
DSL-based Support for Semi-Automated Architectural
Component Model Abstraction Throughout the Software

Lifecycle

Thomas Haitzer and Uwe Zdun
Software Architecture Group
Faculty of Computer Science

University of Vienna
{thomas.haitzer | uwe.zdun}@univie.ac.at

ABSTRACT
In this paper we present an approach for supporting
the semi-automated abstraction of architectural models
throughout the software lifecycle. It addresses the problem
that the design and the implementation of a software
system often drift apart as software systems evolve, leading
to architectural knowledge evaporation. Our approach
provides concepts and tool support for the semi-automatic
abstraction of architectural knowledge from implemented
systems and keeping the abstracted architectural knowl-
edge up-to-date. In particular, we propose architecture
abstraction concepts that are supported through a domain-
specific language (DSL). Our main focus is on providing
architectural abstraction specifications in the DSL that
only need to be changed, if the architecture changes, but
can tolerate non-architectural changes in the underlying
source code. The DSL and its tools support abstracting the
source code into UML component models for describing the
architecture. Once the software architect has defined an
architectural abstraction in the DSL, we can automatically
generate UML component models from the source code
and check whether the architectural design constraints
are fulfilled by the models. Our approach supports full
traceability between source code elements and architectural
abstractions, and allows software architects to compare
different versions of the generated UML component model
with each other. We evaluate our research results by
studying the evolution of architectural abstractions in
different consecutive versions and the execution times for
five existing open source systems.

Categories and Subject Descriptors
D.2.11 [Software Engineering]: Software Architectures;
D.2.2 [Software Engineering]: Design Tools and Tech-
niques

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
QoSA’12, June 25–28, 2012, Bertinoro, Italy.
Copyright 2012 ACM 978-1-4503-1346-9/12/06 ...$10.00.

Keywords
DSL, Architectural Abstraction, Architectural Component
Models, Software Evolution, UML, Model Transformation

1. INTRODUCTION
In many software projects the design and the implemen-

tation drift apart during development and system evolution
[18]. In some small projects this problem can be avoided, as
it might be possible to understand and maintain a well writ-
ten source code without additional architectural documen-
tation. For many systems beyond the hundred thousands or
millions lines of code (LoC), this is not an option, and ad-
ditional architectural documentation is required to aid the
understanding of the system and especially to comprehend
the“big picture”by providing architectural knowledge about
a system’s design.

Automatically generated diagrams of the systems (e.g. in
form of class diagrams) usually do not represent higher-
level abstractions and hence they hardly support the un-
derstanding of the big picture. Clustering approaches from
the reengineering research literature (e.g. [2, 10, 39]) can
help to obtain an initial understanding and make sense of
such diagrams, however the case study presented by Corazza
et al. [7] shows that in five out of seven cases it is necessary
to make manual corrections for about half of the entities of
the analyzed source code.

That is the reason why today it is usually necessary to
have an up-to-date documentation of the system’s architec-
ture that is maintained manually. To model architectural
knowledge, often models in UML [31], ADLs [27], or sim-
ilar modeling approaches are used. Such models often are
created before the actual implementation begins and later,
during the implementation and system evolution, they loose
touch with reality because changes to the software design are
only made in the source code while the architectural models
are not updated [41]. This problem is known as architectural
knowledge evaporation [18].

In this paper, we introduce an approach that focuses on
architectural abstractions from the source code in a chang-
ing environment while still supporting traceability. While a
number of works exist that focus on abstractions from source
code [28, 29, 39, 13], so far none of these approaches targets
architectural abstractions at different levels of granularity,
traceability between architectural models and the code, or
the ability to cope with the constant evolution of software
systems. Our approach introduces the semi-automatic ab-

straction of UML component models from the source code
based on an architectural abstraction specified in a domain
specific language (DSL) [15, 16]. In contrast to the related
works, our approach specifically targets architectural ab-
stractions and requires changes to the DSL code only in
the rare case that the architecture of the system changes,
but not for the vast majority of non-architectural changes
we see during a software system’s evolution (see Section 2).

We chose a semi-automatic approach to enable the user
to provide information which system details are relevant for
getting the right level of abstraction – as software architec-
ture is usually described in different views at different levels
of abstraction. Our goal was to let the user specify this
information with minimal effort in an easy-to-comprehend
DSL that provides good tool support. Our approach allows
architects to create different architectural abstraction spec-
ifications that represent different levels of abstraction, thus
supporting views ranging from high-level software architec-
tural views to more low-level software design views.

As our approach focuses on defining stable abstractions in
the architectural abstraction specification, it can cope with
many changes to the underlying source code without chang-
ing the DSL code. Only changes to the architecture itself,
which usually require a substantial modification of source
code, require the architectural abstraction specification to
be updated. By creating different versions of the compo-
nent model over time, we are able to use a delta comparison
to check how and where the component model has changed.
The generated models can be compared to a design model to
check the consistency of an implementation and its design,
and to analyze the differences.

Once the architectural component models have been ab-
stracted, another problem is to identify which parts of the
source code contribute to a specific component, i.e., to sup-
port traceability between architectural models and code.
Traceability can be ensured if model-driven development
(MDD) [4] is used to generate the code from the models, but
MDD is not used in the majority of projects today and by
default model-to-text transformations do not create trace-
ability information. This results in additional manual effort
needed to identify which code elements are created from
which model elements. With our architectural abstraction
approach, in contrast, the task of identifying all source code
elements that contribute to a specific component is trivial,
as we can compute trace links directly from DSL code.

The remainder of the paper is organized as follows: Sec-
tion 2 explains the research problem addressed by this paper
in more detail, as well as the research method that was ap-
plied to design and evaluate the DSL. Section 3 gives an
overview of our approach. Section 4 provides details about
our architectural abstraction DSL and its implementation.
In Section 5 we illustrate our approach by discussing exam-
ples based on the open-source projects Apache CXF [1] and
Frag [40]. In Section 6 we discuss lessons learned and the
evaluation of our research results using five cases from exist-
ing open source systems of varying size. Section 7 compares
our approach to the related work. We conclude in Section 8.

