples
10 20 50 100 200 500 1000 2000 5000 10000 20000 50000

of Triples
10 20 50 100 200 500 1000 2000 5000 10000 20000 50000100000

Adding Data to RDF Replicas using the Androjena Framework

add 1
add 10
add 100
add 500
add 1000

of added Triples

Figure 6.11: Performance of insertion operations on included devices using the Androjena
framework

Chapter 6. Evaluation 213

data sets, are slightly higher than on the Samsung Galaxy S I9000. In the range of the analyzed
insertion data set sizes, we can observe a slight but constant decrease in processed triples per
second ratios while the amount of triples to be inserted increases on the HTC G1 and Motorola
Milestone.

On the two upper-level devices, we could notice an increased variance among the average pro-
cessed per triples ratios, which was not that distinctive on the two other devices (see Figure 6.11).
However, derivations among the average insertion times can be attributed to different situations
and system processes running while the benchmarks were executed. Looking specifically at the
HTC G1 and the Motorola Milestone, we can observe that an increase of CPU speed from 350
MHz to 600 MHz (factor 1.72) resulted in a multiplicity of processed triples per second ratio
of the factor 3.81 using the Androjena framework. In this respect, the performance multiplies
by approximately 2 from the Motorola Milestone to the two upper-segment devices and by the
factor 8 from the HTC G1. In total, insertions of a few hundred triples can be performed in
a few milliseconds and without noticeable delay on all devices using the Androjena framework,
whereas for insertions of larger data sets containing 1,000 triples or more, an upper-level device
is necessary to process such insertions within the range of milliseconds.

6.3.3.2 µJena

Just as visible in other benchmark tests, the processing performance of the µJena framework in
particular for larger data replicas dramatically drops and this was likewise the case for insertion
operations. Additionally, we were not able to process data replicas with more than 5,000 triples
on any of the devices due to limited physical main memory and unthrifty management of available
system resources probably attributed to unoptimized memory-intensive internal data structures
implemented in µJena. Therefore, we have to limit data replica sizes to 2,000 triples on the
HTC G1, and 5,000 triples on the Samsung Galaxy S I9000 and the Dell Streak. Although the
Motorola Milestone incorporates 256 MB of main memory compared to 192 MB of the HTC
G1, it was not possible to scale our tests up to replica sizes of 2,000 triples and above; as a
consequence, the insertion benchmark could only be performed with a maximum of 1,000 triples
on the Motorola Milestone.

On the HTC G1, execution times grow disproportional for data replicas containing more than
100 triples on all inserted data set sizes (see Table A.13). Average processed triples per second
ratios over all data replicas dramatically decrease when models with more than a few hundred
triples are to be inserted: they drop from approximately 20 triples per second for data sets
containing 100 triples to approximately 6 triples per second for data sets containing 500 triples
on the HTC G1 (see Table A.13).

On the Motorola Milestone, the processed triples per second ratios were almost three times higher
on average for inserting data sets containing 1 or 10 triples over all data replicas compared to
the HTC G1, but assimilate for data sets containing 100, 500, and 1,000 triples. An unusual
phenomenon was observable on the Motorola Milestone when data sets containing 100 triples
or more are added to replicas containing more than 50 or 100 triples as processed triples per
second ratios grow from low single-digit range to low and middle tens range (see Table A.14).
This phenomenon was not observable on any other device where processed triples per second
ratios decrease with growing replica sizes for all inserted data sets (see Figure 6.12).

µJena performs significantly faster on the Samsung Galaxy S I9000 where the total amount
of time needed to add 1,000 triples to data replicas containing 5,000 triples ranges at factors

Chapter 6. Evaluation 214

HTC G1 Motorola Milestone

Samsung Galaxy S I9000 Dell Streak

Pr
oc

es
se

d
Tr

ip
le

s
pe

r S
ec

on
d

5

10

20

50

100

200

500

1000

2000

5000

10000

Pr
oc

es
se

d
Tr

ip
le

s
pe

r S
ec

on
d

0.2

0.5

1

2

5

10

20

50

100

200

500

1000

2000

of Triples
10 20 50 100 200 500 1000 2000 5000

of Triples
10 20 50 100 200 500 1000 2000 5000

Adding Data to RDF Replicas using the μJena Framework

add 1
add 10
add 100
add 500
add 1000

of added Triples

Figure 6.12: Performance of insertion operations on included devices using the µJena frame-
work

Chapter 6. Evaluation 215

of around 10 to 20 below the averagely measured times on the HTC G1 and the Motorola
Milestone (see Table A.15). For adding rather small data sets containing only a few triples,
the processed triples per second ratio grows almost by the factor 12 compared to the HTC G1
and factor 4 compared to the Motorola Milestone. This behavior was also observable on the
Dell Streak, although the average processed triples per second ratio was slightly lower compared
to the Samsung Galaxy S I9000 (see Table A.16). As obvious from these numbers, insertion
operations of the µJena framework benefit from available processing power rather than from
available physical main memory.

For models with less than 1,000 triples, insertions of data sets containing less than 100 triples
perform almost linear per triple size; this means that there is not a noticeable variance among
insertions of small RDF models on all data replicas. If the size of data replicas grows beyond
1,000 triples, insertion times significantly increase for data sets containing more than 100 triples.
For instance, if 500 triples are to be inserted in a replica containing 1,000 triples, the insertion
operation takes 7.2 seconds in average; if, in contrast, only 100 triples are to be inserted in
data replicas of the same size, the insertion operation takes approximately 421.5 milliseconds in
average on the Samsung Galaxy S I9000. If the number of triples to be inserted doubles from
500 to 1,000, insertion times increase by the factor 4 to 6 in average on all devices.

In general, small data sets can be added to data replicas very fast, although the total amount of
time needed to execute an insertion operation increases disproportional with growing data replica
sizes. However, insertion times for adding triples to large data sets are balanced and almost
constant, but the overall time needed to perform the insertion operation exceeds a tolerable
maximum from a usability perspective and provides results that are unacceptable for real-world
replication scenarios (cf. Table A.13 - A.16 and Figure 6.14 - 6.17).

6.3.3.3 Mobile RDF

On the HTC G1 and the Motorola Milestone, we scaled our insertion tests up to data replicas
containing 10,000 triples; on the Samsung Galaxy S I9000 and the Dell Streak, we were able to
expand data replica sizes to 20,000 triples due to 512 MB main memory compared to 192 MB
and 256 MB built into the HTC G1 and the Motorola Milestone.

On the HTC G1 device, the Mobile RDF framework was capable of performing insertion oper-
ations applied to data replicas below 10,000 triples in reasonable time (triples per second ratios
range between 400 and 1,100 on average – cf. Table A.17); when triples are added to replicas
that contain 10,000 triples or more, the performance significantly drops from 981.08 triples per
second in average to 1.82 triples per second for inserting 1 triple (see Figure 6.13 and 6.14).
Additionally, the same effect was visible for inserting 10 triples into data replicas containing
10,000 triples where processing performance declines from 911.35 triples per second in average
to 13.00 triples per second (see graph for adding 10 triples in Figure 6.14). Interestingly, the
processed triples per second performance increased with growing data sets sizes for data replicas
that contain 10,000 triples (see graphs for adding 100, 500, and 1,000 triples in Figure 6.14).
However, this behavior was observable on the HTC G1 and—although less distinctive—on the
Samsung Galaxy S I9000 only, although tests were performed with replica sizes of 20,000 triples
on the Samsung Galaxy.

On the Motorola Milestone, the insertion performance was approximately 4 times higher com-
pared to the HTC G1 and ranges between 3,866.67 triples per second for inserting 1 triple
to a data replica containing 20,000 triples and 2,121.31 triples per second for inserting 1,000

Chapter 6. Evaluation 216

HTC G1 Motorola Milestone

Samsung Galaxy S I9000 Dell Streak

Pr
oc

es
se

d
Tr

ip
le

s
pe

r S
ec

on
d

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

20000

Pr
oc

es
se

d
Tr

ip
le

s
pe

r S
ec

on
d

1

2

5

10

20

50

100

200

500

1000

2000

5000

10000

20000

of Triples
10 20 50 100 200 500 1000 2000 5000 10000 20000

of Triples
10 20 50 100 200 500 1000 2000 5000 10000 20000

Adding Data to RDF Replicas using the Mobile RDF Framework

add 1
add 10
add 100
add 500
add 1000

of added Triples

Figure 6.13: Performance of insertion operations on included devices using the Mobile RDF
framework

Chapter 6. Evaluation 217

triples to a data replica of the same size (see Table A.18). The average processed triples per
second ratios of the Samsung Galaxy S I9000 and the Dell Streak over identical data replica
and RDF model sizes range between 8,333.33 triples/sec. and 4,097.04 triples/sec. respectively
6,948.82 triples/sec. and 3,614.39 triples/sec. (see Table A.19 and A.20).

However, all devices showed a decrease in processed triples per second performance with growing
data set sizes (cf. Figure 6.13). Insertion performance between the smallest data set containing
1 triple and the largest data set containing 1,000 triples differs by the factor 1.59 on the HTC
G1, by the factor 1.82 on the Motorola Milestone, by the factor 2.03 on the Samsung Galaxy S
I9000, and by the factor 1.92 on the Dell Streak. As obvious from these numbers, the variance
in average insertion performance is more distinctive on devices with a higher CPU clock speed.
In contrast to the two less powerful device where the highest insertion performance in terms of
processed triples per second ratios was achieved for data sets containing 1 triple, the highest
insertion performance on the two upper-market segment devices was measured when data sets
containing around 10 or 100 triples are inserted into data replicas (see Figure 6.13).

In general, the processed triples per second ratio ranges around 726,26 triples per second on the
HTC G1 (cf. Table A.17), 2,968.64 triples per second on the Motorola Milestone (cf. Table A.18),
6,757.34 triples per second on the Samsung Galaxy S I9000 (cf. Table A.19), and 5,631.39 triples
per second on the Dell Streak (cf. Table A.20) in average over all data sets and all data replica
sizes. With smaller data sets containing less than 500 triples, insertion times almost scale linearly
with the amount of triples to be inserted.

As obvious from these numbers, the insertion performance of the Mobile RDF framework scales
relatively linear with available processor performance where the best performance results could be
measured on the Samsung Galaxy S I9000: the processing performance of insertion operations
over all data replicas and all data sets was 1.20 times higher compared to the Dell Streak.
Comparing the HTC G1 and the Motorola Milestone, insertion operations are performed by the
factor 4.08 faster on the Motorola Milestone than on the HTC G1 in average. On the Samsung
Galaxy S I9000 and the Dell Streak, the performance of insertion operations roughly doubles by
the factor 2.27 on the Samsung Galaxy and by the factor 1.89 on the Dell Streak compared to
the Motorola Milestone.

6.3.3.4 Summary

In general, the insertion performance of all frameworks scales reasonably well with available
processing power where the highest insertion performance in terms of processed triples per second
ratios over all data replicas, devices, and data sets has been measured using the Mobile RDF
framework. A very important aspect regarding the modification of RDF data replicas is that the
processing time per inserted data set size remains independent from the size of the data replicas,
i.e., the runtime behavior of insertion operations is not influenced by the size of the in-memory
RDF graph to which a distinct number of triples are added. This requirement was fulfilled
solely by the Androjena and the Mobile RDF framework: processing time per inserted data set
remains relatively stable across the different data replicas. Using the µJena framework, we could
notice a substantial decrease in insertion performance on both dimensions – with increasing
data set sizes as well as with increasing data replica sizes, which renders the µJena framework
inappropriate for extensive insertion operations. In summary, insertions of data sets containing
several hundreds or thousand triples can only be performed on newer and more powerful devices
using the Androjena or Mobile RDF framework in acceptable time; on slower devices, insertion
size should not exceed a maximum of 500 triples.

Chapter 6. Evaluation 218

Adding 1000 Triples

Adding 500 Triples

Adding 100 Triples

Adding 10 Triples

Adding 1 Triple

Pr
oc

es
se

d
Tr

ip
le

s
pe

r S
ec

on
d

0

200

400

600

800

1000

1200

Pr
oc

es
se

d
Tr

ip
le

s
pe

r S
ec

on
d

0

200

400

600

800

1000

Pr
oc

es
se

d
Tr

ip
le

s
pe

r S
ec

on
d

0

200

400

600

800

1000

Pr
oc

es
se

d
Tr

ip
le

s
pe

r S
ec

on
d

0

100

200

300

400

500

600

700

800

Pr
oc

es
se

d
Tr

ip
le

s
pe

r S
ec

on
d

0

100

200

300

400

500

600

700

of Triples
10 20 50 100 200 500 1000 2000 5000 10000

Adding Data to RDF Replicas on the HTC G1

Androjena
MicroJena
Mobile RDF

Figure 6.14: Performance per framework for adding data sets of specific size to RDF data
replicas on the HTC G1

Chapter 6. Evaluation 219

Adding 1 Triple

Adding 10 Triples

Adding 100 Triples

Adding 500 Triples

Adding 1000 Triples

Pr
oc

es
se

d
Tr

ip
le

s
pe

r S
ec

on
d

0

2000

4000

6000

8000

10000

Pr
oc

es
se

d
Tr

ip
le

s
pe

r S
ec

on
d

0

500

1000

1500

2000

2500

3000

3500

4000

4500

Pr
oc

es
se

d
Tr

ip
le

s
pe

r S
ec

on
d

0

500

1000

1500

2000

2500

3000

3500

4000

Pr
oc

es
se

d
Tr

ip
le

s
pe

r S
ec

on
d

0

500

1000

1500

2000

2500

3000

3500

Pr
oc

es
se

d
Tr

ip
le

s
pe

r S
ec

on
d

0

500

1000

1500

2000

2500

3000

of Triples
10 20 50 100 200 500 1000 2000 5000 10000 20000

Adding Data to RDF Replicas - Motorola Milestone

Androjena
MicroJena
Mobile RDF

Figure 6.15: Performance per framework for adding data sets of specific size to RDF data
replicas on the Motorola Milestone

Chapter 6. Evaluation 220

Adding 1 Triple

Adding 10 Triples

Adding 100 Triples

Adding 500 Triples

Adding 1000 Triples

Pr
oc

es
se

d
Tr

ip
le

s
pe

r S
ec

on
d

0

2000

4000

6000

8000

10000

Pr
oc

es
se

d
Tr

ip
le

s
pe

r S
ec

on
d

0

2000

4000

6000

8000

10000

12000

14000

Pr
oc

es
se

d
Tr

ip
le

s
pe

r S
ec

on
d

0

2000

4000

6000

8000

10000

12000

Pr
oc

es
se

d
Tr

ip
le

s
pe

r S
ec

on
d

0

1000

2000

3000

4000

5000

6000

7000

8000

Pr
oc

es
se

d
Tr

ip
le

s
pe

r S
ec

on
d

0

1000

2000

3000

4000

5000

6000

of Triples
10 20 50 100 200 500 1000 2000 5000 10000 20000 50000

Adding Data to RDF Replicas - Samsung Galaxy S I9000

Androjena
MicroJena
Mobile RDF

Figure 6.16: Performance per framework for adding data sets of specific size to RDF data
replicas on the Samsung Galaxy S I9000

Chapter 6. Evaluation 221

Adding 1 Triple

Adding 10 Triples

Adding 100 Triples

Adding 500 Triples

Adding 1000 Triples

Pr
oc

es
se

d
Tr

ip
le

s
pe

r S
ec

on
d

0

2000

4000

6000

8000

10000

Pr
oc

es
se

d
Tr

ip
le

s
pe

r S
ec

on
d

0

2000

4000

6000

8000

10000

12000

14000

Pr
oc

es
se

d
Tr

ip
le

s
pe

r S
ec

on
d

0

2000

4000

6000

8000

10000

12000

14000

Pr
oc

es
se

d
Tr

ip
le

s
pe

r S
ec

on
d

0

2000

4000

6000

8000

10000

12000

Pr
oc

es
se

d
Tr

ip
le

s
pe

r S
ec

on
d

0

1000

2000

3000

4000

5000

6000

of Triples
10 20 50 100 200 500 1000 2000 5000 10000 20000 50000 100000

Adding Data to RDF Replicas - Dell Streak

Androjena
MicroJena
Mobile RDF

Figure 6.17: Performance per framework for adding data sets of specific size to RDF data
replicas on the Dell Streak

Chapter 6. Evaluation 222

6.3.4 Removing Data from RDF Data Replicas

In the course of the removal benchmark, we ascertained the removal performance of the involved
RDF frameworks. Hence, for each combination of framework and device, we measured the
total amount of time needed to remove a distinct number of triples added during the insertion
benchmarks from RDF data replicas of varying sizes. Before data is added to and removed from
a data replica, it is parsed and transformed into a workable in-memory RDF model to which
insertion and removal operations are applied. We used the identical data set sizes as presented
in the insertion benchmark for the removal benchmark. Furthermore, a distinction according to
different serialization formats was not regarded since all measured operations were performed
to in-memory RDF models exclusively wherefore concrete serialization formats are negligible.
Algorithm 14 provides an overview of the main steps performed in the course of the removal
benchmark23.

Algorithm 14: Removing inserted triples from an in-memory RDF graph
Set Datasets ← �d1, . . . , d5� ;
Set d1 ← 1 triple ;
Set d2 ← 10 triples ;
Set d3 ← 100 triples ;
Set d4 ← 500 triples ;
Set d5 ← 1000 triples ;
Set Replicas ← CopyDataChunksToInternalMemory(�r1, . . . , rm�) ;
foreach replica ri ∈ Replicas do

foreach dataset dj ∈ Datasets do
while current run < number of iterations + 1 do

Set model ← ParseDataReplica(LoadDataReplica(ri)) ;
InsertDataset(dj → model) ;
Set t0 ← System.getCurrentTimeMillis() ;
RemoveDataset(model \ dj) ;
Set t1 ← System.getCurrentTimeMillis() ;
AssertTrue((model.size()t0 == model.size()t1) AND (model.size() == ri)) ;
WriteResultsToLogfile(t1 − t0, model.countTriples(), dj) ;
RemoveReplicaFromMainMemory(ri) ;
CleanUp → InitiateGarbageCollector() ;

end
end

end
RemoveReplicasFromInternalMemory(�r1, . . . , rm�) ;

The benchmark results compartmentalized by framework, device, and data set size for the An-
drojena and µJena framework are depicted in Figure 6.18 and 6.19 respectively. The plotted
graphs represent the removal performance measured in processed triples per second ratios for
removing a particular number of triples from RDF data replicas of varying sizes. The size of
the data replicas is marked on the x-axis; the processed triples per second ratios are displayed
logarithmically along the y-axis. Since the Mobile RDF API does not provide any removal imple-
mentations for RDF graphs in its current version, the removal benchmark has only be conducted
for the Androjena and µJena frameworks.

23For readability issues we omitted initialization as well as logging operations.

Chapter 6. Evaluation 223

6.3.4.1 Androjena

The removal benchmark using the Androjena framework had been conducted with data replicas
containing 10,000 triples on the HTC G1 and 20,000 triples on the other devices. In contrast to
the insertion benchmark, removal operations with larger replicas produced failures during some
test runs or resulted in "out of memory" exceptions wherefore we include and discuss the results
that had been acquired for data replicas containing a maximum of 20,000 triples.

Removal times for 1 triple range between 1.0 and 1.3 milliseconds on the HTC G1 (see Ta-
ble A.21), and 0.1 to 0.9 milliseconds on the other, more powerful devices over all data replica
sizes (see Table A.22, A.23, and A.24). Hence, the runtimes of the removal operation in general
remain relatively stable over all data replicas for a particular data set size – even on very large
data replicas. Just as visible on the insertion benchmark (cf. Section 6.3.3), removal operations
of the Androjena framework are not dependent on or influenced by the size of a data replica
and are executed with nearly constant processed triples per second ratios. With an increased
data set size of 10, 100, and 500 triples, we can observe that removal operations also increase
linearly on all devices and for all data replica sizes. As a consequence, the amount of triples to
be removed from a data replica scales almost linearly with the total amount of time needed to
complete the removal operation.

However, in the range of the analyzed data set sizes, a slight but continuous decrease of processed
triples per second ratios with growing data replica sizes was observable on all devices: processing
performance constantly drops when the size of the data sets to be removed from a data replica
grows. For instance, on the HTC G1, the average processed triples per second ratio drops from
859.91 triples/sec. for removing 1 triple to 573.57 triples/sec. for removing 1,000 triples; similarly,
the average removal performance drops from 7,878.79 triples/sec. to 5,368.03 triples/sec. on the
Samsung Galaxy S I9000 for identical data set sizes (see Table A.21 and A.23).

The average processed triples per second ratios across all data sets and data replicas account
to 716.22 triples/sec. on the HTC G1, 2,457.82 triples/sec. on the Motorola Milestone, 6,935.45
triples/sec. on the Samsung Galaxy S I9000, and 2,041.81 triples/sec. on the Dell Streak. This
numbers indicate that the Samsung Galaxy S I9000 and the Dell Streak—although both situated
at the upper-level market segment—differ by the factor 3.40 in removal performance. Even the
cumulated average removal performance ratios of the Motorola Milestone as a middle-segment
device were slightly higher than that measured on the Dell Streak.

Looking specifically at the HTC G1 and the Motorola Milestone, we can observe that an increase
of CPU speed from 350 MHz to 600 MHz (factor 1.72) resulted in a multiplicity of processed
triples per second ratio of the factor 3.43 using the Androjena framework. From the Motorola
Milestone to the Samsung Galaxy S I9000 (CPU clock speed factor 1.67), the removal per-
formance multiplies by 2.82 on average. Comparing the Samsung Galaxy to the HTC G1, a
multiplicity by the factor 9.68 in removal performance was observable.

However, on the Samsung Galaxy S I9000 we could observe that Androjena yields the best
processed triples per second performance when removing small data sets containing only a few
ten to hundred triples. On the HTC G1 as low-segment device, the highest triples per second
performance can be observed when removing very small models of 1 or 10 triples, whereas on the
middle- and two upper-segment devices, the highest triple per second performance was observable

Chapter 6. Evaluation 224

HTC G1 Motorola Milestone

Samsung Galaxy S I9000 Dell Streak

Pr
oc

es
se

d
Tr

ip
le

s
pe

r S
ec

on
d

600

700

800

900

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

Pr
oc

es
se

d
Tr

ip
le

s
pe

r S
ec

on
d

200

300

400

500

600

700

800

900

1000

2000

3000

4000

of Triples
10 20 50 100 200 500 1000 2000 5000 10000 20000

of Triples
10 20 50 100 200 500 1000 2000 5000 10000 20000

Removing Data from RDF Replicas using the Androjena Framework

remove 1
remove 10
remove 100
remove 500
remove 1000

of Triples

Figure 6.18: Performance of removal operations using the Androjena framework

Chapter 6. Evaluation 225

when data sets of 100 triples were removed (see Figure 6.18). For instance, removing 100 triples
yields a processed triples per second ratio of 7,652.63 in average on all data replicas24.

A decrease in triples per second performance when deleting larger data sets containing 1,000
triples from large data replicas containing 20,000 or 50,000 triples—as it was the case on the
insertion benchmarks—was not observable during the removal benchmarks for the Androjena
framework.

In total, removal operations using the Androjena framework yield best average performance
results on the Samsung Galaxy S I9000 where the average processed triples per second ratios
across all data replicas and removed data sets in total are substantially higher than on the
Motorola Milestone and the Dell Streak. The increased variance on upper-level devices, which
was visible during the insertion benchmark for the Androjena framework was not observable in
the removal benchmark.

6.3.4.2 µJena

Just as visible in the insertion benchmarks, the processing performance of the µJena framework
in particular for larger data replicas dramatically drops and this was likewise the case for removal
operations. Furthermore, we were not able to process data replicas with more than 2,000 triples
on any of the devices due to the reasons outlined in Section 6.3.3. Therefore, we had to limit
data replica sizes to 2,000 on the HTC G1, the Samsung Galaxy S I9000, and the Dell Streak.
Despite the larger main memory of the Motorola Milestone compared to the HTC G1, it was
not possible to scale our tests up to replica sizes of 2,000 triples and above; as a consequence,
benchmarks had only be performed with a maximum of 1,000 triples.

On the HTC G1 as well as on all other devices, removal times grow disproportional along two
dimensions: either by increasing the data replicas’ sizes or by increasing the amounts of triples to
be removed, a rapid growth in total amount of time needed to finish the removal operation was
identifiable (see Figure 6.19). For instance, removing 1 triple from a data replica containing 10
triples on an HTC G1 yields an execution time of 2.4 milliseconds on average; removing 1 triple
from a data replica containing 2,000 triples requires 188.4 milliseconds on average to finish (cf.
Table A.25). This phenomenon was observable on all devices (e.g., on the Dell Streak, removal
times grow from 0.4 milliseconds for removing 1 triple from a data replica containing 10 triples
to 26.1 milliseconds for removing the same triple from a data replica containing 2,000 triples).

In this respect, processed triples per second ratios dramatically decrease when data sets with
hundred or more triples are removed: processed triples per second ratios drop from 119.99
triples/sec. for removing 10 triples to 26.96 triples/sec. for removing 100 triples on average on the
HTC G1; on the Motorola Milestone, removal performance ratios drop from 378.80 triples/sec.
to 75.79 triples/sec. (see Table A.26); for the Samsung Galaxy S I9000 and the Dell Streak these
ratios decrease from 1,212.37 triples/sec. to 339.93 triples/sec. and from 1,495.77 triples/sec.
to 377.25 triples/sec. respectively (cf. Table A.27 and A.28). A similar performance drop was
observable for removals of 500 triples where the average processed triples per second performance
declines approximately by the factor 4 and above on all four devices (see Figure 6.19). However,
if the number of triples to be inserted doubles from 500 to 1,000, removal times increase by the
factor 2 in average on all devices.

24A slightly higher value was measured for removals of 1 triple, but due to limited precision of Java-based
measurement methods for micro benchmarks (cf. [Goe04, Goe05]) we leave the average processing performance
acquired on the Samsung Galaxy S I9000 for removing 1 triple unconsidered.

Chapter 6. Evaluation 226

HTC G1 Motorola Milestone

Samsung Galaxy S I9000 Dell Streak

Pr
oc

es
se

d
Tr

ip
le

s
pe

r S
ec

on
d

10

20

50

100

200

500

1000

2000

5000

10000

20000

Pr
oc

es
se

d
Tr

ip
le

s
pe

r S
ec

on
d

1

2

5

10

20

50

100

200

500

1000

2000

of Triples
10 20 50 100 200 500 1000 2000

of Triples
10 20 50 100 200 500 1000 2000

Removing Data from RDF Replicas using the μJena Framework

remove 1
remove 10
remove 100
remove 500
remove 1000

of Triples

Figure 6.19: Performance of removal operations using the µJena framework

Chapter 6. Evaluation 227

The average processed triples per second ratios across all data sets and data replicas account
to 72.94 triples/sec. on the HTC G1, 215.24 triples/sec. on the Motorola Milestone, 943.18
triples/sec. on the Samsung Galaxy S I900, and 672.48 triples/sec. on the Dell Streak. These
numbers indicate that the Samsung Galaxy S I9000 and the Dell Streak—although both situated
at the upper-level market segment—differ by the factor 1.40 in removal performance using the
µJena framework. Looking specifically at the HTC G1 and the Motorola Milestone, we can
observe that an increase in CPU speed from 350 MHz to 600 MHz (factor 1.72) resulted in an
multiplicity of processed triples per second ratio of the factor 2.95 using the µJena framework.
From the Motorola Milestone to the Samsung Galaxy S I9000 (CPU clock speed factor 1.67),
the average removal performance across all data replicas multiplies by 4.38. Comparing the
Samsung Galaxy to the HTC G1, a multiplicity by the factor 12.93 in removal performance was
observable. Although µJena yields the highest total removal performance on average over all
data replicas and data sets on the Samsung Galaxy S I9000, the processed triples per second
ratios on the Dell Streak are slightly higher for the removal of data sets containing 10, 100, 500,
and 1,000 triples (see Table A.28)

In general, the variance in processed triples per second ratios was higher on the upper-level
devices whereas the Motorola Milestone showed the slightest decrease in removal performance of
all devices (see Figure 6.19). In summary, small amounts of triples can be removed from RDF
data replicas in reasonable short time using the µJena framework, although the total amount of
time needed to execute a removal operation increases disproportional with growing data replica
sizes. Albeit processing times for removing triples from large data sets are balanced and nearly
constant, the time needed to perform the removal operation exceeds the tolerable maximum
from a usability perspective and provide results that are unacceptable for real-world replication
scenarios.

6.3.4.3 Mobile RDF

The performance of removal operations could not be measured on the Mobile RDF framework
since removal or deletion operations are not implemented in the latest version of the Mobile RDF
API25.

6.3.4.4 Summary

Only two out of three RDF frameworks offer dedicated removal operations in their APIs. The
removal performance per data set using the Androjena framework remains relatively stable across
all data replicas and scales relatively linear with the number of triples being removed. Using the
µJena framework, removal performance significantly decreases for larger data sets and larger data
replicas likewise, which renders µJena inappropriate for extensive removal operations. Although
Androjena yields highest average removal performance on all devices, it also benefits considerably
from available processor power. In total, removal of a few hundred triples can be performed in
a few milliseconds and without noticeable delay on all devices using the Androjena framework,
whereas for the removal of larger data sets containing 1,000 triples or above, an upper-level device
is necessary to process such operations within the range of milliseconds. The slow performance
of the µJena framework renders its deployment for real-world replication scenarios practically
ineligible.

25For this evaluation, we used version 0.3 of Mobile RDF (see Section 3.3.2).

Chapter 6. Evaluation 228

6.3.5 Retrieving Elements from RDF Data Replicas

In the retrieval benchmark, we ascertained the runtime performance of the internal query op-
erations implemented in the frameworks’ APIs. For each combination of RDF framework and
device, we therefore measured the total amount of time needed to locate and retrieve a dis-
tinct triple in RDF data replicas of varying sizes, which have been parsed and transformed into
workable in-memory RDF models before a query operation was executed. Since all location and
retrieval operations are applied to in-memory RDF models and we analyzed only the execution
times of those operations, the different serialization formats are irrelevant wherefore benchmarks
are conducted with data replicas serialized in one specific format only.

Algorithm 15: Retrieving a specific triple from an in-memory RDF graph
Data: RDF Resource: subject, predicate, object
Result: Query result set: result

Set Replicas ← CopyDataChunksToInternalMemory(�r1, . . . , rm�) ;
foreach replica ri ∈ Replicas do

Set triple ← CreateTriple(subject, predicate, object) ;
while current run < number of iterations + 1 do

Set model ← ParseDataReplica(LoadDataReplica(ri)) ;
RemoveOneTripleFromDataReplica(model) ;
AddTripleToDataReplica(triple → model) ;
Set t0 ← System.getCurrentTimeMillis() ;
Set result ← InitiateQuery(model, triple) ;
AssertTrue(triple ∈ result AND |result| = 1) ;
Set t1 ← System.getCurrentTimeMillis() ;
WriteResultsToLogfile(t1 − t0, model.countTriples(), ...) ;
RemoveReplicaFromMainMemory(ri) ;
CleanUp → InitiateGarbageCollector() ;

end
end
RemoveDataChunksFromInternalMemory(�r1, . . . , rm�) ;

Algorithm 15 provides a conceptual overview of the main steps performed during the retrieval
benchmark. For each iteration of the benchmark and data replica, we first removed an arbitrary
triple from the data replica and inserted a specific triple that is used for the query operation.
Before the runtime as well as other relevant information related to a query operation are recorded
in the corresponding log file, a validation routine checks that the result set evaluates to true iff
it contains only the specified triple, otherwise an error is reported.

Since query operations are implemented (and designated) differently across frameworks, we
specifically considered only those query operations for the retrieval benchmark that expose a
similar method signature (the parameters a method takes) and deliver similar, i.e, comparable
result types26. Usually, triples that match the specified query parameters are returned in form of
a list-based data structure that can be traversed by an iterator. In addition, we did not consider
combined queries as these are not supported natively by any of the query methods implemented
in the frameworks’ APIs. Figure 6.20 and 6.21 provide three examples of the query methods’
signatures implemented in each framework as well as the data structures used by the query
methods to store matching triples.

26However, we do not distinguish whether a query operation returns the matching triples in form of a collection
or as a new RDF graph.

Chapter 6. Evaluation 229

1 Androjena:
2 ==========
3 Model result = ModelFactory.createDefaultModel();
4 Resource subject = model.createResource(
5 "http://dbpedia.org/resource/Abraham_Lincoln");
6 Property predicate = model.createProperty(
7 "http://dbpedia.org/ontology/birthPlace");
8 Resource object = model.createResource(
9 "http://dbpedia.org/resource/Kentucky");

10

11 SimpleSelector selector = new SimpleSelector(subject, predicate, object);
12 result = model.query(selector);
13

14 Microjena:
15 ==========
16 StmtIterator result = model.listStatements(subject, predicate, object);
17

18 while((Statement statement = result.nextStatement()) != null)){
19 //iterate through results
20 }

Figure 6.20: Example of the query method signatures and result sets implemented in the
Androjena and µJena frameworks

1 Mobile RDF:
2 ===========
3 Collection<Statement> matching_statements = new ArrayList<Statement>();
4

5 RDFGraph graph.queryStatement(
6 "http://dbpedia.org/resource/Abraham_Lincoln",
7 "http://dbpedia.org/ontology/birthPlace",
8 "http://dbpedia.org/resource/Kentucky",
9 matching_statements);

Figure 6.21: Example of the query method signature and result set implemented in the
Mobile RDF API

The query methods of Androjena and µJena exhibit identical method signatures, i.e., they both
take three parameters referring to the corresponding RDF elements as query attributes. For
readability reasons, we included the declarations of subject, predicate, and object only on the
Androjena excerpt and omitted it for µJena as they are identical. While Androjena stores the
matching triples in a new model instance, µJena returns them wrapped in a statement iterator
(StmtIterator) instance.

In contrast to the other methods, the query method of the Mobile RDF API does not imple-
ment a dedicated type system for RDF elements; instead it takes the elements to be searched
for as plain strings (java.lang.String) and stores the matching triples in form of statements
(de.hedenus.rdf.BasicStatement) in a Collection-based data structure passed as fourth pa-
rameter to the query-method.

The results of the retrieval benchmark compartmentalized by framework and device are depicted
in Figure 6.22, 6.23, and 6.24. The plotted graphs represent the total amount of time needed to
find a particular triple within data replicas of specific sizes, marked on the x-axis. The y-axis
shows the total amount of time in milliseconds the query method takes to find and retrieve a
particular triple depending on the size of a data replica.

Chapter 6. Evaluation 230

Ti
m

e
in

 M
ill

is
ec

on
ds

0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

of Triples
10 20 50 100 200 500 1000 2000 5000 10000 20000 50000

Retrieval Performance of the Androjena Framework

HTC G1
Motorola Milestone
Samsung Galaxy S I9000
Dell Streak

Figure 6.22: Performance of retrieval operations using the Androjena framework

6.3.5.1 Androjena

On the Motorola Milestone, the Samsung Galaxy S I9000, and the Dell Streak, query operations
had been analyzed for data replicas containing a maximum of 50,000 triples; on the HTC G1,
we had to limit data replica sizes to 10,000 triples due to limited main memory capacity (cf.
Table 6.1).

The execution time of query operations remains relatively stable over all data replicas and on
all devices—also for very large data replicas containing several thousand triples—and query
operations are processed with nearly constant runtimes. As a result, we could observe that
the execution time of query operations is independent from the size of data replicas, i.e., there
is no linear dependency between the amount of triples held in an in-memory RDF model and
the execution time of query operations applied to this in-memory graph using the Androjena
framework (see Figure 6.22). Query times for 1 triple range between 3.1 and 3.9 milliseconds
on the HTC G1, 0.5 to 1.2 milliseconds on the Motorola Milestone and the Samsung Galaxy S
I9000, and 0.6 to 2.8 milliseconds on the Dell Streak (see Table A.29).

The average query times across all data replicas for locating and retrieving one specific triple
account to 3.49 milliseconds on the HTC G1, 0.99 milliseconds on the Motorola Milestone, 0.69
milliseconds on the Samsung Galaxy S I9000, and 1.17 milliseconds on the Dell Streak. These
numbers indicate that the Samsung Galaxy S I9000 and the Dell Streak—although both situated
at the upper-level market segment—differ by the factor 1.68 in query performance. Even the
cumulated query performance of the Motorola Milestone as a middle-segment device is slightly
faster than that of the Dell Streak (factor 1.17). This is remarkable for a device situated in
the upper-level segment since its execution times are approximately 20% slower compared to
the execution times of a device located at the middle-market segment. We could not find any

Chapter 6. Evaluation 231

logical reason for this behavior although we believe that for such elementary operations, which
are executed in the range of very low milliseconds, there is a higher variance in execution times
on more powerful devices probably attributed to an optimized modus operandi of the internal
thread scheduler. This behavior is likely to normalize for expanded search queries that require
more CPU cycles to complete. On the Dell Streak, however, we could also notice an increased
variance among the query execution times, which was not that distinctive on the other devices.
However, comparing the HTC G1 to the Motorola Milestone and the Samsung Galaxy S I9000,
query operations finish by the factor 2.93 faster on the Motorola Milestone compared to the
HTC G1 and by the factor 4.20 faster on the Samsung Galaxy S I9000.

