Polynomial-Time Algorithms for Energy Games
with Special Weight Structures*

Krishnendu Chatterjee’>**, Monika Henzinger?:* * *,

Sebastian Krinninger?* **, and Danupon Nanongkai®

1 IST Austria (Institute of Science and Technology, Austria)
2 University of Vienna, Austria

Abstract. Energy games belong to a class of turn-based two-player
infinite-duration games played on a weighted directed graph. It is one
of the rare and intriguing combinatorial problems that lie in NP N co-NP,
but are not known to be in P. While the existence of polynomial-time
algorithms has been a major open problem for decades, there is no algo-
rithm that solves any non-trivial subclass in polynomial time.

In this paper, we give several results based on the weight structures of the
graph. First, we identify a notion of penalty and present a polynomial-
time algorithm when the penalty is large. Our algorithm is the first
polynomial-time algorithm on a large class of weighted graphs. It includes
several counter examples that show that many previous algorithms, such
as value iteration and random facet algorithms, require at least sub-
exponential time. Our main technique is developing the first non-trivial
approximation algorithm and showing how to convert it to an exact al-
gorithm. Moreover, we show that in a practical case in verification where
weights are clustered around a constant number of values, the energy
game problem can be solved in polynomial time. We also show that the
problem is still as hard as in general when the clique-width is bounded or
the graph is strongly ergodic, suggesting that restricting graph structures
needs not help.

1 Introduction

Consider a restaurant A having a budget of e competing with its rival B across
the street who has an unlimited budget. Restaurant B can observe the food price
at A, say pg, and responds with a price py, causing A a loss of w(pg, p1), which
could potentially put A out of business. If A manages to survive, then it can
respond to B with a price pa, gaining itself a profit of w(pi,p2). Then B will

* The original publication is available at www.springerlink.com.

** Supported by the Austrian Science Fund (FWF): P23499-N23, the Austrian Science
Fund (FWF): S11407-N23 (RiSE), an ERC Start Grant (279307: Graph Games),
and a Microsoft Faculty Fellows Award

*** Supported by the Austrian Science Fund (FWF): P23499-N23, the Vienna Science
and Technology Fund (WWTF) grant ICT10-002, the University of Vienna (IK
1049-N), and a Google Faculty Research Award

try to put A out of business again with a price ps. How much initial budget e
does A need in order to guarantee that its business will survive forever? This is
an example of a perfect-information turn-based infinite-duration game called an
energy game, defined as follows.

In an energy game, there are two players, Alice and Bob, playing a game on
a finite directed graph G = (V, E) with weight function w : E — Z. Each node
in G belongs to either Alice or Bob. The game starts by placing an imaginary
car on a specified starting node vy with an imaginary energy of ey € ZZ°U {00}
in the car (where ZZ° = {0, 1,...}). The game is played in rounds: at any round
1 > 0, if the car is at node v;_; and has energy e; 1, then the owner of v;_; moves
the car from v;_1 to a node v; along an edge (v;—1,v;) € E. The energy of the
car is then updated to e; = ¢;_1 +w(v;_1, v;). The goal of Alice is to sustain the
energy of the car while Bob will try to make Alice fail. That is, we say that Alice
wins the game if the energy of the car is never below zero, i.e. e; > 0 for all ¢;
otherwise, Bob wins. The problem of computing the minimal sufficient energy is
to compute the minimal initial energy e such that Alice wins the game. (Note
that such e always exists since it could be co in the worst case.) The important
parameters are the number n of nodes in the graph, the number m of edges in
the graph, and the weight parameter W defined as W' = max, ,yep |w(u,v)|.

The class of energy games is a member of an intriguing family of infinite-duration
turn-based games which includes alternating games [24], and has applications in
areas such as computer-aided verification and automata theory [3,7], as well
as in online and streaming problems [26]. The energy game is polynomial-time
equivalent to the mean-payoff game [11, 16,26, 5], includes the parity game [18]
as a natural subproblem, and is a subproblem of the simple stochastic game |9,
26]. While the energy game is relatively new and interesting in its own right, it
has been implicitly studied since the late 80s, due to its close connection with
the mean-payoff game. In particular, the seminal paper by Gurvich et al. [16]
presents a simplex-like algorithm for the mean-payoff game which computes a
“potential function” that is essentially the energy function. These games are
among the rare combinatorial problems, along with Graph Isomorphism, that
are unlikely to be NP-complete (since they are in UP N co-UP C NP N co-NP)
but not known to be in P. It is a major open problem whether any of these
games are in P or not. The current fastest algorithms run in pseudopolynomial

(O(nmW)) and randomized subexponential (O(2V"™1°8™ log W)) time [6,2]. We
are not aware of any polynomial-time algorithms for non-trivial special cases of
energy games or mean-payoff games.3

These games also have a strong connection to Linear Programming and
(mized) Nash equilibrium computation (see, e.g., [25,10]). For example, along
with the problem of Nash Equilibrium computation, they are in a low complex-
ity class lying very close to P called CCLS [10] which is in PPAD N PLS, implying
that, unlike many problems in Game Theory, these problems are unlikely to be
PPAD-complete. Moreover, they are related to the question whether there exists

3 Exceptions are the cases where all nodes belong to one player and where W is
polynomial in the input size.

a pivoting rule for the simplex algorithm that requires a polynomial number of
pivoting steps on any linear program, which is perhaps one of the most important
problems in the field of linear programming. In fact, several randomized pivoting
rules have been conjectured to solve linear programs in polynomial time until
recent breakthrough results (see [14,12,13]) have rejected these conjectures. As
noted in [14], infinite-duration turn-based games played an important role in this
breakthrough as the lower bounds were first developed for these games and later
extended to linear programs. Moreover, all these games are LP-type problems
which generalize linear programming [17].

Our Contributions. In this paper we identify several classes of graphs (based
on weight structures) for which energy games can be solved in polynomial time.
Our first contribution is an algorithm whose running time is based on a parame-
ter called penalty. For the sake of introduction, we define penalty as follows*. For
any starting node s, let eg; ,(s) be the minimal sufficient energy. We say that s
has a penalty of at least D if Bob has a strategy® 7 such that (1) if Alice plays
her best strategy, she will need eaw(s) initial energy to win the game, and (2) if
Alice plays a strategy o that makes her lose the game for any initial energy, then
she still loses the game against 7 even if she can add an additional energy of D
to the car in every turn. Intuitively, the penalty of D means that either Alice
does not need additional energy in any turn or otherwise she needs an additional
energy of at least D in every turn. Let the penalty of graph (G, w), denoted by
P(G,w), be the supremum of all D such that every node s has penalty of at
least D.

Theorem 1. Given a graph (G,w) and an integer M we can compute the min-
tmal initial energies of all nodes in

0 (m (o8%) (s o)+ i)

time,5 provided that for all v, € (V) < 00 implies that ef; ,,(v) < M.

We note that in addition to (G, w), our algorithm takes M as an input. If M
is unknown, we can simply use the universal upper bound M = nW due to [6].
Allowing different values of M will be useful in our proofs. We emphasize that
the algorithm can run without knowing P(G,w). Our algorithm is as efficient
as the fastest known pseudopolynomial algorithm in the general case (where
M = nW and P(G,w) = 1/n), and solves several classes of problems that
are not known to be solvable in polynomial time. As an illustration, consider
the class of graphs where each cycle has total weight either positive or less
than —W/2. In this case, our algorithm runs in polynomial time. No previously
known algorithm (including the value iteration algorithm [6] and simplex-style
algorithms with several pivoting rules [16,22,13]) can do this because previous

4 We note that the precise definition is slightly more complicated (see Section 2).
5 To be precise, the strategy must be a so-called positional strategy (see Section 2).
5 For simplicity we assume that logarithms in running times are always at least 1.

worst-case instances (e.g., [13,16]) fall in this class of graphs (see Section 6). Our
result might also be of a practical interest since it solves energy games faster
when penalties are high while it runs with the same running time as previous
pseudo-polynomial time algorithms [6] in the worst case.

Our second contribution is an algorithm that approximates the minimal energy
within some additive error where the size of the error depends on the penalty.
This result is the main tool in proving Theorem 1 where we show how to use the
approximation algorithm to compute the minimal energy ezactly.

Theorem 2. Given a graph (G,w) with P(G,w) > 1, an integer M, and an
integer ¢ such that n < ¢ < nP(G,w), we can compute an energy function
e such that e(v) < eg ,(v) < e(v) + ¢ for every node v in O(mnM/c) time,
provided that for every node v, eg, ,,(v) < oo implies that eg; ,(v) < M.

The main technique in proving Theorem 2 is rounding weights appropriately.
We note that a similar idea of approximation has been explored earlier in the
case of mean-payoff games [4]. Roth et al. [24] show an additive FPTAS for
rational weights in [—1,1]. This implies an additive error of eW for any ¢ > 0
in our setting. This does not help in general since the error depends on W.
Boros et al [4] later achieved a multiplicative error of (1 + €). This result holds,
however, only when the edge weights are non-negative integers. In fact, it is
shown that if one can approximate the mean-payoff within a small multiplicative
error in the general case, then the exact mean-payoff can be found [15]. Despite
several results for mean-payoff games, there is currently mo polynomial-time
approximation algorithm for general energy games. Our algorithm is the first
non-trivial approximation algorithm for the energy game.

Our third contribution is a variant of the Value [teration Algorithm by Brim et
al [6] which runs faster in many cases. The running time of the algorithm depends
on a concept that we call admissible list (defined in Section 3) which uses the
weight structure. One consequence of this result is used to prove Theorem 2.
The other consequence is an algorithm for what we call the fized-window case.

Theorem 3. If there are d values wy, ..., wq and a window size § such that for
every edge (u,v) € G we have w(u,v) € {w; —9,...,w; + 0} for some 1 <i<d,
then the minimal energies can be computed in O(mdnit! + dndt1logn) time.