2. RESEARCH PROBLEM AND RE-
SEARCH METHOD

During the software development lifecycle, the source code
and the architecture of a system evolve and change. This of-

ten results in architectural knowledge evaporation [18]. One
of the reasons for this is that in today’s software development
processes the software architects often have to manually cap-
ture and maintain the architectural knowledge, which is a
tedious task that is often forgotten in the daily business [41].
Additionally, when using conventional means for architec-
ture documentation like abstract UML models or box and
line diagrams, the traceability between the architecture and
the source code is lost. This can also lead to architectural
knowledge evaporation, when architects and developers lose
track of the correspondences between code and architecture.

A number of approaches have been proposed to address
this research problem by providing automatically or semi-
automatically produced abstractions from the source code
[28, 29, 39, 13]. In contrast to these related works, our ap-
proach specifically targets architectural abstractions. That is,
we have designed our DSL to only require changes of the DSL
code once the architecture of the underlying software system
has changed, but not for other kinds of changes. In case of
non-architectural changes, an updated architectural docu-
mentation can automatically be re-generated from the al-
tered source code without manual changes in the DSL code.

To reach this goal we have designed and implemented the
DSL using an incremental refinement process, following the
action research method [8, 20]. Action research is an it-
erative process where the researchers diagnose a problem
and then plan actions to solve the diagnosed problem. The
planned actions are then executed and the solution is eval-
uated. The evaluation results are used to learn from this
iteration of the cycle. These lessons learned are used as the
starting point for a new iteration of the cycle.

In particular, while developing our DSL we have studied
the evolution of various software systems and their architec-
ture documentations. We have classified changes in these
systems into architectural changes and non-architectural
changes. In an incremental refinement process, we have
improved the DSL and its DSL tools to only require changes
to the architectural abstraction code for changes classified
as architectural abstractions in the studied samples of
architectural evolution. In each incremental design cycle
we have added more samples of architectural evolution and
continued the iterations until only architectural changes
required changes in the DSL code.

Finally, we have evaluated the resulting DSL for all
changes that can be observed in a number of consecutive
versions of five open source projects. As can be seen in this
study, reported in Section 6, the vast majority of changes
are non-architectural changes, and they can be tolerated by
the architectural abstractions defined in our DSL without
requiring changes to the DSL code. Only when changes
that are classified as architectural changes are introduce
in the open source systems, updates to the architectural
abstraction code in the DSL are necessary.

3. APPROACH OVERVIEW
The approach introduced in this paper supports architec-

tural abstractions of a software system under development.
It also allows architects to compare the abstract model with
a previously defined architectural model and to maintain
that model in correspondence with the source code over
time. For this purpose we have defined a DSL that defines
architectural abstractions from class models, which can be
automatically extracted from the source code, into archi-

Source code

UML Class
Model

UML Component
Model

UML Component
Model

(existing /
previous version)

Delta

Automatic extraction

Compare

DSL

transformation

mapping

mapping

component
model

generation

delta
comparison

Figure 1: Generating component models from
source code and comparing different model versions

tectural component models. If specified appropriately, this
architectural abstraction should be stable during the im-
plementation process and only needs to be changed when
architectural changes occur (e.g., leading to significant re-
structuring of the architectural design).

Once an architectural abstraction specification is defined,
we can automatically generate the architectural component
model. The workflow for the generation process is depicted
in Figure 1. First a class model is extracted from the source
code. The extraction of a class model from source code de-
couples our approach from a specific source language since
the approach works on language independent UML class
models. For instance, for Java different tools exist that can
perform this extraction [37, 36]. Then a transformation is
used to generate a UML-component model. This transfor-
mation uses the architectural abstraction specification, de-
fined in the DSL code, and the source code as input and
generates the UML component model. The architectural
abstraction specification is needed here as it describes the
relation between the abstract model and the source code.

We use our architectural abstraction in the DSL to create
multiple instances of component models, as well as to com-
pare the created models to each other and to component
model instances created at design time. This way, one can
identify where the implementation differs from the original
design and can then argue whether these changes are in-
tended (e.g. flaws in the design) or not (e.g. developers not
sticking to the design). The comparison of these very similar
models with only minor differences is a straightforward task.
Approaches for advanced model comparison and a variety of
frameworks that implement this functionality already exist
(see e.g. [11, 21]). Based on this comparison, model consis-
tency between a design model and the implementation can
be checked. For example, the comparison indicates which
components are not implemented and how communication
between components works in the current implementation
with respect to the intended design.

This approach enables developers to maintain an architec-
ture documentation by providing an“up-to-date”component
model that reflects the source code.

Our approach also eases another often discussed problem
in software projects: The connection between design and
source code often is lost during development. Using our ar-
chitectural abstraction approach, developers can keep track
of which parts of the source code correspond to which ar-
chitectural components, introducing traceability from the
architectural model to the source code and vice versa.

Multiple architectural abstractions can be defined for the
same source code to create different views at different levels
of abstraction, where one architectural abstraction provides
an overview of a system and other architectural abstractions
provide detailed views of different parts of the system on
varying levels of abstraction.

Our proof-of-concept implementation uses the EMF im-
plementation of UML [31] for its class and component model.
This way it is possible to leverage component models cre-
ated during design time and repeatedly compare them to
the current status of the implementation.

4. DOMAIN SPECIFIC LANGUAGE FOR
SPECIFYING ARCHITECTURAL AB-
STRACTIONS

To support the architectural abstraction from the auto-
matically created class models to the architectural compo-
nent models, we define a DSL based on Xtext [12] which
provides rules for abstracting the detailed UML classes into
architectural models (UML packages to UML components).
These rules can be grouped into three categories: 1. Name-
or ID-based filters: This category of filters selects classes
based on the name or ID of an object. For example all classes
that reside in a specific package or all classes that contain
the string “message” in their name. 2. Relation-based filters:
These filters select classes based on their relationships to a
selected class. For example all classes implementing a spe-
cific interface. 3. Compositions: This category contains set
operations instead of actual filters. Using set operations one
can manipulate the result sets from other filters in order to
combine a number of resource sets or define exclusions from
more general filters.