In total, the best average query performance results have been measured on the Samsung Galaxy
S I9000 where the average execution times over all data replicas are approximately 30% lower
than on the Motorola Milestone (factor 1.43). In summary, query operations over all data
replicas can be executed within the range of low milliseconds on all devices using the Androjena
framework, irrespectively of concrete data replica sizes.

6.3.5.2 µJena

Using the µJena framework, it was not possible to query data replicas with 10,000 triples or
above on any device; therefore we scaled query performance tests up to 1,000 triples on the
Motorola Milestone, 2,000 triples on the HTC G1, and 5,000 triples on the two upper-level
devices. As visible in the other benchmarks, the µJena framework was not capable of processing
RDF data replicas with more than 1,000 triples on the Motorola Milestone despite its larger main
memory compared to the HTC G1 (see Table 6.1); in addition, no memory extensive processes
or applications were running in parallel.

Unlike the Androjena framework, execution times of query operations slightly increase with
growing data replicas; on the Dell Streak, for instance, average query times grow from 19.1
milliseconds for querying a replica with 1,000 triples to 46.7 milliseconds for querying a replica
containing 2,000 triples; on the HTC G1, query times grow from 203.40 milliseconds to 391.20
milliseconds for identical replica sizes. In total, query times grow by factor 2.62 between the
smallest data replica containing 10 triples and the largest data replica containing 2,000 triples on
the HTC G1; on the other devices, query times grow by factor 1.21 on the Motorola Milestone,
by factor 1.63 on the Samsung Galaxy S I9000, and by factor 3.23 on the Dell Streak (see
Table A.29).

As a result and unlike to the Androjena framework, the execution time of query operations is
not independent from the size of data replicas (see Figure 6.23). In consequence, there exists a
perceptible dependency between the amount of triples contained in an in-memory representation
of an RDF data replica and the execution times of query operations on this in-memory model
using the µJena framework.

Query times for 1 triple depending on the data replica size range between 149.6 and 391.2 mil-
liseconds on the HTC G1, 267.1 and 5,125.1 milliseconds on the Motorola Milestone27, 12.3 and
21.9 milliseconds on the Samsung Galaxy S I9000, and 16.40 and 53.0 milliseconds on the Dell
Streak (cf. Table A.29). The average query times across all data replicas for locating and re-
trieving one specific triple account to 202.23 milliseconds on the HTC G1, 1,473.56 milliseconds
on the Motorola Milestone, 14.15 milliseconds on the Samsung Galaxy S I9000, and 24.60 mil-
liseconds on the Dell Streak. These numbers indicate that the µJena framework performs query

27The unusually high upper-bound value measured on the Motorola Milestone are rather untypical for middle-
market segment devices in particular in relation to the results acquired on the other devices.

Chapter 6. Evaluation 232

Ti
m

e
in

 M
ill

is
ec

on
ds

10

20

50

100

200

500

1000

2000

5000

10000

of Triples
10 20 50 100 200 500 1000 2000 5000

Retrieval Performance of the μJena Framework

HTC G1
Motorola Milestone
Samsung Galaxy S I9000
Dell Streak

Figure 6.23: Performance of retrieval operations using the µJena framework

operations almost 1.70 faster in average on the Samsung Galaxy S I9000 compared to the Dell
Streak—although both devices are situated at the upper-level market segment.

On the Dell Streak again, we could notice an increased variance among query execution times,
which was not that distinctive on the two other devices28. However, comparing the HTC G1 to
the Samsung Galaxy S I9000 and the Dell Streak, query operations finish by the factor 13.94
faster on the Samsung Galaxy compared to the HTC G1 and by the factor 8.22 faster on the
Dell Streak.

In total, the best results in terms of query performance were measured on the Samsung Galaxy S
I9000 where the average execution times over all data replicas are approximately 41.2% lower than
on the Dell Streak. In summary, query operations on data replicas using the µJena framework can
be executed within the range of low milliseconds only on devices from the upper-level segment.

6.3.5.3 Mobile RDF

The size of data replicas on the Mobile RDF framework could be scaled up to 10,000 triples on
the HTC G1, and 20,000 triples on the other devices; although the two upper-segment devices
incorporate 512 MB of main memory compared to the Motorola Milestone, which offers 256 MB
of main memory, data replicas with more than 20,000 triples could not be processed despite their
larger physical main memory.

28We excluded the results obtained on the Motorola Milestone from this calculation since its execution times for
data replicas containing 50 and 200 triples in particular show untypically high values that could not be reproduced
in subsequent benchmarks.

Chapter 6. Evaluation 233

Ti
m

e
in

 M
ill

is
ec

on
ds

0

10

20

30

40

50

60

70

80

90

100

110

120

of Triples
10 20 50 100 200 500 1000 2000 5000 10000 20000

Retrieval Performance of the Mobile RDF Framework

HTC G1
Motorola Milestone
Samsung Galaxy S I9000
Dell Streak

Figure 6.24: Performance of retrieval operations using the Mobile RDF framework

Just as visible on the µJena framework, the execution times of query operations using the Mobile
RDF framework highly correlate with the size of data replicas; we could notice a dramatic
increase in query execution times when the size of data replicas grows (see Figure 6.24). For
instance, on the Motorola Milestone, average query times grow from 0.2 milliseconds for querying
a replica with 10 triples to 92.0 milliseconds for querying a replica containing 20,000 triples; on
the Samsung Galaxy S I9000, query times grow from 0.3 milliseconds to 40.7 milliseconds for
identical replica sizes (see Table A.29).

Considering the total growth of the average execution times from the smallest to the largest
data replica that Mobile RDF is capable to process on a device, we could notice an increase
in query execution times by the factor 217.0 on the HTC G1. On the other devices, query
execution times grow by the factor 460.0 on the Motorola Milestone, 135.67 on the Samsung
Galaxy S I9000, and 75.0 on the Dell Streak. More specifically, query execution times increase
from 0.5 milliseconds to 108.5 milliseconds on the HTC G1, 0.2 milliseconds to 92.0 milliseconds
on the Motorola Milestone, 0.3 milliseconds to 40.7 milliseconds on the Samsung Galaxy S I9000,
and 0.6 milliseconds to 45.0 milliseconds on the Dell Streak (see Table A.29).

The average query times across all data replicas for locating and retrieving one specific triple
account to 25.75 milliseconds on the HTC G1, 22.09 milliseconds on the Motorola Milestone,
7.19 milliseconds on the Samsung Galaxy S I9000, and 7.79 milliseconds on the Dell Streak.
These numbers indicate that the Mobile RDF framework performs query operations most rapidly
on the Samsung Galaxy S I9000; the average query performance across all data replicas was
approximately 1.08 times faster than on the Dell Streak. Comparing the query performance of
Mobile RDF on the Samsung Galaxy S I9000 to the HTC G1 and the Motorola Milestone, query
operations finish by the factor 3.58 faster on the Samsung Galaxy compared to the HTC G1 and
by the factor 3.07 faster compared to the Motorola Milestone.

Chapter 6. Evaluation 234

As a consequence and unlike to the Androjena framework, the execution time of query operations
is also not independent from the size of data replicas using the Mobile RDF framework, where
an almost exponentially growing dependency between the amount of triples contained in an
in-memory model and the execution time of query operations on those in-memory models was
observable. However, on the two less powerful devices, the growth in execution times was more
distinctive than on the two upper-level devices (see Figure 6.24). Furthermore, we could identify
a greater variance in query times on the two less powerful devices, which was not that distinctive
on the two more powerful devices. In this respect, average query execution times grow stronger
for larger data replicas on less powerful devices.

In total, the best average query performance results have been measured on the Samsung Galaxy
S I9000. In summary, query operations on data replicas using the Mobile RDF framework
can be executed within the range of milliseconds on all devices, where upper-segment devices
are approximately 3.5 times faster than low- and middle-segment devices. In general, query
operations can be executed in reasonable time on all devices, although query times increases
almost exponentially with growing data replica sizes.

6.3.5.4 Summary

In summary, the best retrieval performance was measurable for the Androjena framework where
queries are executed in the range of low single-digit milliseconds over all data replicas. Although
the retrieval performance of µJena and Mobile RDF lies in the range of low milliseconds too,
their query runtimes start to increase when larger data replicas are being processed. The highest
growth was measurable for the Mobile RDF framework where query times increase almost expo-
nentially, particularly on devices from the entry- and middle-market segment. In consequence,
only Androjena allows to query data replicas in constant time depending on the size of the result
set. In general, all frameworks benefit from additional processing power and manage to complete
simple retrieval operations in acceptable time.

6.3.6 Constructing In-memory RDF Graphs

Although context-relevant information is usually not created but replicated to the mobile device
from external sources via wireless network connections, we additionally analyzed the performance
of constructing in-memory RDF models as such an analysis allows us to obtain insights related
to the general RDF processing performance of a particular combination of framework and mobile
device29. We therefore measured the total amount of time needed to create workable in-memory
RDF graphs where we have scaled the size of those RDF graphs towards the limits imposed by
the physical main memory installed in a device, i.e., the maximum amount of triples that can
be processed without provoking "out of memory" exceptions. Those numbers are relevant for
tasks related to the creation of RDF-based context models and their aggregation into a global
context configuration that serves as a basis for further internal processing such as reasoning and
consolidation. In this benchmark, we were able to create in-memory RDF models containing a
maximum of 50,000 triples on the Samsung Galaxy S I9000 and 20,000 triples on the two less
powerful devices. Figure 6.25 depicts the results of the construction benchmarks using the three
mobile RDF frameworks Androjena, µJena, and Mobile RDF. Detailed results can be found in
Table A.30 in Appendix A for each analyzed device and framework.

29This benchmark has only been conducted on the HTC G1, Motorola Milestone, and the Samsung Galaxy S
I9000.

Chapter 6. Evaluation 235

Androjena

μJena

Mobile RDF

Pr
oc

es
se

d
Tr

ip
le

s
pe

r S
ec

on
d

500

1000

1500

2000

2500

3000

3500

4000

4500

Pr
oc

es
se

d
Tr

ip
le

s
pe

r S
ec

on
d

0

20

40

60

80

100

120

140

160

180

200

220

240

260

280

300

320

Pr
oc

es
se

d
Tr

ip
le

s
pe

r S
ec

on
d

200

400

600

800

1000

1200

1400

1600

1800

2000

2200

2400

2600

2800

3000

3200

3400

of Triples
10 20 50 100 200 500 1000 2000 5000 10000 20000 50000

Construction of in-memory RDF Graphs

HTC G1
Motorola Milestone
Samsung Galaxy S I9000

Figure 6.25: Construction of in-memory RDF graphs using the Androjena, µJena, and Mobile
RDF frameworks

Chapter 6. Evaluation 236

When creating in-memory RDF graphs of certain sizes, we can observe a similar behavior on
all three tested platforms. Androjena and Mobile RDF exhibit very similar results, namely, a
nearly constant processing time per triple, even with increasing model size. Although processing
times of mobile RDF frameworks vary considerably across small context descriptions with sizes
smaller than 500 triples (up to factor 10 on the Samsung Galaxy S I9000 using Mobile RDF for
processing a model containing 100 triples), processing times normalize for models of size greater
or equal than 1000 triples on the two frameworks. In general, we can observe that Androjena
and Mobile RDF are able to create and handle RDF graphs containing 20,000 or more triples,
although the limiting factor is the device’s internal memory capacity.

Additionally, the total execution time (in milliseconds) for Androjena and Mobile RDF scales
almost linearly with the size of context descriptions. The performance of µJena, on the contrary,
decreases significantly with increasing model sizes, leading to very low processing times with
models larger than 100 triples. µJena tests with more than 2,000 triples failed on all devices,
making it basically unsuitable for the processing of voluminous RDF data.

Processing speed of Androjena ranges between 480 and 680 triples per second on an Android
HTC G1, and 1000 and 2000 triples per second on a Motorola Milestone. Interestingly, on the
Samsung Galaxy we can observe that the performance increases when models with more than
200 triples are created. The performance of µJena decreases with increasing model size on all
three devices. Mobile RDF exhibits a similar performance behavior compared to Androjena
where a significant increase in triples per second values on a Samsung Galaxy can be observed
for models with more than 500 triples. In general, Mobile RDF has shown to be the most
performant framework w.r.t. the amount of triples processed per second on all tested devices.

When comparing the different devices, we can observe the expected behavior that the Android
HTC G1 exposes the weakest results due to its slow CPU and small main memory, leading to
memory problems when creating models with 20,000 or more triples. The other devices expose
a better performance, making them more suitable for creating and processing larger volumes of
RDF data. Only the Samsung Galaxy I S9000 was able to handle a model of 50,000 triples; on
the other devices tests with this model size failed with “out of memory” errors.

6.4 Discussion and Summary

In this evaluation, we specifically analyzed the runtime behavior of typical RDF operations
involved in data replication tasks to obtain insights about the efficiency of processing data replicas
of varying sizes on devices from different mobile market segments using currently available mobile
RDF frameworks. In summary our analysis revealed that modern mobile devices in combination
with recent RDF frameworks optimized for mobile platforms can without hesitation be used as
the basis for replicating and processing RDF documents directly on a device using the presented
context-sensitive RDF data replication framework without the necessity to rely on a server
infrastructure. Although the behavior of the deployed RDF frameworks differs across machines,
we can observe certain trends regarding the applicability of current RDF frameworks for specific
replication-related purposes. In particular, our analysis revealed that the presented replication
framework is principally capable of processing large data replicas containing several thousand
triples in sufficient time using the Androjena or the MobileRDF framework, where the maximum
size of data replicas is in most cases limited by the amount of physical main memory installed
on a device rather than by insufficient processing power.

Chapter 6. Evaluation 237

Taking a closer look at the deployed RDF frameworks in particular, Mobile RDF revealed to
be the fastest framework with highest average parsing performance across all data replicas and
devices closely followed by Androjena. The parsing performance of the replication framework
dramatically drops when the µJena framework is being used – in particular when large data
replicas are being processed where an almost exponential decrease was observable. Although
µJena exhibits by far the weakest parsing performance, it outperforms the other frameworks
in terms of storage and serialization performance. In general, the storage performance scales
relatively linear with the amount of triples to be stored on all three frameworks. Additionally,
a comparison of the parsing and storage performance reveals interesting results: on the two less
powerful devices, serialization performance exceeds parsing performance; on the two more pow-
erful devices, in contrast, parsing performance lies slightly above serialization performance where
the limiting factor remains to be the read-/write-performance rather than the CPU performance,
which was the case on the two technically weaker devices. When data are to be added to data
replicas, best results have been measured using the Mobile RDF framework followed by Andro-
jena; both frameworks allow to perform insert operations in constant time independent from
specific data replica sizes. Only two of three frameworks offer support for removal operations
where only with the Androjena framework, we were capable of performing removal operations
in almost linear time depending on the amount of triples being removed. The weak performance
using the µJena framework, which was visible in the parsing benchmark, was also present during
the insertion, removal, and creation benchmarks. When traversing an RDF graph in order to
retrieve a specific triple, lowest retrieval times were measured using the Androjena framework,
which also remain constant across all data replicas. The retrieval times using the µJena and
Mobile RDF framework, in contrast, scaled with data replica sizes and were noticeably higher
for larger data replicas.

In summary, we could observe that the performance of the presented replication framework in
combination with current RDF frameworks scales relatively well with available processor speed
as evident from benchmark results that doubles or, in some cases, threefold between devices
from different market segments. In some benchmarks we could observe that an increase in CPU
clock speed from 350 MHz to 600 MHz resulted in a twofold up to fourfold increase in processing
performance. Although best performance results on four of six benchmark were achieved using
the Mobile RDF framework, Androjena appeared to be the most mature RDF framework and
performed excellent during all benchmarks on all tested devices. It incorporates the most efficient
memory management and allows to process data replicas containing up to 100,000 triples on state-
of-the-art devices. Additionally, it scales very well with available CPU power but also provides
acceptable results on less powerful devices. Unlike µJena and Mobile RDF, the performance
of retrieval and modification operations are not influenced by data replica sizes and render its
deployment particularly for processing large data replicas appropriate. Although highest triples
per second ratios in the creation, parsing, storage, and insertion benchmarks were achieved
using the Mobile RDF framework, its internal memory management lacks efficiency and does
not allow to process data replicas containing more than 20,000 triples – even on devices with
512 MB of main memory. The weak performance of the µJena framework, which was visible
during four of six benchmarks, renders its deployment in real-world replication scenarios more
than questionable. More seriously, µJena incorporates the least efficient memory management
that restricts the processing of data replicas to a maximum of 5,000 triples.

Chapter 7

Conclusion and Future Work

“Prediction is very difficult, especially about the future.”
Niels Bohr (1885 - 1962)

7.1 Conclusion

In this work, we introduced a novel approach that combines context-aware computing concepts
with semantic technologies, distributed transaction management concepts, and mobile informa-
tion system peculiarities in order to build an infrastructure for intelligently assisting mobile users
by selectively replicating RDF data from remote data sources to a mobile device according to
their current and future information needs and the different contexts mobile users are operat-
ing in. We showed that such a synthesis is a driving force not only in enhancing mobile user
information seeking satisfaction and increasing the precision of context-dependent information
retrieval processes, but also provides the Semantic Web community with new application fields
as well as the Mobile Computing community with information about valuable semi-structured
data sources and novel technological opportunities. Since recent research in context-aware com-
puting and mobile information systems shows that context and context awareness should be
central parts of future mobile information systems, we introduced an application scenario that
outlines how Semantic Web-enhanced context-aware computing can support mobile users in ful-
filling their information needs, which also serves as the motivating example of this work. Our
work builds on the design science research methodology (cf. [MS95, MMG02]), the principle of
which is to “extend the boundaries of human and organizational capabilities by creating new
and innovative artifacts” where the “knowledge and understanding of a problem domain and its
solution are achieved in the building and application of the designed artifact” [HMPR04].

We provided an overview on how context is used in information systems and discussed problems
and limitations of current context-aware computing approaches. We presented areas where the
introduction of concepts, technologies, and languages from the Semantic Web makes substantial
contributions regarding the representation, processing, and management of contextual informa-
tion. For this purpose, concepts from graph theory, distributed transaction management, and
the Semantic Web were adopted in order to demonstrate that a synthesis of those fields can
serve as an architectural infrastructure for the efficient acquisition, management, and processing
of contextual information directly on a mobile device. In consequence, dependencies to external

239

Chapter 7. Conclusion and Future Work 240

systems are reduced while preserving security and privacy concerns since private data do not
need to be transferred outside the mobile system.

We elaborated on the notions of context and context awareness, their underlying concepts, how
they are used and understood in different domains, and the problems associated with their de-
ployment and utilization in information systems. We assented that context is to be understood
as a dynamic and emergent phenomenon that evolves in the process of communication and is
continuously renegotiated between communicating partners which makes its determination at
design time of a system difficult if not impossible. We proposed the use of Semantic Web tech-
nologies and concepts for the representation and processing of contextual information in order
to overcome the issues originating from the deployment and utilization of context in informa-
tion systems leading to an approach that we denote as Semantic Web-enhanced context-aware
computing.

The application of Semantic Web technologies, languages, and concepts for the representation
and processing of contextual information on mobile devices requires the availability of RDF-
based management and processing frameworks designed specifically for mobile deployment. We
therefore qualitatively analyzed existing RDF/OWL parsers, RDF frameworks, and RDF query
and storage infrastructures according to their functionalities in processing RDF graphs and
outlined their main aspects in a comparative study. Our study revealed that most of the analyzed
frameworks are in a prototypical status but provide the necessary functionalities for processing
RDF data on mobile devices although they lack both efficiency and performance when processing
larger RDF graphs containing hundreds of thousands triples (see also Chapter 6).

In a second study, we analyzed existing Semantic Web projects that utilize context-aware com-
puting concepts with semantic technologies and languages in order to provide personalized and
context-driven services. Those applications are well-known in the Semantic Web community but
provide only rudimentary context-aware functionality or were mainly developed for covering a
specific application domain. Our analysis also revealed that context-driven RDF data replica-
tion to mobile devices has not been addressed by current or related research yet. Moreover, a
Semantic Web-based context-sensitive RDF-data replication framework for mobile devices that
incorporates the functionalities and concepts introduced in this work does not exist to date.

For delineating our approach, we collected and analyzed requirements of context management
and processing architectures from related domains that serve as design considerations of the
formal models and the conceptual system architecture. Our approach allows for a controlled
acquisition, aggregation, and consolidation of contextual information while taking into account
mobile operating system peculiarities and distributed transaction management concepts. At
the same time, it guarantees consistency, accurateness, and completeness among contextual
data and acquisition workflows. It employs a loose coupling between context acquisition and
data provisioning components, which is gained by applying semantic technologies (data models,
vocabularies, inference) to interpret and process context information.

Central to our approach is the assumption that data emitted and required by a context provider
can sufficiently be described using terms from controlled vocabularies by means of a data de-
scription. Therefore, we developed a lightweight data description ontology that allows for the
calculation of compatibility scores indicating the degree of compatibility that exists between pairs
of context providers and hence serves as a basis for deducing orchestration networks that specify
context acquisition workflows. For the processing of context acquisition workflows, we defined
an extended transaction-based processing model that builds on the ACTA formal framework and
allows for a formal description of the activities being relevant for a controlled and deterministic
acquisition, aggregation, consolidation, and dissemination of contextual information. Although

Chapter 7. Conclusion and Future Work 241

our approach exhibits extensive control and management mechanisms, it guarantees data and
process consistency, accurateness, and completeness among contextual information and context
acquisition workflows.

In addition to the formal, conceptual, and algorithmic description of our approach and the
adhering conceptual system architecture, we presented selected details of the proof-of-concept
prototype that relieves 3rd-party developers from the necessity of having to deal with processing
and management-specific aspects and instead focus on context acquisition and data replication
logic only. Practical insights into implementation details of context and data providers were
discussed and concrete examples were presented that demonstrate how context-relevant data
can be acquired from locally deployed sensors, represented using semantic vocabularies, and
complemented with context-relevant data from external sources.

As a proof of concept, we presented a case study based on the information needs of a typical
mobile knowledge worker in which relevant information from Linked Data sources is replicated
based on the user’s current location and upcoming appointments. This case study was defined on
the basis of the most important mobile context type, that is location, and shows that a significant
amount of available information that is irrelevant to the user’s current context does not need to
be considered in data replication tasks. As a result, the approach not only increases precision
of mobile information retrieval tasks but it also reduces the need for explicit user attention and
the cognitive load associated with information seeking tasks.

Furthermore, we conducted a comprehensive quantitative performance analysis in order to ob-
tain insights regarding the processing efficiency of local RDF data replicas on modern mobile
platforms using the proposed context-sensitive RDF data replication framework. We analyzed
the runtime behavior of typical RDF processing operations applied to local RDF data replicas
to evaluate whether data replicas can be processed on current mobile devices in reasonable time
using available RDF frameworks. The evaluation showed that our approach in combination with
current RDF frameworks provides a suitable basis for the replication and processing of RDF
data consisting of several thousand triples when deployed on state-of-the-art mobile devices.
It also indicated that the framework serves as an appropriate platform for the development of
context-sensitive applications and services, the decision-making processes of which are oriented
on the users’ current contexts and their information needs thus forming a new generation of
future mobile applications.

7.2 Future Work and Possible Application Fields

Semantic Web technologies, concepts, and languages proved to provide substantial contributions
regarding the deployment and representation of context and context awareness in information
systems. However, there exists several open issues that need to be addressed in future research:

• Integration into and combination with Semantic Desktop infrastructures to facilitate per-
sonal information management on mobile devices
The deployment and integration of Semantic Web technologies into the conceptual models
of desktop computers represents a recent research endeavor designated as Semantic Desk-
top [SBD05, SKSB09, FAS09]. In the Semantic Desktop, the information space is defined
relative to the user rather than bound to a specific computational device [HMD05]. In
the Semantic Desktop, the notion of context is used to annotate information resources
with specific contextual dimensions that allow for their classification according to different

Chapter 7. Conclusion and Future Work 242

aspects an information resource pertains to. Since mobile devices are increasingly used
for the management of digital information assets of mobile users, a synthesis of Semantic
Desktop concepts with context-aware computing concepts will provide substantial bene-
fits for personal information management as Semantic Desktop graphs can be interlinked
with contextual information acquired and processed by a context framework. Contextual
information acquired by a context framework can both complement information hosted
in Semantic Desktop systems and be used for replicating data from such systems to the
mobile device in order to satisfy current and future information needs of mobile users de-
pending on the current context a user is operating in. Moreover, the situative provision of
context-relevant information hosted within Semantic Desktop systems allows for the devel-
opment and deployment of applications that intelligently assist the user in fulfilling their
tasks where decision making processes are based on the evaluation and analysis of such
data rather then predetermined preferences. In future work, we aim to wrap information
sources locally deployed on a mobile device with RDF wrapper components that expose
the data hosted in such sources as RDF graphs to enable their interlinkage and utilization
with Semantic Desktop systems.

• Consolidation and classification of reference architectures proposed for context management
and processing

To date, many architectures have been proposed for the processing and management of con-
textual information claiming to be reference architectures (e.g. [BDR07, DWM08, SB08b]).
We believe that a consolidation and functional classification of such reference architectures
contributes towards a wider adoption of context-aware computing concepts. Moreover, it
can help in achieving a general model of context and context awareness across different
domains and disciplines that is to date de facto non-existent.

• Context-dependent Linked Data federation and visualization in mobile Augmented Reality
interfaces

The continuous technical advancements of mobile information technology together with
the omnipresence of mobile devices offers novel application scenarios that can profit from a
deployment of context-aware computing concepts in general and Semantic-Web enhanced
context-aware computing concepts in particular. One such technology is that of Augmented
Reality where data being replicated from linked data sources can be federated with data
replicated from geographical databases in order to visualize Linked Data in Augmented
Reality interfaces on the mobile device. The potential of integrating Linked Data in mobile
Augmented Reality applications is also discussed in a recent position paper [RHP+10]. Next
to the deployment of a framework comparable to the one presented in this thesis, we can
add the dimension of context to Augmented Reality visualization interfaces in which data
being relevant to the user’s current location are replicated in a proactive manner to the
mobile device and are federated with data from related sources corresponding to the user’s
information needs.

• Inclusion of feedback loops to make the context framework context-dependent

Currently, the framework presented in this work does not include feedback loops that
would allow for the adjustment of context acquisition and aggregation tasks according to
data provisioning needs, and it lacks advanced reasoning capabilities, which we plan to
implement in the near future.

Chapter 7. Conclusion and Future Work 243

• Making a context-framework context-aware
A context framework developed for resource-constraint devices such as mobile phones
should be made context-aware to adapt its processing rules and policies according to spe-
cific technical circumstances, for instance to reduce replication cycles or computational
expensive tasks in case of low battery capacity etc. Hence, the incorporated business logic
is able to react according to changing technical or infrastructural circumstances and to
adapt processing tasks accordingly. The framework proposed in this thesis is principally
capable of adapting its processing tasks with the help of context providers that monitor spe-
cific aspects of the operating system as well as its processes and sensors and autonomously
notify the framework by means of the implementation of the observer pattern1.

• Integration and exploitation of dynamically discovered context sources
The integration of dynamically discovered context sources is a challenging issue most
context-management frameworks face, especially in ubiquitous and pervasive environments.
Future works in this areas should therefore focus on the investigation of additional meth-
ods for dynamic context source discovery and their integration as well as on heuristics for
transforming sensorial data into qualitative context descriptions. Beneficial to the discov-
ery and ad-hoc integration of context sources is the reliance on standard communication
protocols such as HTTP and the use of well-defined and well-established Semantic Web
vocabularies. One such description framework is that of OWL-S [MBH+04] that offers
description primitives for the dynamic discovery and utilization of Web services. With the
process model and service grounding parts, a sensor host can specify technical details of the
interaction with a context sensor as well as the input and output data delivered by a sen-
sor. Through the promotion of our approach we hope to motivate ubiquitous sensor hosts
to apply technologies and concepts from the Semantic Web for the service descriptions of
their sensors and devices.

• Using Semantic Web-based description frameworks for the specification of context acquisi-
tion processes and workflows
A central aspect of the presented framework is the capability to calculate compatibilities
between pairs of context providers that serve as basis for the deduction of orchestration
trees and the formal specification of context acquisition workflows. However, the static
structure of such context acquisition workflows is specified in an internal, implementation-
specific format and as a consequence can only be interpreted by the framework. A better
technological approach is to describe such context acquisition workflow specifications in
a coherent and well-defined format using dedicated service composition ontologies such
as OWL-S [MBH+04] that offer primitives for the description of service compositions and
interactions. By conceiving every context provider as a service, a service description frame-
work such as OWL-S can be used to represent orchestration trees as well as the context
acquisition processes of the context providers being orchestrated within them and thus
facilitate the coordinated invocation of context acquisition processes.

• Adoption of standardized infrastructures and formal rule-based languages for the specifica-
tion of aggregation and reasoning rules on mobile devices
Although the lightweight rule-based reasoner implemented in this work (see Section 4.6.2)
allows for the specification of aggregation and consolidation rules in a straightforward way,
they need to be formulated on the basis of a proprietary format. This approach does not
only exacerbate reuse, maintenance, and the exchange of reasoning rules among reason-
ing systems, it also intertwines a specific reasoning engine with context aggregation and

1General information about the observer pattern: http://www.oodesign.com/observer-pattern.html

http://www.oodesign.com/observer-pattern.html

Chapter 7. Conclusion and Future Work 244

processing workflows. Therefore, a more favorable approach is the definition of reasoning
rules on the basis of a well-defined and standardized rule language such as proposed in an
approach targeted towards the context-aware geographical information retrieval [KRW09]
in which SWRL [HPSB+04] is used as a formalism for the formulation of semantic rules.
Bringing such an approach to mobile platforms requires for the development and avail-
ability of SWRL-capable interpreters and rule engines optimized for mobile platforms.
Additionally, context processing can be complemented with machine learning techniques
for the detection of usage patterns, as proposed by [BKL+08a, BKL08b]. To the best of
our knowledge, no such engine for mobile platforms exists to date.

• Enabling infrastructure for situation awareness

Since the framework proposed in this thesis provides the technical infrastructure for high-
level context processing, it can serve both as a conceptual basis as well as a techni-
cal infrastructure for the deployment of more elaborated situation identification algo-
rithms and heuristics. By collecting, representing, and disseminating contextual infor-
mation on the basis of standard protocols and semantic technologies by means of RDF-
based context descriptions, such information can be exchanged and incorporated between
the framework as such and context consumers that aim at the augmentation and pro-
cessing of acquired contextual information in order to infer on behavioral patterns that
help in identifying and recognizing specific situations. The framework facilitates all rel-
evant aspects of a mobile context processing and management architecture and serves as
foundation for the systematic management and exchange of contextual information us-
ing open protocols and semantic standards. There already exists a number of approaches
(cf. [ANH07, Geh08, LFWK08, SWB+08, THS09, CCMS10, YDM11]) in this area whereas
none of them specifically focuses on the acquisition and local processing on a mobile device
exclusively.

• Increasing the reasoning efficiency on resource constraint devices and mobile platforms

With the introduction of multi-CPU and multi-GPU architectures in recent mobile de-
vices2, mobile reasoners can be optimized towards the parallel execution of reasoning tasks.
While the mobile device’s CPU handles data management tasks, reasoning processes can
be delegated and distributed over GPU cores which are highly optimized for the paral-
lel execution of calculations. To make use of such GPU-based calculations on desktop
machines using conventional graphic cards, specific APIs and technologies such as CUDA
(Compute Unified Device Architecture)3 or OpenCL (Open Computing Language)4 have
been developed that allow for the parallel programming of computing-extensive tasks and
their execution on a multi-GPU infrastructure. With the advent of more powerful hard-
ware incorporated in mobile devices, the necessity of porting such interfaces for mobile
architectures seems probable and paves the way for future research into the optimization
of reasoning tasks.

2Technical specification of the NVIDIA® Tegra® 3 chip for mobile platforms: http://www.nvidia.com/object/

tegra-superchip.html

3Compute Unified Device Architecture: http://developer.nvidia.com/category/zone/cuda-zone

4Open Computing Language: http://www.khronos.org/opencl/

http://www.nvidia.com/object/tegra-superchip.html
http://www.nvidia.com/object/tegra-superchip.html
http://developer.nvidia.com/category/zone/cuda-zone
http://www.khronos.org/opencl/

Appendix A

Detailed Performance Statistics
of the Replication Benchmarks

Appendix A contains the detailed results of each single benchmark conducted for evaluating the
processing efficiency of local RDF data replicas as discussed in Chapter 6 using currently avail-
able RDF frameworks for mobile platforms. The RDF frameworks considered relevant for the
proposed context-dependent RDF data replication infrastructure have been analyzed in Chap-
ter 3.

245

Appendix A. Detailed Performance Statistics of the Replication Benchmarks 246

Ta
bl

e
A

.1
:

D
et

ai
le

d
re

su
lts

of
pa

rs
in

g
R

D
F

da
ta

re
pl

ic
as

on
th

e
H

T
C

G
1

M
o
d
el

 S
iz

e
(T

ri
p
le

s)
10

20
50

10
0

20
0

50
0

10
00

20
00

50
00

10
00

0
20

00
0

50
00

0
10

00
00

E
x
ec

u
ti

on
 T

im
e

(m
s)

76
8,

30
28

8,
90

47
2,

30
91

7,
80

1.
77

1,
20

4.
96

4,
60

10
.3

60
,7

0
21

.7
95

,6
0

52
.6

43
,0

0
D

N
F

D
N

F
D

N
F

D
N

F

S
ta

n
d
ar

d
 D

ev
ia

ti
on

1.
90

6,
75

2,
33

2,
98

9,
33

9,
62

96
,7

9
37

6,
72

2.
43

0,
40

46
0,

09
D

N
F

D
N

F
D

N
F

D
N

F

T
ri

p
le

s
p
er

 S
ec

on
d

13
,0

2
69

,2
3

10
5,

86
10

8,
96

11
2,

92
10

0,
71

96
,5

2
91

,7
6

94
,9

8
D

N
F

D
N

F
D

N
F

D
N

F

E
x
ec

u
ti

on
 T

im
e

(m
s)

15
7,

70
22

3,
20

33
7,

50
65

5,
80

1.
28

0,
30

3.
39

8,
70

7.
39

0,
50

14
.0

51
,3

0
D

N
F

D
N

F
D

N
F

D
N

F
D

N
F

S
ta

n
d
ar

d
 D

ev
ia

ti
on

63
,4

1
89

,6
1

14
8,

15
15

2,
49

15
6,

21
14

7,
12

13
5,

31
14

2,
34

D
N

F
D

N
F

D
N

F
D

N
F

D
N

F

T
ri

p
le

s
p
er

 S
ec

on
d

60
,1

5
2,

39
5,

13
10

,1
2

28
,3

9
35

,6
7

18
9,

19
34

1,
87

D
N

F
D

N
F

D
N

F
D

N
F

D
N

F

E
x
ec

u
ti

on
 T

im
e

(m
s)

61
,5

0
10

2,
00

21
7,

80
45

2,
60

85
3,

80
2.

22
6,

90
5.

01
3,

80
9.

62
3,

00
D

N
F

D
N

F
D

N
F

D
N

F
D

N
F

S
ta

n
d
ar

d
 D

ev
ia

ti
on

12
,0

3
2,

40
7,

74
30

,1
6

26
,5

4
58

,3
7

14
3,

10
66

5,
70

D
N

F
D

N
F

D
N

F
D

N
F

D
N

F

T
ri

p
le

s
p
er

 S
ec

on
d

16
2,

60
19

6,
08

22
9,

57
22

0,
95

23
4,

25
22

4,
53

19
9,

45
20

7,
84

D
N

F
D

N
F

D
N

F
D

N
F

D
N

F

E
x
ec

u
ti

on
 T

im
e

(m
s)

77
,2

0
12

3,
20

19
9,

90
33

4,
80

64
7,

40
1.

97
5,

30
3.

93
2,

40
7.

64
4,

70
18

.5
36

,5
0

D
N

F
D

N
F

D
N

F
D

N
F

S
ta

n
d
ar

d
 D

ev
ia

ti
on

12
9,

53
16

2,
34

25
0,

13
29

8,
69

30
8,

93
25

3,
13

25
4,

30
26

1,
62

26
9,

74
D

N
F

D
N

F
D

N
F

D
N

F

T
ri

p
le

s
p
er

 S
ec

on
d

35
,0

9
34

,6
6

73
,3

3
31

,6
1

85
,8

5
10

8,
41

30
4,

45
21

9,
08

31
8,

80
D

N
F

D
N

F
D

N
F

D
N

F

E
x
ec

u
ti

on
 T

im
e

(m
s)

36
,1

0
79

2,
60

1.
57

6,
00

3.
49

6,
80

1.
61

4,
60

30
.3

57
,8

0
84

.5
43

,4
0

56
8.