The fixed-window case, besides its theoretical attractiveness, is also interest-
ing from a practical point of view. Energy and mean-payoff games have many
applications in the area of verification, mainly in the synthesis of reactive sys-
tems with resource constraints [3] and performance aware program synthesis [7].
In most applications related to synthesis, the resource consumption is through
only a few common operations, and each operation depending on the current
state of the system consumes a related amount of resources. In other words, in
these applications there are d groups of weights (one for each operation) where
in each group the weights differ by at most d (i.e, 0 denotes the small variation
in resource consumption for an operation depending on the current state), and

d and § are typically constant. Theorem 3 implies a polynomial time algorithm
for this case.

We also show that the problem is still as hard as the general case even when
the clique-width is bounded or the graph is strongly ergodic (see Section 6).
This suggests that restricting the graph structures might not help in solving the
problem, which is in sharp contrast to the fact that parity games can be solved
in polynomial time in these cases.

2 Preliminaries

Energy Games. An energy game is played by two players, Alice and Bob. Its
input instance consists of a finite weighted directed graph (G, w) where all nodes
have out-degree at least one”. The set of nodes V is partitioned into V4 and V3,
which belong to Alice and Bob respectively, and every edge (u,v) € E has an
integer weight w(u,v) € {—W, ..., W}. Additionally, we are given a node s and
an initial energy ey. We have already described the energy game informally in
Section 1. To define this game formally, we need the notion of strategies. While
general strategies can depend on the history of the game, it has been shown (see,
e.g., [8]) that we can assume that if a player wins a game, a positional strategy
suffices to win. Therefore we only consider positional strategies. A positional
strategy o of Alice is a mapping from each node in V4 to one of its out-neighbors,
i.e., for any u € Vy, o(u) = v for some (u,v) € E. This means that Alice sends
the car to v every time it is at u. We define a positional strategy 7 of Bob
similarly. We simply write “strategy” instead of “positional strategy” in the rest
of the paper.

A pair of strategies (o, T) consists of a strategy o of Alice and 7 of Bob. For
any pair of strategies (o, 7), we define G(o,7) to be the subgraph of G having
only edges corresponding to the strategies o and 7, i.e., G(o,7) = (V, E’) where
E' = {(u,0(u)) | v € Va} U{(u,7(u)) | u € Vg}. In G(o,T) every node has a
unique successor.

Now, consider an energy game played by Alice and Bob starting at node
s with initial energy ey using strategies o and 7, respectively. We use G(o,T)
to determine who wins the game as follows. For any i, let P; be the (unique)
directed path of length ¢ in G(o,7) originating at s. Observe that P; is exactly
the path that the car will be moved along for ¢ rounds and the energy of the car
after ¢ rounds is e; = eg+w(F;) where w(F;) is the sum of the edge weights in P;.
Thus, we say that Bob wins the game if there exists ¢ such that ey + w(P;) <0
and Alice wins otherwise. Equivalently, we can determine who wins as follows.
Let C be the (unique) cycle reachable by s in G(o,7) and let w(C) be the sum
of the edge weights in C. If w(C') < 0, then Bob wins; otherwise, Bob wins if and
only if there exists a simple path P; of some length 4 such that ey + w(P;) < 0.

This leads to the following definition of the minimal sufficient energy at
node s corresponding to strategies o and 7, denoted by 68(0,7)710(8)2 If w(C) <0,

" (G, w) is usually called a “game graph” in the literature. We will simply say “graph”.

then 62;(0,7_)71”(8) = 00; otherwise, e*G(mT))w(s) = max{0, — min w(F;)} where the
minimization is over all simple paths P; in G(o,7) originating at s. We then
define the minimal sufficient energy at node s to be

ez‘,w(s) = minmax 62‘(0,7’),11)(8) (1)
ag T

where the minimization and the maximization are over all positional strategies
o of Alice and 7 of Bob, respectively. We note that it follows from Martin’s de-
terminacy theorem [21] that min, max- e,), (s) = max-min, e,), (5),
and thus it does not matter which player picks the strategy first. We say that
a strategy o* of Alice is an optimal strategy if for any strategy 7 of Bob,
eg(g*ﬂvw(s) < €§ 4 (8). Similarly, 7 is an optimal strategy of Bob if for any
strategy o of Alice, efy,) ,(8) 2 €5, (s).

We call any e : V — ZZ%U {co} an energy function. We call €6 0 Eq. (1)
a minimal sufficient energy function or simply a minimal energy function. If
e(s) > ef ,,(s) for all s, then we say that e is a sufficient energy function. The
goal of the energy game problem is to compute €6 w-

We say that a natural number M is an upper bound on the finite minimal
energy if for every node v either e, ,(v) = oo or e, (v) < M. This means that
every finite minimal energy is bounded from above by M. A universal upper
bound is M = nW [6].

Penalty. Let (G, w) be a weighted graph. For any node s and real D > 0, we
say that s has a penalty of at least D if there exists an optimal strategy 7* of
Bob such that for any strategy o of Alice, the following condition holds for the
(unique) cycle C reachable by s in G(o, 7*): if w(C) < 0, then the average weight
on C'is at most —D, i.e. 3, ,yec w(u,v)/|C| < —D. Intuitively, this means that
either Alice wins the game using a finite initial energy, or she loses significantly,
i.e., even if she constantly receive an extra energy of a little less than D per
round, she still needs an infinite initial energy in order to win the game. We
note that »-, ecw(u,v)/|C| is known in the literature as the mean-payoff
of s when Alice and Bob play according to ¢ and 7*, respectively. Thus, the
condition above is equivalent to saying that either the mean-payoff of s (when
(o,7*) is played) is non-negative or otherwise it is at most —D. We define the
penalty of s, denoted by Pg w(s), as the supremum of all D such that s has a
penalty of at least D. We say that the graph (G, w) has a penalty of at least D if
every node s has a penalty of at least D, and define P(G, w) = mingeq Pg ().
Note that for any graph (G,w), P(G,w) > 1/n.

3 Value Iteration Algorithm with Admissible List

In this section we present a variant of the Value Iteration Algorithm for com-
puting the minimal energy (see, e.g., [6] for the fastest previous variant). In
addition to the graph (G, w), our algorithm uses one more parameter A which is
a sorted list containing all possible minimal energy values. That is, the algorithm

is promised that e ,,(v) € A for every node v. We call A an admissible list. We
show the following.

Lemma 4. There is an algorithm that, given a (sorted) admissible list A, com-
putes the minimal energies of all nodes in (G, w) in O(m|A|) time.

We note that in some cases space can be saved by giving an algorithm that
generates A instead of giving A explicitly.

Before we present the idea of the theorem, we note that the simplest choice
of an admissible list is A = {0,1,...,nW,00}. In this case the algorithm works
like the current fastest pseudopolynomial algorithm by Brim et al [6] and has a
running time of O(mnW). If we consider certain special cases, then we can give
smaller admissible lists. Our first example are graphs where every edge weight
is a multiple of an integer B > 0.

Corollary 5. Let (G,W) be a graph for which there is an integer B > 0 such
that the weight of every edge (u,v) € G is of the form w(u,v) = iB for some
integer i, and M is an upper bound on the finite minimal energy (i.e., for any
node v, if e ,,(v) < 0o, then e, ,,(v) < M). There is an admissible list of size
O(M/B) which can be computed in O(M/B) time. Thus there is an algorithm
that computes the minimal energies of (G,w) in O(mM/B) time.

The above corollary will be used later in this paper. Our second example
are graphs in which we have a (small) set of values {w1,...,wq} of size d and
a window size 0 such that every weight lies in {w; — J,...,w; + d} for one of
the values w;. This is exactly the situation described in Theorem 3 which is a
consequence of Lemma 4. As noted in Section 1, in some applications d is a
constant and § is polynomial in n. In this case Theorem 3 implies a polynomial
time algorithm. We now sketch the proofs of all these results

Proof (Proof idea of Lemma 4). The value iteration algorithm relies on the fol-
lowing characterization of the minimal energy (see Appendix A for details).

Lemma 6 ([6]). An energy function e is the minimal energy function if for
every node u € Vy there is an edge (u,v) € E such that e(u) + w(u,v) > e(v),
and for every node u € Vi and edge (u,v) € E we have e(u) + w(u,v) > e(v).
Moreover, for any €' that satisfies this condition, e(v) < €'(v) for every node v.

The basic idea of the modified value iteration algorithm is as follows. The
algorithm starts with an energy function e(v) = min A for every node v and keeps
increasing e slightly in an attempt to satisfy the condition in Lemma 6. That is,
as long as the condition is not fulfilled for some node wu, it increases e(u) to the
next value in A, which could also be co. This updating process is repeated until
e satisfies the condition in Lemma 6 (which will eventually happen at least when
all e(u) becomes 00). Based on the work of Brim et al [6], it is straightforward to
show the correctness of this algorithm (see Appendix A). To get a fast running
time we use their speed-up trick that avoids unnecessary checks for updates [6].

O

Proof (Proof idea of Corollary 5 and Theorem 8). To see how to get the results
for our two special cases, we give suitable formulations of admissible lists based
on a list that is always admissible. Given an upper bound M on the finite minimal
energy, we define Uy = {0,..., M, 00}. We denote the set of different weights
of a graph (G,w) by Rg.w = {w(u,v) | (u,v) € E}. The set of all combinations
of edge weights is defined as

k
Cow= {—inxieRG,w for all i,OSkSn}U{oo}.

i=1
Our key observation is the following lemma (proved in Appendix A).

Lemma 7. For every graph (G, w) with an upper bound M on the finite minimal
energy we have ey, (v) € Cg.w NUn for every v € G.