We provide a number of different clauses that map groups
of class model elements to instances in the component model
and to define exceptions to these rules. For the manipula-
tion of sets we provide the three basic operations that are
relevant for our use case (union, intersection, and com-

plement). For more flexibility, we also added custom filters
implemented in Java or Xtend. For this purpose we intro-
duce two special clauses. The Java extension is supported
using a filter that is implemented as a static Java method.
This method has to accept two parameters: the DSL object
of type JavaExtensionFilter and a List of Package objects.
The method is expected to return all UML classifiers that
passed the filter. A similar clause exists for using custom
filters defined in Xtend.

A complete list of all the clauses that we defined for the
DSL can be found in Table 1. In our examples and studies
that we have used to incrementally refine and evaluate the
DSL, this set of language elements has been proven to be
sufficient to express architectural abstractions in a way that
tolerates all kinds of non-architectural changes (see Sections
5 and 6 for details on these examples and studies).

An excerpt of the DSL specification is depicted in Figure 2.
It shows the definition of the infix operators for union (and),

Component returns ComponentDef:
’Component(’ name=STRING ’)’

’{’
(expr=OrComposition)

’}’;

OrComposition returns Expression:
ExcludeComposition (

{OrComposition.left=current} ’or’
right=ExcludeComposition)*;

ExcludeComposition returns Expression:
AndComposition (

{ExcludeComposition.left=current}
’and not’
right=Primary

)*;

AndComposition returns Expression:
Primary ({ AndComposition.left=current}
’and’
right=Primary)*;

Primary returns Expression:
NameFilter | RelationFilter |
ExtensionFilter | ’{’ OrComposition ’}’;

Figure 2: Excerpt of the Xtext source code of our
architectural abstraction DSL

Shell
Frag

Parser

Interp

«JavaInvocation»
IParser

«JavaInvocation»
IInterp

«JavaInvocation»
IEmbeddingFrag

MDD

«DynamicallyLoaded»
IFragObject

«DynamicallyLoaded»
IFragObject

DSL

«DynamicallyLoaded»
IFragObject

FCL

«DynamicallyLoaded»
IFragObject

FMF

«DynamicallyLoaded»
IFragObject

TemplateEngine

«DynamicallyLoaded»
IFragObject

«ScriptExecution»
IScript

Figure 3: Visualization of the Frag example for a
component model generated from an architectural
abstraction specification

intersection (or), and complement (and not). {,} can be
used to change the operator precedence. The transformation
is implemented as an Xtend function, which is first defined
for the abstract type Expression and then refined for each
of the DSL’s clauses.

Let us illustrate the use of our architectural abstraction
DSL with a simple example. Figure 3 shows a high-level ar-
chitectural component model for the Frag project [40]. An
excerpt of an architectural abstraction specification in the
DSL which is used to generate the component model de-
picted in Figure 3 can be found in Figure 4.

Once an architectural abstraction is defined, it is impor-
tant to identify discrepancies between design and code. To
aid this task, our approach supports design constraint check-
ing during the transformation. Constraints that have to
hold for the class model and the component model can be
checked, and then discrepancies can be identified by deter-
mining which parts of an implementation are not visible in
the design and vice versa. At the moment we have imple-

Component("Parser") {
Package(root.frag.parser)

}

Component("Shell") {
Class(".*Shell") or {

UsedBy(root.frag.Shell) and
Package(root.frag.core)

}
}

Component("Interpreter") {
Class(".* Interp")
or {

UsedBy(root.frag.core.Interp) and
Package(root.frag.core)

}
}

Figure 4: Code samples for architectural abstraction
of the three main components of the Frag example

mented checks for the following constraints and plan on im-
plementing further checks in the future:

• Mapping of a class to multiple components

• Missing interface implementations

• Unimplemented components

• Clauses not matching any classes in the class model

• Mapping clauses that do not match any objects

• Classes that are not mapped to any component

The required and provided interfaces of a component are
automatically deduced from the UML-class model by defin-
ing all external interfaces, used by the component’s imple-
menting classes, as required interfaces. All interfaces that
are implemented by a component’s implementing classes and
used by another component are deduced as provided inter-
faces.

5. DETAILED EXAMPLE CASES OF
ARCHITECTURAL ABSTRACTION
EVOLUTION

We evaluated our approach for five open source projects in
Section 6. In this section we discuss two of the five projects,
Apache CXF [1] and Frag [40], as examples to illustrate our
approach in detail. During the incremental refinement of our
DSL design we started with examples from these projects
and extended the set of samples step-by-step to all changes
observed in multiple version of the five cases studied in the
next section. At the end of this section we discuss the find-
ings in these examples, while lessons learned are discussed
in the next section.

In the Apache CXF example we first created a high
level abstraction for CXF 2.0.10 (following the architecture
overview shown in Figure 5). Next, we updated it to reflect
the changes made in the newer versions of CXF. For Frag
we followed the same procedure. To show the ability to
provide different views for a system we created a detail view
for the “Transport” component in the CXF architecture
overview.