00
3,

40
D

N
F

D
N

F
D

N
F

D
N

F
D

N
F

S
ta

n
d
ar

d
 D

ev
ia

ti
on

8,
08

37
1,

51
56

9,
33

87
4,

84
23

4,
65

5.
55

6,
99

12
.6

24
,4

9
11

9.
00

8,
18

D
N

F
D

N
F

D
N

F
D

N
F

D
N

F

T
ri

p
le

s
p
er

 S
ec

on
d

27
7,

01
25

,2
3

31
,7

3
28

,6
0

12
3,

87
16

,4
7

11
,8

3
3,

52
D

N
F

D
N

F
D

N
F

D
N

F
D

N
F

Androjena µJena
Mobile

RDF

N-TripleN3RDF/ XML RDF/ XML N-Triple

Ta
bl

e
A

.2
:

D
et

ai
le

d
re

su
lts

of
pa

rs
in

g
R

D
F

da
ta

re
pl

ic
as

on
th

e
M

ot
or

ol
a

M
ile

st
on

e

M
od

el
 S

iz
e

(T
ri

pl
es

)
10

20
50

10
0

20
0

50
0

1,
00

0
2,

00
0

5,
00

0
10

,0
00

20
,0

00
50

,0
00

10
0,

00
0

E
xe

cu
ti

on
 T

im
e

(m
s)

33
5.

50
13

8.
40

19
9.

70
31

4.
40

55
0.

80
1,

45
1.

60
2,

96
3.

10
6,

08
6.

40
15

,0
50

.4
0

31
,2

31
.9

0
64

,8
73

.3
0

D
N

F
D

N
F

St
an

da
rd

 D
ev

ia
ti

on
74

7.
54

9.
05

35
.5

1
5.

87
15

.4
5

51
.9

1
41

.4
7

87
7.

74
95

.7
3

16
8.

87
1,

02
1.

02
D

N
F

D
N

F

T
ri

pl
es

 p
er

 S
ec

on
d

29
.8

1
14

4.
51

25
0.

38
31

8.
07

36
3.

11
34

4.
45

33
7.

48
32

8.
60

33
2.

22
32

0.
19

30
8.

29
D

N
F

D
N

F

E
xe

cu
ti

on
 T

im
e

(m
s)

92
.7

0
15

3.
80

16
5.

90
27

0.
10

49
3.

60
1,

25
6.

30
2,

20
0.

40
4,

53
4.

60
11

,8
28

.1
0

24
,2

57
.7

0
49

,6
93

.6
0

D
N

F
D

N
F

St
an

da
rd

 D
ev

ia
ti

on
26

.3
8

91
.8

6
24

.0
6

19
.8

6
46

.8
7

77
.3

1
60

.0
7

31
.4

0
56

.5
4

13
7.

50
13

1.
33

D
N

F
D

N
F

T
ri

pl
es

 p
er

 S
ec

on
d

10
7.

87
13

0.
04

30
1.

39
37

0.
23

40
5.

19
39

7.
99

45
4.

46
44

1.
05

42
2.

72
41

2.
24

40
2.

47
D

N
F

D
N

F

E
xe

cu
ti

on
 T

im
e

(m
s)

41
.6

0
73

.3
0

13
4.

50
21

8.
20

33
1.

90
80

3.
30

1,
63

2.
90

3,
22

1.
30

8,
17

6.
00

51
,2

43
.0

0
34

,5
48

.4
0

D
N

F
D

N
F

St
an

da
rd

 D
ev

ia
ti

on
4.

38
0.

82
12

.4
6

15
.8

0
26

.7
3

35
.8

2
47

.9
2

62
.2

9
79

.6
9

40
,8

61
.0

7
53

5.
24

D
N

F
D

N
F

T
ri

pl
es

 p
er

 S
ec

on
d

24
0.

38
27

2.
85

37
1.

75
45

8.
30

60
2.

59
62

2.
43

61
2.

41
62

0.
87

61
1.

55
19

5.
15

57
8.

90
D

N
F

D
N

F

E
xe

cu
ti

on
 T

im
e

(m
s)

62
.9

0
94

.8
0

14
3.

80
28

8.
30

26
6.

20
64

4.
30

1,
29

1.
20

2,
66

6.
00

6,
67

1.
40

13
,3

20
.3

0
26

,2
91

.0
0

D
N

F
D

N
F

St
an

da
rd

 D
ev

ia
ti

on
26

.4
1

28
.2

0
33

.3
5

95
.1

2
27

.3
4

22
.6

8
58

.2
9

95
.7

9
93

.9
7

10
9.

76
27

9.
99

D
N

F
D

N
F

T
ri

pl
es

 p
er

 S
ec

on
d

15
8.

98
21

0.
97

34
7.

71
34

6.
86

75
1.

31
77

6.
04

77
4.

47
75

0.
19

74
9.

47
75

0.
73

76
0.

72
D

N
F

D
N

F

E
xe

cu
ti

on
 T

im
e

(m
s)

16
.2

0
38

2.
60

12
,4

91
.7

0
15

,2
09

.5
0

31
,4

91
.5

0
17

,5
95

.4
0

10
,8

45
.6

0
D

N
F

D
N

F
D

N
F

D
N

F
D

N
F

D
N

F

St
an

da
rd

 D
ev

ia
ti

on
8.

02
13

7.
63

24
,6

53
.7

0
23

,2
29

.4
4

41
,2

85
.8

1
1,

99
6.

35
1,

01
5.

30
D

N
F

D
N

F
D

N
F

D
N

F
D

N
F

D
N

F

T
ri

pl
es

 p
er

 S
ec

on
d

61
7.

28
52

.2
7

4.
00

6.
57

6.
35

28
.4

2
92

.2
0

D
N

F
D

N
F

D
N

F
D

N
F

D
N

F
D

N
F

RDF/ XML

Androjena

N3 N-Triple RDF/ XML N-Triple

Mobile
RDF

µJena

Appendix A. Detailed Performance Statistics of the Replication Benchmarks 247

Ta
bl

e
A

.3
:

D
et

ai
le

d
re

su
lts

of
pa

rs
in

g
R

D
F

da
ta

re
pl

ic
as

on
th

e
Sa

m
su

ng
G

al
ax

y
S

I9
00

0

M
od

el
 S

iz
e

(T
ri

pl
es

)
10

20
50

10
0

20
0

50
0

1,
00

0
2,

00
0

5,
00

0
10

,0
00

20
,0

00
50

,0
00

10
0,

00
0

E
xe

cu
ti

on
 T

im
e

(m
s)

23
5.

00
16

8.
00

20
9.

00
26

9.
00

40
9.

60
81

0.
00

1,
54

0.
30

3,
14

4.
70

7,
55

9.
30

18
,1

16
.6

0
33

,2
56

.2
0

11
5,

97
6.

80
D

N
F

St
an

da
rd

 D
ev

ia
ti

on
30

3.
58

20
.9

4
22

.0
8

23
.2

8
11

6.
81

60
.3

7
10

2.
61

53
5.

18
79

.7
5

11
2.

81
2,

57
9.

66
12

,8
76

.2
6

D
N

F

T
ri

pl
es

 p
er

 S
ec

on
d

42
.5

5
11

9.
05

23
9.

23
37

1.
75

48
8.

28
61

7.
28

64
9.

22
63

5.
99

66
1.

44
55

1.
98

60
1.

39
43

1.
12

D
N

F

E
xe

cu
ti

on
 T

im
e

(m
s)

13
7.

20
14

8.
50

17
0.

90
22

6.
80

30
4.

30
59

2.
00

1,
06

9.
30

1,
91

4.
90

5,
28

1.
60

12
,2

95
.6

0
26

,6
46

.0
0

D
N

F
D

N
F

St
an

da
rd

 D
ev

ia
ti

on
59

.5
5

19
.9

1
22

.5
4

22
.0

2
25

.5
4

48
.4

1
91

.6
9

11
4.

51
90

.4
5

25
6.

86
1,

91
7.

43
D

N
F

D
N

F

T
ri

pl
es

 p
er

 S
ec

on
d

72
.8

9
13

4.
68

29
2.

57
44

0.
92

65
7.

25
84

4.
59

93
5.

19
1,

04
4.

44
94

6.
68

81
3.

30
75

0.
58

D
N

F
D

N
F

E
xe

cu
ti

on
 T

im
e

(m
s)

60
.2

0
72

.0
0

11
1.

90
16

3.
90

19
5.

50
31

8.
80

62
1.

30
1,

00
2.

70
2,

72
4.

10
6,

71
9.

10
16

,1
66

.0
0

D
N

F
D

N
F

St
an

da
rd

 D
ev

ia
ti

on
27

.7
0

12
.1

0
28

.6
3

20
.5

1
23

.6
1

39
.8

5
20

0.
39

31
.5

3
10

9.
69

55
6.

76
86

0.
41

D
N

F
D

N
F

T
ri

pl
es

 p
er

 S
ec

on
d

16
6.

11
27

7.
78

44
6.

83
61

0.
13

1,
02

3.
02

1,
56

8.
38

1,
60

9.
53

1,
99

4.
61

1,
83

5.
47

1,
48

8.
29

1,
23

7.
16

D
N

F
D

N
F

E
xe

cu
ti

on
 T

im
e

(m
s)

71
.6

0
82

.0
0

98
.1

0
12

7.
30

19
4.

10
33

0.
00

58
0.

80
1,

06
0.

00
2,

26
9.

20
4,

78
9.

70
11

,9
59

.3
0

D
N

F
D

N
F

St
an

da
rd

 D
ev

ia
ti

on
44

.5
1

13
.7

7
24

.6
9

20
.3

2
38

.8
1

60
.6

3
75

.2
9

20
6.

26
12

2.
68

15
6.

18
63

3.
84

D
N

F
D

N
F

T
ri

pl
es

 p
er

 S
ec

on
d

13
9.

66
24

3.
90

50
9.

68
78

5.
55

1,
03

0.
40

1,
51

5.
15

1,
72

1.
76

1,
88

6.
79

2,
20

3.
42

2,
08

7.
81

1,
67

2.
34

D
N

F
D

N
F

E
xe

cu
ti

on
 T

im
e

(m
s)

7.
80

63
.8

0
13

3.
40

31
2.

30
87

7.
20

2,
94

0.
10

7,
21

6.
20

67
,6

89
.3

0
D

N
F

D
N

F
D

N
F

D
N

F
D

N
F

St
an

da
rd

 D
ev

ia
ti

on
13

.4
6

21
.1

5
39

.1
4

46
.8

0
99

.0
0

40
2.

41
95

5.
89

17
,6

84
.8

8
D

N
F

D
N

F
D

N
F

D
N

F
D

N
F

T
ri

pl
es

 p
er

 S
ec

on
d

1,
28

2.
05

31
3.

48
37

4.
81

32
0.

20
22

8.
00

17
0.

06
13

8.
58

29
.5

5
D

N
F

D
N

F
D

N
F

D
N

F
D

N
F

Androjena

RDF/ XML N3 N-Triple

Mobile
RDF

RDF/ XML

µJena

N-Triple

Ta
bl

e
A

.4
:

D
et

ai
le

d
re

su
lts

of
pa

rs
in

g
R

D
F

da
ta

re
pl

ic
as

on
th

e
D

el
lS

tr
ea

k
5

M
od

el
 S

iz
e

(T
ri

pl
es

)
10

20
50

10
0

20
0

50
0

1,
00

0
2,

00
0

5,
00

0
10

,0
00

20
,0

00
50

,0
00

10
0,

00
0

E
xe

cu
ti

on
 T

im
e

(m
s)

25
4.

60
15

0.
50

22
2.

50
45

5.
70

69
0.

70
1,

27
3.

20
2,

20
1.

10
4,

16
4.

00
9,

85
6.

40
23

,2
18

.2
0

46
,4

25
.5

0
11

5,
73

9.
11

18
9,

37
3.

80

St
an

da
rd

 D
ev

ia
ti

on
36

0.
62

5.
95

3.
63

61
.2

6
84

.2
7

82
.8

2
70

.5
7

66
0.

31
10

6.
17

36
4.

35
2,

00
2.

97
5,

54
6.

48
3,

65
1.

79

T
ri

pl
es

 p
er

 S
ec

on
d

39
.2

8
13

2.
89

22
4.

72
21

9.
44

28
9.

56
39

2.
71

45
4.

32
48

0.
31

50
7.

28
43

0.
70

43
0.

80
43

2.
01

52
8.

06

E
xe

cu
ti

on
 T

im
e

(m
s)

11
9.

70
10

4.
20

21
7.

60
33

5.
10

53
6.

80
1,

06
2.

00
1,

58
4.

30
2,

63
9.

50
6,

70
0.

90
15

,5
54

.4
0

37
,4

30
.2

0
D

N
F

D
N

F

St
an

da
rd

 D
ev

ia
ti

on
16

6.
33

2.
70

12
5.

89
78

.8
8

42
.3

0
79

.7
6

12
8.

08
11

2.
78

13
9.

75
36

0.
57

2,
86

3.
09

D
N

F
D

N
F

T
ri

pl
es

 p
er

 S
ec

on
d

83
.5

4
19

1.
94

22
9.

78
29

8.
42

37
2.

58
47

0.
81

63
1.

19
75

7.
72

74
6.

17
64

2.
90

53
4.

33
D

N
F

D
N

F

E
xe

cu
ti

on
 T

im
e

(m
s)

32
.5

0
37

.6
0

77
.5

0
16

7.
80

31
5.

90
61

2.
80

96
3.

00
1,

45
0.

00
4,

18
0.

20
8,

95
1.

50
12

,6
67

.6
0

29
,4

36
.9

0
76

,4
87

.4
3

St
an

da
rd

 D
ev

ia
ti

on
18

.6
8

1.
65

1.
27

36
.7

4
42

.9
8

65
.6

3
10

7.
98

10
2.

38
2,

36
8.

06
3,

02
5.

97
33

2.
96

19
4.

36
11

,1
95

.1
8

T
ri

pl
es

 p
er

 S
ec

on
d

30
7.

69
53

1.
91

64
5.

16
59

5.
95

63
3.

11
81

5.
93

1,
03

8.
42

1,
37

9.
31

1,
19

6.
12

1,
11

7.
13

1,
57

8.
83

1,
69

8.
55

1,
30

7.
40

E
xe

cu
ti

on
 T

im
e

(m
s)

40
.0

0
45

.1
0

62
.3

0
11

8.
30

23
2.

00
61

1.
50

81
8.

10
1,

80
8.

90
2,

64
4.

90
5,

44
1.

70
13

,8
05

.5
0

D
N

F
D

N
F

St
an

da
rd

 D
ev

ia
ti

on
11

.4
4

1.
73

1.
49

1.
42

1.
05

97
.7

2
36

.0
7

68
9.

00
10

3.
51

15
7.

17
1,

23
7.

12
D

N
F

D
N

F

T
ri

pl
es

 p
er

 S
ec

on
d

25
0.

00
44

3.
46

80
2.

57
84

5.
31

86
2.

07
81

7.
66

1,
22

2.
34

1,
10

5.
64

1,
89

0.
43

1,
83

7.
66

1,
44

8.
70

D
N

F
D

N
F

E
xe

cu
ti

on
 T

im
e

(m
s)

7.
00

87
.8

0
18

7.
60

46
3.

90
27

5.
50

2,
94

8.
90

8,
42

2.
40

53
,5

55
.4

0
40

2,
84

4.
80

D
N

F
D

N
F

D
N

F
D

N
F

St
an

da
rd

 D
ev

ia
ti

on
8.

51
25

.3
7

49
.8

4
87

.4
2

47
5.

82
51

2.
50

1,
12

4.
64

10
,4

74
.1

3
70

,5
18

.5
3

D
N

F
D

N
F

D
N

F
D

N
F

T
ri

pl
es

 p
er

 S
ec

on
d

1,
42

8.
57

22
7.

79
26

6.
52

21
5.

56
72

5.
95

16
9.

55
11

8.
73

37
.3

4
D

N
F

D
N

F
D

N
F

D
N

F
D

N
F

Mobile
RDF

RDF/ XML

µJena

N-Triple

Androjena

RDF/ XML N3 N-Triple

Appendix A. Detailed Performance Statistics of the Replication Benchmarks 248

Ta
bl

e
A

.5
:

D
et

ai
le

d
re

su
lts

of
st

or
in

g
R

D
F

da
ta

re
pl

ic
as

on
th

e
H

T
C

G
1

M
od

el
 S

iz
e

(T
ri

pl
es

)
10

20
50

10
0

20
0

50
0

10
00

20
00

50
00

10
00

0
20

00
0

50
00

0
10

00
00

E
xe

cu
ti

on
 T

im
e

(m
s)

32
9.

20
51

7.
80

47
8.

70
87

6.
80

1,
99

9.
40

4,
69

4.
90

10
,1

48
.0

0
20

,7
13

.5
0

52
,9

46
.5

0
D

N
F

D
N

F
D

N
F

D
N

F

St
an

da
rd

 D
ev

ia
ti

on
11

4.
95

11
.3

8
5.

58
20

.8
5

29
.5

3
10

0.
08

27
4.

74
74

0.
17

44
8.

72
D

N
F

D
N

F
D

N
F

D
N

F

T
ri

pl
es

 p
er

 S
ec

on
d

30
.3

8
38

.6
2

10
4.

45
11

4.
05

10
0.

03
10

6.
50

98
.5

4
96

.5
6

94
.4

3
D

N
F

D
N

F
D

N
F

D
N

F

F
ile

 S
iz

e
(B

yt
es

)
1,

84
7.

00
3,

47
2.

00
3,

91
2.

00
7,

39
5.

00
14

,4
11

.0
0

36
,0

39
.0

0
71

,7
60

.0
0

14
2,

26
1.

00
36

9,
76

4.
00

D
N

F
D

N
F

D
N

F
D

N
F

E
xe

cu
ti

on
 T

im
e

(m
s)

10
9.

00
15

6.
00

24
2.

10
46

6.
80

90
2.

60
2,

54
8.

30
5,

20
5.

20
10

,5
98

.4
0

D
N

F
D

N
F

D
N

F
D

N
F

D
N

F

St
an

da
rd

 D
ev

ia
ti

on
50

.9
5

1.
15

2.
77

14
.9

0
10

.8
4

24
.8

4
51

.5
3

26
4.

18
D

N
F

D
N

F
D

N
F

D
N

F
D

N
F

T
ri

pl
es

 p
er

 S
ec

on
d

91
.7

4
12

8.
21

20
6.

53
21

4.
22

22
1.

58
19

6.
21

19
2.

12
18

8.
71

D
N

F
D

N
F

D
N

F
D

N
F

D
N

F

F
ile

 S
iz

e
(B

yt
es

)
1,

38
5.

00
2,

76
3.

00
4,

59
7.

00
9,

24
3.

00
18

,3
40

.0
0

46
,0

66
.0

0
91

,9
09

.0
0

18
2,

73
4.

00
D

N
F

D
N

F
D

N
F

D
N

F
D

N
F

E
xe

cu
ti

on
 T

im
e

(m
s)

20
7.

70
39

5.
30

88
8.

70
1,

77
9.

80
3,

83
7.

00
10

,1
77

.3
0

20
,7

38
.9

0
43

,5
93

.9
0

D
N

F
D

N
F

D
N

F
D

N
F

D
N

F

St
an

da
rd

 D
ev

ia
ti

on
10

.5
8

18
.0

0
18

.4
8

25
.3

8
11

4.
07

14
7.

46
77

6.
31

1,
42

7.
98

D
N

F
D

N
F

D
N

F
D

N
F

D
N

F

T
ri

pl
es

 p
er

 S
ec

on
d

48
.1

5
50

.5
9

56
.2

6
56

.1
9

52
.1

2
49

.1
3

48
.2

2
45

.8
8

D
N

F
D

N
F

D
N

F
D

N
F

D
N

F

F
ile

 S
iz

e
(B

yt
es

)
1,

23
2.

00
2,

45
6.

00
5,

80
4.

00
11

,9
10

.0
0

23
,6

13
.0

0
59

,7
75

.0
0

11
9,

61
6.

00
23

7,
09

6.
00

D
N

F
D

N
F

D
N

F
D

N
F

D
N

F

E
xe

cu
ti

on
 T

im
e

(m
s)

1,
46

2.
20

1,
41

1.
80

1,
45

8.
20

1,
82

1.
20

2,
32

9.
40

3,
58

3.
90

5,
86

8.
00

10
,4

20
.4

0
27

,5
77

.9
0

D
N

F
D

N
F

D
N

F
D

N
F

St
an

da
rd

 D
ev

ia
ti

on
33

2.
58

11
9.

48
12

2.
19

13
2.

63
14

8.
70

13
7.

66
14

8.
88

33
8.

46
3,

69
9.

14
D

N
F

D
N

F
D

N
F

D
N

F

T
ri

pl
es

 p
er

 S
ec

on
d

6.
84

14
.1

7
34

.2
9

54
.9

1
85

.8
6

13
9.

51
17

0.
42

19
1.

93
18

1.
30

D
N

F
D

N
F

D
N

F
D

N
F

F
ile

 S
iz

e
(B

yt
es

)
2,

67
8.

00
4,

64
5.

00
6,

25
3.

00
11

,8
64

.0
0

22
,9

05
.0

0
56

,4
69

.0
0

11
1,

86
2.

00
22

1,
99

1.
00

55
5,

95
6.

00
D

N
F

D
N

F
D

N
F

D
N

F

E
xe

cu
ti

on
 T

im
e

(m
s)

35
.4

0
49

.1
0

11
9.

70
23

3.
50

49
5.

10
1,

28
6.

30
2,

83
9.

50
5,

20
2.

10
D

N
F

D
N

F
D

N
F

D
N

F
D

N
F

St
an

da
rd

 D
ev

ia
ti

on
21

.5
6

0.
88

14
.5

3
28

.5
2

93
.9

0
21

.1
0

17
1.

08
18

6.
73

D
N

F
D

N
F

D
N

F
D

N
F

D
N

F

T
ri

pl
es

 p
er

 S
ec

on
d

28
2.

49
40

7.
33

41
7.

71
42

8.
27

40
3.

96
38

8.
71

35
2.

17
38

4.
46

D
N

F
D

N
F

D
N

F
D

N
F

D
N

F

F
ile

 S
iz

e
(B

yt
es

)
1,

22
8.

00
2,

44
8.

00
5,

78
9.

00
11

,8
64

.0
0

23
,5

21
.0

0
59

,4
73

.0
0

11
9,

06
0.

00
29

0,
67

0.
00

D
N

F
D

N
F

D
N

F
D

N
F

D
N

F

µJena

N-Triple

Androjena

RDF/ XML N3 N-Triple

Mobile RDF

RDF/ XML

Appendix A. Detailed Performance Statistics of the Replication Benchmarks 249

Ta
bl

e
A

.6
:

D
et

ai
le

d
re

su
lts

of
st

or
in

g
R

D
F

da
ta

re
pl

ic
as

on
th

e
M

ot
or

ol
a

M
ile

st
on

e

M
od

el
 S

iz
e

(T
ri

pl
es

)
10

20
50

10
0

20
0

50
0

10
00

20
00

50
00

10
00

0
20

00
0

50
00

0
10

00
00

E
xe

cu
ti

on
 T

im
e

(m
s)

93
.6

0
14

1.
80

13
6.

10
24

2.
10

61
9.

40
1,

38
3.

60
2,

70
3.

30
5,

69
4.

20
14

,6
16

.3
0

30
,6

94
.6

0
66

,1
60

.3
0

D
N

F
D

N
F

St
an

da
rd

 D
ev

ia
ti

on
46

.1
9

6.
76

11
.9

3
1.

85
36

.8
2

75
.1

9
62

.5
5

78
.9

0
13

3.
99

23
6.

04
98

8.
00

D
N

F
D

N
F

T
ri

pl
es

 p
er

 S
ec

on
d

10
6.

84
14

1.
04

36
7.

38
41

3.
05

32
2.

89
36

1.
38

36
9.

92
35

1.
23

34
2.

08
32

5.
79

30
2.

30
D

N
F

D
N

F

F
ile

 S
iz

e
(B

yt
es

)
1,

84
7.

00
3,

47
2.

00
3,

91
2.

00
7,

39
5.

00
14

,4
11

.0
0

36
,0

39
.0

0
71

,7
60

.0
0

14
2,

26
1.

00
36

9,
76

4.
00

73
8,

09
5.

00
1,

41
2,

41
6.

00
D

N
F

D
N

F

E
xe

cu
ti

on
 T

im
e

(m
s)

33
.3

0
44

.5
0

68
.7

0
12

8.
10

24
6.

40
89

2.
80

1,
49

8.
50

2,
92

3.
60

7,
26

8.
50

15
,8

33
.2

0
33

,6
29

.1
0

D
N

F
D

N
F

St
an

da
rd

 D
ev

ia
ti

on
7.

42
0.

53
3.

02
5.

26
7.

75
20

7.
98

43
.8

1
60

.8
4

78
.7

1
1,

10
7.

54
42

5.
26

D
N

F
D

N
F

T
ri

pl
es

 p
er

 S
ec

on
d

30
0.

30
44

9.
44

72
7.

80
78

0.
64

81
1.

69
56

0.
04

66
7.

33
68

4.
09

68
7.

90
63

1.
58

59
4.

72
D

N
F

D
N

F

F
ile

 S
iz

e
(B

yt
es

)
1,

38
5.

00
2,

76
3.

00
4,

59
7.

00
9,

24
3.

00
18

,3
40

.0
0

46
,0

66
.0

0
91

,9
09

.0
0

18
2,

73
4.

00
45

9,
15

0.
00

91
7,

16
7.

00
1,

83
2,

18
1.

00
D

N
F

D
N

F

E
xe

cu
ti

on
 T

im
e

(m
s)

10
4.

50
14

0.
60

29
8.

90
60

5.
80

1,
30

3.
50

3,
31

3.
00

6,
57

0.
70

13
,2

66
.6

0
33

,8
09

.2
0

23
8,

09
5.

70
14

5,
49

7.
50

D
N

F
D

N
F

St
an

da
rd

 D
ev

ia
ti

on
20

.5
1

11
.9

0
11

.5
2

35
.0

2
52

.1
3

59
.9

6
50

.2
9

84
.6

6
46

5.
27

16
0,

26
7.

56
1,

81
8.

58
D

N
F

D
N

F

T
ri

pl
es

 p
er

 S
ec

on
d

95
.6

9
14

2.
25

16
7.

28
16

5.
07

15
3.

43
15

0.
92

15
2.

19
15

0.
75

14
7.

89
42

.0
0

13
7.

46
D

N
F

D
N

F

F
ile

 S
iz

e
(B

yt
es

)
1,

23
2.

00
2,

45
6.

00
5,

80
4.

00
11

,9
10

.0
0

23
,6

13
.0

0
59

,7
75

.0
0

11
9,

61
6.

00
23

7,
09

6.
00

59
3,

85
1.

00
1,

18
7,

88
4.

00
2,

37
9,

02
0.

00
D

N
F

D
N

F

E
xe

cu
ti

on
 T

im
e

(m
s)

76
.4

0
72

.8
0

16
6.

40
28

0.
70

33
4.

80
66

1.
50

1,
32

6.
40

2,
88

7.
80

7,
22

7.
20

14
,9

93
.8

0
26

,3
80

.2
0

D
N

F
D

N
F

St
an

da
rd

 D
ev

ia
ti

on
29

.0
0

13
.3

6
33

.0
6

14
5.

99
10

4.
13

26
.9

0
55

.0
8

61
.2

6
17

2.
31

33
7.

11
5,

59
2.

70
D

N
F

D
N

F

T
ri

pl
es

 p
er

 S
ec

on
d

13
0.

89
27

4.
73

30
0.

48
35

6.
25

59
7.

37
75

5.
86

75
3.

92
69

2.
57

69
1.

83
66

6.
94

75
8.

14
D

N
F

D
N

F

F
ile

 S
iz

e
(B

yt
es

)
2,

68
2.

00
4,

64
9.

00
6,

25
7.

00
11

,8
68

.0
0

22
,9

09
.0

0
56

,4
73

.0
0

11
1,

86
6.

00
22

1,
99

5.
00

55
5,

96
0.

00
1,

11
0,

23
3.

00
1,

63
7,

05
2.

00
D

N
F

D
N

F

E
xe

cu
ti

on
 T

im
e

(m
s)

10
.1

0
18

.9
0

40
.2

0
75

.1
0

15
7.

70
45

0.
60

84
3.

80
D

N
F

D
N

F
D

N
F

D
N

F
D

N
F

D
N

F

St
an

da
rd

 D
ev

ia
ti

on
0.

32
3.

87
4.

87
0.

74
10

.8
8

22
.3

8
24

.3
0

D
N

F
D

N
F

D
N

F
D

N
F

D
N

F
D

N
F

T
ri

pl
es

 p
er

 S
ec

on
d

99
0.

10
1,

05
8.

20
1,

24
3.

78
1,

33
1.

56
1,

26
8.

23
1,

10
9.

63
1,

18
5.

11
D

N
F

D
N

F
D

N
F

D
N

F
D

N
F

D
N

F

F
ile

 S
iz

e
(B

yt
es

)
1,

22
8.

00
2,

44
8.

00
5,

78
9.

00
11

,8
64

.0
0

23
,5

21
.0

0
59

,4
73

.0
0

11
9,

06
0.

00
D

N
F

D
N

F
D

N
F

D
N

F
D

N
F

D
N

F

Androjena

RDF/ XML N3 N-Triple

Mobile RDF

RDF/ XML

µJena

N-Triple

Appendix A. Detailed Performance Statistics of the Replication Benchmarks 250

Ta
bl

e
A

.7
:

D
et

ai
le

d
re

su
lts

of
st

or
in

g
R

D
F

da
ta

re
pl

ic
as

on
th

e
Sa

m
su

ng
G

al
ax

y
S

I9
00

0

M
od

el
 S

iz
e

(T
ri

pl
es

)
10

20
50

10
0

20
0

50
0

10
00

20
00

50
00

10
00

0
20

00
0

50
00

0
10

00
00

E
xe

cu
ti

on
 T

im
e

(m
s)

10
5.

60
11

6.
60

97
.6

0
14

4.
40

31
7.

20
73

5.
40

1,
45

9.
40

2,
71

5.
40

7,
46

7.
90

17
,0

42
.0

0
32

,9
10

.5
0

D
N

F
D

N
F

St
an

da
rd

 D
ev

ia
ti

on
18

.4
6

13
.1

6
9.

44
20

.6
9

22
.5

6
63

.4
4

51
.9

2
12

2.
08

87
.7

6
37

3.
78

1,
10

5.
70

D
N

F
D

N
F

T
ri

pl
es

 p
er

 S
ec

on
d

94
.7

0
17

1.
53

51
2.

30
69

2.
52

63
0.

52
67

9.
90

68
5.

21
73

6.
54

66
9.

53
58

6.
79

60
7.

71
D

N
F

D
N

F

F
ile

 S
iz

e
(B

yt
es

)
1,

84
7.

00
3,

47
2.

00
3,

91
2.

00
7,

39
5.

00
14

,4
11

.0
0

36
,0

39
.0

0
71

,7
60

.0
0

14
2,

26
1.

00
36

9,
76

4.
00

73
8,

09
5.

00
1,

41
2,

41
6.

00
D

N
F

D
N

F

E
xe

cu
ti

on
 T

im
e

(m
s)

63
.9

0
59

.5
0

70
.6

0
92

.6
0

14
5.

20
34

9.
20

74
7.

10
1,

56
6.

90
3,

98
1.

70
9,

30
6.

20
19

,6
68

.5
0

D
N

F
D

N
F

St
an

da
rd

 D
ev

ia
ti

on
6.

82
4.

95
13

.1
3

8.
30

7.
13

32
.4

0
47

.2
8

10
0.

89
19

9.
56

15
5.

59
69

4.
85

D
N

F
D

N
F

T
ri

pl
es

 p
er

 S
ec

on
d

15
6.

49
33

6.
13

70
8.

22
1,

07
9.

91
1,

37
7.

41
1,

43
1.

84
1,

33
8.

51
1,

27
6.

41
1,

25
5.

75
1,

07
4.

55
1,

01
6.

85
D

N
F

D
N

F

F
ile

 S
iz

e
(B

yt
es

)
1,

38
5.

00
2,

76
3.

00
4,

59
7.

00
9,

24
3.

00
18

,3
40

.0
0

46
,0

66
.0

0
91

,9
09

.0
0

18
2,

73
4.

00
45

9,
15

0.
00

91
7,

16
7.

00
1,

83
2,

18
1.

00
D

N
F

D
N

F

E
xe

cu
ti

on
 T

im
e

(m
s)

11
2.

70
13

8.
90

19
9.

00
31

8.
40

66
7.

60
1,

66
9.

80
3,

32
7.

10
6,

45
4.

10
17

,4
63

.6
0

41
,6

45
.0

0
99

,5
75

.2
0

D
N

F
D

N
F

St
an

da
rd

 D
ev

ia
ti

on
19

.9
0

22
.2

3
9.

68
31

.2
1

91
.7

0
64

.3
5

25
7.

44
38

0.
30

19
7.

23
70

8.
54

5,
11

5.
08

D
N

F
D

N
F

T
ri

pl
es

 p
er

 S
ec

on
d

88
.7

3
14

3.
99

25
1.

26
31

4.
07

29
9.

58
29

9.
44

30
0.

56
30

9.
88

28
6.

31
24

0.
13

20
0.

85
D

N
F

D
N

F

F
ile

 S
iz

e
(B

yt
es

)
1,

23
2.

00
2,

45
6.

00
5,

80
4.

00
11

,9
10

.0
0

23
,6

13
.0

0
59

,7
75

.0
0

11
9,

61
6.

00
23

7,
09

6.
00

59
3,

85
1.

00
1,

18
7,

88
4.

00
2,

37
9,

02
0.

00
D

N
F

D
N

F

E
xe

cu
ti

on
 T

im
e

(m
s)

67
.1

0
73

.9
0

75
.9

0
83

.7
0

27
6.

60
35

2.
60

65
5.

40
1,

30
1.

30
3,

09
6.

30
7,

21
5.

40
17

,3
23

.0
0

D
N

F
D

N
F

St
an

da
rd

 D
ev

ia
ti

on
15

.8
0

12
.4

0
9.

53
6.

77
35

2.
16

10
0.

45
33

.2
5

80
.3

0
11

6.
22

29
8.

55
1,

20
0.

68
D

N
F

D
N

F

T
ri

pl
es

 p
er

 S
ec

on
d

14
9.

03
27

0.
64

65
8.

76
1,

19
4.

74
72

3.
07

1,
41

8.
04

1,
52

5.
79

1,
53

6.
92

1,
61

4.
83

1,
38

5.
92

1,
15

4.
53

D
N

F
D

N
F

F
ile

 S
iz

e
(B

yt
es

)
2,

67
2.

00
4,

63
9.

00
6,

24
7.

00
11

,8
58

.0
0

22
,8

99
.0

0
56

,4
63

.0
0

11
1,

85
6.

00
22

1,
98

5.
00

55
5,

95
0.

00
1,

11
0,

22
3.

00
2,

21
7,

57
2.

00
D

N
F

D
N

F

E
xe

cu
ti

on
 T

im
e

(m
s)

31
.6

0
36

.7
0

69
.1

0
12

3.
30

27
0.

20
64

2.
50

1,
34

4.
30

2,
61

8.
50

6,
47

8.
40

D
N

F
D

N
F

D
N

F
D

N
F

St
an

da
rd

 D
ev

ia
ti

on
7.

96
2.

75
5.

15
15

.2
4

14
.4

5
17

.6
8

22
.5

6
42

.0
7

20
5.

29
D

N
F

D
N

F
D

N
F

D
N

F

T
ri

pl
es

 p
er

 S
ec

on
d

31
6.

46
54

4.
96

72
3.

59
81

1.
03

74
0.

19
77

8.
21

74
3.

88
76

3.
80

77
1.

80
D

N
F

D
N

F
D

N
F

D
N

F

F
ile

 S
iz

e
(B

yt
es

)
1,

22
8.

00
2,

44
8.

00
5,

78
9.

00
11

,8
64

.0
0

23
,5

21
.0

0
59

,4
73

.0
0

11
9,

06
0.

00
29

0,
67

0.
00

73
1,

67
0.

00
D

N
F

D
N

F
D

N
F

D
N

F

Mobile RDF

RDF/ XML

µJena

N-Triple

Androjena

RDF/ XML N3 N-Triple

Appendix A. Detailed Performance Statistics of the Replication Benchmarks 251

Ta
bl

e
A

.8
:

D
et

ai
le

d
re

su
lts

of
st

or
in

g
R

D
F

da
ta

re
pl

ic
as

on
th

e
D

el
lS

tr
ea

k
5

M
od

el
 S

iz
e

(T
ri

pl
es

)
10

20
50

10
0

20
0

50
0

10
00

20
00

50
00

10
00

0
20

00
0

50
00

0
10

00
00

E
xe

cu
ti

on
 T

im
e

(m
s)

27
2.

20
29

3.
10

24
4.

20
27

3.
60

35
5.

50
75

9.
80

1,
49

4.
20

2,
85

6.
90

7,
87

6.
50

18
,9

88
.1

0
39

,7
38

.2
0

11
8,

24
6.

57
D

N
F

St
an

da
rd

 D
ev

ia
ti

on
90

.4
5

27
.0

6
10

.4
9

96
.3

3
47

.9
0

53
.1

3
68

.6
6

22
0.

98
14

7.
91

25
5.

13
2,

12
3.

01
66

8.
74

D
N

F

T
ri

pl
es

 p
er

 S
ec

on
d

36
.7

4
68

.2
4

20
4.

75
36

5.
50

56
2.

59
65

8.
07

66
9.

25
70

0.
06

63
4.

80
52

6.
65

50
3.

29
42

2.
85

D
N

F

F
ile

 S
iz

e
(B

yt
es

)
1,

84
7.

00
3,

47
2.