Now, for graphs with upper bound M on the finite minimal energy and edge
weights that are multiples of B we definealist A= {i-B |0 < i < [M/B]}U{oo}
which is admissible since Cg ., N Uy € A. Similarly, for graphs with values
wy, ..., wq and a window size § we define an admissible list A’ = {x — 2?21 wi; |
1<i; <d,0<k<n,—nd <z <ndétU{oo}. To prove the claimed running times
we note that A has O(M/B) elements and can be computed in O(M/B) time,
and A’ has O(én?*1) elements and can be computed in O(5n4*! + dnd*ttlogn)
time (see Appendix A for details). O

4 Approximating Minimal Energies for Large Penalties

This section is devoted to proving Theorem 2. We show that we can approxi-
mate the minimal energy of nodes in high-penalty graphs (see Section 2 for the
definition of penalty). The key idea is rounding edge weights, as follows. For an
integer B > 0 we denote the weight function resulting from rounding up every
edge weight to the nearest multiple of B by wg. Formally, the function wg is

given by
w(u,v
wB(u,v)[(B)—‘ -B

for every edge (u,v) € E. Our algorithm is as follows. We set B = |¢/n| (where
¢ is as in Theorem 2). Since weights in (G, wp) are multiples of B, e’é,wB can
be found faster than eg ,, due to Corollary 5: we can compute eg . in time

O(mM/B) = O(mnM /c) provided that M is an upper bound on the finite
minimal energy. This is the running time stated in Theorem 2. We complete the
proof of Theorem 2 by showing that e, ,, . is a good approximation of eg; ,, (i.e.,
it is the desired function e).

Proposition 8. For every node v with penalty Pg .,(v) > B = |c¢/n| (where
¢ >n) we have

€Guwp (V) < €Gw(V) < €6, (V) +nB <eg,,(v) +c.

The first inequality is quite intuitive: We are doing Alice a favor by increasing
edge weights from w to wp. Thus, Alice should not require more energy in
(G, wp) than she needs in (G, w). As we show in Lemma 16 in Appendix B, this
actually holds for any increase in edge weights: For any w’ such that w’(u,v) >
w(u,v) for all (u,v) € G, we have ey . (v) < e, (v). Thus we get the first
inequality by setting w’' = wp.

We now show the second inequality in Proposition 8. Unlike the first inequal-
ity, we do not state this result for general increases of the edge weights as the
bound depends on our rounding procedure. At this point we also need the pre-
condition that the graph we consider has penalty at least B. We first show that
the inequality holds when both players play some “nice” pair of strategies.

Lemma 9. Let (o,7) be a pair of strategies. For any node v, if eg(g - () =00

implies €5, -y 4, (V) = 00, then egy, 1y, (V) < ey (v)+nB .

JWB 0,7),wB

The above lemma needs strategies (o, 7) to be nice in the sense that if Alice needs
infinite energy at node v in the original graph (G(o,7),w) then she also needs
infinite energy in the rounded-weight graph (G(o,7),wp). Our second crucial
fact shows that if v has penalty at least B then there is a pair of strategies that
has this nice property required by Lemma 9. This is where we exploit the fact
that the penalty is large.

Lemma 10. Let v be a node with penalty Pg.,(v) > B. Then, there is an
optimal strategy T of Bob such that for every strategy o of Alice we have that

€*G(U’T*)7w(1}) = 00 implies €5,) 4, (v) = oo.

To prove Lemma 9 we only have to consider a special graph where all nodes
have out-degree one. Lemma 10 is more tricky as we need to come up with the
right 7*. We use 7* that comes from the definition of the penalty (cf. Section 2).
We give full proofs of Lemmas 9 and 10 in Appendix B.

The other tricky part of the proof is translating our result from graphs with
fixed strategies to general graphs in order to prove the second inequality in
Proposition 8. We do this as follows. Let ¢* be an optimal strategy of Alice for
(G,w) and let (0}, 75) be a pair of optimal strategies for (G,wg). Since v has
penalty Pg . (v) > B, Lemma 10 tells us that the preconditions of Lemma 9 are
fulfilled. We use Lemma 9 and get that there is an optimal strategy 7* of Bob
such that ez(ogﬁ*)’w(v) < eg(ag,r*),ws (v) + nB. We now arrive at the chain of
inequalities

(a) (b)

e*G,w(v) = ez‘(a*,f*),w(v) < e*G(UE,T*),u)(v) < 62‘(0’;‘3,7*),103 (’U) +nB
© @
< eG(UE,Tg),wB (’U) +nB = eG,wB ('U) +nB
that can be explained as follows. Since (¢*,7*) and (¢}, 7)) are pairs of optimal
strategies we have (a) and (d). Due to the optimality we also have ey . ., (v) <

€0 » () for any strategy o of Alice, and in particular o, which implies (b).
A symmetric argument gives (c).

5 Exact Solution by Approximation

We now use our result of the previous sections to prove Theorem 1. As the first
step, we provide an algorithm that computes the minimal energy given a lower
bound on the penalty of the graph. For this algorithm, we show how we can use
the approximation algorithm in Section 4 to find an ezact solution.

Lemma 11. There is an algorithm that takes a graph (G,w), a lower bound D
on the penalty P(G,w), and an upper bound M on the finite minimal energy of
(G, w) as its input and computes the minimal energies of (G, w) in O(mnlog D+
m- %) time. Specifically, for D > 3L it runs in O(mnlog (M/n)) time.

Proof (Sketch). To illustrate the main idea, we focus on the case D = M/(2n)
where we want to show an O(mnlog(M/n)) running time. See Appendix C
for the proof of the general case. Let A be the approximation algorithm given
in Theorem 2. Recall that A takes ¢ as its input and returns e(v) such that
e(v) < e, (v) < e(v)+cprovided that n < ¢ < nP(G,w). Our exact algorithm,
will run A with parameter ¢ = [M/2] which satisfies ¢ < nD < nP(G,w). By
Theorem 2, this takes O(mnM/c) = O(mn) time. Using the energy function e
returned by A, our algorithm produces a new graph (G, w') defined by w'(u,v) =
w(u,v) + e(u) — e(v) for all (u,v) € E. It can be proved that this graph has the
following crucial properties (see Lemma 17 in Appendix C):

1. The penalty does not change, i.e., Pg . (v) = Pg 4 (v) for every node v.

2. We have e, ,,(v) = eg . (v) + e(v) for every node v.

3. The largest finite minimal energy of nodes in (G, w’) is at most ¢ (this follows
from property 2 and the inequality eg; ,(v) < e(v) + ¢ of Theorem 2).

The algorithm then recurses on input (G,w’), D and M’ = ¢ = M/2. Proper-
ties 1 and 3 guarantee that the algorithm will return eg, (v) for every node
v. It then outputs ef, . (v) + e(v) which is guaranteed to be a correct solution
(ie., €5 (V) = eg’w,r(v) + e(v)) by the second property. The running time of
this algorithm is T'(n,m, M) < T(n,m,M/2) + O(mn). We stop the recursion
if M < 2n is reached because in this case the value iteration algorithm runs in
O(mn) time. Thus we get T'(n,m, M) = O(mnlog(M/n)) as desired. O

We now prove Theorem 1 by extending the previous result to an algorithm
that does not require the knowledge of a lower bound of the penalty. We repeat-
edly guess a lower bound for the penalty Pg ., from M/(2n),M/(4n),.... We
can check whether the values returned by our algorithm are indeed the minimal
energies in linear time (see Lemma 18 of Appendix C for details). If our guess
was successful we stop. Otherwise we guess a new lower bound which is half of
the previous one. Eventually, our guess will be correct and we will stop before
the guessed value is smaller than P(G,w)/2 or one (in the latter case we simply
run the value iteration algorithm). Therefore we get a running time of

O(mn (log 2% +1log 22 + ... 4+ log([P(G,w)])) +m(2n+4n+...+%))

10

which solves to O(mn(log 2%)(log n(P(IVé_wﬂ)+ (Pz’gfuﬂ). In the worst case, i.e.,
when P(G,w) = 1/n and M = nW, our algorithm runs in time O(mnW)
which matches the current fastest pseudopolynomial algorithm [6]. The result
also implies that graphs with a penalty of at least W/ poly(n) form an interesting
class of polynomial-time solvable energy games.

6 Discussions

Hardness for Bounded Clique-width and Strongly Ergodic Cases. We
note the fact that energy games on complete bipartite graphs are polynomial-
time equivalent to the general case. This implies that energy games on graphs
of bounded clique-width [23] and strongly ergodic® graphs [19] are as hard as
the general case. It also indicates that, in sharp contrast to parity games (a
natural subclass of energy and mean-payoff games), structural properties of the
input graphs might not yield efficiently solvable subclasses. We also note that
we can prove in a similar way that even the decision problem of energy games
is polynomial-time equivalent to the general problem.

Let (G,w) be any input graph. For our reduction we first make the graph
bipartite and then add two types of edges. (1) For any pair of nodes u and v such
that u € V4, v € Vp and (u,v) ¢ E, we add an edge (u,v) of weight —2nW — 1.
(2) For any pair of nodes u and v such that u € Vg, v € V4 and (u,v) ¢ E, we
add an edge (u, v) of weight 2n?W +n+1. Let (G’,w’) be the resulting complete
bipartite graph which is strongly ergodic and has clique width two.”

The polynomial-time reduction follows straightforwardly from the following
claim: For any node v, if ef; ,,(v) < oo then eg, . (v) = e, (v) (Which is at most
nW [6]); otherwise, eg, ,,/(v) > nW. We now sketch the idea of this claim (see
Appendix D for more detail). Let (G”,w"”) be the graph resulting from adding
edges of the first type only. It can be shown that any strategy that uses such
an edge of weight —2nW — 1 will require an energy of at least nW + 1 since we
can gain energy of at most nW before using this edge. If e, ,,(u) < oo, Alice
will use her optimal strategy of (G, w) also in (G”,w") which gives a minimal
energy of at most nW. If ef; , (u) = oo, Alice might use a new edge but in that
case g ,n(u) > nW. This implies that the claim holds if we add edges of the
first type only. Using the same idea we can show that the claim also holds when
we add the second type of edges. The argument is slightly more complicated as
we have to consider two cases depending on whether eg, ,(v) = oo for all v.