Filter Parameters Description

class name String all classes, who’s name matches the regular expression
package name String all classes residing in packages with names matching the regular expression

contained in package ID all classes residing in the package identified by the ID
uses ID all classes using the class identified by the ID
used by ID all classes used by the class identified by the ID
child of ID all child classes of the class identified by the ID
super type ID all super classes of the class identified by the ID
instance of ID all instances of the interface identified by the ID

Java extension String String that points to a static Java method which takes the filter object and a List of
UML packages as parameters and returns a list of matching classifiers

Xtend extension String String that identifies an Xtend function which has the same as the aforementioned
Java method.

and two clauses infix operator for intersecting the results from two clauses
or two clauses infix operator for uniting the results from two clauses
and not two clauses infix operator for the difference between two results

Table 1: Architectural abstraction DSL clauses

Version Files
added

Files
removed

Files
changed

Total
changes

DSL changes

CXF Architecture Overview 2.0.10 ⇒ 2.2.12 299 83 1040 1422 1 minor change
CXF Architecture Overview 2.2.12 ⇒ 2.3.7 133 19 923 1075 no changes
CXF Architecture Overview 2.3.7 ⇒ 2.4.3 115 62 739 916 no changes
CXF Transport 2.0.10 ⇒ 2.2.12 29 4 90 123 1 new component
CXF Transport 2.2.12 ⇒ 2.3.7 17 3 117 137 1 new component
CXF Transport 2.3.7 ⇒ 2.4.3 20 23 120 163 1 component removed
Frag 0.6 ⇒ 0.7 48 44 32 124 3 new components, 2 minor changes
Frag 0.7 ⇒ 0.8 9 1 148 158 1 new components, 6 minor changes
Frag 0.8 ⇒ 0.91 7 40 36 83 no changes

Table 2: Necessary changes to DSL code compared to source changes in two examples (Apache CXF, Frag)

Pluggable Data
Bindings

TransportsProtocol Bindings

Service ModelFront-ends
Messaging and

Interceptors

Bus

Apache CXF Services Framework

Figure 5: Apache CXF architecture overview [1]

The results in Table 2 show that in order to keep the
Apache CXF abstraction up-to-date hardly any changes
were necessary. In the course of the evolution of Apache
CXF from version 2.0.10 to version 2.4.3 more than 5000
changes were implemented but only one change to the
architectural abstraction specification was necessary. This
modification constitutes a package introduced between
versions 2.2.12 and 2.3.7. This result is based on the fact
that we only compared minor revisions (no older version
than Apache CXF 2.0.10 is available) during which no
major changes to the architecture were made.

When looking at the detail view for the transport compo-
nent, three changes were necessary. The package “http osgi”
was added in version 2.2 and removed in version 2.4 and
the package “jaxws http spi” that was added in version 2.3.
Since similar architectural abstraction specification changes
are shown for other examples, we do not provide a figure list-
ing the changes for this example. The goal of this example
was to provide a different (detailed) view for Apache CXF.
This view is depicted in Figure 6 and gives an overview of
the main transports components.

The high-level architecture of Frag in version 0.91 was
shown already in Figure 3. It contains a number of dif-
ferences when compared to the architecture of version 0.6,
which is missing the components DSL, FCL, FMF, and Tem-
plateEngine. The architectural abstraction specification for

Transport

Servlet

Conduit

HTTP
Standalone(Jetty)

Conduit

JMS

Conduit

Local

Conduit

Destination
Factory

Destination
Factory

Destination
Factory

Destination
Factory

DestinationFactoryManager

FactoryManager

Figure 6: Detail view for Apache CXF transports

Component("Parser") {
Package(root.frag.parser)

- and not
- Package(root.frag.parser.predefinedObjs)
}
Component("Objects") {
+ Package(root.frag.objs)
- Package(root.frag.parser.predefinedObjs)
- or Package(root.frag.predefinedObjects)
}
+Component("DSL") {
+ Package(root.mdsd.dsl) or {
+ Package(root.mdsd) and Class(".*DSL.*")
+ }
+}
+Component("FCL") {
+ Package(root.mdsd.fcl) or {
+ Package(root.mdsd) and Class(".*FCL.*")
+ }
+}
+Component("FMF") {
+ Package(root.mdsd) and Class(".*FMF.*")
+}

Figure 7: Architectural abstraction specification
modifications for the changes in Frag 0.7

Frag 0.6 has less than fifty lines of code. The changes nec-
essary to conform to Frag 0.7 are shown in Figure 7. They
constitute a substantial modification to the architectural ab-
straction specification. This was expected, since in this re-
vision the architecture of Frag had been reworked to use the
Java Reflection API for dynamic dispatching of Frag method
calls. Also a number of new features were introduced that
led to new components. This components were grouped in
a new package called mdsd.

In the following revision of Frag (0.8) only smaller changes
to the architecture were made. Another new component
(TemplateEngine) was introduced which required twelve
lines of DSL code and the top-level package mdsd was re-
named to mdd, which required updates to the architectural
abstraction specification at six places in the components
that are implemented in this package. We used manual
search/replace in order to exchange the occurrences of this
package. The integration of partial support for automatic
architectural abstraction specification updates are a topic
for future research. Another change is that the code for
the FMF component was moved into a package of its own,

with only one class remaining outside this package. These
changes account for 5 new lines of DSL code.

For the following release (Frag 0.91) the number of
changes halved and no changes to the architecture were
made. Because of this, no updates to the architectural
abstraction specification are required.

The two cases, Apache CXF and Frag, are described in
detail in this section to illustrate our approach. Frag was
chosen because of the fact that it shows the modifications
caused by major architecture changes. Apache CXF was
chosen because each of the revision contains about a thou-
sand changes, but the vast majority of them have no im-
pact on the architecture. Hence, only a very few changes to
the architectural abstraction specification are needed in the
Apache CXF case.

These two examples confirm that it is possible to create
abstractions based on generic filters. They indicate that this
is easier for high-level abstractions and that generic filters
like package-based or name-based filters are less likely to be
changed.

For example, name-based filters are unaffected by changes
as long as the regular expression is not affected. A Package

rule that uses a regular expression like “.*model.*” only is
affected if this exact part is modified, while a Package-rule
based on the fully qualified name needs to be updated as
soon as one of the packages on its path is modified.