00
3,

91
2.

00
7,

39
5.

00
14

,4
11

.0
0

36
,0

39
.0

0
71

,7
60

.0
0

14
2,

26
1.

00
36

9,
76

4.
00

73
8,

09
5.

00
1,

41
2,

41
6.

00
3,

54
2,

78
2.

00
D

N
F

E
xe

cu
ti

on
 T

im
e

(m
s)

83
.3

0
98

.8
0

18
9.

90
27

1.
60

23
7.

20
40

1.
20

88
0.

10
1,

96
5.

20
5,

03
3.

90
11

,6
18

.7
0

26
,4

17
.6

0
D

N
F

D
N

F

St
an

da
rd

 D
ev

ia
ti

on
26

.4
6

4.
96

87
.3

3
61

.7
0

10
7.

56
29

.5
5

46
.9

5
14

2.
47

31
.1

1
80

.4
7

88
3.

82
D

N
F

D
N

F

T
ri

pl
es

 p
er

 S
ec

on
d

12
0.

05
20

2.
43

26
3.

30
36

8.
19

84
3.

17
1,

24
6.

26
1,

13
6.

23
1,

01
7.

71
99

3.
27

86
0.

68
75

7.
07

D
N

F
D

N
F

F
ile

 S
iz

e
(B

yt
es

)
1,

38
5.

00
2,

76
3.

00
4,

59
7.

00
9,

24
3.

00
18

,3
40

.0
0

46
,0

66
.0

0
91

,9
09

.0
0

18
2,

73
4.

00
45

9,
15

0.
00

91
7,

16
7.

00
1,

83
2,

18
1.

00
D

N
F

D
N

F

E
xe

cu
ti

on
 T

im
e

(m
s)

11
6.

30
19

8.
30

43
9.

10
57

2.
10

74
6.

90
1,

43
0.

10
2,

79
7.

70
5,

60
7.

20
18

,4
88

.2
0

42
,1

04
.9

0
73

,5
66

.1
0

19
3,

68
1.

60
D

N
F

St
an

da
rd

 D
ev

ia
ti

on
12

.2
4

1.
06

16
.9

7
14

7.
99

18
6.

19
61

.3
7

62
.2

8
73

.6
1

6,
58

9.
79

91
1.

99
5,

02
1.

44
2,

36
4.

33
D

N
F

T
ri

pl
es

 p
er

 S
ec

on
d

85
.9

8
10

0.
86

11
3.

87
17

4.
79

26
7.

77
34

9.
63

35
7.

44
35

6.
68

27
0.

44
23

7.
50

27
1.

86
25

8.
16

D
N

F

F
ile

 S
iz

e
(B

yt
es

)
1,

23
2.

00
2,

45
6.

00
5,

80
4.

00
11

,9
10

.0
0

23
,6

13
.0

0
59

,7
75

.0
0

11
9,

61
6.

00
23

7,
09

6.
00

59
3,

85
1.

00
1,

18
7,

88
4.

00
2,

37
9,

02
0.

00
5,

92
9,

18
6.

00
D

N
F

E
xe

cu
ti

on
 T

im
e

(m
s)

77
.2

0
84

.6
0

10
9.

20
18

3.
80

33
2.

20
33

0.
20

61
5.

40
1,

48
8.

70
2,

79
7.

00
6,

85
5.

00
18

,7
17

.0
0

D
N

F
D

N
F

St
an

da
rd

 D
ev

ia
ti

on
32

.3
9

8.
87

5.
79

13
.1

6
65

.3
2

66
.9

7
10

.3
1

98
2.

99
93

.8
7

23
8.

32
1,

85
5.

15
D

N
F

D
N

F

T
ri

pl
es

 p
er

 S
ec

on
d

12
9.

53
23

6.
41

45
7.

88
54

4.
07

60
2.

05
1,

51
4.

23
1,

62
4.

96
1,

34
3.

45
1,

78
7.

63
1,

45
8.

79
1,

06
8.

55
D

N
F

D
N

F

F
ile

 S
iz

e
(B

yt
es

)
2,

67
8.

00
4,

64
5.

00
6,

25
3.

00
11

,8
64

.0
0

22
,9

05
.0

0
56

,4
69

.0
0

11
1,

86
2.

00
22

1,
99

1.
00

55
5,

95
6.

00
1,

11
0,

22
9.

00
2,

21
7,

57
8.

00
D

N
F

D
N

F

E
xe

cu
ti

on
 T

im
e

(m
s)

25
.6

0
24

.0
0

47
.6

0
99

.5
0

30
5.

10
55

5.
60

1,
16

2.
60

2,
30

9.
80

5,
45

9.
90

D
N

F
D

N
F

D
N

F
D

N
F

St
an

da
rd

 D
ev

ia
ti

on
9.

98
4.

06
1.

35
32

.8
6

20
1.

52
34

.8
0

33
.1

8
14

0.
37

62
.2

0
D

N
F

D
N

F
D

N
F

D
N

F

T
ri

pl
es

 p
er

 S
ec

on
d

39
0.

63
83

3.
33

1,
05

0.
42

1,
00

5.
03

65
5.

52
89

9.
93

86
0.

14
86

5.
88

91
5.

77
D

N
F

D
N

F
D

N
F

D
N

F

F
ile

 S
iz

e
(B

yt
es

)
1,

22
8.

00
2,

44
8.

00
5,

78
9.

00
11

,8
64

.0
0

23
,5

21
.0

0
59

,4
73

.0
0

11
9,

06
0.

00
29

0,
67

0.
00

73
1,

67
0.

00
D

N
F

D
N

F
D

N
F

D
N

F

µJena

N-Triple

Androjena

RDF/ XML N3 N-Triple

Mobile RDF

RDF/ XML

Appendix A. Detailed Performance Statistics of the Replication Benchmarks 252

Ta
bl

e
A

.9
:

D
et

ai
le

d
re

su
lts

of
ad

di
ng

da
ta

to
R

D
F

da
ta

re
pl

ic
as

us
in

g
th

e
A

nd
ro

je
na

fr
am

ew
or

k
on

th
e

H
T

C
G

1

M
od

el
 S

iz
e

A
dd

 1
St

d.
 D

ev
.

T
ri

pl
es

/S
ec

A
dd

 1
0

St
d.

 D
ev

.
T
ri

pl
es

/S
ec

A
dd

 1
00

St
d.

 D
ev

.
T
ri

pl
es

/S
ec

A
dd

 5
00

St
d.

 D
ev

.
T
ri

pl
es

/S
ec

A
dd

 1
00

0
St

d.
 D

ev
.

T
ri

pl
es

/S
ec

10
1.

60
0.

52
62

5.
00

16
.9

0
4.

65
59

1.
72

16
7.

80
56

.0
7

59
5.

95
94

4.
50

11
7.

21
52

9.
38

1,
61

4.
60

13
7.

40
61

9.
35

20
1.

50
0.

53
66

6.
67

14
.6

0
0.

97
68

4.
93

14
4.

70
14

.9
4

69
1.

09
95

8.
90

8.
77

52
1.

43
1,

70
3.

30
30

.1
6

58
7.

10
50

1.
50

0.
53

66
6.

67
14

.3
0

0.
48

69
9.

30
13

8.
80

1.
40

72
0.

46
72

4.
70

7.
02

68
9.

94
1,

70
2.

40
11

.0
7

58
7.

41
10

0
1.

40
0.

52
71

4.
29

14
.6

0
0.

52
68

4.
93

14
2.

80
1.

55
70

0.
28

98
5.

20
21

.0
5

50
7.

51
1,

71
5.

40
13

.7
9

58
2.

95
20

0
1.

30
0.

48
76

9.
23

14
.5

0
0.

53
68

9.
66

14
1.

40
1.

43
70

7.
21

73
8.

90
17

.5
9

67
6.

68
1,

73
6.

10
12

.9
1

57
6.

00
50

0
1.

40
0.

52
71

4.
29

14
.7

0
0.

48
68

0.
27

14
3.

20
2.

25
69

8.
32

75
0.

30
81

.5
8

66
6.

40
1,

87
5.

80
14

8.
80

53
3.

11
1,

00
0

1.
40

0.
52

71
4.

29
14

.9
0

0.
57

67
1.

14
14

6.
10

2.
18

68
4.

46
75

7.
80

5.
90

65
9.

80
1,

67
1.

10
13

8.
86

59
8.

41
2,

00
0

1.
60

0.
52

62
5.

00
14

.8
0

0.
63

67
5.

68
15

9.
20

35
.1

8
62

8.
14

78
1.

10
78

.0
8

64
0.

12
1,

99
8.

10
37

0.
42

50
0.

48
5,

00
0

1.
40

0.
52

71
4.

29
15

.3
0

0.
48

65
3.

59
25

6.
80

23
7.

02
38

9.
41

84
3.

70
24

6.
54

59
2.

63
1,

87
5.

50
25

6.
10

53
3.

19
10

,0
00

D
N

F
D

N
F

D
N

F
D

N
F

D
N

F
D

N
F

D
N

F
D

N
F

D
N

F
D

N
F

D
N

F
D

N
F

D
N

F
D

N
F

D
N

F
20

,0
00

D
N

F
D

N
F

D
N

F
D

N
F

D
N

F
D

N
F

D
N

F
D

N
F

D
N

F
D

N
F

D
N

F
D

N
F

D
N

F
D

N
F

D
N

F
50

,0
00

D
N

F
D

N
F

D
N

F
D

N
F

D
N

F
D

N
F

D
N

F
D

N
F

D
N

F
D

N
F

D
N

F
D

N
F

D
N

F
D

N
F

D
N

F
10

0,
00

0
D

N
F

D
N

F
D

N
F

D
N

F
D

N
F

D
N

F
D

N
F

D
N

F
D

N
F

D
N

F
D

N
F

D
N

F
D

N
F

D
N

F
D

N
F

68
9.

97
67

0.
14

64
6.

15
60

9.
32

56
8.

67

Ta
bl

e
A

.1
0:

D
et

ai
le

d
re

su
lts

of
ad

di
ng

da
ta

to
R

D
F

da
ta

re
pl

ic
as

us
in

g
th

e
A

nd
ro

je
na

fr
am

ew
or

k
on

th
e

M
ot

or
ol

a
M

ile
st

on
e

M
od

el
 S

iz
e

A
dd

 1
St

d.
 D

ev
.

T
ri

pl
es

/S
ec

A
dd

 1
0

St
d.

 D
ev

.
T
ri

pl
es

/S
ec

A
dd

 1
00

St
d.

 D
ev

.
T
ri

pl
es

/S
ec

A
dd

 5
00

St
d.

 D
ev

.
T
ri

pl
es

/S
ec

A
dd

 1
00

0
St

d.
 D

ev
.

T
ri

pl
es

/S
ec

10
0.

60
0.

70
1,

66
6.

67
5.

30
4.

11
1,

88
6.

79
36

.9
0

0.
88

2,
71

0.
03

20
0.

70
30

.5
4

2,
49

1.
28

52
7.

10
40

.9
9

1,
89

7.
17

20
0.

20
0.

42
5,

00
0.

00
4.

00
0.

47
2,

50
0.

00
37

.9
0

4.
63

2,
63

8.
52

19
1.

30
5.

38
2,

61
3.

70
41

1.
80

40
.1

2
2,

42
8.

36
50

0.
90

0.
32

1,
11

1.
11

3.
50

0.
53

2,
85

7.
14

36
.9

0
0.

99
2,

71
0.

03
36

5.
30

14
5.

52
1,

36
8.

74
39

6.
20

11
.3

4
2,

52
3.

98
10

0
0.

50
0.

53
2,

00
0.

00
3.

90
0.

32
2,

56
4.

10
15

5.
10

2.
88

64
4.

75
19

2.
80

3.
33

2,
59

3.
36

43
3.

00
45

.6
6

2,
30

9.
47

20
0

0.
50

0.
53

2,
00

0.
00

4.
10

0.
32

2,
43

9.
02

38
.5

0
5.

82
2,

59
7.

40
19

3.
50

3.
75

2,
58

3.
98

50
4.

90
3.

78
1,

98
0.

59
50

0
0.

40
0.

52
2,

50
0.

00
3.

80
0.

42
2,

63
1.

58
38

.1
0

2.
81

2,
62

4.
67

31
9.

60
4.

45
1,

56
4.

46
55

0.
70

58
.0

6
1,

81
5.

87
1,

00
0

0.
30

0.
48

3,
33

3.
33

3.
90

0.
32

2,
56

4.
10

37
.7

0
0.

48
2,

65
2.

52
20

1.
60

0.
97

2,
48

0.
16

52
9.

00
22

.2
4

1,
89

0.
36

2,
00

0
0.

40
0.

52
2,

50
0.

00
4.

20
0.

63
2,

38
0.

95
39

.6
0

0.
52

2,
52

5.
25

20
8.

30
42

.7
6

2,
40

0.
38

57
0.

50
64

.0
1

1,
75

2.
85

5,
00

0
0.

60
0.

52
1,

66
6.

67
3.

90
0.

32
2,

56
4.

10
37

.2
0

1.
03

2,
68

8.
17

20
0.

70
21

.5
4

2,
49

1.
28

39
8.

60
16

.9
3

2,
50

8.
78

10
,0

00
0.

50
0.

53
2,

00
0.

00
4.

00
0.

00
2,

50
0.

00
36

.5
0

0.
53

2,
73

9.
73

21
7.

50
73

.6
8

2,
29

8.
85

41
3.

20
78

.6
6

2,
42

0.
14

20
,0

00
0.

14
0.

38
7,

00
0.

00
3.

80
0.

42
2,

63
1.

58
40

.2
9

6.
95

2,
48

2.
27

32
6.

50
19

8.
86

1,
53

1.
39

42
4.

30
10

0.
99

2,
35

6.
82

50
,0

00
D

N
F

D
N

F
D

N
F

D
N

F
D

N
F

D
N

F
D

N
F

D
N

F
D

N
F

D
N

F
D

N
F

D
N

F
D

N
F

D
N

F
D

N
F

10
0,

00
0

D
N

F
D

N
F

D
N

F
D

N
F

D
N

F
D

N
F

D
N

F
D

N
F

D
N

F
D

N
F

D
N

F
D

N
F

D
N

F
D

N
F

D
N

F
2,

79
7.

98
2,

50
1.

76
2,

45
5.

76
2,

21
9.

78
2,

17
1.

31

Appendix A. Detailed Performance Statistics of the Replication Benchmarks 253

Ta
bl

e
A

.1
1:

D
et

ai
le

d
re

su
lts

of
ad

di
ng

da
ta

to
R

D
F

da
ta

re
pl

ic
as

us
in

g
th

e
A

nd
ro

je
na

fr
am

ew
or

k
on

th
e

Sa
m

su
ng

G
al

ax
y

S
I9

00
0

M
od

el
 S

iz
e

A
dd

 1
St

d.
 D

ev
.

T
ri

pl
es

/S
ec

A
dd

 1
0

St
d.

 D
ev

.
T
ri

pl
es

/S
ec

A
dd

 1
00

St
d.

 D
ev

.
T
ri

pl
es

/S
ec

A
dd

 5
00

St
d.

 D
ev

.
T
ri

pl
es

/S
ec

A
dd

 1
00

0
St

d.
 D

ev
.

T
ri

pl
es

/S
ec

10
0.

30
0.

48
3,

33
3.

33
2.

60
2.

27
3,

84
6.

15
20

.6
0

18
.8

2
4,

85
4.

37
94

.7
0

31
.0

0
5,

27
9.

83
17

7.
80

31
.3

7
5,

62
4.

30
20

0.
30

0.
79

3,
33

3.
33

1.
40

0.
52

7,
14

2.
86

14
.4

0
2.

46
6,

94
4.

44
13

5.
00

5.
89

3,
70

3.
70

21
5.

40
7.

56
4,

64
2.

53
50

0.
30

0.
48

3,
33

3.
33

1.
80

1.
23

5,
55

5.
56

15
.1

0
2.

02
6,

62
2.

52
82

.6
0

6.
43

6,
05

3.
27

22
7.

90
27

.0
4

4,
38

7.
89

10
0

0.
30

0.
48

3,
33

3.
33

1.
70

1.
25

5,
88

2.
35

16
.0

0
1.

76
6,

25
0.

00
13

6.
90

6.
23

3,
65

2.
30

22
6.

90
17

.6
8

4,
40

7.
23

20
0

0.
20

0.
42

5,
00

0.
00

1.
80

1.
23

5,
55

5.
56

15
.6

0
2.

41
6,

41
0.

26
12

7.
10

66
.0

4
3,

93
3.

91
22

9.
20

16
.8

2
4,

36
3.

00
50

0
0.

30
0.

48
3,

33
3.

33
2.

00
1.

15
5,

00
0.

00
16

.5
0

1.
65

6,
06

0.
61

86
.3

0
7.

02
5,

79
3.

74
24

6.
50

38
.6

0
4,

05
6.

80
1,

00
0

0.
30

0.
48

3,
33

3.
33

1.
60

0.
52

6,
25

0.
00

16
.3

0
1.

42
6,

13
4.

97
10

5.
50

59
.7

1
4,

73
9.

34
18

8.
00

41
.7

9
5,

31
9.

15
2,

00
0

0.
20

0.
42

5,
00

0.
00

2.
00

1.
49

5,
00

0.
00

19
.3

0
4.

74
5,

18
1.

35
84

.6
0

4.
30

5,
91

0.
17

28
8.

10
80

.5
8

3,
47

1.
02

5,
00

0
0.

60
0.

97
1,

66
6.

67
1.

70
0.

48
5,

88
2.

35
16

.1
0

4.
01

6,
21

1.
18

96
.2

0
36

.5
0

5,
19

7.
51

29
4.

40
35

.0
3

3,
39

6.
74

10
,0

00
0.

20
0.

42
5,

00
0.

00
1.

60
0.

52
6,

25
0.

00
73

.4
0

91
.3

4
1,

36
2.

40
83

.5
0

3.
69

5,
98

8.
02

30
2.

30
10

6.
11

3,
30

7.
97

20
,0

00
0.

40
0.

52
2,

50
0.

00
1.

90
0.

32
5,

26
3.

16
17

.1
0

5.
11

5,
84

7.
95

83
.1

0
10

.8
5

6,
01

6.
85

17
9.

00
57

.4
2

5,
58

6.
59

50
,0

00
0.

20
0.

42
5,

00
0.

00
2.

00
0.

67
5,

00
0.

00
15

.1
4

0.
38

6,
60

3.
77

20
6.

70
18

5.
94

2,
41

8.
96

53
3.

50
24

8.
22

1,
87

4.
41

10
0,

00
0

D
N

F
D

N
F

D
N

F
D

N
F

D
N

F
D

N
F

D
N

F
D

N
F

D
N

F
D

N
F

D
N

F
D

N
F

D
N

F
D

N
F

D
N

F
3,

68
0.

56
5,

55
2.

33
5,

70
6.

98
4,

89
0.

63
4,

20
3.

14

Ta
bl

e
A

.1
2:

D
et

ai
le

d
re

su
lts

of
ad

di
ng

da
ta

to
R

D
F

da
ta

re
pl

ic
as

us
in

g
th

e
A

nd
ro

je
na

fr
am

ew
or

k
on

th
e

D
el

lS
tr

ea
k

5

M
od

el
 S

iz
e

A
dd

 1
St

d.
 D

ev
.

T
ri

pl
es

/S
ec

A
dd

 1
0

St
d.

 D
ev

.
T
ri

pl
es

/S
ec

A
dd

 1
00

St
d.

 D
ev

.
T
ri

pl
es

/S
ec

A
dd

 5
00

St
d.

 D
ev

.
T
ri

pl
es

/S
ec

A
dd

 1
00

0
St

d.
 D

ev
.

T
ri

pl
es

/S
ec

10
0.

70
0.

48
1,

42
8.

57
7.

00
3.

74
1,

42
8.

57
53

.0
0

21
.3

0
1,

88
6.

79
23

3.
70

55
.5

3
2,

13
9.

50
44

0.
30

16
5.

33
2,

27
1.

18
20

0.
30

0.
42

3,
33

3.
33

5.
70

1.
89

1,
75

4.
39

27
.0

0
16

.6
6

3,
70

3.
70

15
0.

70
29

.0
8

3,
31

7.
85

20
5.

60
0.

84
4,

86
3.

81
50

0.
30

0.
48

3,
33

3.
33

5.
10

1.
66

1,
96

0.
78

26
.1

0
16

.9
8

3,
83

1.
42

69
.9

0
0.

99
7,

15
3.

08
20

8.
20

1.
48

4,
80

3.
07

10
0

0.
10

0.
32

10
,0

00
.0

0
1.

20
0.

42
8,

33
3.

33
13

.8
0

1.
62

7,
24

6.
38

15
3.

00
31

.4
4

3,
26

7.
97

21
9.

60
23

.7
1

4,
55

3.
73

20
0

0.
30

0.
48

3,
33

3.
33

1.
60

0.
70

6,
25

0.
00

13
.2

0
0.

79
7,

57
5.

76
76

.9
0

20
.0

9
6,

50
1.

95
21

4.
90

0.
88

4,
65

3.
33

50
0

0.
10

0.
32

10
,0

00
.0

0
1.

60
0.

52
6,

25
0.

00
14

.7
0

2.
41

6,
80

2.
72

71
.5

0
1.

72
6,

99
3.

01
26

2.
80

10
7.

86
3,

80
5.

18
1,

00
0

0.
20

0.
42

5,
00

0.
00

1.
60

0.
52

6,
25

0.
00

13
.9

0
0.

32
7,

19
4.

24
87

.2
0

23
.4

9
5,

73
3.

94
16

8.
10

45
.6

4
5,

94
8.

84
2,

00
0

0.
80

0.
92

1,
25

0.
00

1.
60

0.
97

6,
25

0.
00

18
.0

0
7.

27
5,

55
5.

56
75

.0
0

4.
50

6,
66

6.
67

25
4.

00
42

.1
8

3,
93

7.
01

5,
00

0
0.

20
0.

42
5,

00
0.

00
1.

60
0.

52
6,

25
0.

00
13

.5
0

0.
71

7,
40

7.
41

83
.4

0
45

.5
4

5,
99

5.
20

29
5.

00
4.

29
3,

38
9.

83
10

,0
00

0.
10

0.
32

10
,0

00
.0

0
1.

70
0.

48
5,

88
2.

35
69

.0
0

11
8.

09
1,

44
9.

28
76

.5
0

10
.5

8
6,

53
5.

95
33

4.
70

10
7.

14
2,

98
7.

75
20

,0
00

0.
10

0.
32

10
,0

00
.0

0
2.

00
0.

82
5,

00
0.

00
18

.1
0

7.
36

5,
52

4.
86

81
.8

0
3.

79
6,

11
2.

47
22

3.
30

10
8.

36
4,

47
8.

28
50

,0
00

0.
10

0.
32

10
,0

00
.0

0
4.

30
1.

77
2,

32
5.

58
17

.5
0

6.
94

5,
05

0.
51

14
8.

00
14

1.
52

3,
37

8.
38

18
1.

60
67

.3
3

5,
50

6.
61

10
0,

00
0

D
N

F
D

N
F

D
N

F
2.

40
1.

07
4,

16
6.

67
23

.3
6

D
N

F
D

N
F

96
.6

3
D

N
F

D
N

F
49

6.
80

24
4.

38
2,

01
2.

88
6,

05
6.

55
4,

77
7.

05
5,

26
9.

05
5,

31
6.

33
4,

09
3.

19

Appendix A. Detailed Performance Statistics of the Replication Benchmarks 254

Ta
bl

e
A

.1
3:

D
et

ai
le

d
re

su
lts

of
ad

di
ng

da
ta

to
R

D
F

da
ta

re
pl

ic
as

us
in

g
th

e
µ

Je
na

fr
am

ew
or

k
on

th
e

H
T

C
G

1

M
od

el
 S

iz
e

A
dd

 1
St

d.
 D

ev
.

T
ri

pl
es

/S
ec

A
dd

 1
0

St
d.

 D
ev

.
T
ri

pl
es

/S
ec

A
dd

 1
00

St
d.

 D
ev

.
T
ri

pl
es

/S
ec

A
dd

 5
00

St
d.

 D
ev

.
T
ri

pl
es

/S
ec

A
dd

 1
00

0
St

d.
 D

ev
.

T
ri

pl
es

/S
ec

10
3.

40
0.

52
29

4.
12

65
.0

0
10

.9
3

15
3.

85
3,

64
2.

50
47

5.
52

27
.4

5
82

,0
54

.6
0

6,
87

5.
91

6.
09

2,
89

2,
06

2.
40

8,
03

5,
94

7.
32

0.
35

20
4.

10
0.

32
24

3.
90

67
.3

0
0.

82
14

8.
59

3,
65

6.
80

55
.9

7
27

.3
5

82
,0

41
.8

0
1,

01
1.

25
6.

09
34

1,
81

1.
20

4,
46

6.
82

2.
93

50
4.

30
0.

48
23

2.
56

74
.0

0
10

.5
8

13
5.

14
3,

71
0.

80
14

1.
64

26
.9

5
81

,0
47

.5
0

95
9.

62
6.

17
34

4,
48

4.
70

11
,4

01
.4

0
2.

90
10

0
5.

40
0.

52
18

5.
19

93
.1

0
36

.8
8

10
7.

41
3,

76
7.

00
12

7.
22

26
.5

5
80

,6
55

.9
0

1,
74

5.
70

6.
20

34
7,

91
6.

00
16

,6
97

.7
4

2.
87

20
0

14
.7

0
0.

82
68

.0
3

19
2.

00
44

.3
2

52
.0

8
5,

18
2.

40
80

9.
84

19
.3

0
92

,1
97

.2
0

10
,7

96
.8

9
5.

42
37

9,
11

9.
10

31
,9

98
.1

6
2.

64
50

0
23

.1
0

0.
74

43
.2

9
26

8.
20

4.
47

37
.2

9
5,

76
9.

60
16

6.
19

17
.3

3
92

,6
82

.6
0

2,
91

3.
83

5.
39

38
1,

29
9.

20
18

,3
33

.3
9

2.
62

1,
00

0
38

.9
0

2.
13

25
.7

1
42

9.
00

62
.2

8
23

.3
1

7,
55

9.
80

22
7.

09
13

.2
3

10
5,

99
2.

30
1,

33
5.

51
4.

72
41

0,
49

2.
50

6,
89

7.
45

2.
44

2,
00

0
37

0.
10

15
.0

3
2.

70
4,

07
2.

00
90

2.
84

2.
46

43
,9

08
.9

0
9,

51
0.

07
2.

28
1,

03
9,

86
5.

00
2,

45
1,

38
3.

76
0.

48
73

5,
10

0.
30

74
,3

86
.1

4
1.

36
5,

00
0

D
N

F
D

N
F

D
N

F
D

N
F

D
N

F
D

N
F

D
N

F
D

N
F

D
N

F
D

N
F

D
N

F
D

N
F

D
N

F
D

N
F

D
N

F
10

,0
00

D
N

F
D

N
F

D
N

F
D

N
F

D
N

F
D

N
F

D
N

F
D

N
F

D
N

F
D

N
F

D
N

F
D

N
F

D
N

F
D

N
F

D
N

F
20

,0
00

D
N

F
D

N
F

D
N

F
D

N
F

D
N

F
D

N
F

D
N

F
D

N
F

D
N

F
D

N
F

D
N

F
D

N
F

D
N

F
D

N
F

D
N

F
50

,0
00

D
N

F
D

N
F

D
N

F
D

N
F

D
N

F
D

N
F

D
N

F
D

N
F

D
N

F
D

N
F

D
N

F
D

N
F

D
N

F
D

N
F

D
N

F
10

0,
00

0
D

N
F

D
N

F
D

N
F

D
N

F
D

N
F

D
N

F
D

N
F

D
N

F
D

N
F

D
N

F
D

N
F

D
N

F
D

N
F

D
N

F
D

N
F

13
6.

94
82

.5
1

20
.0

5
5.

07
2.

26

Ta
bl

e
A

.1
4:

D
et

ai
le

d
re

su
lts

of
ad

di
ng

da
ta

to
R

D
F

da
ta

re
pl

ic
as

us
in

g
th

e
µ

Je
na

fr
am

ew
or

k
on

th
e

M
ot

or
ol

a
M

ile
st

on
e

M
od

el
 S

iz
e

A
dd

 1
St

d.
 D

ev
.

T
ri

pl
es

/S
ec

A
dd

 1
0

St
d.

 D
ev

.
T
ri

pl
es

/S
ec

A
dd

 1
00

St
d.

 D
ev

.
T
ri

pl
es

/S
ec

A
dd

 5
00

St
d.

 D
ev

.
T
ri

pl
es

/S
ec

A
dd

 1
00

0
St

d.
 D

ev
.

T
ri

pl
es

/S
ec

10
1.

90
1.

52
52

6.
32

23
.9

0
2.

51
41

8.
41

12
,9

80
.8

0
24

,5
31

.2
6

7.
70

19
9,

16
6.

70
12

0,
51

3.
92

2.
51

95
9,

21
8.

60
55

4,
18

4.
63

1.
04

20
1.

40
0.

52
71

4.
29

25
.4

0
1.

26
39

3.
70

17
,6

23
.1

0
26

,6
39

.3
9

5.
67

27
1,

33
0.

00
44

,0
26

.6
3

1.
84

1,
22

9,
65

3.
80

76
,5

83
.2

9
0.

81
50

1.
80

0.
63

55
5.

56
26

.3
0

0.
95

38
0.

23
24

,8
10

.4
0

30
,4

09
.3

0
4.

03
30

2,
40

7.
10

43
,8

41
.5

1
1.

65
1,

29
8,

56
0.

70
11

4,
41

4.
09

0.
77

10
0

2.
10

0.
32

47
6.

19
2,

92
2.

70
9,

13
9.

79
3.

42
7,

90
6.

00
13

,9
70

.6
9

12
.6

5
30

5,
83

6.
30

52
,1

40
.8

3
1.

63
1,

30
2,

17
2.

00
11

4,
49

2.
45

0.
77

20
0

3.
00

0.
00

33
3.

33
42

.4
0

6.
42

23
5.

85
6,

83
0.

20
16

,9
56

.6
4

14
.6

4
13

1,
55

1.
50

13
6,

51
4.

47
3.

80
47

0,
19

3.
00

56
5,

24
2.

70
2.

13
50

0
5.

80
0.

42
17

2.
41

68
.9

0
2.

56
14

5.
14

1,
75

3.
60

54
.8

1
57

.0
3

32
,5

15
.0

0
13

1.
70

15
.3

8
13

6,
44

7.
90

3,
59

2.
99

7.
33

1,
00

0
83

.4
0

39
.9

0
11

.9
9

27
9.

90
57

.7
2

35
.7

3
4,

07
7.

10
60

4.
46

24
.5

3
44

,6
40

.6
0

4,
84

0.
14

11
.2

0
16

0,
41

5.
80

11
,6

47
.8

6
6.

23
2,

00
0

D
N

F
D

N
F

D
N

F
D

N
F

D
N

F
D

N
F

D
N

F
D

N
F

D
N

F
D

N
F

D
N

F
D

N
F

D
N

F
D

N
F

D
N

F
5,

00
0

D
N

F
D

N
F

D
N

F
D

N
F

D
N

F
D

N
F

D
N

F
D

N
F

D
N

F
D

N
F

D
N

F
D

N
F

D
N

F
D

N
F

D
N

F
10

,0
00

D
N

F
D

N
F

D
N

F
D

N
F

D
N

F
D

N
F

D
N

F
D

N
F

D
N

F
D

N
F

D
N

F
D

N
F

D
N

F
D

N
F

D
N

F
20

,0
00

D
N

F
D

N
F

D
N

F
D

N
F

D
N

F
D

N
F

D
N

F
D

N
F

D
N

F
D

N
F

D
N

F
D

N
F

D
N

F
D

N
F

D
N

F
50

,0
00

D
N

F
D

N
F

D
N

F
D

N
F

D
N

F
D

N
F

D
N

F
D

N
F

D
N

F
D

N
F

D
N

F
D

N
F

D
N

F
D

N
F

D
N

F
10

0,
00

0
D

N
F

D
N

F
D

N
F

D
N

F
D

N
F

D
N

F
D

N
F

D
N

F
D

N
F

D
N

F
D

N
F

D
N

F
D

N
F

D
N

F
D

N
F

39
8.

58
23

0.
35

18
.0

4
5.

43
2.

73

Appendix A. Detailed Performance Statistics of the Replication Benchmarks 255

Ta
bl

e
A

.1
5:

D
et

ai
le

d
re

su
lts

of
ad

di
ng

da
ta

to
R

D
F

da
ta

re
pl

ic
as

us
in

g
th

e
µ

Je
na

fr
am

ew
or

k
on

th
e

Sa
m

su
ng

G
al

ax
y

S
I9

00
0

M
od

el
 S

iz
e

A
dd

 1
St

d.
 D

ev
.

T
ri

pl
es

/S
ec

A
dd

 1
0

St
d.

 D
ev

.
T
ri

pl
es

/S
ec

A
dd

 1
00

St
d.

 D
ev

.
T
ri

pl
es

/S
ec

A
dd

 5
00

St
d.

 D
ev

.
T
ri

pl
es

/S
ec

A
dd

 1
00

0
St

d.
 D

ev
.

T
ri

pl
es

/S
ec

10
0.

20
0.

42
5,

00
0.

00
8.

40
11

.4
7

1,
19

0.
48

30
2.

40
19

1.
00

33
0.

69
6,

33
6.

30
80

7.
39

78
.9

1
34

,7
21

.3
0

11
,5

72
.1

9
28

.8
0

20
0.

40
0.

52
2,

50
0.

00
5.

10
0.

32
1,

96
0.

78
23

7.
90

3.
57

42
0.

34
5,

91
1.

10
58

.0
3

84
.5

9
26

,6
14

.1
0

29
2.

43
37

.5
7

50
0.

50
0.

53
2,

00
0.

00
5.

20
0.

42
1,

92
3.

08
27

0.
10

3.
48

37
0.

23
5,

93
1.

50
55

.3
0

84
.3

0
28

,5
72

.5
0

2,
67

3.
60

35
.0

0
10

0
0.

40
0.

52
2,

50
0.

00
5.

80
0.

42
1,

72
4.

14
24

3.
60

2.
72

41
0.

51
6,

03
9.

20
20

.6
8

82
.7

9
28

,0
94

.9
0

2,
93

5.
94

35
.5

9
20

0
0.

80
0.

42
1,

25
0.

00
7.

40
0.

52
1,

35
1.

35
26

4.
40

9.
58

37
8.

21
6,

17
6.

10
52

.6
1

80
.9

6
27

,5
66

.2
0

96
9.

46
36

.2
8

50
0

1.
00

0.
00

1,
00

0.
00

12
.2

0
0.

42
81

9.
67

30
5.

80
2.

25
32

7.
01

6,
58

8.
00

25
.5

9
75

.9
0

31
,5

32
.0

0
82

5.
51

31
.7

1
1,

00
0

2.
00

0.
00

50
0.

00
49

.2
0

20
.2

3
20

3.
25

42
1.

50
3.

06
23

7.
25

7,
28

9.
70

12
8.

28
68

.5
9

32
,9

89
.0

0
4,

56
0.

55
30

.3
1

2,
00

0
11

.3
0

0.
67

88
.5

0
15

6.
60

47
.2

2
63

.8
6

1,
43

3.
00

43
.5

2
69

.7
8

11
,9

19
.6

0
45

.5
9

41
.9

5
38

,4
51

.2
0

55
0.

75
26

.0
1

5,
00

0
35

.2
0

18
.5

6
28

.4
1

39
2.

50
44

.8
6

25
.4

8
3,

26
7.

80
45

.3
6

30
.6

0
20

,8
92

.7
0

53
.0

7
23

.9
3

55
,4

96
.5

0
10

9.
87

18
.0

2
10

,0
00

D
N

F
D

N
F

D
N

F
D

N
F

D
N

F
D

N
F

D
N

F
D

N
F

D
N

F
D

N
F

D
N

F
D

N
F

D
N

F
D

N
F

D
N

F
20

,0
00

D
N

F
D

N
F

D
N

F
D

N
F

D
N

F
D

N
F

D
N

F
D

N
F

D
N

F
D

N
F

D
N

F
D

N
F

D
N

F
D

N
F

D
N

F
50

,0
00

D
N

F
D

N
F

D
N

F
D

N
F

D
N

F
D

N
F

D
N

F
D

N
F

D
N

F
D

N
F

D
N

F
D

N
F

D
N

F
D

N
F

D
N

F
10

0,
00

0
D

N
F

D
N

F
D

N
F

D
N

F
D

N
F

D
N

F
D

N
F

D
N

F
D

N
F

D
N

F
D

N
F

D
N

F
D

N
F

D
N

F
D

N
F

1,
65

1.
88

1,
02

9.
12

28
6.

07
69

.1
0

31
.0

3

Ta
bl

e
A

.1
6:

D
et

ai
le

d
re

su
lts

of
ad

di
ng

da
ta

to
R

D
F

da
ta

re
pl

ic
as

us
in

g
th

e
µ

Je
na

fr
am

ew
or

k
on

th
e

D
el

lS
tr

ea
k

5

M
od

el
 S

iz
e

A
dd

 1
St

d.
 D

ev
.

T
ri

pl
es

/S
ec

A
dd

 1
0

St
d.

 D
ev

.
T
ri

pl
es

/S
ec

A
dd

 1
00

St
d.