Previous Hard Examples Have Large Penalties. Consider the class of
graphs where each cycle has total weight either positive or less than —W/2.
Clearly, graphs in this class have penalty at least —WW/(2n). We observe that,
for this class of graphs, the following algorithms need at least subexponential
time while our algorithm runs in polynomial time: the algorithm by Gurvich et

8 There are many notions of ergodicity [19,4]. Strong ergodicity is the strongest one
as it implies other ergodicity conditions.
9 Note that every graph has clique-width at least two.

11

al [16], the value iteration algorithm by Brim et al [6], the algorithm by Zwick
and Paterson [26] and the random facet algorithm [22] (the latter two algorithms
are for the decision version of mean-payoff and parity games, respectively). An
example of such graphs for the first two algorithms is from [1] (for the second
algorithm, we exploit the fact that it is deterministic and there exists a bad
ordering in which the nodes are processed). Examples of the third and fourth
algorithms are from [26] and [13], respectively. We note that the examples from
[1] and [13] have one small cycle. One can change the value of this cycle to — W
to make these examples belong to the desired class of graphs without changing
the worst-case behaviors of the mentioned algorithms.

References

1. Beffara, E., Vorobyov, S.: Is Randomized Gurvich-Karzanov-Khachiyan’s Algo-
rithm for Parity Games Polynomial? Tech. Rep. 2001-025, Department of Infor-
mation Technology, Uppsala University (Oct 2001)

2. Bjorklund, H., Vorobyov, S.G.: A combinatorial strongly subexponential strat-
egy improvement algorithm for mean payoff games. Discrete Applied Mathematics
155(2), 210-229 (2007)

3. Bloem, R., Chatterjee, K., Henzinger, T.A., Jobstmann, B.: Better Quality in
Synthesis through Quantitative Objectives. In: CAV. pp. 140-156 (2009)

4. Boros, E., Elbassioni, K.M., Fouz, M., Gurvich, V., Makino, K., Manthey, B.:
Stochastic Mean Payoff Games: Smoothed Analysis and Approximation Schemes.
In: ICALP. pp. 147-158 (2011)

5. Bouyer, P., Fahrenberg, U., Larsen, K.G., Markey, N.; Srba, J.: Infinite Runs in
Weighted Timed Automata with Energy Constraints. In: FORMATS. pp. 33-47
(2008)

6. Brim, L., Chaloupka, J., Doyen, L., Gentilini, R., Raskin, J.F.: Faster algorithms
for mean-payoff games. Formal Methods in System Design 38(2), 97-118 (2011)

7. Cerny, P., Chatterjee, K., Henzinger, T.A., Radhakrishna, A., Singh, R.: Quanti-
tative Synthesis for Concurrent Programs. In: CAV. pp. 243-259 (2011)

8. Chakrabarti, A., de Alfaro, L., Henzinger, T.A., Stoelinga, M.: Resource Interfaces.
In: EMSOFT. pp. 117-133 (2003)

9. Condon, A.: The Complexity of Stochastic Games. Information and Computation
96(2), 203-224 (1992)

10. Daskalakis, C., Papadimitriou, C.H.: Continuous Local Search. In: SODA. pp. 790—
804 (2011)

11. Ehrenfeucht, A., Mycielski, J.: Positional strategies for mean payoff games. Inter-
national Journal of Game Theory 8(2), 109-113 (Jun 1979)

12. Friedmann, O.: A Subexponential Lower Bound for Zadeh’s Pivoting Rule for Solv-
ing Linear Programs and Games. In: IPCO. pp. 192-206 (2011)

13. Friedmann, O., Hansen, T.D., Zwick, U.: A subexponential lower bound for the
Random Facet algorithm for Parity Games. In: SODA. pp. 202-216 (2011)

14. Friedmann, O., Hansen, T.D., Zwick, U.: Subexponential lower bounds for ran-
domized pivoting rules for the simplex algorithm. In: STOC. pp. 283-292 (2011)

15. Gentilini, R.: A Note on the Approximation of Mean-Payoff Games. In: CILC
(2011)

12

16. Gurvich, V.A., Karzanov, A.V., Khachiyan, L..G.: Cyclic games and an algorithm to
find minimax cycle means in directed graphs. USSR Computational Mathematics
and Mathematical Physics 28(5), 85-91 (Apr 1990)

17. Halman, N.: Simple Stochastic Games, Parity Games, Mean Payoff Games and
Discounted Payoff Games Are All LP-Type Problems. Algorithmica 49(1), 37-50
(2007)

18. Jurdzinski, M.: Deciding the Winner in Parity Games is in UPNco-UP. Inf. Process.
Lett. 68(3), 119-124 (1998)

19. Lebedev, V.N.: Effectively Solvable Classes of Cyclical Games. Journal of Com-
puter and Systems Sciences International 44(4), 525-530 (July-August 2005)

20. Lifshits, Y.M., Pavlov, D.S.: Potential theory for mean payoff games. Journal of
Mathematical Sciences 145(3), 4967-4974 (Sep 2007)

21. Martin, D.A.: Borel determinacy. Annals of Mathematics 102(2), 363-371 (1975)

22. Matousek, J., Sharir, M., Welzl, E.: A subexponential bound for linear program-
ming. Algorithmica 16(4-5), 498-516 (1996)

23. Obdrzalek, J.: Clique-Width and Parity Games. In: CSL. pp. 54-68 (2007)

24. Roth, A., Balcan, M.F., Kalai, A., Mansour, Y.: On the Equilibria of Alternating
Move Games. In: SODA. pp. 805-816 (2010)

25. Vorobyov, S.: Cyclic games and linear programming. Discrete Applied Mathematics
156(11), 2195-2231 (Jun 2008)

26. Zwick, U., Paterson, M.: The Complexity of Mean Payoff Games on Graphs. The-
oretical Computer Science 158(1&2), 343-359 (1996), also in COCOON’95

Appendix
A Details of Section 3

Before we give the omitted proofs we explain the main result from the literature
that makes the algorithm work, a characterization of sufficient energy functions
by a local condition.

Lemma 12 ([6]). An energy function e is sufficient for (G, w) if for every node
u, if u € V4 then there is an edge (u,v) € E such that e(u) + w(u,v) > e(v); if
u € Vp then for all edges (u,v) € E we have e(u) + w(u,v) > e(v).

Note that the condition of this lemma is trivially satisfied for a node u if we set
e(u) = co. One intuitive interpretation of the lemma is this: Consider any node
u of Alice. If we believe that e(v) is sufficient for all neighbors v of u, then e(u)
should be sufficient if, when she has a car of energy e(u) at u, she can move the
car to some neighboring node v to make sure that the car energy is still sufficient,
ie., e(u) + w(u,v) > e(v). Similarly, if u is Bob’s node and we believe that e(v)
is sufficient for all neighbors v of u, then e(u) should be sufficient if, when Bob
has a car of energy e(u) at u, it can be guaranteed that the car energy is still
sufficient for any neighbor v the car is moved to, i.e., e(u) + w(u,v) > e(v) for
all v.

The above lemma gives a sufficient condition for an energy function to be
sufficient. It can be shown that this condition is not necessary. However, an
interesting property of this condition is that it is necessary for an energy to

13

be minimal. In fact, the minimal energy must satisfy the condition with equality
(unless e(u) is already zero). This leads to the following recursive characterization
of the minimal energy which will be very useful in some of our proofs.

Lemma 13 ([20]). The minimal energy of the graph (G, w) is the unique energy
function e satisfying

e(u) = ming, ,)ep max(e(v) — w(u,v),0) if u€Vy
B max,,,)ep max(e(v) — w(u,v),0) ifueVp.

for every node u € G.

We now give the omitted proofs.

Lemma 4. There is an algorithm that, given a (sorted) admissible list A, com-
putes the minimal energies of all nodes in (G, w) in O(m|A|) time.

Proof (Sketch). Algorithm 1 shows a simplified version of the algorithm men-
tioned in the theorem. The correctness proof of Brim et al uses a fixed-point
argument [6]. The minimal energy is computed as the least fixed point of an op-
erator corresponding to the updating of nodes. Our modification of the algorithm
by a list of admissible values does not disturb this argument. In every iteration
of the algorithm the energy function is strictly increasing and is never set to a
value that overshoots the minimal energy. A running time of O(poly(n)|A|) for
our algorithm is immediate. We can get a running time of O(m|A|) by using the
speed-up technique of Brim et al [6]. Their main trick is to maintain a counter
for Alice’s nodes that keeps track of the number of outgoing edges which fulfill
the condition of Lemma 12. The energy only has to be updated if the counter
reaches 0. Algorithm 2 shows the full algorithm for completeness. ad

Lemma 14. For every graph (G, w) with an upper bound M on the finite min-
imal energy we have e, ,,(v) € Cg,w N U for every v € G.

