
UML2 Profile and Model-Driven Approach for
Supporting System Integration and Adaptation of Web

Data Mashups

Patrick Gaubatz and Uwe Zdun

Faculty of Computer Science
University of Vienna, Vienna, Austria,

{firstname.lastname}@univie.ac.at

Abstract From a system integration perspective, Web data mashups used in
larger architectures often need to be integrated with other system components,
such as services, business processes, and so on. Often a change in one of these
components requires changes in many of the dependent components. Similarly,
an analysis of some system properties requires knowledge about other system
parts than just the mashup. Such features could be implemented using the model-
driven development (MDD) approach, but existing MDD approaches for mashups
concentrate on modeling and execution only. To remedy this problem, we propose
a generic approach based on a UML2 profile which can easily be extended to
model other system parts or integrated with other existing models. It is the foun-
dation for generating or interpreting mashup code in existing languages as well
as other system parts using the MDD approach and performing system adaptation
or analysis tasks based on models in a standard modeling language.

1 Introduction

Web mashups are used to combine data from different Web documents and services to
create new functionality. Web data mashups concentrate on extracting and transforming
data from such Web data sources and offer them as a service. Different domain-specific
languages (DSLs) that are tailored specifically to facilitate the development of Web
mashups (see e.g. [1–4]), model-driven approaches for Web mashups and Web data
integration [5, 6], and extensions of existing behavioral modeling languages like BPEL
[7, 8] have been proposed to model Web mashups.

Most approaches today concentrate on mashup modeling and execution. From a
system integration perspective, they offer two means for system integration: (1) they
integrate data from Web documents and services and (2) they offer their results ei-
ther as Web documents or services. The larger system integration or architectural con-
text is usually not supported any further by current approaches. For instance, Web data
mashups may be used to integrate data from various internal and external information
systems. Changes (e.g. of the service interface) in any of these information systems
might require adaptations of the dependent Web data mashups.

The model-driven development approach (see e.g. [9]) offers a convenient way to
address this problem. Via a model-driven generator, we can generate different compo-

nents from models and re-generate the code upon changes in the models. Via a model-
driven interpreter we could even support model-based runtime (on-the-fly) adaptation
of the mashups. Finally, the model-driven approach could be used to generate other
representations of the models. For instance, we could generate a Petri Net or automata
representations of the complete process and mashup behavior to analyses aspects like
deadlocks or life-locks in the entire model.

From a modeling perspective, mashups are similar to areas like behavioral software
modeling (see e.g. [10]) and business process modeling or workflows (see e.g. [11]). In
essence, mashups can be seen as behavioral composition models similar to UML ac-
tivity diagrams [12] or microflows [13] (a microflow is a short-running, non-persistent
workflow [13]), with specific functionality such as extracting data from Web pages, in-
voking services, and combining the data retrieved from Web pages and services using
scripts. Some modeling approaches that extend existing behavioral modeling languages
like BPEL have been proposed [7, 8], but BPEL is designed for long-running, transac-
tional business processes (macroflows) rather than short-running microflows.

In this paper, we propose a UML profile for mashup modeling that is based on a
core package describing basic microflows as an extension of UML activity diagrams.
Mashup-specific functions are added in an extension package. In this package we semi-
formally modeled some of the most common mashup functionalities. The profile is de-
signed so that it can be extended with more specific mashup functions that are provided
by mashup approaches. The core contribution of this paper is a semi-formal profile for
core mashup functionality as an extension of the UML2 meta-model. As a proof-of-
concept we have also implemented a model-driven interpreter for the mashup profile.
To explain the generalizability of our mashup modeling profile and show that it can
serve as a unified modeling approach for many existing mashup approaches, we also
discuss how our approach can be used in model-driven code generators to cover other
existing mashup approaches.

2 Problem Description

Current Web data modeling approaches do not consider Web data mashups in a larger
architectural context. For instance, the mashup may be used inside of a business pro-
cess, and both mashup and process must be monitored. Figure 1 shows the architectural
overview of this example scenario. In this simple architecture example, we must inte-
grate the business process, the mashup, the used services, and the used Web sites, and
provide monitoring rules for all these components as well as their deployment config-
urations. If we perform changes, all these artifacts might need to be changed. Keeping
them consistent during development and maintenance is tedious and error-prone.