 D
ev

.
T
ri

pl
es

/S
ec

A
dd

 5
00

St
d.

 D
ev

.
T
ri

pl
es

/S
ec

A
dd

 1
00

0
St

d.
 D

ev
.

T
ri

pl
es

/S
ec

10
0.

50
0.

53
2,

00
0.

00
10

.6
0

15
.9

6
94

3.
40

43
6.

20
51

6.
49

22
9.

25
7,

86
5.

80
2,

39
2.

46
63

.5
7

39
,0

62
.8

0
1,

06
6.

65
25

.6
0

20
0.

60
0.

52
1,

66
6.

67
6.

00
0.

67
1,

66
6.

67
26

0.
10

2.
38

38
4.

47
7,

15
1.

70
70

.5
8

69
.9

1
33

,3
25

.6
0

62
1.

70
30

.0
1

50
0.

50
0.

53
2,

00
0.

00
6.

00
0.

00
1,

66
6.

67
30

6.
20

12
.0

0
32

6.
58

7,
10

0.
90

64
.9

7
70

.4
1

33
,2

06
.0

0
3,

00
4.

05
30

.1
2

10
0

0.
50

0.
53

2,
00

0.
00

7.
10

0.
32

1,
40

8.
45

28
0.

60
22

.1
7

35
6.

38
7,

24
7.

60
63

.2
8

68
.9

9
34

,5
25

.3
0

3,
15

1.
30

28
.9

6
20

0
1.

20
0.

42
83

3.
33

36
.6

0
68

.3
1

27
3.

22
56

8.
20

56
4.

09
17

5.
99

8,
73

2.
50

3,
06

4.
49

57
.2

6
36

,1
88

.8
0

2,
04

2.
97

27
.6

3
50

0
2.

00
0.

00
50

0.
00

26
.2

0
14

.7
5

38
1.

68
44

3.
90

37
.8

3
22

5.
28

8,
47

8.
10

79
.6

8
58

.9
8

38
,6

29
.4

0
1,

06
6.

51
25

.8
9

1,
00

0
6.

70
12

.0
6

14
9.

25
52

.2
0

26
.7

9
19

1.
57

59
6.

10
22

.5
8

16
7.

76
9,

48
4.

70
22

7.
39

52
.7

2
41

,8
63

.8
0

3,
44

4.
85

23
.8

9
2,

00
0

44
.1

0
17

.1
5

22
.6

8
43

5.
30

10
4.

57
22

.9
7

4,
53

2.
80

90
8.

75
22

.0
6

28
,7

16
.1

0
4,

46
9.

74
17

.4
1

73
,8

40
.6

0
6,

78
8.

46
13

.5
4

5,
00

0
79

.8
0

43
.3

9
12

.5
3

74
3.

50
17

.1
5

13
.4

5
6,

70
4.

80
76

.9
6

14
.9

1
39

,2
59

.9
0

12
5.

80
12

.7
4

95
,1

23
.6

0
19

9.
67

10
.5

1
10

,0
00

D
N

F
D

N
F

D
N

F
D

N
F

D
N

F
D

N
F

D
N

F
D

N
F

D
N

F
D

N
F

D
N

F
D

N
F

D
N

F
D

N
F

D
N

F
20

,0
00

D
N

F
D

N
F

D
N

F
D

N
F

D
N

F
D

N
F

D
N

F
D

N
F

D
N

F
D

N
F

D
N

F
D

N
F

D
N

F
D

N
F

D
N

F
50

,0
00

D
N

F
D

N
F

D
N

F
D

N
F

D
N

F
D

N
F

D
N

F
D

N
F

D
N

F
D

N
F

D
N

F
D

N
F

D
N

F
D

N
F

D
N

F
10

0,
00

0
D

N
F

D
N

F
D

N
F

D
N

F
D

N
F

D
N

F
D

N
F

D
N

F
D

N
F

D
N

F
D

N
F

D
N

F
D

N
F

D
N

F
D

N
F

1,
02

0.
50

72
9.

79
21

1.
41

52
.4

4
24

.0
2

Appendix A. Detailed Performance Statistics of the Replication Benchmarks 256

Ta
bl

e
A

.1
7:

D
et

ai
le

d
re

su
lts

of
ad

di
ng

da
ta

to
R

D
F

da
ta

re
pl

ic
as

us
in

g
th

e
M

ob
ile

R
D

F
fr

am
ew

or
k

on
th

e
H

T
C

G
1

M
od

el
 S

iz
e

A
dd

 1
St

d.
 D

ev
.

T
ri

pl
es

/S
ec

A
dd

 1
0

St
d.

 D
ev

.
T
ri

pl
es

/S
ec

A
dd

 1
00

St
d.

 D
ev

.
T
ri

pl
es

/S
ec

A
dd

 5
00

St
d.

 D
ev

.
T
ri

pl
es

/S
ec

A
dd

 1
00

0
St

d.
 D

ev
.

T
ri

pl
es

/S
ec

10
1.

10
0.

32
90

9.
09

10
.2

0
1.

40
98

0.
39

21
7.

20
58

.8
8

46
0.

41
69

7.
60

93
.3

1
71

6.
74

1,
65

1.
60

13
7.

87
60

5.
47

20
0.

90
0.

32
1,

11
1.

11
10

.7
0

2.
95

93
4.

58
22

3.
90

21
.6

8
44

6.
63

69
1.

10
95

.1
4

72
3.

48
1,

61
0.

90
13

3.
16

62
0.

77
50

0.
90

0.
32

1,
11

1.
11

9.
60

0.
52

1,
04

1.
67

98
.4

0
1.

07
1,

01
6.

26
86

5.
70

13
5.

57
57

7.
57

1,
51

8.
30

10
2.

31
65

8.
63

10
0

0.
90

0.
32

1,
11

1.
11

11
.5

0
3.

57
86

9.
57

10
3.

20
19

.4
0

96
8.

99
71

1.
50

10
9.

50
70

2.
74

1,
56

2.
20

12
5.

44
64

0.
12

20
0

1.
00

0.
00

1,
00

0.
00

10
.5

0
0.

97
95

2.
38

25
3.

90
12

.6
6

39
3.

86
81

9.
10

53
.5

3
61

0.
43

1,
73

9.
20

12
4.

91
57

4.
98

50
0

0.
90

0.
32

1,
11

1.
11

13
.2

0
5.

31
75

7.
58

10
1.

00
3.

30
99

0.
10

78
6.

70
10

6.
04

63
5.

57
1,

55
2.

70
10

4.
53

64
4.

04
1,

00
0

1.
00

0.
00

1,
00

0.
00

10
.8

0
1.

55
92

5.
93

15
4.

80
11

5.
32

64
5.

99
77

9.
80

14
6.

64
64

1.
19

1,
80

2.
30

17
5.

98
55

4.
85

2,
00

0
2.

10
3.

48
47

6.
19

10
.3

0
0.

48
97

0.
87

11
1.

40
31

.9
3

89
7.

67
73

1.
60

12
5.

44
68

3.
43

1,
46

8.
60

16
3.

53
68

0.
92

5,
00

0
1.

00
0.

00
1,

00
0.

00
13

.0
0

7.
75

76
9.

23
11

2.
30

30
.9

6
89

0.
47

80
3.

30
25

0.
99

62
2.

43
1,

63
5.

00
24

6.
26

61
1.

62
10

,0
00

54
9.

50
40

7.
79

1.
82

76
9.

10
35

2.
49

13
.0

0
91

0.
40

34
1.

92
10

9.
84

1,
36

5.
50

18
4.

40
36

6.
17

1,
73

9.
40

36
6.

84
57

4.
91

20
,0

00
D

N
F

D
N

F
D

N
F

D
N

F
D

N
F

D
N

F
D

N
F

D
N

F
D

N
F

D
N

F
D

N
F

D
N

F
D

N
F

D
N

F
D

N
F

50
,0

00
D

N
F

D
N

F
D

N
F

D
N

F
D

N
F

D
N

F
D

N
F

D
N

F
D

N
F

D
N

F
D

N
F

D
N

F
D

N
F

D
N

F
D

N
F

10
0,

00
0

D
N

F
D

N
F

D
N

F
D

N
F

D
N

F
D

N
F

D
N

F
D

N
F

D
N

F
D

N
F

D
N

F
D

N
F

D
N

F
D

N
F

D
N

F
98

1.
08

91
1.

35
68

2.
02

62
7.

98
61

6.
63

Ta
bl

e
A

.1
8:

D
et

ai
le

d
re

su
lts

of
ad

di
ng

da
ta

to
R

D
F

da
ta

re
pl

ic
as

us
in

g
th

e
M

ob
ile

R
D

F
fr

am
ew

or
k

on
th

e
M

ot
or

ol
a

M
ile

st
on

e

M
od

el
 S

iz
e

A
dd

 1
St

d.
 D

ev
.

T
ri

pl
es

/S
ec

A
dd

 1
0

St
d.

 D
ev

.
T
ri

pl
es

/S
ec

A
dd

 1
00

St
d.

 D
ev

.
T
ri

pl
es

/S
ec

A
dd

 5
00

St
d.

 D
ev

.
T
ri

pl
es

/S
ec

A
dd

 1
00

0
St

d.
 D

ev
.

T
ri

pl
es

/S
ec

10
0.

40
0.

52
2,

50
0.

00
2.

60
0.

52
3,

84
6.

15
30

.4
0

8.
15

3,
28

9.
47

29
3.

00
45

.2
2

1,
70

6.
48

46
2.

10
35

.6
7

2,
16

4.
03

20
0.

10
0.

32
10

,0
00

.0
0

2.
70

0.
48

3,
70

3.
70

26
.7

0
0.

67
3,

74
5.

32
26

9.
10

19
.1

8
1,

85
8.

05
53

3.
80

50
.9

3
1,

87
3.

36
50

0.
50

0.
53

2,
00

0.
00

2.
40

0.
52

4,
16

6.
67

26
.8

0
0.

42
3,

73
1.

34
23

2.
60

32
.2

7
2,

14
9.

61
51

7.
10

44
.5

9
1,

93
3.

86
10

0
0.

40
0.

52
2,

50
0.

00
2.

60
0.

52
3,

84
6.

15
27

.9
0

2.
18

3,
58

4.
23

27
8.

60
26

.7
9

1,
79

4.
69

46
7.

60
40

.1
4

2,
13

8.
58

20
0

0.
40

0.
52

2,
50

0.
00

2.
40

0.
52

4,
16

6.
67

87
.1

0
22

.8
8

1,
14

8.
11

27
4.

70
23

.4
3

1,
82

0.
17

50
1.

00
2.

83
1,

99
6.

01
50

0
0.

30
0.

48
3,

33
3.

33
3.

00
0.

00
3,

33
3.

33
30

.9
0

6.
01

3,
23

6.
25

23
7.

00
20

.7
8

2,
10

9.
70

39
6.

80
19

.9
7

2,
52

0.
16

1,
00

0
0.

20
0.

42
5,

00
0.

00
3.

10
0.

32
3,

22
5.

81
32

.2
0

6.
32

3,
10

5.
59

16
4.

30
29

.2
9

3,
04

3.
21

51
4.

80
36

.9
4

1,
94

2.
50

2,
00

0
0.

40
0.

52
2,

50
0.

00
2.

90
0.

32
3,

44
8.

28
30

.8
0

3.
61

3,
24

6.
75

27
5.

70
59

.5
8

1,
81

3.
57

48
5.

20
72

.0
1

2,
06

1.
01

5,
00

0
0.

20
0.

42
5,

00
0.

00
5.

10
7.

36
1,

96
0.

78
33

.3
0

5.
14

3,
00

3.
00

16
0.

60
23

.1
4

3,
11

3.
33

55
1.

20
28

.7
7

1,
81

4.
22

10
,0

00
0.

30
0.

48
3,

33
3.

33
3.

00
0.

00
3,

33
3.

33
33

.8
0

4.
24

2,
95

8.
58

16
3.

20
4.

10
3,

06
3.

73
36

1.
10

10
6.

14
2,

76
9.

32
20

,0
00

D
N

F
D

N
F

D
N

F
2.

80
0.

45
D

N
F

D
N

F
D

N
F

D
N

F
D

N
F

D
N

F
D

N
F

D
N

F
D

N
F

D
N

F
50

,0
00

D
N

F
D

N
F

D
N

F
D

N
F

D
N

F
D

N
F

D
N

F
D

N
F

D
N

F
D

N
F

D
N

F
D

N
F

D
N

F
D

N
F

D
N

F
10

0,
00

0
D

N
F

D
N

F
D

N
F

D
N

F
D

N
F

D
N

F
D

N
F

D
N

F
D

N
F

D
N

F
D

N
F

D
N

F
D

N
F

D
N

F
D

N
F

3,
86

6.
67

3,
50

3.
09

3,
10

4.
86

2,
24

7.
25

2,
12

1.
31

Appendix A. Detailed Performance Statistics of the Replication Benchmarks 257

Ta
bl

e
A

.1
9:

D
et

ai
le

d
re

su
lts

of
ad

di
ng

da
ta

to
R

D
F

da
ta

re
pl

ic
as

us
in

g
th

e
M

ob
ile

R
D

F
fr

am
ew

or
k

on
th

e
Sa

m
su

ng
G

al
ax

y
S

I9
00

0

M
od

el
 S

iz
e

A
dd

 1
St

d.
 D

ev
.

T
ri

pl
es

/S
ec

A
dd

 1
0

St
d.

 D
ev

.
T
ri

pl
es

/S
ec

A
dd

 1
00

St
d.

 D
ev

.
T
ri

pl
es

/S
ec

A
dd

 5
00

St
d.

 D
ev

.
T
ri

pl
es

/S
ec

A
dd

 1
00

0
St

d.
 D

ev
.

T
ri

pl
es

/S
ec

10
0.

10
0.

32
10

,0
00

.0
0

2.
20

2.
49

4,
54

5.
45

14
.6

0
7.

59
6,

84
9.

32
12

8.
60

13
.1

9
3,

88
8.

02
22

5.
90

33
.5

0
4,

42
6.

74
20

0.
20

0.
42

5,
00

0.
00

1.
60

1.
26

6,
25

0.
00

10
.8

0
2.

97
9,

25
9.

26
11

6.
00

8.
18

4,
31

0.
34

20
7.

70
15

.6
3

4,
81

4.
64

50
0.

10
0.

32
10

,0
00

.0
0

1.
50

1.
27

6,
66

6.
67

10
.5

0
1.

43
9,

52
3.

81
87

.9
0

11
.8

7
5,

68
8.

28
23

7.
70

29
.1

4
4,

20
6.

98
10

0
0.

10
0.

00
10

,0
00

.0
0

1.
00

0.
00

10
,0

00
.0

0
9.

70
2.

36
10

,3
09

.2
8

11
5.

10
15

.0
9

4,
34

4.
05

23
5.

20
30

.4
5

4,
25

1.
70

20
0

0.
10

0.
00

10
,0

00
.0

0
0.

70
0.

48
14

,2
85

.7
1

12
.3

0
2.

41
8,

13
0.

08
93

.9
0

15
.4

2
5,

32
4.

81
20

6.
30

12
.4

8
4,

84
7.

31
50

0
0.

10
0.

32
10

,0
00

.0
0

0.
70

0.
48

14
,2

85
.7

1
8.

70
1.

57
11

,4
94

.2
5

12
1.

00
15

.7
9

4,
13

2.
23

27
5.

30
14

1.
77

3,
63

2.
40

1,
00

0
0.

10
0.

32
10

,0
00

.0
0

1.
60

1.
26

6,
25

0.
00

49
.8

0
7.

16
2,

00
8.

03
12

5.
70

2.
36

3,
97

7.
72

27
1.

20
65

.6
7

3,
68

7.
32

2,
00

0
0.

10
0.

00
10

,0
00

.0
0

1.
10

0.
74

9,
09

0.
91

13
.6

0
14

.9
2

7,
35

2.
94

10
7.

50
26

.1
6

4,
65

1.
16

19
5.

00
44

.4
0

5,
12

8.
21

5,
00

0
0.

10
0.

32
10

,0
00

.0
0

1.
00

0.
00

10
,0

00
.0

0
8.

80
0.

63
11

,3
63

.6
4

68
.8

0
52

.4
8

7,
26

7.
44

24
5.

30
52

.3
3

4,
07

6.
64

10
,0

00
0.

20
0.

42
5,

00
0.

00
1.

10
0.

32
9,

09
0.

91
25

.6
0

49
.7

6
3,

90
6.

25
66

.5
0

51
.9

3
7,

51
8.

80
28

7.
90

38
.2

0
3,

47
3.

43
20

,0
00

0.
60

1.
26

1,
66

6.
67

1.
10

0.
57

9,
09

0.
91

50
.1

0
12

7.
87

1,
99

6.
01

24
1.

80
19

9.
97

2,
06

7.
82

39
6.

50
10

2.
04

2,
52

2.
07

50
,0

00
D

N
F

D
N

F
D

N
F

D
N

F
D

N
F

D
N

F
D

N
F

D
N

F
D

N
F

D
N

F
D

N
F

D
N

F
D

N
F

D
N

F
D

N
F

10
0,

00
0

D
N

F
D

N
F

D
N

F
D

N
F

D
N

F
D

N
F

D
N

F
D

N
F

D
N

F
D

N
F

D
N

F
D

N
F

D
N

F
D

N
F

D
N

F
8,

33
3.

33
9,

05
0.

57
7,

47
2.

08
4,

83
3.

70
4,

09
7.

04

Ta
bl

e
A

.2
0:

D
et

ai
le

d
re

su
lts

of
ad

di
ng

da
ta

to
R

D
F

da
ta

re
pl

ic
as

us
in

g
th

e
M

ob
ile

R
D

F
fr

am
ew

or
k

on
th

e
D

el
lS

tr
ea

k
5

M
od

el
 S

iz
e

A
dd

 1
St

d.
 D

ev
.

T
ri

pl
es

/S
ec

A
dd

 1
0

St
d.

 D
ev

.
T
ri

pl
es

/S
ec

A
dd

 1
00

St
d.

 D
ev

.
T
ri

pl
es

/S
ec

A
dd

 5
00

St
d.

 D
ev

.
T
ri

pl
es

/S
ec

A
dd

 1
00

0
St

d.
 D

ev
.

T
ri

pl
es

/S
ec

10
0.

10
0.

32
10

,0
00

.0
0

5.
90

7.
85

1,
69

4.
92

40
.5

0
42

.1
5

2,
46

9.
14

31
7.

10
88

.4
6

1,
57

6.
79

39
8.

90
21

9.
13

2,
50

6.
89

20
0.

40
0.

52
2,

50
0.

00
3.

50
0.

97
2,

85
7.

14
29

.1
0

0.
57

3,
43

6.
43

35
6.

10
99

.2
7

1,
40

4.
10

41
5.

20
25

5.
77

2,
40

8.
48

50
0.

30
0.

48
3,

33
3.

33
3.

50
0.

53
2,

85
7.

14
29

.4
0

0.
52

3,
40

1.
36

20
0.

10
87

.3
5

2,
49

8.
75

26
6.

80
30

.4
1

3,
74

8.
13

10
0

0.
10

0.
32

10
,0

00
.0

0
4.

00
0.

67
2,

50
0.

00
28

.0
0

6.
32

3,
57

1.
43

13
1.

40
14

.8
9

3,
80

5.
18

24
3.

00
0.

82
4,

11
5.

23
20

0
0.

30
0.

48
3,

33
3.

33
1.

20
1.

32
8,

33
3.

33
11

.8
0

3.
33

8,
47

4.
58

92
.1

0
15

.2
1

5,
42

8.
88

21
3.

30
0.

67
4,

68
8.

23
50

0
0.

20
0.

42
5,

00
0.

00
0.

80
0.

42
12

,5
00

.0
0

7.
80

0.
42

12
,8

20
.5

1
12

9.
30

0.
67

3,
86

6.
98

25
5.

20
0.

79
3,

91
8.

50
1,

00
0

0.
10

0.
32

10
,0

00
.0

0
1.

00
0.

00
10

,0
00

.0
0

54
.2

0
0.

63
1,

84
5.

02
13

6.
00

0.
82

3,
67

6.
47

25
6.

10
27

.7
3

3,
90

4.
72

2,
00

0
0.

20
0.

42
5,

00
0.

00
1.

60
1.

35
6,

25
0.

00
8.

90
2.

51
11

,2
35

.9
6

14
7.

50
49

.8
1

3,
38

9.
83

18
4.

50
29

.5
6

5,
42

0.
05

5,
00

0
0.

10
0.

32
10

,0
00

.0
0

0.
90

0.
32

11
,1

11
.1

1
8.

20
0.

42
12

,1
95

.1
2

57
.0

0
41

.1
2

8,
77

1.
93

24
7.

60
41

.8
6

4,
03

8.
77

10
,0

00
0.

10
0.

32
10

,0
00

.0
0

1.
00

0.
00

10
,0

00
.0

0
8.

20
0.

42
12

,1
95

.1
2

44
.2

0
0.

63
11

,3
12

.2
2

32
7.

00
5.

48
3,

05
8.

10
20

,0
00

0.
30

0.
48

3,
33

3.
33

1.
20

0.
42

8,
33

3.
33

48
.4

0
12

0.
42

2,
06

6.
12

30
8.

50
22

4.
13

1,
62

0.
75

51
2.

50
15

1.
89

1,
95

1.
22

50
,0

00
D

N
F

D
N

F
D

N
F

D
N

F
D

N
F

D
N

F
D

N
F

D
N

F
D

N
F

D
N

F
D

N
F

D
N

F
D

N
F

D
N

F
D

N
F

10
0,

00
0

D
N

F
D

N
F

D
N

F
D

N
F

D
N

F
D

N
F

D
N

F
D

N
F

D
N

F
D

N
F

D
N

F
D

N
F

D
N

F
D

N
F

D
N

F
6,

59
0.

91
6,

94
8.

82
6,

70
0.

98
4,

30
4.

72
3,

61
4.

39

Appendix A. Detailed Performance Statistics of the Replication Benchmarks 258

Ta
bl

e
A

.2
1:

D
et

ai
le

d
re

su
lts

of
re

m
ov

in
g

da
ta

fr
om

R
D

F
da

ta
re

pl
ic

as
us

in
g

th
e

A
nd

ro
je

na
fr

am
ew

or
k

on
th

e
H

T
C

G
1

M
od

el
 S

iz
e

R
em

ov
e

1
St

d.
 D

ev
.

T
ri

pl
es

/S
ec

R
em

ov
e

10
St

d.
 D

ev
.

T
ri

pl
es

/S
ec

R
em

ov
e

10
0

St
d.

 D
ev

.
T
ri

pl
es

/S
ec

R
em

ov
e

50
0

St
d.

 D
ev

.
T
ri

pl
es

/S
ec

R
em

ov
e

10
00

St
d.

 D
ev

.
T
ri

pl
es

/S
ec

10
1.

20
0.

42
83

3.
33

12
.1

0
0.

32
82

6.
45

12
9.

60
28

.8
9

77
1.

60
92

6.
60

14
4.

55
53

9.
61

1,
84

8.
00

17
3.

55
54

1.
13

20
1.

10
0.

32
90

9.
09

11
.5

0
0.

53
86

9.
57

11
7.

90
1.

37
84

8.
18

94
8.

90
13

4.
02

52
6.

93
1,

87
3.

20
16

4.
07

53
3.

85
50

1.
10

0.
32

90
9.

09
11

.9
0

0.
88

84
0.

34
13

4.
80

37
.4

9
74

1.
84

95
3.

40
12

9.
92

52
4.

44
1,

86
4.

10
14

8.
58

53
6.

45
10

0
1.

10
0.

32
90

9.
09

11
.9

0
0.

57
84

0.
34

12
8.

10
34

.7
8

78
0.

64
70

3.
70

67
.6

8
71

0.
53

1,
61

5.
70

14
5.

17
61

8.
93

20
0

1.
20

0.
42

83
3.

33
11

.1
0

0.
32

90
0.

90
38

1.
20

3.
05

26
2.

33
66

6.
30

11
.3

6
75

0.
41

1,
74

5.
30

17
.8

8
57

2.
97

50
0

1.
20

0.
42

83
3.

33
19

.9
0

6.
17

50
2.

51
11

7.
90

1.
20

84
8.

18
66

7.
70

4.
81

74
8.

84
1,

75
0.

50
20

.0
7

57
1.

27
1,

00
0

1.
00

0.
00

1,
00

0.
00

11
.8

0
0.

42
84

7.
46

11
6.

40
0.

97
85

9.
11

67
2.

60
3.

27
74

3.
38

1,
53

3.
50

27
.6

2
65

2.
10

2,
00

0
1.

20
0.

42
83

3.
33

11
.8

0
0.

63
84

7.
46

11
6.

60
1.

07
85

7.
63

66
7.

20
6.

23
74

9.
40

1,
78

9.
10

94
.8

0
55

8.
94

5,
00

0
1.

30
0.

48
76

9.
23

24
.3

0
7.

82
41

1.
52

12
6.

70
18

.7
6

78
9.

27
68

9.
40

7.
65

72
5.

27
1,

63
0.

30
13

1.
09

61
3.

38
10

,0
00

1.
30

0.
48

76
9.

23
12

.2
0

0.
42

81
9.

67
33

1.
20

34
1.

33
30

1.
93

72
4.

10
8.

90
69

0.
51

1,
86

3.
20

28
3.

69
53

6.
71

20
,0

00
D

N
F

D
N

F
D

N
F

D
N

F
D

N
F

D
N

F
D

N
F

D
N

F
D

N
F

D
N

F
D

N
F

D
N

F
D

N
F

D
N

F
D

N
F

50
,0

00
D

N
F

D
N

F
D

N
F

D
N

F
D

N
F

D
N

F
D

N
F

D
N

F
D

N
F

D
N

F
D

N
F

D
N

F
D

N
F

D
N

F
D

N
F

10
0,

00
0

D
N

F
D

N
F

D
N

F
D

N
F

D
N

F
D

N
F

D
N

F
D

N
F

D
N

F
D

N
F

D
N

F
D

N
F

D
N

F
D

N
F

D
N

F
85

9.
91

77
0.

62
70

6.
07

67
0.

93
57

3.
57

Ta
bl

e
A

.2
2:

D
et

ai
le

d
re

su
lts

of
re

m
ov

in
g

da
ta

fr
om

R
D

F
da

ta
re

pl
ic

as
us

in
g

th
e

A
nd

ro
je

na
fr

am
ew

or
k

on
th

e
M

ot
or

ol
a

M
ile

st
on

e

M
od

el
 S

iz
e

R
em

ov
e

1
St

d.
 D

ev
.

T
ri

pl
es

/S
ec

R
em

ov
e

10
St

d.
 D

ev
.

T
ri

pl
es

/S
ec

R
em

ov
e

10
0

St
d.

 D
ev

.
T
ri

pl
es

/S
ec

R
em

ov
e

50
0

St
d.

 D
ev

.
T
ri

pl
es

/S
ec

R
em

ov
e

10
00

St
d.

 D
ev

.
T
ri

pl
es

/S
ec

10
0.

50
0.

53
2,

00
0.

00
4.

40
1.

71
2,

27
2.

73
33

.1
0

0.
74

3,
02

1.
15

19
2.

50
18

.0
0

2,
59

7.
40

47
6.

10
68

.3
0

2,
10

0.
40

20
0.

50
0.

53
2,

00
0.

00
3.

60
0.

52
2,

77
7.

78
33

.2
0

0.
63

3,
01

2.
05

19
8.

30
26

.4
6

2,
52

1.
43

43
5.

50
7.

85
2,

29
6.

21
50

0.
40

0.
52

2,
50

0.
00

3.
50

0.
71

2,
85

7.
14

34
.2

0
4.

18
2,

92
3.

98
20

0.
80

34
.0

9
2,

49
0.

04
55

5.
80

44
.6

3
1,

79
9.

21
10

0
0.

30
0.

48
3,

33
3.

33
3.

40
0.

52
2,

94
1.

18
32

.9
0

2.
18

3,
03

9.
51

29
6.

10
27

.3
8

1,
68

8.
62

55
9.

10
47

.6
8

1,
78

8.
59

20
0

0.
60

0.
52

1,
66

6.
67

3.
50

0.
53

2,
85

7.
14

32
.6

0
0.

52
3,

06
7.

48
19

0.
80

6.
78

2,
62

0.
55

46
0.

50
35

.8
9

2,
17

1.
55

50
0

0.
70

0.
48

1,
42

8.
57

3.
30

0.
48

3,
03

0.
30

35
.2

0
8.

78
2,

84
0.

91
21

0.
10

43
.6

6
2,

37
9.

82
57

0.
50

34
.5

5
1,

75
2.

85
1,

00
0

0.
50

0.
53

2,
00

0.
00

3.
70

0.
48

2,
70

2.
70

33
.1

0
0.

57
3,

02
1.

15
20

1.
20

26
.8

6
2,

48
5.

09
44

2.
40

12
.3

4
2,

26
0.

40
2,

00
0

0.
30

0.
48

3,
33

3.
33

3.
90

0.
32

2,
56

4.
10

36
.2

0
6.

29
2,

76
2.

43
19

1.
70

2.
58

2,
60

8.
24

46
0.

60
36

.9
3

2,
17

1.
08

5,
00

0
0.

40
0.

52
2,

50
0.

00
3.

70
0.

48
2,

70
2.

70
33

.6
0

0.
70

2,
97

6.
19

19
8.

40
5.

62
2,

52
0.

16
45

9.
90

10
.4

2
2,

17
4.

39
10

,0
00

0.
60

0.
52

1,
66

6.
67

3.
80

0.
42

2,
63

1.
58

34
.4

0
2.

27
2,

90
6.

98
32

9.
70

91
.9

5
1,

51
6.

53
62

0.
90

84
.9

7
1,

61
0.

57
20

,0
00

0.
40

0.
52

2,
50

0.
00

3.
40

0.
52

2,
94

1.
18

92
.3

0
11

9.
09

1,
08

3.
42

19
2.

20
2.

90
2,

60
1.

46
51

1.
60

11
7.

81
1,

95
4.

65
50

,0
00

D
N

F
D

N
F

D
N

F
D

N
F

D
N

F
D

N
F

D
N

F
D

N
F

D
N

F
D

N
F

D
N

F
D

N
F

D
N

F
D

N
F

D
N

F
10

0,
00

0
D

N
F

D
N

F
D

N
F

D
N

F
D

N
F

D
N

F
D

N
F

D
N

F
D

N
F

D
N

F
D

N
F

D
N

F
D

N
F

D
N

F
D

N
F

2,
24

2.
86

2,
73

3.
74

2,
95

7.
18

2,
34

2.
79

2,
01

2.
52

Appendix A. Detailed Performance Statistics of the Replication Benchmarks 259

Ta
bl

e
A

.2
3:

D
et

ai
le

d
re

su
lts

of
re

m
ov

in
g

da
ta

fr
om

R
D

F
da

ta
re

pl
ic

as
us

in
g

th
e

A
nd

ro
je

na
fr

am
ew

or
k

on
th

e
Sa

m
su

ng
G

al
ax

y
S

I9
00

0

M
od

el
 S

iz
e

R
em

ov
e

1
St

d.
 D

ev
.

T
ri

pl
es

/S
ec

R
em

ov
e

10
St

d.
 D

ev
.

T
ri

pl
es

/S
ec

R
em

ov
e

10
0

St
d.

 D
ev

.
T
ri

pl
es

/S
ec

R
em

ov
e

50
0

St
d.

 D
ev

.
T
ri

pl
es

/S
ec

R
em

ov
e

10
00

St
d.

 D
ev

.
T
ri

pl
es

/S
ec

10
0.

30
0.

48
3,

33
3.

33
3.

30
2.

06
3,

03
0.

30
18

.5
0

11
.1

7
5,

40
5.

41
11

2.
20

10
.8

4
4,

45
6.

33
19

6.
00

8.
87

5,
10

2.
04

20
0.

10
0.

32
10

,0
00

.0
0

2.
00

1.
05

5,
00

0.
00

21
.4

0
10

.9
8

4,
67

2.
90

14
4.

00
41

.7
3

3,
47

2.
22

24
7.

40
10

0.
22

4,
04

2.
04

50
0.

10
0.

00
10

,0
00

.0
0

1.
60

0.
52

6,
25

0.
00

12
.9

0
0.

74
7,

75
1.

94
11

1.
00

2.
83

4,
50

4.
50

19
3.

90
4.

36
5,

15
7.

30
10

0
0.

10
0.

32
10

,0
00

.0
0

1.
20

0.
42

8,
33

3.
33

10
.5

0
0.

53
9,

52
3.

81
66

.3
0

1.
34

7,
54

1.
48

14
8.

30
3.

33
6,

74
3.

09
20

0
0.

10
0.

32
10

,0
00

.0
0

1.
00

0.
00

10
,0

00
.0

0
57

.2
0

16
.2

4
1,

74
8.

25
67

.8
0

6.
09

7,
37

4.
63

19
4.

30
4.

72
5,

14
6.

68
50

0
0.

10
0.

00
10

,0
00

.0
0

1.
50

0.
97

6,
66

6.
67

11
.1

0
0.

74
9,

00
9.

01
66

.4
0

0.
70

7,
53

0.
12

19
4.

60
0.

84
5,

13
8.

75
1,

00
0

0.
30

0.
48

3,
33

3.
33

1.
00

0.
00

10
,0

00
.0

0
10

.6
0

0.
52

9,
43

3.
96

67
.6

0
2.

99
7,

39
6.

45
15

0.
40

0.
70

6,
64

8.
94

2,
00

0
0.

10
0.

32
10

,0
00

.0
0

1.
30

0.
67

7,
69

2.
31

10
.8

0
0.

42
9,

25
9.

26
12

4.
10

18
.3

2
4,

02
9.

01
20

3.
80

18
.6

1
4,

90
6.

77
5,

00
0

0.
20

0.
42

5,
00

0.
00

1.
00

0.
00

10
,0

00
.0

0
11

.0
0

0.
82

9,
09

0.
91

68
.8

0
0.

63
7,

26
7.

44
16

2.
90

23
.7

1
6,

13
8.

74
10

,0
00

0.
10

0.
32

10
,0

00
.0

0
1.

00
0.

00
10

,0
00

.0
0

10
.6

0
0.

52
9,

43
3.

96
82

.2
0

41
.3

9
6,

08
2.

73
23

3.
10

54
.1

3
4,

29
0.

00
20

,0
00

0.
20

0.
42

5,
00

0.
00

1.
30

0.
48

7,
69

2.
31

11
.3

0
0.

48
8,

84
9.

56
69

.1
0

0.
57

7,
23

5.
89

17
4.

40
55

.7
4

5,
73

3.
94

50
,0

00
D

N
F

D
N

F
D

N
F

D
N

F
D

N
F

D
N

F
D

N
F

D
N

F
D

N
F

D
N

F
D

N
F

D
N

F
D

N
F

D
N

F
D

N
F

10
0,

00
0

D
N

F
D

N
F

D
N

F
D

N
F

D
N

F
D

N
F

D
N

F
D

N
F

D
N

F
D

N
F

D
N

F
D

N
F

D
N

F
D

N
F

D
N

F
7,

87
8.

79
7,

69
6.

81
7,

65
2.

63
6,

08
0.

98
5,

36
8.

03

Ta
bl

e
A

.2
4:

D
et

ai
le

d
re

su
lts

of
re

m
ov

in
g

da
ta

fr
om

R
D

F
da

ta
re

pl
ic

as
us

in
g

th
e

A
nd

ro
je

na
fr

am
ew

or
k

on
th

e
Sa

m
su

ng
G

al
ax

y
S

I9
00

0

M
od

el
 S

iz
e

R
em

ov
e

1
St

d.
 D

ev
.

T
ri

pl
es

/S
ec

R
em

ov
e

10
St

d.
 D

ev
.

T
ri

pl
es

/S
ec

R
em

ov
e

10
0

St
d.

 D
ev

.
T
ri

pl
es

/S
ec

R
em

ov
e

50
0

St
d.

 D
ev

.
T
ri

pl
es

/S
ec

R
em

ov
e

10
00

St
d.

 D
ev

.
T
ri

pl
es

/S
ec

10
0.

90
0.

88
1,

11
1.

11
8.

40
10

.5
7

1,
19

0.
48

82
.6

0
62

.8
0

1,
21

0.
65

53
2.

60
14

8.
72

93
8.

79
71

2.
10

13
.8

4
1,

40
4.

30
20

0.
80

0.
42

1,
25

0.
00

5.
40

1.
35

1,
85

1.
85

40
.8

0
1.

03
2,

45
0.

98
46

6.
10

14
5.

79
1,

07
2.

73
77

1.
30

22
7.

68
1,

29
6.

51
50

0.
50

0.
53

2,
00

0.
00

4.
50

1.
08

2,
22

2.
22

49
.8

0
13

.2
6

2,
00

8.
03

62
7.

40
13

7.
81

79
6.

94
72

9.
50

23
.7

7
1,

37
0.

80
10

0
0.

50
0.

53
2,

00
0.

00
6.

20
2.

04
1,

61
2.

90
54

.1
0

19
.0

3
1,

84
8.

43
27

9.
70

83
.9

9
1,

78
7.

63
58

6.
40

12
9.

45
1,

70
5.

32
20

0
0.

80
0.

63
1,

25
0.

00
4.

70
1.

16
2,

12
7.