Proof. We have defined the set of different weights of (G, w) by Rg,w = {w(u,v) |
(u,v) € E} and the set Cg , by

k
Cow= {—Zml | z; € Rgq for all 1,0 <k < n} U {oo}.
i=1
The set Uy is defined by Uy = {0,..., M, o0}, If e, (v) = oo then we clearly
have e, ,,(v) € Cg.w NUn. If e, (v) < oo we have e, ,(v) € Uy since M
is an upper bound on the finite minimal energy. We still have to show that
eaw(v) € Cqw-

Let (o*,7*) be a pair of optimal strategies. Since o* and 7* are optimal we
have e, ,,(v) = €0) » (V) < 00. By the definition of the minimal energy (see
Section 2) we have

G0t), (V) = max{0, — rnFi)n w(P)}

14

Algorithm 1 Modified value iteration algorithm

Input: A weighted graph (G, w), a sorted list A of admissible values for the minimal
energies
Output: The minimal energy of (G, w)
1: procedure VALUEITERATION(G, w, A)
2: e(u) < min A for every u € V (Initialization)
(In the loop, check whether the condition of Lemma 12 is violated)
3: while There is a node v € V' such that
u € Va and V(u,v) € E : e(u) + w(u,v) < e(v) or
u € Vg and I(u,v) € E: e(u) + w(u,v) < e(v) do

(Update e(u))

4: if u € V4 then
5: e(u) < ming, vep(e(v) —w(u,v))
6: else if u € Vg then
7 e(u) < max(, ep(e(v) —w(u,v))
8: end if
(Update e(u) to the next admissible value.)
9: e(u) < min{x € A|x > e(u)}
10: end while
11: return e

12: end procedure

where the minimization is over all simple paths in G(o*, 7*) originating at v and
w(P) denotes the sum of the edge weights of the path P. If ef; ,,(v) = 0 we have
€6 (V) € Cgw by setting k = 0 (the empty sum has value 0). Otherwise we

have
ehw)=— Y wz,y)
(z,y)eP

for some simple path P in G(¢*,7*) originating at v. Since the length of P is at
most n we have at most n edges on P which makes it clear that e ,,(v) € Cg w-
O

Corollary 5. Let (G,W) be a graph for which there is an integer B > 0 such
that the weight of every edge (u,v) € G is of the form w(u,v) = iB for some
integer i, and M is an upper bound on the finite minimal energy (i.e., for any
node v, if eg ,,(v) < oo, then ef, ,,(v) < M). There is an admissible list of size
O(M/B) which can be computed in O(M/B) time. Thus there is an algorithm
that computes the minimal energies of (G, w) in O(mM/B) time.

Proof. We want to use the value iteration algorithm of Lemma 4 with the list

a=fisrosic M

As pointed out in the main paper we have to prove three things:

15

Algorithm 2 Modified value iteration algorithm with speed-up trick

Input: A weighted graph (G, w), a sorted list A of admissible values for the minimal
energies

Output: The minimal energy of (G, w)

1: procedure VALUEITERATION(G, w, A)

2: L+ {ueVa|VY(u,v) € E:e(u)+w(uv) <elw)}

3 L+ {ueVp|3(uy,v) € E:e(u)+w(u,v) <e(lw)}UL

4: e(u) < min A for every u € V

5: count(u) < 0 for every u € VaN L

6: count(u) < |{v € V | (u,v) € V,e(u) + w(u,v) > e(v)}| for every u € Va4 \ L

7 while L # 0 do

8

: Pick u € L

9: L+ L\ {u}

10: eold e(u)

11: if u € V4 then

12: e(u) < ming, vep(e(v) — w(u,v))
13: else if u € Vp then

14: e(u) max(, ep(e(v) —w(u,v))
15: end if

16: e(u) + min{z € A|z >e(u)}

17: if u € V4 then

18: count(u) < [{v € V| (u,v) € V,e(u) + w(u,v) > e(v)}|
19: end if
20: for all ¢ € v such that (¢,u) € E and e(t) + w(t,u) < e(u) do
21: if t € V4 then
22: if e(t) + w(t,u) > eoa then
23: count(t) < count(t) — 1
24: end if
25: if count(¢) < 0 then
26: L+ LU{t}
27: end if
28: else if t € Vp then
29: L+ LU{t}
30: end if
31: end for
32: end while
33: return e

34: end procedure

16

1. A is an admissible list.
2. A has size O(M/B).
3. A can be computed in O(M/B) time.

It is clear that A has size O(M/B) and can be generated in O(M/B) time. We
only have to show that A is admissible

Let y € Cgw N Ups. The set of different edge weights is Rg., C {i- B |0 <
i <W/B}. Since y € Cg, there is some k (0 < k < n) such that

k
Y= _ij
j=1

where z; € Rg,,, for every 1 < j < k. Therefore there is an integer 7; for every
1 < j <k such that z; = i;B and we get

k k

y=-Y i;B=-BY ij=—iB

j=1 j=1

for some integer i. Since y € Up; we have 0 < iB < M and therefore 0 < ¢ <
M/B < [M/B]. Thus, y € A which proves Cg, NUpn C A. Since Cg . NUn
is admissible by Lemma 7 also A is admissible, i.e., g ,,(v) € A for every node
V. O

Theorem 3. If there are d values wy, ..., wq and a window size § such that for
every edge (u,v) € G we have w(u,v) € {w; —9,...,w; + 0} for some 1 <i<d,
then the minimal energies can be computed in O(mdon?t1 + dn?t1logn) time.

Proof. We want to use the value iteration algorithm of Lemma 4 with the list

k
A= ;Uwaij |1<4; <d,0<k<n,—né<z<nd,U{oo}
j=1
As pointed out in the main paper we have to prove three things:

1. A is an admissible list.
2. A has size O(6ndt1).
3. A can be computed in O(dn9*! + dn?*t!logn) time.

Let y € Cg,y. By the definition of Cg ,, there is some k (0 < k < n such
that there are k edge weights x1,..., 2, € Rg, such that

k
yile’j.
j=1

By the structure of Rg ., the set of all edge weights, we have

k

Y= _Z(wij +6J)

Jj=1

17

where for every j such that 1 < j <k we have 0 <¢; < dand —0 < §; <. Now
observe that

k k

k k
_Z(wij +9;) = —sz‘j - 25j =€~ Zwij
i— j=1 j=1 j=1

j=1

for some € such that —kd < e < kd. Therefore y € A which proves that Cg ., C A.
Since Cg,,y is admissible by Lemma 7 , also A is admissible.
We now consider the size of A. We define

k
S = Zwij|1§ij§df0rallj,0§k§n,
j=1

and get that A={zx—y|y e S, —nd <z <nd}U{oco}. We bound the number
of subsets of size at most n of a set of size d by n®. Therefore the size of S is
O(n%) and the size of A is O(dn9t1).

For the computation of A we first compute S. The sorting takes time O(|5] -
log S) which is O(dn?logn). We iterate over every element x € S and generate
every number of {z — 0, x4} where we always have to check that the number we
generate is bigger than the last number we generated. This process takes time
O(]A|). In total it takes time O(dn?*! + dn?*t'logn) to compute A.

B Details of Section 4

Here we give the proofs we omitted in Section 4. We distinguish between lemmas
that we need to provide the lower bound and lemmas the we need to provide the
upper bound.

B.1 Lower bound

Lemma 15. Let G be a graph and wy and we be edge weights such that wy (u,v) <
wa(u,v) for every edge (u,v) € G. Then, for every pair of strategies (o,7) and
every node v € G, we have ez,), (V) Z €5 (5 1) 0, (V)

Proof. Consider first the case eE(U’T),W (v) = 0. Let C denote the unique cycle
reachable from v in G(o, 7). Since €5, ;) ,, (v) = 00 we know by the definition
of the minimal energy that wa(C) < 0 where wy(C) denotes the sum of the
edge weights of the cycle C. By our assumption we have wy(C) < wq(C) < 0,
meaning that ez, -, (v) = oo which is exactly what our inequality claims.

We now consider the case eg;,) ,,(v) < 0o. By the definition of the minimal
energy we have

€G(0,7)w, (V) = Max {O, - m};n U}Q(P)}

where the minimization is over all simple paths in (G(o, T), ws) originating at v
and wy(P) denotes the sum of the edge weights of the path P.

18

In the case ef; (v) = 0, the inequality we want to show (eg;, ows (v) <

0,7) w2
€0 (v)) is trivially true since €G(or) w, (V) = 0. If €G(or) (v) > 0, we

have
€G(om) 0y (V) = —mimw2(P).

Since wy(P) > wy(P) for every path P we have

62‘(0,7’),11}2 (U) - - m};n) (P)

IN

—min wy (P)

< max{0, — m}in w1 (P)}

= eg(o,r),wl (U) .

O

Lemma 16. Let G be a graph and w1 and we be edge weights such that wy (u,v) <
ws(u,v) for every edge (u,v) € G. Then e, (v) > €, (V).

Proof. Let (07, 77) be an optimal pair of strategies for (G, w;) and let (o3, 75) be

an optimal pair of strategies for (G, w2). Note that € (ot rr) (v) > €G(ot 7y (v)
s),

for every strategy 7 of Bob. We also have eg(awT;),w (v) > 62(0;77;),71)2 (v) for ev-

ery strategy o of Alice. Together with Lemma 15 we get

e*G,wl (U) = ez‘(oi‘,'ri“),wl (1)) > ez‘(ai‘,'r;),wl (U) > ez‘((rf,'rz*),wQ (U)

> eé(a;,rg‘),wg (U) = ez‘,wg (U) :

B.2 Upper bound

Lemma 9. Let (o,7) be a pair of strategies. For any node v, if eg(o - (V) =00
implies €5, 1y 4, (V) = 00, then g,) (V) S €6y 1) 0, (V) + 0B

Proof. Note that wg is defined as the weight function resulting from rounding
up every edge weight of w to the nearest multiple of B, i.e.,

N 121

By this definition we have wp(u,v) < w(u,v) + B for every edge (u,v) € E.

If €t , 1 (V) = 00, then also eg, -, (v) = 0o which makes the claimed
inequality hold. We now consider the case eg(o)w (v) < oo. By the definition
of the minimal energy we have

€G(o,7)w (V) = max {O, —min w(P)}

19

where the minimization is over all simple paths in (G(c,7),w) originating at v
and w(P) denotes the sum of the edge weights of the path P. In the case
€C(0,m) (V) = 0 our claimed inequality trivially holds because ey, -, (v) = 0.
Consider now the second case, e,) ,,(v) > 0, where we have

e*G(O',T),’LU(U) = _ml;nw(P)
Every simple path P has length at most n and therefore

wp(P)= > wpw,v)< Y (wu,v)+B)<w(P)+nB.
(u,v)EP (u,v)eP
Thus, we get w(P) > wp(P) — nB for every simple path P. We now get
€G(om)w(V) = — m}i)n w(P) < —m;n(wB(P) —nB)

=— m}in(wB (P)) +nB = €G5r)wp,(v) +1B.