However it is not always possible to define architectural
abstraction specifications solely using name-based filters
like Package and the union of their results (or). One
example is the Shell component in Figure 4 that consists
of all the classes that contain the name “Shell” and all
elements in the root.frag.core package that are used by
root.frag.Shell. The definitions based on the relation-
ships between classes have two disadvantages: They are
hard to read because it is unclear which classes match the
specified filter. Relationship-based filters can also have
side-effects. A related class can reside within a package that
is also targeted by a package-based or a name-based filter.
However this can be avoided by defining an exception in
one of the filters.

The evolution of relationship-based filters also works like
the already mentioned Package-filter that is based on fully
qualified names. They need to be updated only if the class
that is defined in the filter is moved, renamed, or deleted.

While we demonstrated our approach in this paper on
case studies that use programming languages supporting the
structuring of source code (e.g., via packages in Java), our
approach is also applicable for other languages that do not
offer such features. The limitation that arises from the miss-
ing structuring of source code features is that the Package

filter cannot be used. All other rules are still available and
can be used instead. This limitation often increases the num-
ber of rules necessary to define an architectural abstraction
specification, though.

In our future work we will evaluate different options for
extending our DSL by adding support for CONSTANTS
that allow the reuse of Strings in architecture abstraction
specifications as well as ways to allow the manual defini-
tion of component interfaces. This would allow us to define
constraints that test whether a component’s implementation
exposes or uses other interfaces than the ones defined in the
architecture abstraction specification.

6. LESSONS LEARNED AND EVALUA-
TION

To validate our approach, we realized architectural ab-
straction specifications for five existing open source projects
[22, 24, 1, 40, 38] of varying size (see Table 3). Samples from
two of these evaluations have been discussed in the previous
section to illustrate our DSL and its incremental design.

The time needed for creating a new architectural abstrac-
tion specification depends on prior existing knowledge of
the architecture and source code of the project. Once this
knowledge was acquired (obtained from the existing docu-
mentation and from studying the source code), creating an
architectural abstraction specification took less than 15 min-
utes for any one of the examples.

Our approach has limitations when applied to architec-
tural knowledge recovery and no prior knowledge about a
software project exists. Under these circumstances our ap-
proach is only applicable after initial architectural knowl-
edge has been acquired, since it does not provide an au-
tomated abstraction that can be used for refinement. This
limitation does not reduce the applicability in a software de-
velopment project where the focus lies on preserving archi-
tectural knowledge. In such cases, the required knowledge
usually is created in an early stage of a software develop-
ment project (i.e. this problem will not arise in the first
place). Another way to overcome this limitation for existing
source code could be to first create an initial architectural
view using an automated clustering approach [10] which can
later be refined.

Once the architectural abstraction specification is defined
we are able to automatically create component models from
source code. We noticed that most of our component defi-
nitions are based on packages which are the only possibility
of grouping multiple Java classes (besides Tagging interfaces
and so on). The advantage of component definitions based
on packages and existing other groupings is that the archi-
tectural abstraction specifications can cope with many kinds
of changes, as in an established software project the coarse
grained package structure usually is stable. For this reason,
only major changes require a change of the architectural
abstraction specification. E.g. the introduction of a new
subpackage or a new class do not require any changes. Only
the introduction of new major packages or new components
requires architectural abstraction specification updates.

Whenever a component model is created by the transfor-
mation it stores the classes that realize the component in a
Realization-Relation as defined by the UML-Standard. This
makes tracing the classes responsible for realizing specific
components, and vice versa, straightforward.

Our approach supports the creation of architectural
abstraction specifications on different levels of abstraction.
The data in Table 3 supports this claim. While we needed
41 clauses to map the 13k lines of code from Frag, we
only needed 21 clauses to map the 103k lines of code
from FreeCol and 35 clauses for mapping the 386k lines
of code of CXF to components. This indicates that the
CXF architectural abstraction specification is on a higher
abstraction level.

For approaches like this, performance often is a big prob-
lem. This problem is based on the exponential growth of the
execution time according to the size of the model and the
architectural abstraction specification. However for regular

Project #Clauses LoC Avg. Exec.
Time
(in ms)

σ (in ms)

Cobertura 19 85k 1516 368
Frag 41 13k 3559 563
FreeCol 21 103k 9244 1698
Apache CXF 35 386k 19380 1501
Hibernate 96 347k 64626 3413

Table 3: Execution times, standard deviation (σ)
and other key data for implemented examples

usage of the approach an execution time below two minutes
is acceptable. We measured the time it takes to execute the
constraint checks and the transformations. Table 3 shows
the execution times for five open source cases which we ob-
tained on a notebook (Intel i7 L620, 4 Gb RAM). We mea-
sured each execution time 100 times and calculated the av-
erage value. We also measured the minimum and maximum
values, but as we observed only small deviations around the
average values, we only report the averages here.

The results from Table 3 suggest that the execution time
increases with the number of clauses in the architectural
abstraction specification and with the number of classes in
the source code. Please note that we did not measure the
time that is needed for extracting the class model from the
source code, since this algorithm only converts every class
in the source code into an instance in the model.

7. RELATED WORK
In this section we compare to related approaches that ei-

ther use similar techniques or try to solve similar problems.
We have split the related work into different groups: In Sub-
section 7.1 we present a number of selected articles that ap-
ply different approaches that make use of automatic cluster-
ing in one or the other form. Subsection 7.2 discusses articles
that propose different kinds of model-based approaches that
create abstractions or views from source code. Finally, Sub-
section 7.3 presents works that focus on model evolution and
consistency checking of models.

7.1 Automatic clustering approaches
Abreu et al. introduce a reengineering approach using

cluster analysis [2]. It uses six different affinity schemes and
seven clustering methods to produce a series of clustering
proposals to verify which one produces the best results. In
contrast to our approach, the clustering leads to solutions
similar to those proposed by human experts only if the av-
erage number of classes per module is not too high.