66
43

.7
0

16
.2

6
2,

28
8.

33
23

8.
90

7.
05

2,
09

2.
93

76
0.

50
18

3.
31

1,
31

4.
92

50
0

0.
50

0.
53

2,
00

0.
00

9.
60

3.
75

1,
04

1.
67

42
.2

0
0.

79
2,

36
9.

67
24

5.
20

12
.4

9
2,

03
9.

15
95

0.
20

25
2.

99
1,

05
2.

41
1,

00
0

0.
60

0.
52

1,
66

6.
67

6.
00

1.
89

1,
66

6.
67

48
.0

0
13

.2
8

2,
08

3.
33

25
9.

00
51

.7
8

1,
93

0.
50

65
0.

50
21

9.
45

1,
53

7.
28

2,
00

0
0.

20
0.

42
5,

00
0.

00
4.

60
2.

12
2,

17
3.

91
45

.1
0

30
.3

6
2,

21
7.

29
48

7.
20

31
7.

39
1,

02
6.

27
95

7.
00

59
5.

88
1,

04
4.

93
5,

00
0

0.
50

0.
53

2,
00

0.
00

3.
70

2.
06

2,
70

2.
70

35
.1

0
18

.8
7

2,
84

9.
00

20
7.

10
98

.9
6

2,
41

4.
29

51
8.

40
27

1.
57

1,
92

9.
01

10
,0

00
0.

30
0.

48
3,

33
3.

33
4.

50
3.

44
2,

22
2.

22
32

.9
0

18
.4

8
3,

03
9.

51
30

9.
40

22
4.

37
1,

61
6.

03
48

9.
30

29
3.

13
2,

04
3.

74
20

,0
00

0.
30

0.
48

3,
33

3.
33

2.
20

1.
81

4,
54

5.
45

20
.7

0
13

.5
2

4,
83

0.
92

14
3.

30
91

.2
6

3,
48

9.
18

34
5.

10
30

9.
22

2,
89

7.
71

50
,0

00
D

N
F

D
N

F
D

N
F

D
N

F
D

N
F

D
N

F
D

N
F

D
N

F
D

N
F

D
N

F
D

N
F

D
N

F
D

N
F

D
N

F
D

N
F

10
0,

00
0

D
N

F
D

N
F

D
N

F
D

N
F

D
N

F
D

N
F

D
N

F
D

N
F

D
N

F
D

N
F

D
N

F
D

N
F

D
N

F
D

N
F

D
N

F
2,

26
7.

68
2,

12
3.

43
2,

47
2.

38
1,

74
5.

86
1,

59
9.

72

Appendix A. Detailed Performance Statistics of the Replication Benchmarks 260

Ta
bl

e
A

.2
5:

D
et

ai
le

d
re

su
lts

of
re

m
ov

in
g

da
ta

fr
om

R
D

F
da

ta
re

pl
ic

as
us

in
g

th
e

µ
Je

na
fr

am
ew

or
k

on
th

e
H

T
C

G
1

M
od

el
 S

iz
e

R
em

ov
e

1
St

d.
 D

ev
.

T
ri

pl
es

/S
ec

R
em

ov
e

10
St

d.
 D

ev
.

T
ri

pl
es

/S
ec

R
em

ov
e

10
0

St
d.

 D
ev

.
T
ri

pl
es

/S
ec

R
em

ov
e

50
0

St
d.

 D
ev

.
T
ri

pl
es

/S
ec

R
em

ov
e

10
00

St
d.

 D
ev

.
T
ri

pl
es

/S
ec

10
2.

40
0.

52
41

6.
67

46
.6

0
1.

07
21

4.
59

2,
74

1.
70

13
9.

18
36

.4
7

62
,0

59
.0

0
1,

95
8.

61
8.

06
25

6,
89

2.
60

7,
45

8.
10

3.
89

20
2.

50
0.

53
40

0.
00

48
.2

0
0.

92
20

7.
47

2,
73

1.
80

71
.6

3
36

.6
1

60
,9

32
.5

0
1,

34
8.

92
8.

21
25

5,
55

0.
90

6,
28

9.
46

3.
91

50
2.

90
0.

32
34

4.
83

52
.6

0
0.

84
19

0.
11

2,
75

3.
80

78
.1

0
36

.3
1

61
,6

16
.5

0
96

8.
87

8.
11

25
4,

68
1.

60
4,

40
2.

37
3.

93
10

0
3.

40
0.

52
29

4.
12

55
.8

0
0.

63
17

9.
21

2,
85

6.
60

68
.2

9
35

.0
1

60
,2

61
.6

0
1,

08
9.

89
8.

30
24

9,
37

2.
30

3,
75

0.
86

4.
01

20
0

9.
50

0.
53

10
5.

26
12

0.
20

4.
71

83
.1

9
3,

45
1.

60
12

0.
84

28
.9

7
63

,8
16

.6
0

1,
32

1.
98

7.
83

26
0,

12
0.

90
6,

81
1.

07
3.

84
50

0
13

.6
0

0.
70

73
.5

3
16

5.
70

10
.7

0
60

.3
5

4,
05

2.
50

16
8.

52
24

.6
8

69
,3

27
.2

0
2,

84
5.

36
7.

21
27

3,
87

7.
90

10
,9

52
.3

1
3.

65
1,

00
0

57
.9

0
17

.0
4

17
.2

7
49

9.
60

21
.6

9
20

.0
2

7,
59

4.
10

23
5.

52
13

.1
7

87
,9

20
.4

0
2,

85
4.

93
5.

69
31

9,
00

9.
40

12
,6

55
.6

5
3.

13
2,

00
0

18
8.

40
9.

69
5.

31
2,

01
4.

90
15

0.
04

4.
96

22
,4

48
.0

0
17

5.
10

4.
45

16
1,

70
9.

90
2,

22
2.

77
3.

09
45

8,
63

0.
10

5,
96

1.
29

2.
18

5,
00

0
D

N
F

D
N

F
D

N
F

D
N

F
D

N
F

D
N

F
D

N
F

D
N

F
D

N
F

D
N

F
D

N
F

D
N

F
D

N
F

D
N

F
D

N
F

10
,0

00
D

N
F

D
N

F
D

N
F

D
N

F
D

N
F

D
N

F
D

N
F

D
N

F
D

N
F

D
N

F
D

N
F

D
N

F
D

N
F

D
N

F
D

N
F

20
,0

00
D

N
F

D
N

F
D

N
F

D
N

F
D

N
F

D
N

F
D

N
F

D
N

F
D

N
F

D
N

F
D

N
F

D
N

F
D

N
F

D
N

F
D

N
F

50
,0

00
D

N
F

D
N

F
D

N
F

D
N

F
D

N
F

D
N

F
D

N
F

D
N

F
D

N
F

D
N

F
D

N
F

D
N

F
D

N
F

D
N

F
D

N
F

10
0,

00
0

D
N

F
D

N
F

D
N

F
D

N
F

D
N

F
D

N
F

D
N

F
D

N
F

D
N

F
D

N
F

D
N

F
D

N
F

D
N

F
D

N
F

D
N

F
20

7.
12

11
9.

99
26

.9
6

7.
06

3.
57

Ta
bl

e
A

.2
6:

D
et

ai
le

d
re

su
lts

of
re

m
ov

in
g

da
ta

fr
om

R
D

F
da

ta
re

pl
ic

as
us

in
g

th
e

µ
Je

na
fr

am
ew

or
k

on
th

e
M

ot
or

ol
a

M
ile

st
on

e

M
od

el
 S

iz
e

R
em

ov
e

1
St

d.
 D

ev
.

T
ri

pl
es

/S
ec

R
em

ov
e

10
St

d.
 D

ev
.

T
ri

pl
es

/S
ec

R
em

ov
e

10
0

St
d.

 D
ev

.
T
ri

pl
es

/S
ec

R
em

ov
e

50
0

St
d.

 D
ev

.
T
ri

pl
es

/S
ec

R
em

ov
e

10
00

St
d.

 D
ev

.
T
ri

pl
es

/S
ec

10
1.

00
0.

00
1,

00
0.

00
17

.0
0

0.
47

58
8.

24
1,

01
9.

10
59

.7
6

98
.1

3
22

,5
89

.5
0

37
4.

10
22

.1
3

96
,2

80
.9

0
68

0.
77

10
.3

9
20

1.
10

0.
32

90
9.

09
17

.3
0

0.
48

57
8.

03
1,

01
3.

30
66

.1
7

98
.6

9
22

,7
91

.9
0

36
0.

91
21

.9
4

97
,9

01
.8

0
1,

46
7.

75
10

.2
1

50
1.

10
0.

32
90

9.
09

18
.7

0
0.

95
53

4.
76

1,
00

1.
00

59
.0

8
99

.9
0

22
,7

33
.4

0
23

9.
12

21
.9

9
96

,6
72

.1
0

27
5.

04
10

.3
4

10
0

1.
20

0.
42

83
3.

33
20

.7
0

1.
64

48
3.

09
1,

03
6.

30
97

.1
8

96
.5

0
22

,7
52

.0
0

17
1.

16
21

.9
8

96
,8

97
.5

0
39

5.
54

10
.3

2
20

0
4.

40
0.

52
22

7.
27

51
.6

0
1.

90
19

3.
80

1,
31

7.
60

79
.9

4
75

.9
0

34
,2

51
.4

0
22

,8
96

.5
6

14
.6

0
18

5,
29

3.
30

34
,2

35
.9

6
5.

40
50

0
5.

70
0.

48
17

5.
44

63
.8

0
1.

03
15

6.
74

2,
58

3.
40

3,
70

0.
09

38
.7

1
46

,3
30

.8
0

25
,9

43
.6

5
10

.7
9

18
6,

79
5.

30
26

,7
04

.5
7

5.
35

1,
00

0
8.

70
3.

30
11

4.
94

85
.5

0
1.

84
11

6.
96

4,
39

9.
40

8,
61

1.
92

22
.7

3
46

,2
39

.3
0

27
,6

92
.0

3
10

.8
1

17
1,

07
0.

30
46

,0
57

.7
2

5.
85

2,
00

0
D

N
F

D
N

F
D

N
F

D
N

F
D

N
F

D
N

F
D

N
F

D
N

F
D

N
F

D
N

F
D

N
F

D
N

F
D

N
F

D
N

F
D

N
F

5,
00

0
D

N
F

D
N

F
D

N
F

D
N

F
D

N
F

D
N

F
D

N
F

D
N

F
D

N
F

D
N

F
D

N
F

D
N

F
D

N
F

D
N

F
D

N
F

10
,0

00
D

N
F

D
N

F
D

N
F

D
N

F
D

N
F

D
N

F
D

N
F

D
N

F
D

N
F

D
N

F
D

N
F

D
N

F
D

N
F

D
N

F
D

N
F

20
,0

00
D

N
F

D
N

F
D

N
F

D
N

F
D

N
F

D
N

F
D

N
F

D
N

F
D

N
F

D
N

F
D

N
F

D
N

F
D

N
F

D
N

F
D

N
F

50
,0

00
D

N
F

D
N

F
D

N
F

D
N

F
D

N
F

D
N

F
D

N
F

D
N

F
D

N
F

D
N

F
D

N
F

D
N

F
D

N
F

D
N

F
D

N
F

10
0,

00
0

D
N

F
D

N
F

D
N

F
D

N
F

D
N

F
D

N
F

D
N

F
D

N
F

D
N

F
D

N
F

D
N

F
D

N
F

D
N

F
D

N
F

D
N

F
59

5.
60

37
8.

80
75

.7
9

17
.7

5
8.

27

Appendix A. Detailed Performance Statistics of the Replication Benchmarks 261

Ta
bl

e
A

.2
7:

D
et

ai
le

d
re

su
lts

of
re

m
ov

in
g

da
ta

fr
om

R
D

F
da

ta
re

pl
ic

as
us

in
g

th
e

µ
Je

na
fr

am
ew

or
k

on
th

e
Sa

m
su

ng
G

al
ax

y
S

I9
00

0

M
od

el
 S

iz
e

R
em

ov
e

1
St

d.
 D

ev
.

T
ri

pl
es

/S
ec

R
em

ov
e

10
St

d.
 D

ev
.

T
ri

pl
es

/S
ec

R
em

ov
e

10
0

St
d.

 D
ev

.
T
ri

pl
es

/S
ec

R
em

ov
e

50
0

St
d.

 D
ev

.
T
ri

pl
es

/S
ec

R
em

ov
e

10
00

St
d.

 D
ev

.
T
ri

pl
es

/S
ec

10
0.

20
0.

42
5,

00
0.

00
6.

50
7.

28
1,

53
8.

46
22

3.
70

16
.6

4
44

7.
03

5,
46

9.
20

29
5.

87
91

.4
2

23
,4

89
.1

0
51

4.
62

42
.5

7
20

0.
10

0.
00

10
,0

00
.0

0
5.

00
1.

89
2,

00
0.

00
22

0.
00

9.
49

45
4.

55
5,

58
0.

30
21

7.
24

89
.6

0
24

,5
18

.2
0

38
1.

19
40

.7
9

50
0.

30
0.

48
3,

33
3.

33
5.

20
1.

93
1,

92
3.

08
22

9.
70

22
.0

9
43

5.
35

5,
56

5.
00

23
6.

67
89

.8
5

24
,5

37
.2

0
34

8.
20

40
.7

5
10

0
0.

30
0.

48
3,

33
3.

33
4.

50
0.

53
2,

22
2.

22
26

0.
40

34
.6

7
38

4.
02

5,
34

7.
30

30
4.

32
93

.5
1

23
,6

78
.5

0
1,

30
1.

34
42

.2
3

20
0

1.
00

0.
82

1,
00

0.
00

16
.7

0
18

.3
8

59
8.

80
30

8.
50

36
.4

2
32

4.
15

5,
97

1.
30

13
3.

64
83

.7
3

25
,2

53
.8

0
79

6.
74

39
.6

0
50

0
1.

10
0.

32
90

9.
09

13
.4

0
1.

90
74

6.
27

31
0.

40
48

.4
5

32
2.

16
5,

73
8.

00
32

4.
58

87
.1

4
24

,2
84

.5
0

1,
64

6.
47

41
.1

8
1,

00
0

1.
40

0.
70

71
4.

29
16

.2
0

1.
14

61
7.

28
32

7.
70

20
.3

6
30

5.
16

5,
69

1.
30

16
3.

46
87

.8
5

23
,2

90
.2

0
31

3.
61

42
.9

4
2,

00
0

20
.8

0
3.

26
48

.0
8

18
9.

20
1.

93
52

.8
5

2,
12

7.
60

53
.6

1
47

.0
0

14
,9

11
.5

0
11

7.
59

33
.5

3
41

,5
56

.4
0

54
8.

38
24

.0
6

5,
00

0
D

N
F

D
N

F
D

N
F

D
N

F
D

N
F

D
N

F
D

N
F

D
N

F
D

N
F

D
N

F
D

N
F

D
N

F
D

N
F

D
N

F
D

N
F

10
,0

00
D

N
F

D
N

F
D

N
F

D
N

F
D

N
F

D
N

F
D

N
F

D
N

F
D

N
F

D
N

F
D

N
F

D
N

F
D

N
F

D
N

F
D

N
F

20
,0

00
D

N
F

D
N

F
D

N
F

D
N

F
D

N
F

D
N

F
D

N
F

D
N

F
D

N
F

D
N

F
D

N
F

D
N

F
D

N
F

D
N

F
D

N
F

50
,0

00
D

N
F

D
N

F
D

N
F

D
N

F
D

N
F

D
N

F
D

N
F

D
N

F
D

N
F

D
N

F
D

N
F

D
N

F
D

N
F

D
N

F
D

N
F

10
0,

00
0

D
N

F
D

N
F

D
N

F
D

N
F

D
N

F
D

N
F

D
N

F
D

N
F

D
N

F
D

N
F

D
N

F
D

N
F

D
N

F
D

N
F

D
N

F
3,

04
2.

27
1,

21
2.

37
33

9.
93

82
.0

8
39

.2
7

Ta
bl

e
A

.2
8:

D
et

ai
le

d
re

su
lts

of
re

m
ov

in
g

da
ta

fr
om

R
D

F
da

ta
re

pl
ic

as
us

in
g

th
e

µ
Je

na
fr

am
ew

or
k

on
th

e
D

el
lS

tr
ea

k
5

M
od

el
 S

iz
e

R
em

ov
e

1
St

d.
 D

ev
.

T
ri

pl
es

/S
ec

R
em

ov
e

10
St

d.
 D

ev
.

T
ri

pl
es

/S
ec

R
em

ov
e

10
0

St
d.

 D
ev

.
T
ri

pl
es

/S
ec

R
em

ov
e

50
0

St
d.

 D
ev

.
T
ri

pl
es

/S
ec

R
em

ov
e

10
00

St
d.

 D
ev

.
T
ri

pl
es

/S
ec

10
0.

40
0.

52
2,

50
0.

00
5.

00
2.

54
2,

00
0.

00
23

4.
70

11
8.

53
42

6.
08

5,
25

5.
60

13
8.

69
95

.1
4

22
,3

26
.5

0
38

3.
15

44
.7

9
20

0.
50

0.
53

2,
00

0.
00

4.
30

0.
67

2,
32

5.
58

20
2.

70
6.

06
49

3.
34

5,
28

3.
30

43
.7

5
94

.6
4

22
,3

94
.1

0
11

0.
33

44
.6

5
50

0.
40

0.
52

2,
50

0.
00

4.
40

0.
52

2,
27

2.
73

20
8.

60
12

.3
1

47
9.

39
5,

32
0.

70
33

.5
2

93
.9

7
22

,3
87

.9
0

11
2.

86
44

.6
7

10
0

0.
70

0.
48

1,
42

8.
57

5.
00

0.
67

2,
00

0.
00

24
2.

00
9.

90
41

3.
22

5,
31

8.
30

44
.0

8
94

.0
2

22
,5

13
.1

0
65

.0
4

44
.4

2
20

0
0.

60
0.

52
1,

66
6.

67
6.

40
0.

52
1,

56
2.

50
22

4.
00

7.
36

44
6.

43
5,

46
1.

80
46

.5
8

91
.5

4
22

,6
57

.9
0

13
0.

61
44

.1
3

50
0

8.
90

17
.4

6
11

2.
36

9.
10

0.
74

1,
09

8.
90

25
1.

50
4.

12
39

7.
61

5,
58

9.
20

10
5.

24
89

.4
6

22
,9

64
.8

0
21

3.
22

43
.5

4
1,

00
0

1.
50

0.
53

66
6.

67
15

.0
0

0.
67

66
6.

67
30

7.
20

3.
43

32
5.

52
5,

82
0.

90
89

.1
8

85
.9

0
23

,5
32

.8
0

19
9.

71
42

.4
9

2,
00

0
26

.1
0

0.
74

38
.3

1
25

1.
30

6.
34

39
.7

9
2,

74
4.

80
39

.6
1

36
.4

3
17

,7
68

.3
0

30
4.

74
28

.1
4

47
,5

48
.5

0
32

8.
91

21
.0

3
5,

00
0

D
N

F
D

N
F

D
N

F
D

N
F

D
N

F
D

N
F

D
N

F
D

N
F

D
N

F
D

N
F

D
N

F
D

N
F

D
N

F
D

N
F

D
N

F
10

,0
00

D
N

F
D

N
F

D
N

F
D

N
F

D
N

F
D

N
F

D
N

F
D

N
F

D
N

F
D

N
F

D
N

F
D

N
F

D
N

F
D

N
F

D
N

F
20

,0
00

D
N

F
D

N
F

D
N

F
D

N
F

D
N

F
D

N
F

D
N

F
D

N
F

D
N

F
D

N
F

D
N

F
D

N
F

D
N

F
D

N
F

D
N

F
50

,0
00

D
N

F
D

N
F

D
N

F
D

N
F

D
N

F
D

N
F

D
N

F
D

N
F

D
N

F
D

N
F

D
N

F
D

N
F

D
N

F
D

N
F

D
N

F
10

0,
00

0
D

N
F

D
N

F
D

N
F

D
N

F
D

N
F

D
N

F
D

N
F

D
N

F
D

N
F

D
N

F
D

N
F

D
N

F
D

N
F

D
N

F
D

N
F

1,
36

4.
07

1,
49

5.
77

37
7.

25
84

.1
0

41
.2

2

Appendix A. Detailed Performance Statistics of the Replication Benchmarks 262

Ta
bl

e
A

.2
9:

D
et

ai
le

d
re

su
lts

of
re

tr
ie

vi
ng

el
em

en
ts

fr
om

R
D

F
da

ta
re

pl
ic

as
us

in
g

th
e

A
nd

ro
je

na
,µ

Je
na

,a
nd

M
ob

ile
R

D
F

fr
am

ew
or

ks

M
o
d
e
l
S
iz

e
 (

T
r
ip

le
s
)

1
0

2
0

5
0

1
0
0

2
0
0

5
0
0

1
,0

0
0

2
,0

0
0

5
,0

0
0

1
0
,0

0
0

2
0
,0

0
0

5
0
,0

0
0

1
0
0
,0

0
0

E
x
e
c
u
t
io

n
 T

im
e
 (

m
s
)

3
.9

0
3
.5

0
3
.2

0
3
.3

0
3
.7

0
3
.4

0
3
.2

0
4
.0

0
3
.6

0
3
.1

0
D

N
F

D
N

F
D

N
F

S
t
a
n
d
a
r
d
 D

e
v
ia

t
io

n
1
.8

5
0
.7

1
0
.4

2
0
.4

8
0
.4

8
0
.5

2
0
.4

2
2
.1

6
0
.5

2
0
.3

2
D

N
F

D
N

F
D

N
F

E
x
e
c
u
t
io

n
 T

im
e
 (

m
s
)

1
.0

0
0
.9

0
1
.1

0
0
.9

0
1
.1

0
0
.9

0
0
.9

0
1
.0

0
0
.9

0
0
.9

0
1
.1

0
1
.2

0
D

N
F

S
t
a
n
d
a
r
d
 D

e
v
ia

t
io

n
0
.4

7
0
.3

2
0
.3

2
0
.3

2
0
.3

2
0
.3

2
0
.3

2
0
.8

2
0
.3

2
0
.3

2
0
.3

2
0
.6

3
D

N
F

E
x
e
c
u
t
io

n
 T

im
e
 (

m
s
)

0
.9

0
0
.5

0
0
.6

0
0
.5

0
0
.5

0
0
.6

0
0
.7

0
1
.1

0
0
.5

0
0
.6

0
0
.9

0
0
.9

0
D

N
F

S
t
a
n
d
a
r
d
 D

e
v
ia

t
io

n
0
.5

7
0
.5

3
0
.5

2
0
.5

3
0
.5

3
0
.5

2
0
.4

8
0
.9

9
0
.5

3
0
.5

2
0
.9

9
0
.8

8
D

N
F

E
x
e
c
u
t
io

n
 T

im
e
 (

m
s
)

2
.2

0
0
.6

0
0
.9

0
1
.0

0
0
.7

0
0
.6

0
0
.6

0
1
.2

0
0
.9

0
1
.3

0
1
.2

0
2
.8

0
D

N
F

S
t
a
n
d
a
r
d
 D

e
v
ia

t
io

n
1
.1

4
0
.5

2
0
.3

2
0
.0

0
0
.4

8
0
.7

0
0
.7

0
0
.9

2
0
.3

2
0
.8

2
0
.4

2
1
.2

3
D

N
F

M
o
d
e
l
S
iz

e
 (

T
r
ip

le
s
)

1
0

2
0

5
0

1
0
0

2
0
0

5
0
0

1
,0

0
0

2
,0

0
0

5
,0

0
0

1
0
,0

0
0

2
0
,0

0
0

5
0
,0

0
0

1
0
0
,0

0
0

E
x
e
c
u
t
io

n
 T

im
e
 (

m
s
)

1
4
9
.6

0
1
5
9
.1

0
1
8
3
.2

0
1
5
4
.1

0
1
8
4
.0

0
1
9
3
.2

0
2
0
3
.4

0
3
9
1
.2

0
D

N
F

D
N

F
D

N
F

D
N

F
D

N
F

S
t
a
n
d
a
r
d
 D

e
v
ia

t
io

n
5
2
.8

2
4
.5

8
5
1
.4

8
2
.1

8
1
0
.8

8
2
.9

0
1
9
.3

6
6
9
.5

1
D

N
F

D
N

F
D

N
F

D
N

F
D

N
F

E
x
e
c
u
t
io

n
 T

im
e
 (

m
s
)

2
6
7
.1

0
2
8
4
.6

0
5
,1

5
2
.1

0
2
6
8
.4

0
3
,7

2
7
.4

0
2
9
0
.8

0
3
2
4
.5

0
D

N
F

D
N

F
D

N
F

D
N

F
D

N
F

D
N

F

S
t
a
n
d
a
r
d
 D

e
v
ia

t
io

n
1
.3

7
4
7
.0

1
1
5
,4

4
7
.6

9
2
.9

9
1
0
,9

3
2
.5

6
4
4
.7

0
4
2
.5

2
D

N
F

D
N

F
D

N
F

D
N

F
D

N
F

D
N

F

E
x
e
c
u
t
io

n
 T

im
e
 (

m
s
)

1
3
.4

0
1
2
.4

0
1
2
.3

0
1
2
.3

0
1
3
.0

0
1
3
.3

0
1
4
.8

0
1
7
.2

0
2
1
.9

0
D

N
F

D
N

F
D

N
F

D
N

F

S
t
a
n
d
a
r
d
 D

e
v
ia

t
io

n
2
.4

6
0
.5

2
0
.4

8
0
.4

8
0
.6

7
0
.4

8
2
.5

3
2
.7

8
0
.3

2
D

N
F

D
N

F
D

N
F

D
N

F

E
x
e
c
u
t
io

n
 T

im
e
 (

m
s
)

1
6
.4

0
1
6
.7

0
1
6
.7

0
1
7
.3

0
1
7
.5

0
1
8
.0

0
1
9
.1

0
4
6
.7

0
5
3
.0

0
D

N
F

D
N

F
D

N
F

D
N

F

S
t
a
n
d
a
r
d
 D

e
v
ia

t
io

n
0
.5

2
0
.4

8
0
.4

8
1
.8

9
0
.7

1
0
.4

7
0
.7

4
7
.1

5
7
.0

7
D

N
F

D
N

F
D

N
F

D
N

F

M
o
d
e
l
S
iz

e
 (

T
r
ip

le
s
)

1
0

2
0

5
0

1
0
0

2
0
0

5
0
0

1
,0

0
0

2
,0

0
0

5
,0

0
0

1
0
,0

0
0

2
0
,0

0
0

5
0
,0

0
0

1
0
0
,0

0
0

E
x
e
c
u
t
io

n
 T

im
e
 (

m
s
)

0
.5

0
0
.9

0
1
.0

0
1
.9

0
5
.2

0
8
.8

0
1
7
.5

0
3
3
.0

0
8
0
.2

0
1
0
8
.5

0
D

N
F

D
N

F
D

N
F

S
t
a
n
d
a
r
d
 D

e
v
ia

t
io

n
0
.5

3
0
.7

4
0
.0

0
0
.8

8
6
.6

1
0
.6

3
1
.0

8
1
.9

4
3
.9

9
2
0
.2

1
D

N
F

D
N

F
D

N
F

E
x
e
c
u
t
io

n
 T

im
e
 (

m
s
)

0
.2

0
0
.4

0
0
.1

0
0
.7

0
1
.4

0
3
.2

0
6
.7

0
1
4
.2

0
3
7
.3

0
8
6
.8

0
9
2
.0

0
D

N
F

D
N

F

S
t
a
n
d
a
r
d
 D

e
v
ia

t
io

n
0
.4

2
0
.5

2
0
.3

2
0
.4

8
0
.5

2
0
.4

2
0
.4

8
0
.7

9
3
.7

1
3
2
.1

8
1
6
.5

4
D

N
F

D
N

F

E
x
e
c
u
t
io

n
 T

im
e
 (

m
s
)

0
.3

0
0
.5

0
0
.3

0
0
.2

0
0
.2

0
1
.0

0
2
.0

0
4
.1

0
1
0
.4

0
1
9
.4

0
4
0
.7

0
D

N
F

D
N

F

S
t
a
n
d
a
r
d
 D

e
v
ia

t
io

n
0
.4

8
0
.5

3
0
.4

8
0
.4

2
0
.4

2
0
.0

0
0
.0

0
1
.4

5
1
.5

1
1
.9

6
1
.2

5
D

N
F

D
N

F

E
x
e
c
u
t
io

n
 T

im
e
 (

m
s
)

0
.6

0
0
.4

0
0
.2

0
0
.5

0
0
.6

0
1
.1

0
1
.9

0
4
.3

0
1
0
.1

0
2
1
.0

0
4
5
.0

0
D

N
F

D
N

F

S
t
a
n
d
a
r
d
 D

e
v
ia

t
io

n
0
.9

7
0
.5

2
0
.4

2
0
.5

3
0
.5

2
0
.3

2
0
.3

2
1
.7

0
0
.3

2
0
.0

0
0
.6

7
D

N
F

D
N

F

Androjena µJena Mobile RDF

D
e
ll
 S

t
r
e
a
k

H
T

C
 G

1

M
o
t
o
r
o
la

M
il
e
s
t
o
n
e

S
a
m

s
u
n
g

G
a
la

x
y

D
e
ll
 S

t
r
e
a
k

H
T

C
 G

1

M
o
t
o
r
o
la

M
il
e
s
t
o
n
e

S
a
m

s
u
n
g

G
a
la

x
y

D
e
ll
 S

t
r
e
a
k

H
T

C
 G

1

M
o
t
o
r
o
la

M
il
e
s
t
o
n
e

S
a
m

s
u
n
g

G
a
la

x
y

Appendix A. Detailed Performance Statistics of the Replication Benchmarks 263

Ta
bl

e
A

.3
0:

D
et

ai
le

d
re

su
lts

of
co

ns
tr

uc
tin

g
in

-m
em

or
y

R
D

F
gr

ap
hs

us
in

g
th

e
A

nd
ro

je
na

,µ
Je

na
,a

nd
M

ob
ile

R
D

F
fr

am
ew

or
ks

M
o
d
e
l
S
iz

e
 (

T
r
ip

le
s
)

1
0

2
0

5
0

1
0
0

2
0
0

5
0
0

1
,0

0
0

2
,0

0
0

5
,0

0
0

1
0
,0

0
0

2
0
,0

0
0

5
0
,0

0
0

1
0
0
,0

0
0

E
x
e
c
u
t
io

n
 T

im
e
 (

m
s
)

2
0
.5

0
3
1
.8

0
7
7
.8

0
1
5
0
.0

0
3
0
2
.3

0
8
2
3
.0

0
1
,8

1
1
.4

0
3
,8

1
9
.0

0
1
0
,0

6
9
.7

0
2
0
,3

4
3
.0

0
4
1
,6

2
7
.3

0
D

N
F

D
N

F

S
t
a
n
d
a
r
d
 D

e
v
ia

t
io

n
6
.4

0
1
.4

0
2
.0

4
3
.4

6
3
.4

7
6
3
.8

6
1
2
.4

7
1
0
4
.1

4
7
8
.3

9
1
5
9
.3

9
3
0
3
.2

1
D

N
F

D
N

F

T
r
ip

le
s
 p

e
r
 S

e
c
o
n
d

4
8
7
.8

0
6
2
8
.9

3
6
4
2
.6

7
6
6
6
.6

7
6
6
1
.5

9
6
0
7
.5

3
5
5
2
.0

6
5
2
3
.7

0
4
9
6
.5

4
4
9
1
.5

7
4
8
0
.4

5
D

N
F

D
N

F

E
x
e
c
u
t
io

n
 T

im
e
 (

m
s
)

8
.6

0
1
8
.7

0
4
5
.9

0
7
6
.0

0
1
1
2
.9

0
2
5
1
.8

0
5
7
8
.8

0
1
,1

7
0
.6

0
2
,9

7
3
.1

0
6
,1

4
4
.3

0
1
2
,4

9
4
.2

0
D

N
F

D
N

F

S
t
a
n
d
a
r
d
 D

e
v
ia

t
io

n
0
.7

0
3
.0

2
3
.0

3
7
.0

4
2
.8

5
6
.9

7
7
.2

7
2
1
.3

6
4
1
.7

5
2
3
.4

5
7
4
.1

8
D

N
F

D
N

F

T
r
ip

le
s
 p

e
r
 S

e
c
o
n
d

1
,1

6
2
.7

9
1
,0

6
9
.5

2
1
,0

8
9
.3

2
1
,3

1
5
.7

9
1
,7

7
1
.4

8
1
,9

8
5
.7

0
1
,7

2
7
.7

1
1
,7

0
8
.5

3
1
,6

8
1
.7

5
1
,6

2
7
.5

2
1
,6

0
0
.7

4
D

N
F

D
N

F

E
x
e
c
u
t
io

n
 T

im
e
 (

m
s
)

1
8
.2

0
3
8
.9

0
9
7
.7

0
1
5
4
.8

0
2
4
1
.2

0
3
6
4
.1

0
5
6
3
.7

0
8
5
4
.4

0
1
,7

1
8
.1

0
3
,2

7
0
.3

0
6
,4

9
8
.8

0
1
8
,9

1
3
.7

0
D

N
F

S
t
a
n
d
a
r
d
 D

e
v
ia

t
io

n
6
.2

5
6
.3

1
1
7
.4

1
3
4
.7

8
1
5
.2

5
4
.0

7
1
5
.1

1
2
8
.1

8
8
3
.3

8
5
9
.8

4
3
8
.0

6
7
1
3
.8

7
D

N
F

T
r
ip

le
s
 p

e
r
 S

e
c
o
n
d

5
4
9
.4

5
5
1
4
.1

4
5
1
1
.7

7
6
4
5
.9

9
8
2
9
.1

9
1
,3

7
3
.2

5
1
,7

7
3
.9

9
2
,3

4
0
.8

2
2
,9

1
0
.1

9
3
,0

5
7
.8

2
3
,0

7
7
.4

9
2
,6

4
3
.5

9
D

N
F

M
o
d
e
l
S
iz

e
 (

T
r
ip

le
s
)

1
0

2
0

5
0

1
0
0

2
0
0

5
0
0

1
,0

0
0

2
,0

0
0

5
,0

0
0

1
0
,0

0
0

2
0
,0

0
0

5
0
,0

0
0

1
0
0
,0

0
0

E
x
e
c
u
t
io

n
 T

im
e
 (

m
s
)

5
5
.3

0
1
4
7
.0

0
5
5
3
.3

0
2
,1

3
8
.9

0
9
,9

1
4
.4

0
6
7
,1

6
8
.3

0
D

N
F

D
N

F
D

N
F

D
N

F
D

N
F

D
N

F
D

N
F

S
t
a
n
d
a
r
d
 D

e
v
ia

t
io

n
3
.2

7
1
0
.7

4
2
3
.3

8
7
5
.4

8
3
0
8
.9

3
5
,0

5
4
.0

4
D

N
F

D
N

F
D

N
F

D
N

F
D

N
F

D
N

F
D

N
F

T
r
ip

le
s
 p

e
r
 S

e
c
o
n
d

1
8
0
.8

3
1
3
6
.0

5
9
0
.3

7
4
6
.7

5
2
0
.1

7
7
.4

4
D

N
F

D
N

F
D

N
F

D
N

F
D

N
F

D
N

F
D

N
F

E
x
e
c
u
t
io

n
 T

im
e
 (

m
s
)

3
3
.9

0
8
4
.5

0
2
4
2
.5

0
8
5
8
.5

0
4
,1

0
7
.8

0
2
9
,0

5
5
.2

0
1
4
3
,6

4
8
.5

0
D

N
F

D
N

F
D

N
F

D
N

F
D

N
F

D
N

F

S
t
a
n
d
a
r
d
 D

e
v
ia

t
io

n
8
.5

0
5
.2

5
1
5
.4

7
2
2
.9

6
1
1
6
.8

2
2
,7

7
2
.4

2
1
2
,6

8
9
.7

6
D

N
F

D
N

F
D

N
F

D
N

F
D

N
F

D
N

F

T
r
ip

le
s
 p

e
r
 S

e
c
o
n
d

2
9
4
.9

9
2
3
6
.6

9
2
0
6
.1

9
1
1
6
.4

8
4
8
.6

9
1
7
.2

1
6
.9

6
D

N
F

D
N

F
D

N
F

D
N

F
D

N
F

D
N

F

E
x
e
c
u
t
io

n
 T

im
e
 (

m
s
)

5
5
.3

0
1
3
2
.3

0
2
8
3
.4

0
6
3
0
.0

0
2
,3

4
5
.5

0
1
4
,7

1
8
.9

0
6
1
,7

8
4
.5

0
2
3
6
,0

0
3
.3

8
D

N
F

D
N

F
D

N
F

D
N

F
D

N
F

S
t
a
n
d
a
r
d
 D

e
v
ia

t
io

n
2
6
.2

5
1
6
.5

9
2
0
.1

3
3
6
.2

8
1
0
1
.6

0
1
,2

6
1
.5

0
1
4
,5

9
0
.1

0
6
3
,2

0
1
.2

9
D

N
F

D
N

F
D

N
F

D
N

F
D

N
F

T
r
ip

le
s
 p

e
r
 S

e
c
o
n
d

1
8
0
.8

3
1
5
1
.1

7
1
7
6
.4

3
1
5
8
.7

3
8
5
.2

7
3
3
.9

7
1
6
.1

9
8
.4

7
D

N
F

D
N

F
D

N
F

D
N

F
D

N
F

M
o
d
e
l
S
iz

e
 (

T
r
ip

le
s
)

1
0

2
0

5
0

1
0
0

2
0
0

5
0
0

1
,0

0
0

2
,0

0
0

5
,0

0
0

1
0
,0

0
0

2
0
,0

0
0

5
0
,0

0
0

1
0
0
,0

0
0

E
x
e
c
u
t
io

n
 T

im
e
 (

m
s
)

1
3
.8

0
2
1
.1

0
4
7
.3

0
9
2
.6

0
1
8
1
.4

0
6
0
3
.7

0
1
,2

2
2
.9

0
2
,6

4
4
.2

0
6
,3

1
8
.2

0
1
2
,5

1
5
.4

0
D

N
F

D
N

F
D

N
F

S
t
a
n
d
a
r
d
 D

e
v
ia

t
io

n
7
.4

7
0
.7

4
1
.8

3
2
.1

2
2
.8

8
4
.7

6
7
.8

9
5
9
.6

2
7
3
.2

8
1
7
4
.1

3
D

N
F

D
N

F
D

N
F

T
r
ip

le
s
 p

e
r
 S

e
c
o
n
d

7
2
4
.6

4
9
4
7
.8

7
1
,0

5
7
.0

8
1
,0

7
9
.9

1
1
,1

0
2
.5

4
8
2
8
.2

3
8
1
7
.7

3
7
5
6
.3

7
7
9
1
.3

6
7
9
9
.0

2
D

N
F

D
N

F
D

N
F

E
x
e
c
u
t
io

n
 T

im
e
 (

m
s
)

5
.3

0
1
2
.2

0
3
0
.2

0
5
3
.3

0
8
7
.3

0
2
3
4
.5

0
4
5
6
.9

0
9
2
1
.4

0
2
,1

5
4
.7

0
4
,3

3
2
.6

0
9
,3

8
3
.3

0
D

N
F

D
N

F

S
t
a
n
d
a
r
d
 D

e
v
ia

t
io

n
1
.5

7
1
.1

4
4
.8

9
2
.2

1
6
.0

2
6
.2

2
1
0
.0

5
1
4
.7

9
1
1
.9

8
8
1
.8

4
1
1
0
.9

8
D

N
F

D
N

F

T
r
ip

le
s
 p

e
r
 S

e
c
o
n
d

1
,8

8
6
.7

9
1
,6

3
9
.3

4
1
,6

5
5
.6

3
1
,8

7
6
.1

7
2
,2

9
0
.9

5
2
,1

3
2
.2

0
2
,1

8
8
.6

6
2
,1

7
0
.6

1
2
,3

2
0
.5

1
2
,3

0
8
.0

8
2
,1

3
1
.4

5
D

N
F

D
N

F

E
x
e
c
u
t
io

n
 T

im
e
 (

m
s
)

1
1
.1

0
2
4
.9

0
6
4
.8

0
1
1
4
.9

0
1
8
9
.9

0
3
6
2
.4

0
4
6
1
.9

0
6
7
8
.5

0
1
,3

2
0
.9

0
2
,3

5
8
.1

0
4
,8

2
4
.4

0
1
5
,4

0
4
.6

0
D

N
F

S
t
a
n
d
a
r
d
 D

e
v
ia

t
io

n
3
.9

6
4
.2

3
3
.2

9
7
.4

9
2
4
.0

4
2
2
.7

0
3
3
.5

2
1
8
.3

4
9
0
.2

7
3
9
.5

0
5
1
.5

7
6
6
7
.8

2
D

N
F

T
r
ip

le
s
 p

e
r
 S

e
c
o
n
d

9
0
0
.9

0
8
0
3
.2

1
7
7
1
.6

0
8
7
0
.3

2
1
,0

5
3
.1

9
1
,3

7
9
.6

9
2
,1

6
4
.9

7
2
,9

4
7
.6

8
3
,7

8
5
.3

0
4
,2

4
0
.7

0
4
,1

4
5
.5

9
3
,2

4
5
.7

8
D

N
F

H
T

C
 G

1

M
o
t
o
r
o
la

M
il
e
s
t
o
n
e

S
a
m

s
u
n
g

G
a
la

x
y

Androjena µJena Mobile RDF

H
T

C
 G

1

M
o
t
o
r
o
la

M
il
e
s
t
o
n
e

S
a
m

s
u
n
g

G
a
la

x
y

H
T

C
 G

1

M
o
t
o
r
o
la

M
il
e
s
t
o
n
e

S
a
m

s
u
n
g

G
a
la

x
y

Bibliography

[ABK+07] Sören Auer, Christian Bizer, Georgi Kobilarov, Jens Lehmann, and Zachary Ives.
Dbpedia: A nucleus for a web of open data. In In 6th Int’l Semantic Web Confer-
ence, Busan, Korea, pages 11–15. Springer, 2007.