O

Lemma 10. Let v be a node with penalty Pg.,(v) > B. Then, there is an
optimal strategy T of Bob such that for every strategy o of Alice we have that

65(077*)7w(v) = 00 implies ey 1oy 4, (v) = oo.
We first prove the following claim.

Claim. If the average weight of a cycle C' in (G, w) is at most —B, then C' is a
negative cycle in (G, wp) with wp(C) < 0.

Proof. We assume that

- Z(u,v)EC IU(U, U)

w(C) cl <

-B.

Since wp(u,v) < w(u,v) + B for every edge (u,v) € E we get the following
bound for the average weight of C' in (G, wp):

Z(u,v)ec wB (’LL, 'U) Z(u,v)ec‘(w(uﬂ U) + B)

wp(C) = <
2(C)]]
o E(u;u)EC U)(U,’U) + Z(u,U)GCB
IC| |C
IC|- B
<_B+ —0.
|C

Therefore also Z(u,v)EC wp(u,v) < 0 which means that C is a negative cycle in
(G,wpg). This finishes the proof of the claim. O

We now give the proof of the lemma.

20

Proof. By the definition of the penalty we know that there is an optimal strat-
egy 7 of Bob such that, for every strategy o of Alice, if the unique cycle C
reachable from v in G(o,7*) has negative weight w(C) < 0, then its average
weight is at most —Pg ,(v) < —B. Now let ¢ be any strategy of Alice and
let C' denote the unique cycle C' reachable from v in G(o,7*). Assume that
€G(o,r+),w (V) = 00. Then we have w(C) < 0 and thus, by the definition of the
penalty, C' has an average weight of at most —B. By our claim we get that C'is a
negative cycle in (G, wp) (i.e. wp(C) < 0) and therefore ez, ., (v) =00. O

C Details of Section 5

Lemma 17. Let (G,w) be a weighted graph and let e be an energy function such
that e(v) < eg ,,(v) for all v € G. Define the modified game (G,w') with the
weight function w' by w'(u,v) = w(u,v) + e(u) — e(v) for every edge (u,v) € G.
Then e ,,(v) = e(v) + €&,/ (v) for every node v € G. Furthermore, the penalty
does not change, i.e., Pg ,(v) = Pg . (v) for every node v € G.

Proof. We define the energy function f by f(v) = e(v) + e, (v) for every node
u € G. We use Lemma 13 to show that f is the minimal energy e, ,. We have
to show that, for every node u € G, we have

Fu) = min(, ,)ep max(f(v) —w(u,v),0) ifueVy
max(y,)ep max(f(v) —w(u,v),0) ifuecVp ’

By the definition of f this is equivalent to

e(v),0) fueVy

. _Jming, v)ep max(e*G,w/(v) —w(u,v)
e(w) + eGur (1) { e(v),0) ifue Vg

+
- *

maX(UvU)GE max(eG,w’ (U) - w(uv U) +
Since e(u) is a constant in the minimization and maximization terms, we get

et () = ming, ,)eg max(e*G,w,(v) —w(u,v) —e(u) +e(v),0) ifueVy
G\ max(y v)ep max(eg . (v) — w(u,v) —e(u) +e(v),0) ifueVp .

By the definition of w’ this is equivalent to

et () = Min(,,)e g max(eaw,(v) —w'(u,v),0) ifue€Vy
G N Max(y v)ek max(eaw,(v) —w'(u,v),0) ifueVp '

which is true by Lemma 13.

We now show that the penalties do not change. For this purpose we will show
that every cycle in G has the same sum of edge weights in (G, w) and in (G, w’)
which means that also the average weights are the same. By the definition of the
penalty this implies that Pg ., (v) = Pg . (v) for every node v € G. Let C be a

21

cycle of G consisting of the nodes vy, ..., v;. We simply plug in the definition of
w’ to check that our claim is true:

k—1
Z w' (u,v) = w'(vg, v1) + Zw’(vi,viﬂ)
(u,v)eC i=1
k—1
= w(vk,v1) + e(vr) — e(v1) + Z (w(vi, vit1) + e(vs) — e(vit1))
- S
= w(vg,v1) + e(vg) —e(vy) + Zw(vi, vit1) + Z e(v;) — Ze(vi)
i=1 i=1 =2
k—1 k k
= w(vg,v1) + Zw(vu Vip1) + Ze(vi) - Ze(vz)
i=1 i=1 i=1
k—1
= w(vg,v1) + Zw(vi,viﬂ) = Z w(u,v)
i=1 (u,v)eC

a

Lemma 11. There is an algorithm that takes a graph (G,w), a lower bound D
on the penalty P(G,w), and an upper bound M on the finite minimal energy of
(G, w) as its input and computes the minimal energies of (G, w) in O(mnlog D+
m- %) time. Specifically, for D > 2L it runs in O(mnlog (M/n)) time.

Proof. We first consider the case D > M/(2n). In this case we use the proce-
dure MINIMALENERGY of Algorithm 3. We call algorithm provided by Theo-
rem 2 APPROXIMATE and the value iteration algorithm provided by Lemma 4
VALUEITERATION, respectively.

As pointed out in the main paper the correctness of MINIMALENERGY follows
from Theorem 2 and Lemma 17. We therefore only argue about the running
time. If M < n, we now that n is an upper bound on the finite minimal energy
and we can use the value iteration algorithm of Lemma 4 with the admissible
list {0,...,n,00}, as explained in Section 3. The running time in this case is
O(mn). The algorithm APPROXIMATE runs in time O(mMn/c) for the upper
bound M on the finite minimal energy. For ¢ = M/2 the factor M cancels itself
and therefore the running time of APPROXIMATE is O(mn). Thus, the running
time of the procedure MINIMALENERGY is given by the following recurrence:

T(n,m, M) — O(mn) it M S'n .

T (n,m, %) + O(mn) otherwise
Since the initial value of M is halved with every iteration of the algorithm
until M < n, the algorithm runs for at most log M — logn = log (M /n) many
iterations. Every iteration needs time O(mn) and therefore the total running
time is O(mn - log (M/n)).

22

We now consider the case D < M/(2n). We first compute the approximation
e by calling APPROXIMATE with the approximation error ¢ = nD. Then we
set w'(u,v) = w(u,v) + e(u) — e(v). We can compute the approximation of the
minimal energy in time O(mM/D). After that we can solve (G,w’) with the
new upper bound M’ = ¢ = nD on the finite minimal energy. The new upper
bound fulfills the following inequality:

<D.

o 2n

M _nD_D
2

Since the penalty does not change, i.e., P(G,w) = P(G,w"), we may now use the
procedure MINIMALENERGY, which we analyzed in the previous case, to compute
the minimal energy of (G, w). The time needed to compute the minimal energy of
(G,w’) therefore is O(mn-log (M’ /n)) = O(mn-log D). Thus, the total running
time in this case is O(mn -log D +m - [M/D]).

Algorithm 3 Algorithm for computing minimal energy based on approximation

Input: A weighted graph (G, w) and an upper bound M on the finite minimal energy
of (G,w)
Output: The minimal energy of (G, w)

1: procedure MINIMALENERGY (G, w, M)
2 if M <n then
3: return VALUEITERATION(G, w, {0, ...,n,00}) (Runs in polynomial time)
4: else
5: c+ %
6 e < APPROXIMATE(G, w, M, ¢)
(Now solve (G,w') with weights modified by energy e)
7 w'(u,v) w(u,v) + e(u) — e(v) for every edge (u,v) € G
8: e’ + MINIMALENERGY (G, w', ¢)
9: €’ (v) < e(v) + €’'(v) for every node v € G
10: return ¢”
11: end if

12: end procedure

Lemma 18. We can check whether an energy function e is the minimal energy
of a graph (G, w) in linear time.

Proof. We use the characterization of the minimal energy provided by Lemma 13.
We simply have to check whether all the conditions are fulfilled. For every node
we have to do work proportional to the number of outgoing edges. Therefore the
check can be done in O(m) time.

23

D Details of Section 6

D.1 Energy games on complete bipartite graphs

We show that the energy game problem on complete bipartite graphs is just as
hard as the general energy game problem.

Theorem 19. Solving energy games on on complete bipartite graphs is polynomial-
time equivalent to solving energy games general graphs.

By complete bipartite graphs we mean the class of graphs fulfilling the fol-
lowing conditions:

— There is no edge from a node of Alice to a node of Alice and no edge from
a node of Bob to a node of Bob.

— Every node of Alice has an edge to every node of Bob and every node of Bob
has an edge to every node of Alice.

Note that the number of nodes of Alice and Bob is not required to be equal to fit
this definition. When viewed as an undirected graph, every complete bipartite
graph has clique-width two [23]. Furthermore, every complete bipartite graph is
strongly ergodic.

Definition 20. '° An ergodic partition is a pair (A, B) such that A and B are
a partition of the nodes satisfying the following conditions:

— For every node u in ANV, there is a node v € A such that (u,v) € E.
— There is no edge (u,v) such that w € ANVp and v € B.
— For every node w in BN Vg there is a node v € B such that (u,v) € E.
— There is no edge (u,v) such that w € BNVy4 and v € A.

A graph is ergodic if it has no non-trivial ergodic partition.'' A graph is
strongly ergodic if every subgraph that is induced by a subset of nodes and has
out-degree at least 1 for every node is ergodic.

Lemma 21. FEvery complete bipartite graph is strongly ergodic.

Proof. Note that every subgraph (induced by a subset of nodes) of a complete
bipartite graph is also a complete bipartite graph. Therefore it is sufficient to
show that every complete bipartite graph is ergodic.

Suppose that there is a complete bipartite graph that is not ergodic. Then G
has non-trivial closed pair (A, B). We consider three cases where each one leads
to a contradiction:

— A contains a node u of Bob and B contains a node v of Alice: Since we have
a complete bipartite graph there is an edge (u,v). This means that Bob has
an edge leaving A which contradicts the definition of an ergodic partition.