Another approach for recovering architecture information
is introduced by von Detten and Becker [39]. The authors
combine clustering and (anti-)pattern information to extract
components from existing source code. This work has a
different focus than our approach: While both approaches
abstract from low-level model representations of a software
project, we introduce an extra step of defining the architec-
tural abstraction specification in the DSL, which removes
the uncertainty of using automatic clustering approaches
and provides the software designer with more control.

Corazza et al. [7] introduce a clustering approach that
uses lexical information. It uses a probabilistic model and
the Expectation Maximization algorithm to weigh this in-

formation and customizes the K-Medoids algorithm in order
to group classes. In their case study they compare their
approach with other automatic clustering approaches previ-
ously compared by Bittencourt and Guerrero [5]. As already
mentioned in Section 1, the case study by Corazza et al. [7]
states that the authoritativness values are close to 0.5 in
5 of 7 cases. This means that in 5 cases, it is necessary
to execute move or join operations for about half the en-
tities. Our approach removes the necessity to correct the
automated clustering but requires the effort to maintain the
architectural abstraction specifications.

Maletic and Marcus [25] used an automatic clustering
approach that utilized latent semantic indexing for the
data-retrieval and a minimal spanning tree for partitioning
the data. This approach shares the same problem with
aforementioned clustering approaches: The results it
produces need to be manually corrected. We believe that
our approach creates less maintenance effort because no
manual corrections are necessary. This is based on the fact,
that manual corrections are needed after every execution of
a clustering algorithm, while our architectural abstraction
specification does not create additional effort for multiple
applications of the approach.

Dietrich et al. [10] describe an approach for analyzing Java
dependency graphs with clustering. However this approach
still needs the configuration of the separation level (the num-
ber of iterations of removing the edges with the maximum
betweenness level). While our approach does not work fully
automatically, it allows several versions of a model that can
be incrementally fine-tuned by the user. Our approach also
provides stable results when changes in the code are made.

De Lucia et al. [23] integrate a latent semantic indexing
approach [9] into a software artifact management system in
order to recover traceability links. However they also state
that one of the limitations in using information retrieval
techniques is that in order to find all traceability links, it
is necessary to manually discard a big amount of false pos-
itives. Differential to all automatic clustering approaches,
our approach does require manual interaction for the cre-
ation and maintenance of the architectural abstraction spec-
ification but not after each execution of the transformation.

All approaches discussed so far deal with automatic recov-
ery of design knowledge. More clustering approaches and
clustering measures are reviewed and compared by Maq-
bool and Babri [26]. They define a number of groups of
clustering algorithms and compare the performance of the
different groups for different open source software projects.
While Maqbool and Babri conclude which approach works
best for each of the applications, they do not draw any con-
clusions regarding the overall effort necessary to correct the
automatic clustering. In contrast to all these approaches
our approach is semi-automatic, enables the checking of de-
sign constraints during the abstraction process, and provides
traceability between source code and models.

7.2 Model-based Abstraction and Views
Various approaches have been proposed for creating ab-

stractions or views from source code. Scaniello et al. [35]
propose an approach for semi-automatically detecting lay-
ers in software systems based on the algorithm introduced
by J. M. Kleinberg [19]. The authors implemented a proto-
type and provide a case study for JHotDraw. While their
approach is focused on semi-automatically detecting layers

without prior knowledge, our approach is focused on sup-
porting the evolution of the program and its architecture
by providing abstractions on different levels that help the
understanding of the software system.

Sartipi describes a pattern-based approach for recovering
software architecture [34]. It models the process as a graph
pattern matching problem between an entity relationship
graph and an architecture pattern graph. While this ap-
proach uses the two models as input, we use the source code
and the architectural abstraction specification in the DSL
as input and the resulting component models are only used
for consistency checks.

Ivkovic and Kontogiannis [17] provide an approach for
keeping models synchronised. However, they base their
approach on an additional graph-based meta-model and
a transformation model for synchronization. In contrast,
our approach makes it easier to trace the corresponding
low-level objects in the source code, since no intermediary
models are needed.

Egyed [13] describes an approach for model abstraction
by using existing traceability information and abstraction
rules. However, the author identified 120 abstraction rules
for the example of UML class models, which need to be ex-
tended with a probability value because the rules may not
always be valid. Our approach uses architectural abstrac-
tion specifications that are harder to reuse for other models
but easier to define and allow the definition of architectural
abstraction specifications on different levels of abstraction.

Brosig et al. [6] describe how they extract a Palladio com-
ponent model from Enterprise Java Beans. However, their
approach is based on EJBs and the runtime control flow
while our approach is not limited to EJBs and based on
statically analysing the existing source code.

Another approach for mapping source code models to
high-level models in introduced by Murphy et al. [29].
They use software reflexion models which they compute
from a mapping between source model and high-level
model. However while their approach is similar, it requires
a substantial amount of effort, since it requires to define
both: the high-level model and the mapping, while our
approach requires source code and architectural abstraction
specification and the architecture abstraction is generated
automatically.

Mens et al. [28] propose intentional source code views that
allow grouping of source code by concerns. These views are
defined in a logic programming language. Their approach
provides generic source views on a low abstraction level while
we focus on the architectural aspects and provide an easy
way to define our domain specific views. We plan to further
investigate this topic for other architecture documentation
such as patterns.

7.3 Model Evolution and Consistency
In this subsection we present different existing approaches

that focus on model evolution and consistency checking of
models. Sabetzadeh et al. [33] describe an approach for con-
sistency checking through model merge. While consistency
checking is a part of our work, we mainly focus on the archi-
tectural abstraction specification and providing additional
value for projects that do not use model driven development
per se. Furthermore we focus on models that provide differ-
ent levels of abstraction while the model merge approach is
better applicable to models on the same abstraction level.

Ajila and Alam describe a formal approach for model evo-
lution by extending OMGs Object Constraint Language [30]
with “Constraint with Action Language” [3]. It uses an-
notated directed acyclic graphs as model representations.
This approach has the advantage that is does not work with
model comparison. It works directly on the single model and
its modifications while our approach works by creating a se-
ries of models over time. However, our approach is targeted
at creating an abstraction in the form of a component model
from source code and keeping track of the model changes is
done implicitly by only comparing the different versions of
the abstract model.