[Abo99] Gregory D. Abowd. Software engineering issues for ubiquitous computing. In ICSE
’99: Proceedings of the 21st international conference on Software engineering, pages
75–84, New York, NY, USA, 1999. ACM.

[ACC09] Martin Azizyan, Ionut Constandache, and Romit Roy Choudhury. Surroundsense:
mobile phone localization via ambience fingerprinting. In Kang G. Shin, Yongguang
Zhang, Rajive Bagrodia, and Ramesh Govindan, editors, MOBICOM, pages 261–
272. ACM, 2009.

[ADB+99] Gregory D. Abowd, Anind K. Dey, Peter J. Brown, Nigel Davies, Mark Smith, and
Pete Steggles. Towards a better understanding of context and context-awareness.
In HUC ’99: Proceedings of the 1st international symposium on Handheld and
Ubiquitous Computing, pages 304–307, London, UK, 1999. Springer-Verlag.

[AH08] Dean Allemang and James A. Hendler. Semantic Web for the Working Ontologist:
Effective Modeling in RDFS and OWL. Morgan Kaufmann, Burlington, MA, 2008.

[AMMH09] Daniel J. Abadi, Adam Marcus, Samuel R. Madden, and Kate Hollenbach. Sw-
store: a vertically partitioned dbms for semantic web data management. The VLDB
Journal, 18:385–406, April 2009.

[AMR02] Gregory D. Abowd, Elizabeth D. Mynatt, and Tom Rodden. The human experience.
IEEE Pervasive Computing, 1:48–57, 2002.

[And10] Android developer’s guide, 12 2010.

[ANH07] C. B. Anagnostopoulos, Y. Ntarladimas, and Stathes Hadjiefthymiades. Situational
computing: An innovative architecture with imprecise reasoning. Journal of Sys-
tems and Software, 80(12):1993–2014, 2007.

[ATH07] Christos B. Anagnostopoulos, Athanasios Tsounis, and Stathes Hadjiefthymiades.
Context awareness in mobile computing environments. Wirel. Pers. Commun.,
42(3):445–464, 2007.

[Bar03] Louise Barkhuus. Context information in mobile telephony. In Luca Chittaro,
editor, Mobile HCI, volume 2795 of Lecture Notes in Computer Science, pages 451–
455. Springer, 2003.

[BB08] Christian Becker and Christian Bizer. Dbpedia mobile: A location-enabled linked
data browser. In Linked Data on the Web (LDOW2008), 2008.

265

Bibliography 266

[BB09a] Christian Becker and Chris Bizer. Marbles, 2009.

[BB09b] Christian Becker and Christian Bizer. Exploring the geospatial semantic web with
dbpedia mobile. J. Web Sem., 7(4):278–286, 2009.

[BBL08] David Beckett and Tim Berners-Lee. Turtle – terse rdf triple language. W3c team
submission, W3C, January 2008.

[BC04] G. Biegel and V. Cahill. A framework for developing mobile, context-aware appli-
cations. pages 361–365, March 2004.

[BCH07] Chris Bizer, Richard Cyganiak, and Tom Heath. How to publish Linked Data on
the Web, 2007.

[BCM+03] Franz Baader, Diego Calvanese, Deborah L. McGuinness, Daniele Nardi, and Pe-
ter F. Patel-Schneider, editors. The Description Logic Handbook: Theory, Imple-
mentation, and Applications. Cambridge University Press, 2003.

[BCQ+07] Cristiana Bolchini, Carlo A. Curino, Elisa Quintarelli, Fabio A. Schreiber, and
Letizia Tanca. A data-oriented survey of context models. SIGMOD Rec., 36(4):19–
26, 2007.

[BCR04] Margaret Burnett, Curtis Cook, and Gregg Rothermel. End-user software engineer-
ing. Commun. ACM, 47:53–58, September 2004.

[BD05a] Christian Becker and Frank Duerr. On location models for ubiquitous computing.
Personal Ubiquitous Comput., 9(1):20–31, 2005.

[BD05b] Nicholas A. Bradley and Mark D. Dunlop. Toward a multidisciplinary model of
context to support context-aware computing. Hum.-Comput. Interact., 20(4):403–
446, 2005.

[BDR07] Matthias Baldauf, Schahram Dustdar, and Florian Rosenberg. A survey on context-
aware systems. Int. J. Ad Hoc Ubiquitous Comput., 2(4):263–277, 2007.

[Bec04] Dave Beckett. RDF/XML Syntax Specification (Revised). World Wide Web Con-
sortium, 2004.

[BEK+00] Don Box, David Ehnebuske, Gopal Kakivaya, Andrew Layman, Noah Mendelsohn,
Henrik Frystyk Nielsen, Satish Thatte, and Dave Winer. Simple object access proto-
col (SOAP) 1.1. W3C Note NOTE-SOAP-20000508, World Wide Web Consortium,
May 2000.

[BG03] Michael Beigl and Hans Gellersen. Smart-its: An embedded platform for smart
objects. In In Proc. Smart Objects Conference (SOC 2003, pages 15–17, 2003.

[BG04] Dan Brickley and R.V. Guha. RDF Vocabulary Description Language 1.0: RDF
Schema (W3C Recommendation 10 Februar 2004). World Wide Web Consortium,
2004.

[BGSA05] Abdelkrim Beloued, Jean-Marie Gilliot, Maria-Teresa Segarra, and Françoise An-
dré. Dynamic Data Replication and Consistency in Mobile Environments. In Proc.
of the 2nd international doctoral symposium on Middleware, pages 1–5, New York,
NY, USA, 2005. ACM.

[Bha99] Bharat Bhargava. Concurrency control in database systems. IEEE Trans. on
Knowl. and Data Eng., 11:3–16, January 1999.

Bibliography 267

[BHBL08] Christian Bizer, Tom Heath, and Tim Berners-Lee. Linked Data: Principles and
State of the Art. In 17th World Wide Web Conference (WWW2008), W3C track,
April 2008.

[BHBL09] Christian Bizer, Tom Heath, and Tim Berners-Lee. Linked data - the story so far.
International Journal on Semantic Web and Information Systems, 5(3):1–22, 2009.

[BHG87] Philip A. Bernstein, Vassos Hadzilacos, and Nathan Goodman. Concurrency Con-
trol and Recovery in Database Systems. Addison-Wesley, 1987.

[BHK+10] Harold Boley, Gary Hallmark, Michael Kifer, Adrian Paschke, Axel Polleres,
and Dave Reynolds. RIF Core Dialect (W3C Recommendation 22 June 2010).
World Wide Web Consortium, June 2010. Available at http://www.w3.org/TR/
rif-core/.

[Biz09] Christian Bizer. The emerging web of linked data. IEEE Intelligent Systems, 24:87–
92, 2009.

[BJRGN10] Francisco Borrego-Jaraba, Irene Luque Ruiz, and Miguel Ángel Gómez-Nieto. Nfc
solution for the development of smart scenarios supporting tourism applications and
surfing in urban environments. In Proceedings of the 23rd international conference
on Industrial engineering and other applications of applied intelligent systems -
Volume Part III, IEA/AIE’10, pages 229–238, Berlin, Heidelberg, 2010. Springer-
Verlag.

[BKL+08a] Sebastian Boehm, Johan Koolwaaij, Marko Luther, Bertrand Souville, Matthias
Wagner, and Martin Wibbels. Introducing iyouit. The Semantic Web - ISWC
2008, pages 804–817, 2008///.

[BKL08b] Sebastian Böhm, Johan Koolwaaij, and Marko Luther. Share whatever you like.
ECEASST, 11, 2008.

[BKL+08c] Sebastian Böhm, Johan Koolwaaij, Marko Luther, Bertrand Souville, Matthias
Wagner, and Martin Wibbels. Iyouit - share, life, blog, play. In Christian Bizer and
Anupam Joshi, editors, International Semantic Web Conference (Posters Demos),
volume 401 of CEUR Workshop Proceedings. CEUR-WS.org, 2008.

[BKvH02] Jeen Broekstra, Arjohn Kampman, and Frank van Harmelen. Sesame: A generic
architecture for storing and querying RDF and RDF schema. In I. Horrocks and
J. Hendler, editors, Proceedings of the First Internation Semantic Web Conference,
number 2342 in Lecture Notes in Computer Science, pages 54–68. Springer Verlag,
July 2002.

[BL97] Tim Berners-Lee. Uri references: Fragment identifiers on uris - axioms of web
architecture. Technical report, April 1997.

[BL98] Tim Berners-Lee. Why rdf model is different from the xml model, September 1998.

[BL02] Tim Berners-Lee. What do http uris identify?, 07 2002.

[BL05] Tim Berners-Lee. What http uris identify, 06 2005.

[BL06a] Tim Berners-Lee. Linked Data – Design Issues, 2006.

[BL06b] Tim Berners-Lee. Notation 3, March 2006.

http://www.w3.org/TR/rif-core/
http://www.w3.org/TR/rif-core/

Bibliography 268

[BLC08] Tim Berners-Lee and Dan Connolly. Notation3 (n3): A readable rdf syntax. W3c
team submission, W3C, January 2008.

[BLFM05] T. Berners-Lee, R. Fielding, and L. Masinter. Uniform Resource Identifier (URI):
Generic Syntax (RFC 3986). Network Working Group, January 2005.

[BLHL01] Tim Berners-Lee, James Hendler, and Ora Lassila. The semantic web. Scientific
American, 284(5):34–43, 2001.

[BLMM94] T. Berners-Lee, L. Masinter, and M. McCahill. Uniform Resource Locators (URL).
RFC 1738 (Proposed Standard), December 1994. Obsoleted by RFCs 4248, 4266,
updated by RFCs 1808, 2368, 2396, 3986.

[BM04] Paul V. Biron and Ashok Malhotra. XML Schema Part 2: Datatypes Second
Edition, W3C Recommendation. October 2004.

[BM07] Dan Brickley and Libby Miller. Foaf vocabulary specification 0.91, 2007.

[Bon04] Elena Paslaru Bontas. Representing context on the semantic web. Doktoranden-
workshop Technologien und Anwendungen von XML, Berliner XML-Tage, 2004.

[BPM+08] Diego Berrueta, Jon Phipps, Alistair Miles, Thomas Baker, and Ralph Swick. Best
practice recipes for publishing rdf vocabularies, August 2008.

[Bro96] P. J. Brown. The stick-e document: a framework for creating context-aware ap-
plications. In Proceedings of EP’96, Palo Alto, pages 259–272. also published in it
EP–odd, January 1996.

[BS03] Thomas Buchholz and Michael Schiffers. Quality of context: What it is and why
we need it. In In Proceedings of the 10th Workshop of the OpenView University
Association: OVUA’03, 2003.

[BS04] Richard Boardman and M. Angela Sasse. "stuff goes into the computer and doesn’t
come out": a cross-tool study of personal information management. In Proceedings
of the SIGCHI conference on Human factors in computing systems, CHI ’04, pages
583–590, New York, NY, USA, 2004. ACM.

[BTC06] Yingyi Bu, Xianping Tao, and Shaxun Chen. Managing quality of context in per-
vasive computing. In In: QSIC 2006: Proceedings of the Sixth International Con-
ference on Quality Software, pages 193–200, 2006.

[BZD02] Michael Beigl, Tobias Zimmer, and Christian Decker. A location model for
communicating and processing of context. Personal and Ubiquitous Computing,
6(5/6):341–357, 2002.

[CBHS05] Jeremy J. Carroll, Christian Bizer, Pat Hayes, and Patrick Stickler. Named graphs.
Journal of Web Semantics, 3(4):247–267, 2005.

[CCDG05] Joëlle Coutaz, James L. Crowley, Simon Dobson, and David Garlan. Context is
key. Communications of the ACM - SPECIAL ISSUE: The disappearing computer,
48(3):49–53, 2005.

[CCMS10] Alessandro Ciaramella, Mario G. C. A. Cimino, Francesco Marcelloni, and Umberto
Straccia. Combining fuzzy logic and semantic web to enable situation-awareness
in service recommendation. In Proceedings of the 21st international conference on
Database and expert systems applications: Part I, DEXA’10, pages 31–45, Berlin,
Heidelberg, 2010. Springer-Verlag.

Bibliography 269

[CCSC07] Andrew Carton, Siobhan Clarke, Aline Senart, and Vinny Cahill. Aspect-oriented
model-driven development for mobile context-aware computing. In SEPCASE ’07:
Proceedings of the 1st International Workshop on Software Engineering for Per-
vasive Computing Applications, Systems, and Environments, page 5, Washington,
DC, USA, 2007. IEEE Computer Society.

[CDA07] Abdelghani Chibani, Karim Djouani, and Yacine Amirat. Semantic middleware
for context services composition in ubiquitous computing. In MOBILWARE ’08:
Proceedings of the 1st international conference on MOBILe Wireless MiddleWARE,
Operating Systems, and Applications, pages 1–6, ICST, Brussels, Belgium, Belgium,
2007. ICST (Institute for Computer Sciences, Social-Informatics and Telecommu-
nications Engineering).

[CDY90] B. Ciciani, D. M. Dias, and P. S. Yu. Analysis of replication in distributed database
systems. IEEE Trans. on Knowl. and Data Eng., 2(2):247–261, 1990.

[CEM03] Licia Capra, Wolfgang Emmerich, and Cecilia Mascolo. Carisma: Context-aware re-
flective middleware system for mobile applications. IEEE Transactions on Software
Engineering, 29:929–945, 2003.

[CFJ03] Harry Chen, Tim Finin, and Anupam Joshi. An ontology for context-aware perva-
sive computing environments. Knowl. Eng. Rev., 18(3):197–207, 2003.

[Che04] Harry Chen. An Intelligent Broker Architecture for Pervasive Context-Aware Sys-
tems. PhD thesis, University of Maryland, Baltimore County, December 2004.

[CJ04] Harry Chen and Anupam Joshi. An Ontology for Context-Aware Pervasive Comput-
ing Environments. Special Issue on Ontologies for Distributed Systems, Knowledge
Engineering Review, 18(3):197–207, May 2004.

[CK00] Guanling Chen and David Kotz. A survey of context-aware mobile computing
research. Technical report, Hanover, NH, USA, 2000.

[CK02] Guanling Chen and David Kotz. Context aggregation and dissemination in ubiqui-
tous computing systems. In Proceedings of the Fourth IEEE Workshop on Mobile
Computing Systems and Applications, WMCSA ’02, pages 105–, Washington, DC,
USA, 2002. IEEE Computer Society.

[CPFJ04] Harry Chen, Filip Perich, Tim Finin, and Anupam Joshi. Soupa: Standard ontology
for ubiquitous and pervasive applications. In In International Conference on Mobile
and Ubiquitous Systems: Networking and Services, pages 258–267, 2004.

[CQ09] Gong Cheng and Yuzhong Qu. Searching linked objects with falcons: Approach,
implementation and evaluation. International Journal on Semantic Web and Infor-
mation Systems, 5(3):49–70, 2009.

[CR90] Panayiotis K. Chrysanthis and Krithi Ramamritham. Acta: a framework for speci-
fying and reasoning about transaction structure and behavior. In Proceedings of the
1990 ACM SIGMOD international conference on Management of data, SIGMOD
’90, pages 194–203, New York, NY, USA, 1990. ACM.

[CR91a] Panayiotis K. Chrysanthis and Krithi Ramamritham. A unifying framework for
transactions in competitive and cooperative environments. Off. Knowl. Eng., 4:3–
21, May 1991.

Bibliography 270

[CR91b] Panos K. Chrysanthis and Krithi Ramamritham. Acta: The saga continues. Tech-
nical report, Amherst, MA, USA, 1991.

[CR91c] Panos K. Chrysanthis and Krithi Ramamritham. A formalism for extended trans-
action model. In Proceedings of the 17th International Conference on Very Large
Data Bases, VLDB ’91, pages 103–112, San Francisco, CA, USA, 1991. Morgan
Kaufmann Publishers Inc.

[CR94] Panos K. Chrysanthis and Krithi Ramamritham. Synthesis of extended transaction
models using acta. ACM Trans. Database Syst., 19:450–491, September 1994.

[CRL+09] Alejandro Cadenas, Carlos Ruiz, Iker Larizgoitia, Raúl García-Castro, Carlos Lams-
fus, Iñaki Vázquez, Marta González, David Martín, and María Poveda. Context
management in mobile environments: a semantic approach. In Proceedings of the
1st Workshop on Context, Information and Ontologies, CIAO ’09, pages 2:1–2:8,
New York, NY, USA, 2009. ACM.

[CS08] Karen Church and Barry Smyth. Understanding mobile information needs. In Mo-
bileHCI ’08: Proceedings of the 10th international conference on Human computer
interaction with mobile devices and services, pages 493–494, New York, NY, USA,
2008. ACM.

[CSC04] Isabel F. Cruz, William Sunna, and Anjli Chaudhry. Ontology alignment for real-
world applications. In Proceedings of the 2004 annual national conference on Dig-
ital government research, dg.o ’04, pages 96:1–96:2. Digital Government Society of
North America, 2004.

[CSH06] Namyoun Choi, Il-Yeol Song, and Hyoil Han. A survey on ontology mapping.
SIGMOD Rec., 35:34–41, September 2006.

[CX06] Guoray Cai and Yinkun Xue. Activity-oriented context-aware adaptation assisting
mobile geo-spatial activities. In IUI ’06: Proceedings of the 11th international
conference on Intelligent user interfaces, pages 354–356, New York, NY, USA, 2006.
ACM.

[DAPW97] Anind K. Dey, Gregory D. Abowd, Mike Pinkerton, and Andrew Wood. Cyberdesk:
A framework for providing self-integrating ubiquitous software services. In ACM
Symposium on User Interface Software and Technology, pages 75–76, 1997.

[DAS01] Anind K. Dey, Gregory D. Abowd, and Daniel Salber. A conceptual framework
and a toolkit for supporting the rapid prototyping of context-aware applications.
Human-Computer Interaction, 16(2):97–166, 2001.

[DE10] Jérôme David and Jérôme Euzenat. Linked data from your pocket: The android
RDFContentProvider. In 9th International Semantic Web Conference (ISWC2010),
November 2010.

[Dey98] Anind K. Dey. Context-aware computing: The cyberdesk project. In AAAI 1998
Spring Symposium on Intelligent Environments, pages 51–54, Palo Alto, 1998.
AAAI Press.

[Dey00] Anind K. Dey. Providing architectural support for building context-aware applica-
tions. PhD thesis, Georgia Institute of Technology, 2000.

[Dey01] Anind K. Dey. Understanding and using context. Personal Ubiquitous Comput.,
5(1):4–7, 2001.

Bibliography 271

[DFP+05] Li Ding, Tim Finin, Yun Peng, Paulo Pinheiro da Silva, and Deborah L. McGuin-
ness. Tracking rdf graph provenance using rdf molecules. In Proceedings of the 4th
International Semantic Web Conference, November 2005.

[Dia90] Dan Diaper. Task Analysis for Human-Computer Interaction. Prentice Hall PTR,
Upper Saddle River, NJ, USA, 1990.

[DMD+03] AnHai Doan, Jayant Madhavan, Robin Dhamankar, Pedro Domingos, and Alon
Halevy. Learning to match ontologies on the semantic web. The VLDB Journal,
12:303–319, November 2003.

[DMDH02] AnHai Doan, Jayant Madhavan, Pedro Domingos, and Alon Halevy. Learning to
map between ontologies on the semantic web. In Proceedings of the 11th interna-
tional conference on World Wide Web, WWW ’02, pages 662–673, New York, NY,
USA, 2002. ACM.

[Dou04] Paul Dourish. What we talk about when we talk about context. Personal Ubiquitous
Comput., 8(1):19–30, 2004.

[DRD+00] Alan Dix, Tom Rodden, Nigel Davies, Jonathan Trevor, Adrian Friday, and Kevin
Palfreyman. Exploiting space and location as a design framework for interactive
mobile systems. ACM Trans. Comput.-Hum. Interact., 7(3):285–321, 2000.

[DS06] Nick Drummond and Rob Shearer. The open world assumption. electronic, 2006.

[DWM08] Dominique Dudkowski, Harald Weinschrott, and Pedro Jose Marron. Design and
implementation of a reference model for context management in mobile ad-hoc
networks. In AINAW ’08: Proceedings of the 22nd International Conference on
Advanced Information Networking and Applications - Workshops, pages 832–837,
Washington, DC, USA, 2008. IEEE Computer Society.

[Ege02] Max J. Egenhofer. Toward the semantic geospatial web. In Agnès Voisard and
Shu-Ching Chen, editors, ACM-GIS, pages 1–4. ACM, 2002.

[EM07] Orri Erling and Ivan Mikhailov. RDF support in the virtuoso DBMS. In Sören
Auer, Christian Bizer, Claudia Müller, and Anna V. Zhdanova, editors, CSSW,
volume 113 of LNI, pages 59–68. GI, 2007.

[EPR08] Jérôme Euzenat, Jérôme Pierson, and Fano Ramparany. Dynamic context manage-
ment for pervasive applications. The Knowledge Engineering Review, 23(1):21–49,
2008.

[Eri02] Thomas Erickson. Some problems with the notion of context-aware computing.
Commun. ACM, 45(2):102–104, 2002.

[Euz05] Jérôme Euzenat. Alignment infrastructure for ontology mediation and other appli-
cations. In Martin Hepp, Axel Polleres, Frank van Harmelen, and Michael R.
Genesereth, editors, MEDIATE2005, volume 168 of CEUR Workshop Proceed-
ings, pages 81–95. CEUR-WS.org, 2005. online http://CEUR-WS.org/Vol-
168/MEDIATE2005-paper6.pdf.

[FAS09] Thomas Franz, Scherp Ansgar, and Steffen Staab. Are semantic desktops better?:
summative evaluation comparing a semantic against a conventional desktop. In
Proceedings of the fifth international conference on Knowledge capture, K-CAP ’09,
pages 1–8, New York, NY, USA, 2009. ACM.

Bibliography 272

[FGM+99] R. Fielding, J. Gettys, J. Mogul, H. Frystyk, L. Masinter, P. Leach, and T. Berners-
Lee. Hypertext Transfer Protocol – HTTP/1.1 (RFC 2616), 1999.

[FL04] Peter A. Flach and Nicolas Lachiche. Naive bayesian classifi-
cation of structured data. Machine Learning, 57:233–269, 2004.
10.1023/B:MACH.0000039778.69032.ab.

[FMGI06] Damien Fournier, Sonia Ben Mokhtar, Nikolaos Georgantas, and Valérie Issarny.
Towards ad hoc contextual services for pervasive computing. In MW4SOC ’06:
Proceedings of the 1st workshop on Middleware for Service Oriented Computing
(MW4SOC 2006), pages 36–41, New York, NY, USA, 2006. ACM.

[FZ94] George H. Forman and John Zahorjan. The challenges of mobile computing. Com-
puter, 27(4):38–47, 1994.

[GASW07] Guido Gehlen, Fahad Aijaz, Muhammad Sajjad, and Bernhard Walke. A mobile
context dissemination middleware. In Proceedings of the International Conference
on Information Technology, ITNG ’07, pages 155–160, Washington, DC, USA, 2007.
IEEE Computer Society.

[GB04] Jan Grant and Dave Beckett. RDF Test Cases. World Wide Web Consortium,
February 2004.

[Geh08] Jan D. Gehrke. Evaluating situation awareness of autonomous systems. In Per-
MIS ’08: Proceedings of the 8th Workshop on Performance Metrics for Intelligent
Systems, pages 206–213, New York, NY, USA, 2008. ACM.

[GK96] Barbara J. Grosz and Sarit Kraus. Collaborative plans for complex group action.
Artif. Intell., 86(2):269–357, 1996.

[GM03] R. Guha and John McCarthy. Varieties of contexts. In Proceedings of CONTEXT
2003, volume 2680 / 2003, pages 164 – 177. Springer-Verlag GmbH, August 2003.

[GMF04] R. Guha, R. Mccool, and R. Fikes. Contexts for the semantic web. In International
Semantic Web Conference, volume 3298 of Lecture Notes in Computer Science,
pages 32–46. Springer, 2004.

[Goe04] Brian Goetz. Java theory and practice: Dynamic compilation and performance
measurement, 2004.

[Goe05] Brian Goetz. Java theory and practice: Anatomy of a flawed microbenchmark.
Technical report, IBM developerWorks - Technical Report, 2005.

[GR92] Jim Gray and Andreas Reuter. Transaction Processing: Concepts and Techniques.
Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 1st edition, 1992.

[Gre01] Saul Greenberg. Context as a dynamic construct. Hum.-Comput. Interact.,
16(2):257–268, 2001.

[Gru95] Thomas R. Gruber. Toward principles for the design of ontologies used for knowl-
edge sharing. Int. J. Hum.-Comput. Stud., 43(5-6):907–928, 1995.

[GS91] F. Gomez and C. Segami. Classification-based reasoning. Systems, Man and Cy-
bernetics, IEEE Transactions on, 21(3):644 –659, 1991.

Bibliography 273

[GSB02] Hans W. Gellersen, Albercht Schmidt, and Michael Beigl. Multi-sensor context-
awareness in mobile devices and smart artifacts. Mobile Networks and Applications,
7(5):341–351, 2002.

[GSB08] Avelino J. Gonzalez, Brian S. Stensrud, and Gilbert Barrett. Formalizing context-
based reasoning: A modeling paradigm for representing tactical human behavior.
Int. J. Intell. Syst., 23:822–847, July 2008.

[GSS02] David Garlan, Daniel P. Siewiorek, and Peter Steenkiste. Project aura: Toward
distraction-free pervasive computing. IEEE Pervasive Computing, 1:22–31, 2002.

[Har09] Olaf Hartig. Querying trust in rdf data with tsparql. In 6th Annual European
Semantic Web Conference (ESWC2009), pages 5–20, June 2009.

[HB11] Tom Heath and Christian Bizer. Linked Data: Evolving the Web into a Global Data
Space. Morgan & Claypool, 1st edition, 2011.

[HBS08] Alice Hertel, Jeen Broekstra, and Heiner Stuckenschmidt. RDF storage and retrieval
systems. On-line, 2008.

[HDM05] Tom Heath, Martin Dzbor, and Enrico Motta. Supporting user tasks and context:
Challenges for semantic web research. Proc. ESWC2005 Workshop on End-User
Aspects of the Semantic Web (UserSWeb), 2005.

[HDW09] Dexter H. Hu, Fan Dong, and Cho-Li Wang. A semantic context management
framework on mobile device. In ICESS ’09: Proceedings of the 2009 International
Conference on Embedded Software and Systems, pages 331–338, Washington, DC,
USA, 2009. IEEE Computer Society.

[HG03] Stephen Harris and Nicholas Gibbins. 3store: Efficient bulk rdf storage. In Practical
and Scalable Semantic Systems, Proceedings of the First International Workshop on
Practical and Scalable Semantic Systems, 2003.

[HGK+04] Lars Erik Holmquist, Hans-Werner Gellersen, Gerd Kortuem, Albrecht Schmidt,
Martin Strohbach, Stavros Antifakos, Florian Michahelles, Bernt Schiele, Michael
Beigl, and Ramia Mazé. Building intelligent environments with smart-its. IEEE
Comput. Graph. Appl., 24:56–64, January 2004.

[Him] Michael Himsolt. Gml: A portable graph file format. Technical report, Universität
Passau, 94030 Passau, Germany.

[HIMB05] K. Henricksen, J. Indulska, T. McFadden, and S. Balasubramaniam. Middleware for
Distributed Context-Aware Systems. In Robert Meersman and Zahir Tari, editors,
On the Move to Meaningful Internet Systems 2005: CoopIS, DOA. Proceedings of
the OTM Confederated International Conferences: CoopIS, DOA and ODBASE
2005, Part 1. International Symposium on Distributed Objects and Applications
(DOA), Agia Napa, Cyprus, pages 846–863. Springer, 2005.

[HIR02] Karen Henricksen, Jadwiga Indulska, and Andry Rakotonirainy. Modeling context
information in pervasive computing systems. In Pervasive ’02: Proceedings of the
First International Conference on Pervasive Computing, pages 167–180, London,
UK, 2002. Springer-Verlag.

[HKM+10] Sayed Y. Hashimi, Satya Komatineni, Dave MacLean, Sayed Y. Hashimi, Satya
Komatineni, and Dave MacLean. Pro Android 2. Apress, 2010.

Bibliography 274

[HKS06] Mike Hazas, John Krumm, and Thomas Strang, editors. Location- and Context-
Awareness, Second International Workshop, LoCA 2006, Dublin, Ireland, May 10-
11, 2006, Proceedings, volume 3987 of Lecture Notes in Computer Science. Springer,
2006.

[HM01] Volker Haarslev and Ralf Möller. RACER System Description. In R. Goré,
A. Leitsch, and T. Nipkow, editors, Automated Reasoning: First International Joint
Conference (IJCAR) 2001, volume 2083 of Lecture Notes in Computer Science, page
701, Siena, Italy, June18-23 2001. Springer-Verlag.

[HM04] Patrick Hayes and Brian McBride. Rdf semantics, 2 2004.

[HM05] C. Huebscher and A. McCann. An adaptive middleware framework for context-
aware applications. Personal Ubiquitous Comput., 10(1):12–20, 2005.

[HM08] Tom Heath and Enrico Motta. Revyu: Linking reviews and ratings into the web of
data. Journal of Web Semantics: Science, Services and Agents on the World Wide
Web, 6:266–273, November 2008.

[HMD05] Tom Heath, Enrico Motta, and Martin Dzbor. Context as a foundation for a seman-
tic desktop. In Stefan Decker, Jack Park, Dennis Quan, and Leo Sauermann, editors,
Proc. of Semantic Desktop Workshop at the ISWC, Galway, Ireland, November 6,
volume 175, November 2005.

[HMPR04] Alan R. Hevner, Salvatore T. March, Jinsoo Park, and Sudha Ram. Design sci-
ence in information systems research. Management Information Systems Quarterly,
28(1):75–106, 2004.

[HNBr97] Richard Hull, Philip Neaves, and James Bedford-roberts. Towards situated com-
puting. In In Proceedings of The First International Symposium on Wearable Com-
puters, pages 146–153, 1997.

[HPSB+04] Ian Horrocks, Peter F. Patel-Schneider, Harold Boley, Said Tabet, Benjamin Grosof,
and Mike Dean. Swrl: A semantic web rule language combining owl and ruleml,
May 2004.

[HRSZ11] Bernhard Haslhofer, Elaheh Momeni Roochi, Bernhard Schandl, and Stefan Zander.
Europeana rdf store report. Technical report, University of Vienna, Vienna, March
2011.

[HS03] Hagen Höpfner and Kai-Uwe Sattler. Semantic Replication in Mobile Federated
Information Systems. In Anne E. James, Stefan Conrad, and Wilhelm Hasselbring,
editors, Engineering Federated Information Systems, Proceedings of the 5th Work-
shop EFIS 2003, Coventry, UK, pages 36–41. aka / IOS Press / infix, 2003.

[HSM+10] Wolfgang Halb, Alexander Stocker, Harald Mayer, Helmut Mülner, and Ilir
Ademi. Towards a commercial adoption of linked open data for online content
providers. In Proceedings of the 6th International Conference on Semantic Sys-
tems, I-SEMANTICS ’10, pages 16:1–16:8, New York, NY, USA, 2010. ACM.

[HSMY08] Li Han, Jyri P. Salomaa, Jian Ma, and Kuifei Yu. Research on context-aware mobile
computing. In AINA Workshops, pages 24–30. IEEE Computer Society, 2008.

Bibliography 275

[HSP+03] Thomas Hofer, Wieland Schwinger, Mario Pichler, Gerhard Leonhartsberger, Josef
Altmann, and Werner Retschitzegger. Context-awareness on mobile devices - the
hydrogen approach. In HICSS ’03: Proceedings of the 36th Annual Hawaii Inter-
national Conference on System Sciences (HICSS’03) - Track 9, page 292.1, Wash-
ington, DC, USA, 2003. IEEE Computer Society.

[HSW94] Yixiu Huang, Prasad Sistla, and Ouri Wolfson. Data Replication for Mobile Com-
puters. In Richard Thomas Snodgrass and Marianne Winslett, editors, Proceedings
of the 1994 ACM SIGMOD international conference on Management of data (SIG-
MOD ’94), pages 13–24, New York, NY, USA, 1994. ACM.

[IRRH03] Jadwiga Indulska, Ricky Robinson, Andry Rakotonirainy, and Karen Henricksen.
Experiences in using cc/pp in context-aware systems. In In Proc. of the Intl. Conf.
on Mobile Data Management (MDM, pages 247–261. Springer, 2003.