The model-driven development approach helps to overcome this problem. Unfor-
tunately, using the model-driven approach with mashups is difficult as they are often
described in proprietary modeling or script languages and there is no unified modeling
approach for them that enables us to use model-driven development approaches together
with mashup approaches. Standard modeling languages that provide convenient ways
to model other system parts as well like the UML are usually not used (e.g. service
interfaces can be modeled as extensions of class diagrams). Furthermore, the existing

Monitor

S1 S2 S3

Web

Services

B1

Business Processes

M1 M2

Mashups

accesses

observes observes

accesses

accesses

Figure 1: Architectural Overview of a System Integration Scenario

model-driven mashup approaches (e.g. [5, 6]) focus on specific aspects (like user inter-
face layer integration) and offer only limited support for the integration of mashups in
larger architectural contexts.

3 UML2 Profile for Modeling Web Data Mashups as Microflows

In order to model Web data mashups, different primitives, such as service invocations,
transformation of data, and output generation in a mashup must be modeled and in-
terconnected. To model such primitives we chose the profile extension mechanism of
UML2 because there are already existing UML2 meta-classes that are semantically a
close match to the characteristics of a Web data mashup. In particular, a mashup can be
seen as a series of activities that perform data transformations. From the perspective of
behavioral modeling, a mashup can be seen as a special purpose microflow: The term
microflow refers to a short running, rather technical process model [13]1. A typical way
to model microflows are UML2 activity diagrams, which we will extend using a UML2
profile for modeling mashups as microflows.

This is done by semi-formally extending semantics of the respective UML2 meta-
classes (rather than having to define completely new meta-classes). A profile is still
valid, standard UML2. That is, it can be used in existing UML2 tools, instead of having
to offer proprietary ones which are rarely used in practice. We use the Object Con-
straint Language (OCL) to define the necessary constraints for the defined stereotypes
to precisely specify their semantics. OCL constraints are the primary mechanism for
traversing UML2 models and specifying precise semantics on stereotypes.

Below, each primitive is precisely specified in the context of the UML2 meta-model
using OCL constraints. This is a very important step for the practical applicability of
our concepts: Without an unambiguous definition of the primitives, they cannot be used
(interchangeably) in UML2 tools and model-driven generators. That is, our main reason
for using the UML2 – a potential broad tool support – could otherwise not be supported.

3.1 Modeling Microflows

As a Web data mashup can be seen as a microflow, we decided to found our profile
for Web data mashups on a meta-model extension for microflows. More precisely, we

1 Microflows can be contrasted to macroflows which describe long-running, rather business-
oriented process [13].

are proposing a meta-model for scripting language-based microflows in the context of
service composition and service-based data integration.

UML2

<<metaclass>>
Activity

<<stereotype>>
MicroflowActivity

+refinedNodes : ActivityNode[0..*]

<<stereotype>>
ActivityRefinement

<<metaclass>>
ObjectNode

<<stereotype>>
Data

<<stereotype>>
PrimitiveData

<<stereotype>>
CompositeData

<<stereotype>>
Configuration

+endpoint : String

<<stereotype>>
InvocationConfiguration

<<metaclass>>
ActivityNode

+scriptFile : String

<<stereotype>>
Script

+configuration : InvocationConfiguration

<<stereotype>>
Invocation

<<stereotype>>
Output

<<stereotype>>
ListData

<<stereotype>>
MapData

Figure 2: The Microflow Meta-Model

Figure 2 depicts the UML2 class diagram of the microflow meta-model. The Mi-
croflowActivity stereotype allows us to denote an UML2 activity to be a microflow. It
also allows us to make the model subject to model constraints. For example, we defined
an OCL constraint (see Listing 1) specifying that an instance of a microflow must have
exactly one InitialNode – a requirement needed to allow the execution of microflows.
c o n t e x t M i c r o f l o w A c t i v i t y

inv : s e l f . b a s e A c t i t i y . node−>s e l e c t (o c l I s T y p e O f (I n i t i a l N o d e))−>s i z e () = 1
c o n t e x t S c r i p t inv : s e l f . s c r i p t F i l e −>notEmpty ()
c o n t e x t I n v o c a t i o n C o n f i g u r a t i o n inv : s e l f . e n d p o i n t −>notEmpty ()
c o n t e x t I n v o c a t i o n inv : s e l f . c o n f i g u r a t i o n −>notEmpty ()
c o n t e x t Outpu t inv : s e l f . b a s e A c t i v i t y N o d e . incoming−>e x i s t s (i n |