Passos et al. [32] give a illustrative overview on static
architecture-conformance checking. They compare three ap-
proaches: The Lattix Dependency Manager (LDM) which
is based on Dependency-Structure Matrices, .QL which is
a source code query languages (SCQL), and the reflexion
models (RM) introduced by Murphy et al. [29]. As Pas-
sos et al. summarize, all of these approaches have draw-
backs. While the LDM tool has very limited capabilities
of expressing constraints, .QL has only a low abstraction
level, and RMs have only limited support for architecture
reasoning and discovery. Our approach features an expres-
sive DSL that can provide abstraction on different levels and
is capable of automatically generating abstractions from the
architectural abstraction specifications.

Feilkas et al. [14] perform an industrial case study on the
loss of architectural knowledge during system evolution. To
measure the loss of architectural knowledge, they use an ap-
proach based on machine readable component descriptions
and policies in XML. While their approach has similarities
with our approach, their approach offers only limited ways
to describe mappings between components and source bode.
Their mappings are solely based on regular-expressions that
map package-names to components. As our case studies
show this is not always sufficient to describe components
and our approach provides more flexible ways to describe
architectural abstraction specifications.

8. CONCLUSION
In this paper we presented a semi-automatic approach for

supporting architectural abstractions of source code into ar-
chitectural component models. Based on a DSL, it auto-
matically generates component models from source code and
supports traceability between the mapped artifacts. By cre-
ating architectural abstraction specifications with the DSL
on different levels of abstraction, we are able to create dif-
ferent, abstract views for one project. Another feature of
our approach is its ability to cope with change. Only major
changes, like newly introduced components, require an up-
date of the architectural abstraction specification. Overall,
our current evaluations and experience show that architec-
tural abstraction specifications can be created and main-
tained with relatively low effort. We can test for inconsis-
tencies between abstraction and code and raise an error if
constraints are violated.

Our approach has limitations when used for reengineer-
ing as knowledge about the source code and the design of
a project are needed to create the architectural abstraction
specification; in many reengineering approaches the main as-
sumption is that such knowledge does not yet exist. Hence,
our approach can be used together with these approaches:
The reengineering approaches can be used for acquiring an

understanding of a project, and our approach can be used
to maintain and evolve an architectural view on the system
once it has been sufficiently understood. We plan to inves-
tigate this relation in our future work.

9. REFERENCES
[1] Apache CXF. http://cxf.apache.org, 2011.

[2] F. B. e. Abreu, G. Pereira, and P. Sousa. A
coupling-guided cluster analysis approach to
reengineer the modularity of object-oriented systems.
In Proceedings of the Conference on Software
Maintenance and Reengineering, CSMR ’00, pages
13–, Washington, DC, USA, 2000. IEEE Computer
Society.

[3] S. A. Ajila and S. Alam. Using a formal language
constructs for software model evolution. In Proceedings
of the 2009 IEEE International Conference on
Semantic Computing, ICSC ’09, pages 390–395,
Washington, DC, USA, 2009. IEEE Computer Society.

[4] S. Beydeda and V. Gruhn. Model-Driven Software
Development. Springer-Verlag New York, Inc.,
Secaucus, NJ, USA, 2005.

[5] R. A. Bittencourt and D. D. S. Guerrero. Comparison
of graph clustering algorithms for recovering software
architecture module views. In Proceedings of the 2009
European Conference on Software Maintenance and
Reengineering, pages 251–254, Washington, DC, USA,
2009. IEEE Computer Society.

[6] F. Brosig, S. Kounev, and K. Krogmann. Automated
extraction of palladio component models from running
enterprise Java applications. In Proceedings of the
Fourth International ICST Conference on
Performance Evaluation Methodologies and Tools,
VALUETOOLS ’09, pages 10:1–10, ICST, Brussels,
Belgium, Belgium, 2009. ICST (Institute for
Computer Sciences, Social-Informatics and
Telecommunications Engineering).

[7] A. Corazza, S. Di Martino, and G. Scanniello. A
probabilistic based approach towards software system
clustering. In Proceedings of the 2010 14th European
Conference on Software Maintenance and
Reengineering, CSMR ’10, pages 88–96, Washington,
DC, USA, 2010. IEEE Computer Society.

[8] R. M. Davison, M. G. Martinsons, and N. Kock.
Principles of canonical action research. Information
Systems Journal, 14:65–86, 2004.

[9] S. C. Deerwester, S. T. Dumais, T. K. Landauer,
G. W. Furnas, and R. A. Harshman. Indexing by
latent semantic analysis. Journal of the American
Society of Information Science, 41:391–407, 1990.

[10] J. Dietrich, V. Yakovlev, C. McCartin, G. Jenson, and
M. Duchrow. Cluster analysis of Java dependency
graphs. In Proceedings of the 4th ACM symposium on
Software visualization, SoftVis ’08, pages 91–94, New
York, NY, USA, 2008. ACM.

[11] Eclipse Foundation. EMF Compare.
http://www.eclipse.org/emf/compare/, 2011.

[12] Eclipse Foundation. Xtext.
http://www.eclipse.org/Xtext/, 2011.

[13] A. Egyed. Consistent adaptation and evolution of class
diagrams during refinement. In Fundamental
Approaches to Software Engineering, 7th International

http://cxf.apache.org
http://www.eclipse.org/emf/compare/
http://www.eclipse.org/Xtext/

Conference, FASE 2004, ETAPS 2004 Barcelona,
Spain, volume 2984 of Lecture Notes in Computer
Science, pages 37–53. Springer, 2004.

[14] M. Feilkas, D. Ratiu, and E. Jurgens. The loss of
architectural knowledge during system evolution: An
industrial case study. In Program Comprehension,
2009. ICPC ’09. IEEE 17th International Conference
on, pages 188 –197, 2009.