[IS03] Jadwiga Indulska and Peter Sutton. Location management in pervasive systems.
In ACSW Frontiers ’03: Proceedings of the Australasian information security work-
shop conference on ACSW frontiers 2003, pages 143–151, Darlinghurst, Australia,
Australia, 2003. Australian Computer Society, Inc.

[JW04] Ian Jacobs and Norman Walsh. Architecture of the World Wide Web, Volume One -
W3C Recommendation 15 December 2004. World Wide Web Consortium, December
2004.

[KA04] Manasawee Kaenampornpan and Bath Ba Ay. An intergrated context model: Bring-
ing activity to context. In In Workshop on Advanced Context Modelling, Reasoning
and Management - UbiComp, 2004.

[KAC+02] G. Karvounarakis, S. Alexaki, V. Christophides, D. Plexousakis, and M. Schol.
RQL: A Declarative Query Language for RDF. In Proceedings of the Eleventh
International World Wide Web Conference (WWW’02), Honolulu, Hawaii, USA,
May7-11 2002.

[KB06] Maryam Kamvar and Shumeet Baluja. A large scale study of wireless search behav-
ior: Google mobile search. In CHI ’06: Proceedings of the SIGCHI conference on
Human Factors in computing systems, pages 701–709, New York, NY, USA, 2006.
ACM.

[KC04] Graham Klyne and Jeremy J. Carroll. Resource Description Framework (RDF):
Concepts and Abstract Syntax (W3C Recommendation 10 February 2004). World
Wide Web Consortium, 2004.

[Kel06] Diane Kelly. Evaluating personal information management behaviors and tools.
Commun. ACM, 49:84–86, January 2006.

[KHK+04] Panu Korpipää, Jonna Häkkilä, Juha Kela, Sami Ronkainen, and Ilkka Känsälä.
Utilising context ontology in mobile device application personalisation. In Pro-
ceedings of the 3rd international conference on Mobile and ubiquitous multimedia,
MUM ’04, pages 133–140, New York, NY, USA, 2004. ACM.

[Kis07a] Cédric Kiss. Composite capabilities/preference profiles: Structure and vocabularies
2.0, 2007.

[Kis07b] Cédric Kiss. Composite capability/preference profiles (cc/pp): Structure and vo-
cabularies 2.0. World Wide Web Consortium, Working Draft WD-CCPP-struct-
vocab2-20070430, May 2007.

Bibliography 276

[Kja07] Kristian Ellebaek Kjaer. A survey of context-aware middleware. In SE’07: Pro-
ceedings of the 25th conference on IASTED International Multi-Conference, pages
148–155, Anaheim, CA, USA, 2007. ACTA Press.

[KLO+04] John Krogstie, Kalle Lyytinen, Andreas Lothe Opdahl, Barbara Pernici, Keng Siau,
and Kari Smolander. Research areas and challenges for mobile information systems.
International Journal of Mobile Communications, 2(3):220–234, 2004.

[KMK+03] P. Korpipaa, J. Mantyjarvi, J. Kela, H. Keranen, and E.J. Malm. Managing context
information in mobile devices. Pervasive Computing, IEEE, 2(3):42–51, July-Sept.
2003.

[KMS+05] Panu Korpipää, Esko-Juhani Malm, Ilkka Salminen, Tapani Rantakokko, Vesa
Kyllönen, and Ilkka Känsälä. Context management for end user development of
context-aware applications. In MDM ’05: Proceedings of the 6th international con-
ference on Mobile data management, pages 304–308, New York, NY, USA, 2005.
ACM.

[KPL+04] Sung Woo Kim, Sang Hyun Park, JungBong Lee, Young Kyu Jin, Hyun-Mi Park,
Amy Chung, SeungEok Choi, and Woo Sik Choi. Sensible appliances: applying
context-awareness to appliance design. Personal Ubiquitous Comput., 8(3-4):184–
191, 2004.

[KQJH03] B. Kummerfeld, A. Quigley, C. Johnson, and R. Hexel. Merino: Towards an
intelligent environment architecture for multi-granularity context description. In
K. Cheverst, N. de Carolis, and A. Kruger, editors, Online Proceedings of the UM
(User Modeling) 2003 Workshop on User Modeling for Ubiquitous Computing, pages
29–35, 2003.

[KRW09] Carsten Ke, Martin Raubal, and Christoph Wosniok. Semantic rules for context-
aware geographical information retrieval. In Proceedings of the 4th European confer-
ence on Smart sensing and context, EuroSSC’09, pages 77–92, Berlin, Heidelberg,
2009. Springer-Verlag.

[KTCY09] Yung-Wei Kao, Ching-Tsorng Tsai, Tung-Hing Chow, and Shyan-Ming Yuan. An
offline browsing system for mobile devices. In Proceedings of the 11th International
Conference on Information Integration and Web-based Applications & Services, ii-
WAS ’09, pages 338–343, New York, NY, USA, 2009. ACM.

[Kuu95] Kari Kuutti. Activity theory as a potential framework for human-computer inter-
action research, pages 17–44. Massachusetts Institute of Technology, Cambridge,
MA, USA, 1995.

[LBK+09] Jens Lehmann, Chris Bizer, Georgi Kobilarov, Sören Auer, Christian Becker,
Richard Cyganiak, and Sebastian Hellmann. DBpedia - a crystallization point
for the web of data. Journal of Web Semantics, 7(3):154–165, 2009.

[LBWK05] Marko Luther, Sebastian Böhm, Matthias Wagner, and Johan Koolwaaij. Enhanced
Presence Tracking for Mobile Applications. In ISWC’05 Demo Track, 2005.

[Len96] Richard Lenz. Adaptive distributed data management with weak consistent repli-
cated data. In SAC ’96: Proceedings of the 1996 ACM symposium on Applied
Computing, pages 178–185, New York, NY, USA, 1996. ACM.

[Lew07] Rhys Lewis. Dereferencing http uris, May 2007.

Bibliography 277

[LFWK08] Marko Luther, Yusuke Fukazawa, Matthias Wagner, and Shoji Kurakake. Situa-
tional reasoning for task-oriented mobile service recommendation. The Knowledge
Engineering Review, 23(1):7–19, 2008.

[LMWK05] M. Luther, B. Mrohs, S. Wagner, M.and Steglich, and W. Kellerer. Situational
reasoning-a practical owl use case. In Proceedings of the 7th International Sympo-
sium on Autonomous Decentralized Systems (ISADS’05), pages 96–103, Chengdu,
China, 2005.

[LPPRH10] Danh Le-Phuoc, Josiane X. Parreira, Vinny Reynolds, and Manfred Hauswirth.
RDF on the go: An RDF storage and query processor for mobile devices. In 9th
International Semantic Web Conference (ISWC2010), November 2010.

[LPS86] Doug Lenat, Mayank Prakash, and Mary Shepherd. Cyc: Using common sense
knowledge to overcome brittleness and knowledge acquistion bottlenecks. AI Mag.,
6:65–85, January 1986.

[LSD+02] Hui Lei, Daby M. Sow, John S. Davis, II, Guruduth Banavar, and Maria R. Ebling.
The design and applications of a context service. SIGMOBILE Mob. Comput.
Commun. Rev., 6:45–55, October 2002.

[Mad08] Gerald Madlmayr. A mobile trusted computing architecture for a near field com-
munication ecosystem. In Proceedings of the 10th International Conference on In-
formation Integration and Web-based Applications & Services, iiWAS ’08, pages
563–566, New York, NY, USA, 2008. ACM.

[MBDH02] Jayant Madhavan, Philip A. Bernstein, Pedro Domingos, and Alon Y. Halevy. Rep-
resenting and reasoning about mappings between domain models. In Eighteenth
national conference on Artificial intelligence, pages 80–86, Menlo Park, CA, USA,
2002. American Association for Artificial Intelligence.

[MBH+04] David Martin, Mark Burstein, Jerry Hobbs, Ora Lassila, Drew McDermott, Sheila
McIlraith, Srini Narayanan, Massimo Paolucci, Bijan Parsia, Terry R. Payne, Evren
Sirin, Naveen Srinivasan, and Katia Sycara. Owl-s: Semantic markup for web
services. 2004.

[MC02] René Meier and Vinny Cahill. Steam: Event-based middleware for wireless ad
hoc network. In ICDCSW ’02: Proceedings of the 22nd International Conference
on Distributed Computing Systems, pages 639–644, Washington, DC, USA, 2002.
IEEE Computer Society.

[McB01] Brian McBride. Jena: Implementing the RDF model and syntax specification. In
Proceedings of the 2nd International Workshop on the Semantic Web., Hongkong,
May 1 2001.

[McL02] Jay F McLain. Offline viewing of internet content with a mobile device - united
states patent 6493758. United States of America Patent and Trademark Office.
Granted Patents (USPTO), Application Number: 9/149694, 12 2002.

[MD02] M. Mealling and R. Denenberg. Uniform resource identifiers (uris), urls, and uni-
form resource names (urns): Clarifications and recommendations. Technical report,
Joint W3C/IETF URI Planning Interest Group - Network Working Group, August
2002.

[Mei10] Reto Meier. Professional Android 2 application development. Wiley Pub., 2010.

Bibliography 278

[MFC07] Jennifer Munnelly, Serena Fritsch, and Siobhan Clarke. An aspect-oriented ap-
proach to the modularisation of context. In PERCOM ’07: Proceedings of the
Fifth IEEE International Conference on Pervasive Computing and Communica-
tions, pages 114–124, Washington, DC, USA, 2007. IEEE Computer Society.

[MM04] Frank Manola and Eric Miller, editors. RDF Primer. W3C Recommendation.
World Wide Web Consortium, February 2004.

[MMG02] M. Lynne Markus, Ann Majchrzak, and Les Gasser. A design theory for systems
that support emergent knowledge processes. MIS Q., 26(3):179–212, September
2002.

[MPSP09] Boris Motik, Peter F. Patel-Schneider, and Bijan Parsia. OWL 2 Web Ontology
Language Structural Specification and Functional-Style Syntax (W3C Recommen-
dation 27 October 2009). World Wide Web Consortium, October 2009. Available
at http://www.w3.org/TR/owl2-syntax/.

[MRS08] Christopher D. Manning, Prabhakar Raghavan, and Hinrich Schütze. Introduction
to Information Retrieval. Cambridge University Press, Cambridge, Juli 2008.

[MS95] Salvatore T. March and Gerald F. Smith. Design and natural science research on
information technology. Decis. Support Syst., 15(4):251–266, December 1995.

[MSLN00] Ethan Miller, Dan Shen, Junli Liu, and Charles Nicholas. Performance and scala-
bility of a large-scale n-gram based information retrieval system. Journal of Digital
Information, 1, 2000.

[MT07] Kristijan Mihalic and Manfred Tscheligi. ’divert: mother-in-law’: representing and
evaluating social context on mobile devices. In MobileHCI ’07: Proceedings of the
9th international conference on Human computer interaction with mobile devices
and services, pages 257–264, New York, NY, USA, 2007. ACM.

[MTD08] Atif Manzoor, Hong-Linh Truong, and Schahram Dustdar. On the evaluation of
quality of context. In EuroSSC ’08: Proceedings of the 3rd European Conference
on Smart Sensing and Context, pages 140–153, Berlin, Heidelberg, 2008. Springer-
Verlag.

[MWL+08] Li Ma, Chen Wang, Jing Lu, Feng Cao, Yue Pan, and Yong Yu. Effective and
efficient semantic web data management over db2. In Proceedings of the 2008 ACM
SIGMOD international conference on Management of data, SIGMOD ’08, pages
1183–1194, New York, NY, USA, 2008. ACM.

[MYS05] Junfeng Man, Aimin Yang, and Xingming Sun. Shared ontology for pervasive
computing. In Stephane Grumbach, Liying Sui, and Victor Vianu, editors, Advances
in Computer Science – ASIAN 2005. Data Management on the Web, volume 3818
of Lecture Notes in Computer Science, pages 64–78. Springer Berlin / Heidelberg,
2005. 10.1007/115963707.

[N3P] Primer: Getting into rdf & semantic web using n3.

[Nar95] Bonnie A. Nardi. Context and Consciousness: Activity Theory and Human-
Computer Interaction. The MIT Press, Cambridge, MA, first edition, November
1995.

[Noy04] Natalya F. Noy. Semantic integration: a survey of ontology-based approaches.
SIGMOD Rec., 33:65–70, December 2004.

http://www.w3.org/TR/owl2-syntax/

Bibliography 279

[NP01] Ian Niles and Adam Pease. Towards a standard upper ontology. In Chris Welty and
Barry Smith, editors, In Proceedings of the 2nd International Conference on Formal
Ontology in Information Systems(FOIS-2001), Chris Welty and Barry Smith, 2001.

[OA98] Pinar Öztürk and Agnar Aamodt. A context model for knowledge-intensive case-
based reasoning. Int. J. Hum.-Comput. Stud., 48(3):331–355, 1998.

[ODC+08] Eyal Oren, Renaud Delbru, Michele Catasta, Richard Cyganiak, Holger Stenzhorn,
and Giovanni Tummarello. Sindice.com: A document-oriented lookup index for
open linked data. International Journal of Metadata, Semantics and Ontologies,
3(1), 2008.

[Owe09] Alisdair Owens. An investigation into improving rdf store performance, 2009.

[OWL04] Owl web ontology language overview. W3c recommendation, World Wide Web
Consortium, February 2004.

[PB03] Paul Prekop and Mark Burnett. Activities, context and ubiquitous computing.
Computer Communications, 26(11):1168 – 1176, 2003. Ubiquitous Computing.

[PBKL06] Emmanuel Pietriga, Christian Bizer, David Karger, and Ryan Lee. Fresnel: A
Browser-Independent presentation vocabulary for RDF. In The Semantic Web -
ISWC 2006, volume 4273 of Lecture Notes in Computer Science, pages 158–171.
Springer-Verlag, 2006.

[PdBW+04] Davy Preuveneers, Jan Van den Bergh, Dennis Wagelaar, Andy Georges, Pe-
ter Rigole, Tim Clerckx, Yolande Berbers, Karin Coninx, Viviane Jonckers, and
Koen De Bosschere. Towards an extensible context ontology for ambient intelli-
gence. In Panos Markopoulos, Berry Eggen, Emile Aarts, and James L. Crow-
ley, editors, Second European Symposium on Ambient Intelligence, volume 3295 of
LNCS, pages 148 – 159, Eindhoven, The Netherlands, Nov 8 – 11 2004. Springer.

[Per06] Barbara Pernici, editor. Mobile Information Systems: Infrastructure and Design
for Adaptivity and Flexibility. Springer-Verlag New York, Inc., Secaucus, NJ, USA,
2006.

[PFFC09] Panagiotis Pediaditis, Giorgos Flouris, Irini Fundulaki, and Vassilis Christophides.
On explicit provenance management in rdf/s graphs. In James Cheney, editor,
Workshop on the Theory and Practice of Provenance. USENIX, 2009.

[PG01] Eric Prud’hommeaux and Benjamin Grosof. Rdf query survey, 2001.

[Pre04] Jan; et.Al. Preuveneers, Davy; Van den Bergh. Towards an extensible context
ontology for ambient intelligence. Lecture Notes in Computer Science, Volume
3295/2004:148–159, 2004.

[PRS06] Carsten Pils, Ioanna Roussaki, and Maria Strimpakou. Location-based context
retrieval and filtering. In LoCA, pages 256–273, 2006.

[PS08a] Eric Prud’hommeaux and Andy Seaborne. SPARQL Query Language for RDF.
W3C Consortium, http://www.w3.org/TR/rdf-sparql-query/, w3c recommenda-
tion edition, January 2008.

[PS08b] Eric Prud’hommeaux and Andy Seaborne. SPARQL Query Language for RDF
(W3C Recommendation 15 January 2008). World Wide Web Consortium, 2008.

Bibliography 280

[PSHH04] Peter F. Patel-Schneider, Patrick Hayes, and Ian Horrocks. Owl web ontology
language semantics and abstract syntax. Technical report, W3C Recommendation,
February 2004.

[PvHS07] P. Pawar, A. T. van Halteren, and K. Sheikh. Enabling context-aware comput-
ing for the nomadic mobile user: A service oriented and quality driven approach.
In Proceedings of IEEE Wireless Communications and Networking Conference,
2007.WCNC 2007., Hong Kong, China, pages 2531–2536. IEEE Communication
Society, March 2007.

[REB+06] F. Ramparany, J. Euzenat, T. H. F. Broens, A. Bottaro, and R. Poortinga. Context
management and semantic modelling for ambient intelligence. Technical Report
TR-CTIT-06-52, Enschede, April 2006.

[RF05] P. Remagnino and G.L. Foresti. Ambient intelligence: A new multidisciplinary
paradigm. Systems, Man and Cybernetics, Part A, IEEE Transactions on, 35(1):1–
6, Jan. 2005.

[RHP+10] Vinny Reynolds, Michael Hausenblas, Axel Polleres, Manfred Hauswirth, and Vinod
Hegde. Exploiting linked open data for mobile augmented reality. In W3C Work-
shop: Augmented Reality on the Web, June 2010.

[RLMM09] Rick Rogers, John Lombardo, Zigurd Mednieks, and Blake Meike. Android Appli-
cation Development: Programming with the Google SDK. O’Reilly, Beijing, 2009.

[RPM98] N. S. Ryan, J. Pascoe, and D. R. Morse. Enhanced reality fieldwork: the context-
aware archaeological assistant. In V. Gaffney, M. van Leusen, and S. Exxon, editors,
Computer Applications in Archaeology 1997, British Archaeological Reports, Ox-
ford, October 1998. Tempus Reparatum.

[RS97] E. Roche and Y. Schabes, editors. Finite-State Language Processing. MIT Press,
Cambridge, MA, 1997.

[RSP07] Ioanna Roussaki, Maria Strimpakou, and Carsten Pils. Distributed context retrieval
and consistency control in pervasive computing. J. Netw. Syst. Manage., 15(1):57–
74, 2007.

[RTA05] Dimitrios Raptis, Nikolaos Tselios, and Nikolaos Avouris. Context-based design of
mobile applications for museums: a survey of existing practices. In MobileHCI ’05:
Proceedings of the 7th international conference on Human computer interaction with
mobile devices & services, pages 153–160, New York, NY, USA, 2005. ACM.

[RVW05] Philip Robinson, Harald Vogt, and Waleed Wagealla, editors. Privacy, Security
and Trust within the Context of Pervasive Computing. The Kluwer International
Series in Engineering and Computer Science. Springer Science+Business Media,
Inc., 2005.

[RW03] Janice Redish and Dennis Wixon. The human-computer interaction handbook.
chapter Task analysis, pages 922–940. L. Erlbaum Associates Inc., Hillsdale, NJ,
USA, 2003.

[Sat02] M. Satyanarayanan. Pervasive computing: vision and challenges. Personal Com-
munications, IEEE, 8(4):10–17, August 2002.

Bibliography 281

[SB08a] Robert Schmohl and Uwe Baumgarten. Context-aware computing: a survey prepar-
ing a generalized approach. In Proceedings of the International MultiConference of
Engineers and Computer Scientists 2008, volume Vol. 1, Hong Kong, 2008.

[SB08b] Robert Schmohl and Uwe Baumgarten. A generalized context-aware architecture
in heterogeneous mobile computing environments. In ICWMC ’08: Proceedings of
the 2008 The Fourth International Conference on Wireless and Mobile Communi-
cations, pages 118–124, Washington, DC, USA, 2008. IEEE Computer Society.

[SBD05] Leo Sauermann, Ansgar Bernardi, and Andreas Dengel. Overview and outlook
on the semantic desktop. In Stefan Decker, Jack Park, Dennis Quan, and Leo
Sauermann, editors, Proceedings of the 1st Workshop on The Semantic Desktop at
the ISWC 2005 Conference, volume 175 of CEUR-WS.org, pages 1 – 18. CEUR-WS,
November 2005.

[SBwG98] Albrecht Schmidt, Michael Beigl, and Hans w. Gellersen. There is more to context
than location. Computers and Graphics, 23:893–901, 1998.

[SC08] Leo Sauermann and Richard Cyganiak. Cool uris for the semantic web. W3C
Interest Group Note, December 2008.

[Sch10] Bernhard Schandl. Replication and Versioning of Partial RDF Graphs. In Proceed-
ings of the 7th European Semantic Web Conference (ESWC 2010), 2010.

[Sea04] Andy Seaborne. Rdql – a query language for rdf. W3C Member Submission,
http://www.w3.org/Submission/2004/SUBMRDQL-20040109/, Jan. 2004.

[SFH09] Holger Schmidt, Florian Flerlage, and Franz J. Hauck. A generic context service for
ubiquitous environments. In Proceedings of the 2009 IEEE International Conference
on Pervasive Computing and Communications, pages 1–6, Washington, DC, USA,
2009. IEEE Computer Society.

[SKSB09] Leo Sauermann, Malte Kiesel, Kinga Schumacher, and Ansgar Bernardi. Semantic
Desktop, pages 337–362. Springer, 2009.

[SKW07] Fabian M. Suchanek, Gjergji Kasneci, and Gerhard Weikum. YAGO: a core of
semantic knowledge unifying WordNet and Wikipedia. In WWW ’07: Proceedings
of the 16th International World Wide Web Conference, Banff, Canada, pages 697–
706, 2007.

[SLGH08] Timothy Sohn, Kevin A. Li, William G. Griswold, and James D. Hollan. A diary
study of mobile information needs. In CHI ’08: Proceeding of the twenty-sixth
annual SIGCHI conference on Human factors in computing systems, pages 433–
442, New York, NY, USA, 2008. ACM.

[SLPF03] Thomas Strang, Claudia Linnhoff-Popien, and Korbinian Frank. Cool: A context
ontology language to enable contextual interoperability. In LNCS 2893: Proceed-
ings of 4th IFIP WG 6.1 International Conference on Distributed Applications and
Interoperable Systems (DAIS2003). Volume 2893 of Lecture Notes in Computer
Science (LNCS)., Paris/France, pages 236–247. Springer Verlag, 2003.

[SP04] Thomas Strang and Claudia L. Popien. A context modeling survey. In UbiComp
1st International Workshop on Advanced Context Modelling, Reasoning and Man-
agement, pages 31–41, Nottingham, September 2004.

Bibliography 282

[SPG+07] E. Sirin, B. Parsia, B. Grau, A. Kalyanpur, and Y. Katz. Pellet: A practical owl-dl
reasoner. Web Semantics: Science, Services and Agents on the World Wide Web,
5(2):51–53, June 2007.

[SS00] Albrecht Schmidt and Albrecht Schmidt. Implicit human computer interaction
through context. Technical report, Personal Technologies, 2000.

[sSO+05] m. c. schraefel, Daniel A. Smith, Alisdair Owens, Alistair Russell, Craig Harris,
and Max Wilson. The evolving mspace platform: leveraging the semantic web on
the trail of the memex. In HYPERTEXT ’05: Proceedings of the sixteenth ACM
conference on Hypertext and hypermedia, pages 174–183, New York, NY, USA,
2005. ACM.

[ST94] B.N. Schilit and M.M. Theimer. Disseminating active map information to mobile
hosts. Network, IEEE, 8(5):22–32, Sep/Oct 1994.

[STS98] Kerstin Schwarz, Can Türker, and Gunter Saake. Analyzing and formalizing depen-
dencies in generalized transaction structures. In In Proceedings of the International
Workshop on Issues and Applications of Database Technology (IADT’98, pages 6–9,
1998.

[SVLO+11] M. Strobbe, O. Van Laere, F. Ongenae, S. Dauwe, B. Dhoedt, F. De Turck, P. De-
meester, and K. Luyten. Integrating location and context information for novel
personalised applications. Pervasive Computing, IEEE, PP(99):1, 2011.

[SWB+08] Thomas Springer, Patrick Wustmann, Iris Braun, Waltenegus Dargie, and Michael
Berger. A comprehensive approach for situation-awareness based on sensing and
reasoning about context. In UIC ’08: Proceedings of the 5th international conference
on Ubiquitous Intelligence and Computing, pages 143–157, Berlin, Heidelberg, 2008.
Springer-Verlag.

[SWvS07] Kamran Sheikh, Maarten Wegdam, and Marten van Sinderen. Middleware support
for quality of context in pervasive context-aware systems. In PERCOMW ’07: Pro-
ceedings of the Fifth IEEE International Conference on Pervasive Computing and
Communications Workshops, pages 461–466, Washington, DC, USA, 2007. IEEE
Computer Society.

[SZ09a] Bernhard Schandl and Stefan Zander. Adaptive rdf graph replication for mobile
semantic web applications. Ubiquitous Computing and Communication Journal
(Special Issue on Managing Data with Mobile Devices), -(-), July 2009.

[SZ09b] Bernhard Schandl and Stefan Zander. A framework for adaptive rdf graph replica-
tion for mobile semantic web applications. In Joint Workshop on Advanced Tech-
nologies and Techniques for Enterprise Information Systems (Session on Managing
Data with Mobile Devices), pages 154–163. INSTICC Press, May 2009.

[SZ10a] Bernhard Schandl and Stefan Zander. MobiSem System Documentation - Deliver-
able d1.7. Project deliverable, University of Vienna, September 2010.

[SZ10b] Bernhard Schandl and Stefan Zander. Synchronization and algorithm specification
- deliverable d1.2. Project deliverable, University of Vienna, September 2010.

[Teo08] Hong-Siang Teo. An activity-driven model for context-awareness in mobile comput-
ing. In MobileHCI ’08: Proceedings of the 10th international conference on Human
computer interaction with mobile devices and services, pages 545–546, New York,
NY, USA, 2008. ACM.

Bibliography 283

[TGE+06] Kieron R. Taylor, Robert J. Gledhill, Jonathan W. Essex, Jeremy G. Frey,
Stephen W. Harris, and David De Roure. Bringing chemical data onto the semantic
web. Journal of Chemical Information and Modeling, 46(3):939–952, 2006.

[TH06] D. Tsarkov and I. Horrocks. Fact++ description logic reasoner: System description.
In Proc. of the Int. Joint Conf. on Automated Reasoning (IJCAR 2006), volume
4130 of Lecture Notes in Artificial Intelligence, pages 292–297. Springer, 2006.

[THS09] Krishnaprasad Thirunarayan, Cory A. Henson, and Amit P. Sheth. Situation aware-
ness via abductive reasoning from semantic sensor data: A preliminary report.
Collaborative Technologies and Systems, International Symposium on, 0:111–118,
2009.

[TS09] Goce Trajcevski and Peter Scheuermann. Managing context evolution in pervasive
environments. In Proceedings of the 2nd International Conference on Pervasive
Technologies Related to Assistive Environments, PETRA ’09, pages 19:1–19:2, New
York, NY, USA, 2009. ACM.

[VBGK09] Julius Volz, Christian Bizer, Martin Gaedke, and Georgi Kobilarov. Discovering
and maintaining links on the web of data. In The Semantic Web – ISWC 2009:
8th International Semantic Web Conference, Chantilly, VA, USA, pages 650–665.
2009.

[WB05] Ivo Widjaja and Sandrine Balbo. Spheres of role in context-awareness. In OZCHI
’05: Proceedings of the 17th Australia conference on Computer-Human Interaction,
pages 1–4, Narrabundah, Australia, Australia, 2005. Computer-Human Interaction
Special Interest Group (CHISIG) of Australia.

[WBB08] Cathrin Weiss, Abraham Bernstein, and Sandro Boccuzzo. i-MoCo: Mobile Con-
ference Guide - Storing and querying huge amounts of Semantic Web data on the
iPhone/iPod Touch, October 2008.

[Wei91] Mark Weiser. The computer for the 21st century. Scientific American, (Communi-
cations, Computers, and Network), September 1991.

[Win01] Terry Winograd. Architectures for context. Human-Computer Interaction,
16(2):401–419, 2001.

[WJH97] Ouri Wolfson, Sushil Jajodia, and Yixiu Huang. An Adaptive Data Replication
Algorithm. ACM Trans. Database Syst., 22(2):255–314, 1997.

[WLL+07] Timo Weithöner, Thorsten Liebig, Marko Luther, Sebastian Böhm, Friedrich
Henke, and Olaf Noppens. Real-world reasoning with owl. In ESWC ’07: Pro-
ceedings of the 4th European conference on The Semantic Web, pages 296–310,
Berlin, Heidelberg, 2007. Springer-Verlag.

[WRS+05] M. L. Wilson, A. Russell, D. A. Smith, A. Owens, and m. c. schraefel. mspace mo-
bile: A mobile application for the semantic web. End User Semantic Web Workshop,
ISWC2005, page 11, 2005.

[WVV+01] H. Wache, T. Vögele, U. Visser, H. Stuckenschmidt, G. Schuster, H. Neumann, and
S. Hübner. Ontology-Based Integration of Information – A Survey of Existing Ap-
proaches. In Proceedings of the IJCAI-01 Workshop on Ontologies and Information
Sharing, Seattle, USA, 2001.

Bibliography 284

[WW03] Shiow Yang Wu and Kun-Ta Wu. Dynamic Data Management for Location Based
Services in Mobile Environments. In 7th International Database Engineering and
Applications Symposium (IDEAS), pages 180–191. IEEE Computer Society, 2003.

[WX06] M. Wojciechowski and J. Xiong. Towards an open context infrastructure. Pro-
ceedings of the Workshop on Context Awareness for Proactive Systems (CAPS’06),
pages 125–136, 2006.

[WZGP04] Xiao Hang Wang, Da Qing Zhang, Tao Gu, and Hung Keng Pung. Ontology based
context modeling and reasoning using owl. In Proceedings of the Second IEEE An-
nual Conference on Pervasive Computing and Communications Workshops, PER-
COMW ’04, pages 18–, Washington, DC, USA, 2004. IEEE Computer Society.

[XMS+05] Xing Xie, Gengxin Miao, Ruihua Song, Ji-Rong Wen, and Wei-Ying Ma. Effi-
cient browsing of web search results on mobile devices based on block importance
model. Pervasive Computing and Communications, IEEE International Conference
on, 0:17–26, 2005.

[XYCS02] Fei Xia, Alex V. Yakovlev, Ian G. Clark, and Delong Shang. Data communication
in systems with heterogeneous timing. IEEE Micro, 22:58–69, November 2002.

[YDM11] Juan Ye, Simon Dobson, and Susan McKeever. Situation identification techniques
in pervasive computing: A review. Pervasive and Mobile Computing, In Press,
Corrected Proof:–, 2011.

[YKIAL09] Jorma Ylinen, Mikko Koskela, Lari Iso-Anttila, and Pekka Loula. Near field commu-
nication network services. In Third International Conference on the Digital Society
(ICDS 2009), pages 89–93. IEEE Computer Society, IEEE Computer Society, 2009.

[Zan09] Stefan Zander. A context-aware approach for integrating semantic web technologies
onto mobile devices. In Proceedings of the 6th European Semantic Web Conference
on The Semantic Web: Research and Applications, ESWC 2009 Heraklion, pages
949–953, Berlin, Heidelberg, 2009. Springer-Verlag.

[ZS10] Stefan Zander and Bernhard Schandl. A Framework for Context-driven RDF Data
Replication on Mobile Devices. In Proceedings of the 6th International Conference
on Semantic Systems (I-Semantics), Graz, Austria, 2010.

[ZS11] Stefan Zander and Bernhard Schandl. Context-driven rdf data replication on mobile
devices. Semantic Web Journal Special Issue on Real-time and Ubiquitous Social
Semantics, 1(1), 2011.

[ZS12a] Stefan Zander and Bernhard Schandl. Mobile devices, context, and linked data. to
be published, 2012.

[ZS12b] Stefan Zander and Bernhard Schandl. Semantic Web-enhanced Context-aware Com-
puting in Mobile Systems: Principles and Application. IGI Global, 1st edition,
January 2012.

Personal Data

Born at 5th Februar, 5th 1978 in Würzburg, Germany

Single, no children

Education

10/2008 – 06/2012

PhD in Computer Science, University of Vienna, Austria

03/2004 – 05/2007

Master degree in Business Administration (IT), University of Central Lancashire, England

10/2003 – 06/2006

Master degree in Organizational Development with IT, University of Applied Sciences

Würzburg, Germany

10/1998 – 01/2004

Diploma in Computer Science, University of Applied Sciences Würzburg, Germany

Professional Experience

09/2010 – present

Research assistant, University of Vienna, Multimedia Information Systems Group

02/2007 – 08/2010

Research associate, University of Vienna, Department of Distributed and Multimedia In-

formation Systems

10/2005 – 03/2006

Research associate in the EC-funded FP6 research project METOKIS

03/2002 – 11/2002

Collaboration with the Fraunhofer-Gesellschaft in a research project for the “High-Tech

Offensive Zukunft Bayern”

09/2001 – 06/2002

Software developer, PASS IT-Consulting Group and Services, Höchberg, Frankfurt

Stefan Zander
Diplom-Informatiker (FH), MSc, M.I.T.

University of Vienna

Liebiggasse 4/3-4
1010 Wien
Austria

T +43-1-4277-39646

F +43-1-4277-39640
stefan.zander@univie.ac.at
http://www.cs.univie.ac.at/stefan.zander

Private

Währinger Straße 57/12
1090 Wien
Austria

T +43-1-9138673
M +43-681-10457876
stefan_zander@gmx.de

Curriculum Vitae

	Declaration of Authorship
	Abstract
	Zusammenfassung
	Acknowledgements
	List of Figures
	List of Tables
	1 Introduction
	1.1 Mobile Computing
	1.1.1 Mobility and Mobile Information Needs
	1.1.2 Context and Context Awareness
	1.1.3 Context and Context Awareness in Mobile Information Systems

	1.2 Motivating Example
	1.3 Problem Description
	1.4 Contributions
	1.5 Overview of this Thesis

	2 Background
	2.1 Definition and Overview
	2.2 Definition and Utilization of Context in Different Domains
	2.2.1 Pervasive and Ubiquitous Computing
	2.2.2 Artificial Intelligence (AI)

	2.3 Positivist and Epistemological View on Context
	2.4 Context and Context Awareness in Information Systems
	2.4.1 Context Models
	2.4.2 Classification Frameworks for Contextual Information
	2.4.3 Reference Architectures for Context Acquisition, Management, and Processing
	2.4.4 Key elements of Context Processing and Management Frameworks
	2.4.5 Summary and Discussion

	2.5 Problems of Context-aware Computing
	2.6 The Semantic Web
	2.7 Representing Contextual Information using the Resource Description Framework
	2.7.1 Representing Contextual Aspects
	2.7.2 Identifying Contextual Information
	2.7.3 Representing Context Property Values
	2.7.4 Using Structured Properties for Representing Contextual Information

	2.8 Semantic Web-enhanced Context-aware Computing
	2.9 Discussion
	2.10 Summary

	3 Related Work and State of the Art
	3.1 Introduction
	3.2 Mobile Data Replication
	3.3 Semantic Web Frameworks for Mobile Platforms
	3.3.1 Mobile XML Parsers
	3.3.2 Mobile RDF Frameworks
	3.3.3 Query and Persistence Frameworks
	3.3.4 Discussion and Summary

	3.4 Analysis and Review of Related Projects
	3.4.1 Related Projects and Applications
	3.4.2 Analysis
	3.4.3 Summary

	3.5 Conclusion

	4 Approach
	4.1 Requirements and Design Considerations
	4.2 Conceptual Context Acquisition and Data Replication Workflow
	4.3 Formal Model
	4.3.1 Symbols and Relations
	4.3.2 Context Model
	4.3.3 Context Provider
	4.3.4 Orchestration Trees
	4.3.5 Formal Definition of the Orchestration Logic
	4.3.6 Compounded Context Acquisition Model
	4.3.7 Context Acquisition Workflow
	4.3.8 Context Configuration
	4.3.9 Context Description
	4.3.10 Data Providers

	4.4 Formal Model of the Orchestration Process
	4.4.1 Data Description Ontology
	4.4.2 Computing Compatibility Metrics between Context Providers
	4.4.3 Building Orchestration Trees

	4.5 A Transaction-based Processing Model for Context Acquisition Workflows
	4.5.1 Preliminaries
	4.5.2 Definition of Transactions
	4.5.3 Events and Event Histories
	4.5.4 Dependencies between Transactions
	4.5.5 Processing Context Acquisition Workflows

	4.6 Conceptual Architecture
	4.6.1 Concepts and Features
	4.6.2 Components

	4.7 Discussion and Summary

	5 Implementation and Case Study
	5.1 Development Platform
	5.2 Implementation of Context and Data Providers
	5.3 Case Study
	5.3.1 Context Acquisition
	5.3.2 Data Provisioning

	5.4 Summary

	6 Evaluation of the Processing Efficiency of RDF Data Replicas
	6.1 Test Environment
	6.2 Test Setup
	6.2.1 Test data
	6.2.2 Preparation of Test Data
	6.2.3 Recording of Benchmark Results

	6.3 Results
	6.3.1 Parsing RDF Data Replicas
	6.3.2 Serialization and Storage of RDF Data Replicas
	6.3.3 Adding Data to RDF Data Replicas
	6.3.4 Removing Data from RDF Data Replicas
	6.3.5 Retrieving Elements from RDF Data Replicas
	6.3.6 Constructing In-memory RDF Graphs

	6.4 Discussion and Summary

	7 Conclusion and Future Work
	7.1 Conclusion
	7.2 Future Work and Possible Application Fields

	A Detailed Performance Statistics of the Replication Benchmarks
	Bibliography