Data . a l l I n s t a n c e s ()−> e x i s t s (d a t a |
i n . s o u r c e . o c l I s T y p e O f (ObjectNode) and i n . s o u r c e = d a t a . baseObjec tNode))

Listing 1: OCL Constraints for the Microflow Model

Microflows of Web data mashups read, write, transform, process, analyze, anno-
tate, group, . . . data. Consequently, our meta-model defines a Data stereotype. In our
approach, instances of Data are called data objects. Data can either be PrimitiveData
(e.g. strings, numbers, or boolean values) or complex CompositeData. The latter can
either be ListData (i.e. arrays) or MapData (i.e. key/value-pairs). These two complex
data structures allow us to accommodate and map (at least) the two most widely used
data formats in the Web context: XML and its variations (e.g. HTML) as well as JSON.

Having introduced data objects, we have yet to define means to get them into/out
of a microflow. An Output returns data and/or a result (e.g. an XML document) back to
the executor of the microflow (e.g. a Web application). An Invocation is used to retrieve
data to be processed from a service (e.g. a RESTful Web service).

A Script acts as a “placeholder” for implementation-level code. This way arbitrary
extensions from existing mashup implementation languages can be integrated – allow-
ing us to model mashups in a generalizable fashion, but still being able to incorporate
the specialized features of different mashup languages via code generation. That is, the
model-driven interpreter or generator will take the code in the script files and insert
it at the dedicated points into the generated or interpreted code. For this reason, Script
serves both as the meta-model’s primary extension point and as a “fallback” activity. Al-

though the meta-model is extensible, in practice there will always be situations, where
no “suitable” modeling-construct is available. In such cases, the developer can either
extend the meta-model (i.e. introduce a new modeling-construct) or he/she directly at-
taches implementation-level code.

The main purpose of the ActitivyRefinement stereotype is to allow a MicroflowAc-
tivity to refine a concrete ActivityNode. For example, a MicroflowActivity (A1) might
contain an ActivityNode – with the name N1 – to be refined. A second, MicroflowActiv-
ity (A2) might then use the tag refinedNodes to indicate, that it refines the node N1
(from A1). As we will see in Section 5, this mechanism can not only be used to refine
MicroflowActivities but also to integrate our meta-model with other meta-models.

3.2 Modeling Web Data Mashups

Based on the rather generic microflow meta-model introduced in the previous section,
we will now present a model extension aiming to cover the most basic set of invoca-
tion activities related to Web mashups (i.e. “plain” HTTP and SOAP). Note, that the
resulting model is far from “complete” and mainly tries to give the reader an idea of our
meta-model’s extension mechanism (see Section 4 for further details).

 GET
 PUT
 POST
 DELETE
 HEAD
 OPTIONS

<<enumeration>>
HTTPInvocationOperationKind

<<stereotype>>
MashupActivity

+operation : HTTPInvocationOperationKind
+header : MapData
+body : Data
+bodyType : String
+timeout : Integer

<<stereotype>>
HTTPInvocationConfiguration

+header : MapData
+body : MapData

<<stereotype>>
SOAPInvocationConfiguration

+type : String

<<stereotype>>
MashupOutput<<stereotype>>

HTTPInvocation
<<stereotype>>
SOAPInvocation

Microflow

<<stereotype>>
MicroflowActivity

<<stereotype>>
InvocationConfiguration

<<stereotype>>
Invocation

<<stereotype>>
Output

Figure 3: The Mashup Meta-Model

Figure 3 illustrates the Mashup meta-model in its UML2 class diagram representa-
tion. Invocation is derived twice: HTTPInvocation and SOAPInvocation. The former is
used to model a plain HTTP request (e.g. to retrieve a resource from a RESTful service
or to post data to a JSON-based Web service). The stereotype SOAPInvocation indicates
an invocation of a SOAP Web service. Finally, MashupOutput is derived from Output.
The mandatory type tag is used to specify the MIME type of the data to be returned.
c o n t e x t H T T P I n v o c a t i o n C o n f i g u r a t i o n