[15] M. Fowler. Domain-Specific Languages
(Addison-Wesley Signature Series (Fowler)).
Addison-Wesley Professional, 1 edition, 2010.

[16] R. C. Gronback. Eclipse Modeling Project: A
Domain-Specific Language (DSL) Toolkit.
Addison-Wesley Professional, 1 edition, 2009.

[17] I. Ivkovic and K. Kontogiannis. Tracing evolution
changes of software artifacts through model
synchronization. In Proceedings of the 20th IEEE
International Conference on Software Maintenance,
pages 252–261, Washington, DC, USA, 2004. IEEE
Computer Society.

[18] A. Jansen, J. van der Ven, P. Avgeriou, and D. K.
Hammer. Tool support for architectural decisions. In
Proceedings of the Sixth Working IEEE/IFIP
Conference on Software Architecture, WICSA ’07,
pages 4–, Washington, DC, USA, 2007. IEEE
Computer Society.

[19] J. M. Kleinberg. Authoritative sources in a
hyperlinked environment. J. ACM, 46:604–632, 1999.

[20] N. Kock. The three threats of action research: a
discussion of methodological antidotes in the context
of an information systems study. Decis. Support Syst.,
37:265–286, 2004.

[21] M. Kofman and E. Perjons. Metadiff - a model
comparison framework.
metadiff.sourceforge.net/docs/metadiff.pdf.

[22] J. Linwood and D. Minter. Beginning Hibernate,
Second Edition. Apress, Berkely, CA, USA, 2nd

edition, 2010.

[23] A. D. Lucia, F. Fasano, R. Oliveto, and G. Tortora.
Recovering traceability links in software artifact
management systems using information retrieval
methods. ACM Trans. Softw. Eng. Methodol., 16,
2007.

[24] M. Doliner, J. Erdfelt, J. Lewis, G. Lukasik, J. Mareš,
and J. Thomerson. Cobertura.
http://cobertura.sourceforge.net, 2011.

[25] J. I. Maletic and A. Marcus. Supporting program
comprehension using semantic and structural
information. In Proceedings of the 23rd International
Conference on Software Engineering, ICSE ’01, pages
103–112, Washington, DC, USA, 2001. IEEE
Computer Society.

[26] O. Maqbool and H. Babri. Hierarchical clustering for
software architecture recovery. IEEE Trans. Softw.
Eng., 33:759–780, 2007.

[27] N. Medvidovic and R. N. Taylor. A classification and
comparison framework for software architecture
description languages. IEEE Trans. Softw. Eng.,
26:70–93, 2000.

[28] K. Mens, T. Mens, and M. Wermelinger. Maintaining
software through intentional source-code views. In
Proceedings of the 14th international conference on

Software engineering and knowledge engineering,
SEKE ’02, pages 289–296, New York, NY, USA, 2002.
ACM.

[29] G. C. Murphy, D. Notkin, and K. Sullivan. Software
reflexion models: bridging the gap between source and
high-level models. In Proceedings of the 3rd ACM
SIGSOFT symposium on Foundations of software
engineering, SIGSOFT ’95, pages 18–28, New York,
NY, USA, 1995. ACM.

[30] Object Management Group. OCL 2.2 Specification,
2010.

[31] Object Management Group. UML 2.3 Superstructure,
2010.

[32] L. Passos, R. Terra, M. T. Valente, R. Diniz, and
N. das Chagas Mendonca. Static
architecture-conformance checking: An illustrative
overview. IEEE Softw., 27:82–89, 2010.

[33] M. Sabetzadeh, S. Nejati, S. Liaskos, S. Easterbrook,
and M. Chechik. Consistency checking of conceptual
models via model merging. In Requirements
Engineering Conference, 2007. RE ’07. 15th IEEE
International, pages 221 –230, 2007.

[34] K. Sartipi. Software architecture recovery based on
pattern matching. In Proceedings of the International
Conference on Software Maintenance, ICSM ’03, pages
293–, Washington, DC, USA, 2003. IEEE Computer
Society.

[35] G. Scanniello, A. D’Amico, C. D’Amico, and
T. D’Amico. An approach for architectural layer
recovery. In Proceedings of the 2010 ACM Symposium
on Applied Computing, SAC ’10, pages 2198–2202,
New York, NY, USA, 2010. ACM.

[36] Soyatec. eUML2. http://www.soyatec.com/euml2/,
2011.

[37] D. Spinellis. UMLGraph. http://www.umlgraph.org,
2011.

[38] The Freecol Team. Freecol. http://freecol.org,
2011.

[39] M. von Detten and S. Becker. Combining clustering
and pattern detection for the reengineering of
component-based software systems. In Proceedings of
the joint ACM SIGSOFT conference – QoSA and
ACM SIGSOFT symposium – ISARCS on Quality of
software architectures – QoSA and architecting critical
systems – ISARCS, QoSA-ISARCS ’11, pages 23–32,
New York, NY, USA, 2011. ACM.

[40] U. Zdun. The Frag Language.
http://frag.sourceforge.net/, 2011.

[41] O. Zimmermann, U. Zdun, T. Gschwind, and
F. Leymann. Combining pattern languages and
architectural decision models in a comprehensive and
comprehensible design method. In Working
IEEE/IFIP Conference on Software Architecture
(WICSA) 2008, Vancouver, BC, Canada, 2008.

metadiff.sourceforge.net/docs/metadiff.pdf
http://cobertura.sourceforge.net
http://www.soyatec.com/euml2/
http://www.umlgraph.org
http://freecol.org
http://frag.sourceforge.net/

	Introduction
	Research Problem and Research Method
	Approach Overview
	Domain specific language for specifying architectural abstractions
	Detailed example cases of architectural abstraction evolution
	Lessons Learned and Evaluation
	Related Work
	Automatic clustering approaches
	Model-based Abstraction and Views
	Model Evolution and Consistency

	Conclusion
	References