10 We use Lebedev’s definitions from [19].
' A partition (A, B) is trivial if A =0 or B = (.

24

— A contains a node of Bob and B contains no node of Alice: Then B only
contains nodes of Bob. Since the graph is bipartite all nodes of B only have
edges that leave B. Since B is nonempty, there is a node of Bob in B that
has no edge that stays in B which contradicts the definition of an ergodic
partition.

— A contains no node of Bob and B contains a node of Alice: symmetric to
previous case.

Since A # () and B # () we have considered all cases. O

We now show the reduction from energy games on general graphs to energy
games on complete bipartite graphs. Assume that we are given a graph (G, w).

We first have to make the graph bipartite, i.e. there should not be any edge
(u,v) such that u € V4 and v € V4 or u € Vg and v € V. We modify (G, w) as
follows:

— We replace every edge (u,v) € E such that u,v € V4 by two edges (u,u)
and (u',v) where ¢’ is a new node of Bob and the weights of the new edges
are wo(u,u') = w(u,v) and wo(u',v) = 0.

— We replace every edge (u,v) € E such that u,v € Vg by two edges (u,u’)
and (u’,v) where v’ is a new node of Alice and the weights of the new edges
are wo(u, u') = w(u,v) and wo(u',v) = 0.

We call the resulting graph (Go, wo). Observe that eg, ,(v) = eg, ,,, (v) for every
node v of G. The number of nodes of Gy is bounded by the sum of the number
of nodes of G and the number of edges of G. Therefore we assume without loss
of generality that the graph G is bipartite.

The rest of our reduction is as follows:

1. Modification of (G, w): For every pair (u,v) of nodes such that u € V4 and
v € Vg, if the edge (u,v) is not contained in G, we add it with weight
wi(u,v) = —X1 = —2nW — 1. We call the resulting graph (G1,w;).

2. Modification of (G1,w1): For every pair (u,v) of nodes such that u € Vp
and v € Vy, if the edge (u,v) is not contained in G, we add it with weight
wa(u,v) = Xa = 2n?W + n + 1. We call the resulting graph (Gz,ws).

Clearly, (G2, w2) is a complete bipartite graph. Note that we choose the numbers
X, and X5 in a way that fulfills X; > 2nW and X5 > nX;. Since we only add
edges, every strategy in G is also a strategy in (G; and every strategy in Gy is
also a strategy in Gs.

In the rest of this section we prove the following result.

Lemma 22. For every node v we have the following:

— If e, (v) < oo, then eg, ., (v) = €&, (V).
— Ifeg ,(v) = oo, then eg, ,,,(v) > nW.

25

Note that e ,(v) < nW because nW is always an upper bound on the finite
minimal energy. Therefore this lemma tells us how to recover the minimal energy
of (G, w) from the minimal energy of (G5, ws). We simply have to check whether
€, (V) > nW. If yes, we know that ef; , (v) = co. Otherwise we set eg; ,(v) =
€6y (V)

Before we prove the lemma we consider several claims.

IN

Claim (A). For every node v we have eg ,, (v) < eg ,(v) and ef, , (V)
€z (V)

The first part is true because Alice has additional strategies in (G, w;) compared
to (G,w) and Bob has exactly the same strategies in (G1,w1) and (G,w). The
second part is true because Bob has additional strategies in (Ga,ws) compared
to (G1,w;) and Alice has exactly the same strategies in (G1,w) and (Ga,ws).

Claim (B). Let (01,71) be a pair of strategies in (G1,w;) and let v € V. Let P
be the path in (G(oy,71),w;) starting at v. If P contains a “new” edge (z,y)
such that (z,y) € Gy and (z,y) ¢ G, then ez (., (v) > nW.

The path P contains old edges and new edges. Every new edge has weight — X
and every old edge has weight at most W. Since the path P can contain at most
n edges, the sum of all edge weights on P is at most nW — X; < nW —2nW =
—nW. Therefore the minimal energy needed for this path is at least nW and we
get egl(mm)’wl(v) >nW.

Claim (C). For every node v such that e, ,(v) < oo, we have eg ,(v) =

e*Gl,’u)l (U)

By Claim (A) we know that eg; ,, (v) < eg,,(v). Suppose, for the sake of
contradiction, that eg, ,, (v) < eg,,(v). Then there exists a strategy o of
Alice in (G1,w;) such that for every strategy 71 of Bob in (G1,w;) we have
€C (o1,m1) w1 (v) < eg (V). Let 7 be any strategy of Bob in (G,w) (which is also
a valid strategy in (G, w1)). Now consider the path P in (G;(o1,7),w;) starting
at v. Suppose that P contains a “new” edge that is contained in G; but not in
G. Then by Claim (B) we would get ez (,), (v) > nW. Since e ,(v) < nW
we would get the statement eg; (, -, (v) > eg ,,(v) which contradicts our as-
sumption. Therefore P does not contain any new edge which means that Alice
can use the strategy oy also in (G, w).'? Since all edges used by Alice and Bob
also appear in (G,w), we get 68(01,7)710(0) = €G1 (01,7)un (v) for every strategy
7 of Bob in (G, w). By our assumption we then get e, ., (v) < g, (v) for
every strategy 7 of Bob in (G,w). which contradicts the minimality of eg; ,,(v).
Therefore we have eg;, ., (v) = e, (v).

2 Tt might still be the case that o1 needs edges that are not part of (G, w) for nodes
that are irrelevant for the path P. In that case we could define a suitable strategy
o’ by assigning o’'(u) = o1(u) for every node u contained in P and an arbitrary
neighbor of u for every node u not contained in P.

26

Claim (D). For every node v such that eg, ,(v) = oo, we have eg;, ,, (v) > nW.

Let 7* be an optimal strategy of Bob in (G,w) and let o1 be any strategy of
Alice in (G1,w;). Consider the path P in (Gi(o1,7*),w;) starting at v. The
question now is whether P contains a “new” edge that appears in G; but not in

G.

— If P contains a new edge, then ez, . w, (v) >nW by Claim (B).
— If P does not contain a new edge, then all edges that are visited in P are
contained in (G,w). Therefore Alice can use the strategy o7 also in (G, w).

This gives €z (5, 1+, (v) = 65(017T*)7w(v) > ef (V) = 00,

In any case we have e*Gl(o_1)01 (v) >nW.
Now let o7 be an optimal strategy of Alice in (G1, w1). As we just showed, we
have egl(gfﬁ (v) > nW.Since eg, ,,, (v) > €& (o) (v), we get e, ,, (V) >

nW

*) w1

Claim (E). 1f ef, ,,(v) = oo for every node v, then ef, ,, (v) = oo for every
node v.

Let 7* be an optimal strategy of Bob in (G,w). Since ef, ,(v) = oo for every
node v, we know that, for every strategy o of Alice in (G,w), every cycle in
(G(o,7*),w) has negative total weight. Let o1 be an arbitrary strategy of Alice
in (G,w) and let C be a cycle in (G (o1, 7*), w1). We distinguish two cases. The
first case is that C' contains at least one “new edge”, i.e., there is some (z,y) € C,
such that (z,y) ¢ G. In this case the total weight of C' is less than —nW and is
thus negative (the argument is the same as the proof of Claim (B)). The second
case is that C' contains no “new” edge, i.e., if (z,y) € C, then (z,y) € G. In this
case, Alice can also play the strategy o1 in (G, w) and the cycle C is contained
in (G(o1,7*),w). Therefore C has negative total weight. This means that if Bob
plays 7* in (G1,w;), Alice can never reach a non-negative cycle and therefore
€&y, (V) = oo for every node v.

Claim (F). If e, ,,, (v) = oo for every node v, then ey, ,,(v) = oo for every
node v.

This claim is a consequence of Claim (A).

Claim (G). 1f ef ,,(v) = oo for every node v, then ef, . (v) = oo for every
node v.

We simply combine Claims (E) and (F).

Claim (H). If eg; ,,(s) < oo for some node s, then eg, ,, (v) < oo for every
node v.

Here we need the assumption that there is no edge (u,v) € G such that u € Vp
and v € Vg. By Claim (C) we have ef, ,,, (s) = €5, (s) < oo which means that
Alice has at least one winning node s in (G, w;). Consider the optimal strategy

27

o} of Alice in (G1,w). We may assume without loss of generality that s € Vp:
If s € V4, then we know that the node ¢ = o7 (s) is also a winning node for Alice.
Since Gy is bipartite we know that ¢ € Vp and thus we can pick ¢ instead of s.
We define the strategy o} for every node v as follows:

ol (v) = of(v) if €Gy wn (v) < 0
! s otherwise

Note that o} is well-defined: the edge (v, s) exists in G; for every node v € Vy
since s € Vp. It is clear that for the losing nodes v with eg, ,, (v) < 0o we may
pick any strategy without affecting the fact that the strategy o}, and thus o7,
is winning for s. Moreover, ¢ guarantees that the play in (G1(o},m1),w), for a
strategy 7 of Bob, started from a losing node v with eg, (v) < oo eventually
reaches s. The reason for this is that, by our assumption that there is no edge
(u,v) € G such that v € Vg and v € Vg, Bob has to choose a node of Alice
as the successor. But as soon as s is reached, Alice has a winning strategy.
Therefore every node is winning for Alice if she plays the strategy o} and we
have eg;, ,, (v) < oo for every node v.

Claim (1). If eg ,,(s) < oo for some node s, then ey, ,, (v) < Xz for every
node v.

It is clear that X, is an upper bound on the finite minimal energy in (Gy,w1)
because the largest absolute weight occurring in (Gq,w;) is X;. Therefore this
claim follows from Claim (H).

Claim (J). If e, ., (v) < X3 for every node v we have ey, . (v) = e, ., (V)
for every node v.

We use Lemma 12 to show that ey, is a sufficient energy function in (G, w2).
As the minimal energy is the least sufficient energy function and e, ,, (v) <
€6y, (V) for every mode v, it follows that ef, ,, is the minimal energy in
Ga,w2), i.e., €5, 4, (V) = €g, ., (v) for every node v.

To apply Lemma 12 we have to show that

(A2) for every node u € Vj there is an edge (u,v) € Gg such that eg, ,, (v) +
wa(u,v) > eg, ,, (v) and

(B2) for every node u € Vg and every edge (u,v) € G2 we have eg, ,, (u) +
wa(u,v) > €&y w, (v).

Since ey, ,,, is the minimal energy of (G1,w1) we already know (by Lemma 12)
that

(A1) for every node u € V4 there is an edge (u,v) € Gy such that eg ,, (u) +
wy(u,v) > eg, ,, (v) and

(B1) for every node u € Vg and every edge (u,v) € G1 we have ey, ,, (u) +
wl(u7v) > eél,wl (U)

28

For w € V4 we know by our construction that (u,v) € Go if and only if
(u,v) € Gy and if (u,v) € Go then wa(u,v) = wy(u,v). Therefore the condition
(A2) follows from (Al). Let u € Vp and (u,v) € Ga. If (u,v) € Gy, then
wa(u,v) = wy(u,v) and we know that the inequality of condition (B2) is fulfilled
for w.

Therefore we only have to consider the case u € Vg and (u,v) ¢ Gy, i.e., when
(u,v) is a “new edge”. Due to our assumption and the fact that eg, ,,, (u) >0
we get

egl,wl (U) + w2(u7v> = egl,wl (u> + X2 Z X2 Z egl,wl (U)

which shows that (B2) is fulfilled.
Proof (Proof of Lemma 22). For the proof we distinguish two cases:

— €&, (v) = oo for every node v
— €&, (8) < oo for some node s

Assume that e, ,,(v) = oo for every node v. By Claim (G) we have eg;, ,, (v) =

oo for every node v. Since co > nW we get that the lemma holds in this case.
Assume that ef, ,(s) < oo for some node s. By Claim (I) we may apply
Claim (J) and get ey, ., (v) = €g, ,, (v) for every node v. If ey, (v) = oo, then
by Claim (D) we have e, ,,, (v) > nW and thus eg, ,,,(v) > nW. If ef, ,(v) <
oo, then by Claim (C) we have eg, ,, (v) = e, (v) and thus ef, ,,, = €5, (v).
O

D.2 Decision problem on complete bipartite graphs

The decision problem of energy games for a graph (G,w) and a node s asks
whether there exists a finite initial energy such that Alice wins at s in (G, w).
We show that the decision problem on complete bipartite graphs is just as hard
as on general graphs.

Theorem 23. The decision problem on complete bipartite graphs is polynomial-
time equivalent to the decision problem on general graphs.

Note that for energy games there is a well-known reduction [5] from the
decision problem to the “value problem”. However, the reduction changes the
structure of the graph. Therefore the result that we want to show does not
already trivially follow from this reduction and Theorem 19. We note that by
Theorem 23 and the reductions of [5] it follows that mean-payoff games on
complete bipartite graphs are as hard as in general.

Corollary 24. Solving mean-payoff games on complete bipartite graphs is polynomial-
time equivalent to solving mean-payoff games on general graphs.

We also note that Theorem 19 now also follows from Theorem 23 by the reduc-
tions of [5]. We included the previous proof for completeness and because the
reduction there is a bit more “economic” than the one we consider here.

29

In the following we sketch our polynomial-time reduction, which needs two
steps. The first step is to reduce from the decision problem to the decision
problem on the class of graphs in which one player wins everywhere. After that
we reduce from the latter problem to the decision problem on complete bipartite
graphs.

‘We now show the reduction from the decision problem to the decision problem
on graphs in which one player wins everywhere. We are given a graph (G, w)
and want to solve the decision problem, i.e., we want to figure out which player
wins at a node s in (G, w). We construct a graph (G, w’) as follows. All nodes
of G also appear in G’ and belong to the same player as in G. We replace every
edge (x,y) of G (see Fig. D.2) by the following construction: We add a node u of
Alice and node v of Bob and add the edges (z,u), (u,v), (v,y), (u,s), and (v, s)
with the weights w'(z,u) = w(zx,y), w'(u,v) = w'(v,y) = 0, w'(u,s) = —nW,
and w'(v,s) = nW where n is the number of nodes of G'. Note that n bounded
by the sum of the number of nodes of G and the number of edges of G.

e =

Fig. 1. This picture shows the reduction from the decision problem to the decision
problem in which one of the players wins everywhere. The rectangular nodes belong to
Alice, the diamond-shaped nodes belong to Bob, and the round nodes could belong to
any player.

Lemma 25. Alice wins at s in (G,w) if and only if Alice wins at s in (G',w").

Proof. We first prove the following claim: If Alice wins at s in (G, w), then Alice
also wins at s in (G’,w’). Alice simply has to play the winning strategy o* for
s in (G, w).*® If Bob never plays a new edge that goes back to s, his a strategy
was basically already available in (G,w) and then Alice wins because o* is a
winning strategy in G. As soon as Bob plays one of the new edges, a cycle from
s to s is formed. This cycle has positive total weight because the weight of the
new edge is nWW and all other (at most n — 1) edges have weight at least —W.
Therefore o* is also a winning strategy in (G', w’).

3 To be precise: Alice has to play ¢* for nodes already present in (G, w) and for the
other nodes the edge that does not go back to s has to be chosen.

30

As similar argument proves the following claim: If Bob wins at s in (G, w),
then Bob also wins at s in (G, w’). Now the lemma follows because Alice does
not win if and only if Bob wins. a0

Lemma 26. One of the players wins everywhere in (G',w’).

Proof. We show that the player that wins at s in (G, w) is the one that wins
everywhere in G’. We assume that Alice wins at s in (G,w). (For Bob the
argument is similar.) By Lemma 25 it follows that Alice wins at s in (G',w’) by
playing some strategy o. We define a strategy o’ for every node v of Alice as
follows: If the edge (v, s) does not exists, we set ¢’(v) = o(v). If the edge (v, s)
does exists we distinguish two cases. If Alice wins at v in (G',w’) by playing
according to o, then o’'(v) = o(v). Otherwise, Alice takes the new edge that
goes to s, i.e., o(v) = s.

Let 7 be an arbitrary strategy of Bob. Let P be the path in (G'(c,7),w")
starting at s. Since o is a winning strategy of Alice at s in (G',w’), Alice wins
for every node on P in (G’,w’) by playing according to o. Therefore we have
o'(v) = o(v) for every node v € P. This means that the path in (G'(¢/,7),w")
starting at s is exactly P and leads to a non-negative cycle

We show that in fact for every node v, the path P in (G'(0/, 7),w’) starting
at v leads to a non-negative cycle. Consider first the case that P’ contains s.
Then P’ contains the path P and it is clear that P’ leads to a non-negative cycle.
Consider now the case that P’ does not contain s from which we can conclude
that no new edge going to s has been played by any player. Therefore, for the
node v, the pair of strategies (¢/,7) has the same result as the pair of strategies
(o,7). By the definition of ¢/, we know that Alice wins at v in (G’,w’) and
therefore P’ leads to a non-negative cycle. Since 7 was an arbitrary strategy of
Bob, we know that Alice wins everywhere in (G, w’) with the strategy ¢’. O

‘We now show the reduction from the decision problem on graphs in which one
player wins everywhere to the decision problem on complete bipartite graphs.
The reduction is very similar to the one for energy games on complete bipartite
graphs. We assume without loss of generality that the graph (G, w) is bipartite.
We showed in Appendix D.1 how to make a graph bipartite. The rest of the
reduction has two steps:

1. Modification of (G, w): For every pair (u,v) of nodes such that u € V4 and
v € Vg, if the edge (u,v) is not contained in G, we add it with weight
w(u,v) = —nW. We call the resulting graph (G, w1).

2. Modification of (G7,w1): For every pair (u,v) of nodes such that u € Vg
and v € Vy, if the edge (u,v) is not contained in G, we add it with weight
wa(u,v) = n*W. We call the resulting graph (Gz,ws).

Clearly (G, ws) is a complete bipartite graph.
Lemma 27. In (G,w) and (Ga,ws) the same player wins everywhere.

Proof. The following claims follow easily:

31

— If Alice wins everywhere in (G, w), then Alice also wins everywhere in (G1, w).
(Alice simply has to play the same strategy as in (G, w), Bob does not have
more strategies than in (G, w).)

— If Bob wins everywhere in (G, w1), then Bob also wins everywhere in (Gg, ws).
(Bob simply has to play the same strategy as in (G, wy), Alice does not have
more strategies than in (Gy,w1).)

Now we show the following: If Bob wins everywhere in (G, w), then Bob also
wins everywhere in (G, w;). Let 7* be a winning strategy of Bob in (G, w).
We argue that 7* is also a winning strategy of Bob in (G1,w;). Let o1 be an
arbitrary strategy of Alice in (G1,w1). Let C be a cycle in Gy (o1, 7%). If all edges
of C already occur in (G,w), we know that C' is a cycle of negative weight in
(G1,w1) because 7* is a winning strategy of Bob in G. If there is an edge in
C that did not already occur in (G, w), then this edge has weight —nW. Since
the largest positive weight in (G1,w1) is W and C counsists of at most n edges,
we know that C' is a cycle of negative weight. Thus, every cycle in G(o1,7%)
has negative weight. Since o1 was an arbitrary strategy of Alice in (G1,w1), we
conclude that 7* is a winning strategy of Bob in (G, w;) which he can play to
win everywhere.

A similar argument can be used to prove the following: If Alice wins every-
where in (G1,w;), then Alice also wins everywhere in (G2, wz). Since either Alice
wins everywhere in (G, w) or Bob wins everywhere in (G, w) it follows by our
claims that the same player wins everywhere in (G, w) and (G2, ws). O

32