inv : s e l f . o p e r a t i o n −>notEmpty ()
inv : s e l f . o p e r a t i o n = POST or s e l f . o p e r a t i o n = PUT

i m p l i e s s e l f . body−>notEmpty ()
inv : s e l f . body−>notEmpty () i m p l i e s s e l f . bodyType−>notEmpty ()

c o n t e x t HTTPInvocat ion
inv : s e l f . c o n f i g u r a t i o n . o c l I s K i n d O f (H T T P I n v o c a t i o n C o n f i g u r a t i o n)

c o n t e x t S O A P I n v o c a t i o n C o n f i g u r a t i o n inv : s e l f . body−>notEmpty ()
c o n t e x t SOAPInvocat ion

inv : s e l f . c o n f i g u r a t i o n . o c l I s K i n d O f (S O A P I n v o c a t i o n C o n f i g u r a t i o n)
c o n t e x t MashupOutput inv : s e l f . type−>notEmpty ()

Listing 2: OCL Constraints for the Mashup Model

<<Script>>
Check Parameter

<<Script>>
Prepare order

<<HTTPInvocation>>
HTTP Request

<<SOAPInvocation>>
SOAP Request

<<MashupOutput>>
Output

<<Script>>
Prepare serviceResult

<<Script>>
Prepare chargeMoney

<<Data>>
order

<<PrimitiveData>>
parameterOK

<<MapData>>
chargeMoney

<<MapData>>
orderResponse

<<MapData>>
creditResponse

<<MapData>>
serviceResult

<<HTTPInvocationConfiguration>>
configRest

<<SOAPInvocationConfiguration>>
configSOAP

[parameterOK = false]

[else]

Figure 4: Example Scenario

To give you an idea how a concrete instance of our Mashup meta-model might look
like, let us consider a simple online shop. An HTML page resembles its user interface.
Its backend is realized using a Web data mashup. Upon invocation, the it first has to
place a new order in the internal inventory system of the company, which is reachable
via a JSON-based Web service. Secondly, a billing request to the external SOAP Web
service of an Credit card company is issued. Finally, the result of both invocations
is passed back to the user interface (e.g. a simple HTML page). Figure 4 depicts the
corresponding microflow model.

4 Exploring the Generalizability of the UML2 Profile

 ASCENDING
 DESCENDING

<<enumeration>>
SortDirectionKind

Microflow

<<stereotype>>
ManipulateData

<<stereotype>>
Script

+expression : String
+property : String
+value : Data

<<stereotype>>
AnnotateData

+template : String
+configCode : String

<<stereotype>>
DataTemplate

+expression : String

<<stereotype>>
FilterData

+condition : String

<<stereotype>>
JoinData

+expression : String

<<stereotype>>
MergeData

+key : String
+direction : SortDirectionKind

<<stereotype>>
SortData

+expression : String

<<stereotype>>
GroupData

Figure 5: EMML Extensions to the Mashup Meta-Model

A generic and unified modeling approach implies, that – thanks to its generalizabil-
ity – it is possible to accommodate models from similar approaches. This is achieved
by mapping the model abstractions of one approach to the ones of the other. As this

is not always possible (e.g. because there is simply no matching modeling construct
available), a generic modeling approach should provide an extension mechanism.
c o n t e x t M a n i p u l a t e D a t a

inv : s e l f . b a s e A c t i v i t y N o d e . incoming−>e x i s t s (i n |
Data . a l l I n s t a n c e s ()−> e x i s t s (d a t a | i n . s o u r c e . o c l I s T y p e O f (ObjectNode)

and i n . s o u r c e = d a t a . baseObjec tNode))
c o n t e x t A n n o t a t e D a t a

inv : s e l f . e x p r e s s i o n −>notEmpty ()
inv : s e l f . p r o p e r t y −>notEmpty ()
inv : s e l f . va lue−>notEmpty ()

c o n t e x t F i l t e r D a t a inv : s e l f . e x p r e s s i o n −>notEmpty ()
c o n t e x t GroupData inv : s e l f . e x p r e s s i o n −>notEmpty ()
c o n t e x t J o i n D a t a

inv : s e l f . c o n d i t i o n −>notEmpty ()
inv : s e l f . b a s e A c t i v i t y N o d e . incoming−>f o r A l l (i n |

Data . a l l I n s t a n c e s ()−> s e l e c t (d a t a | i n . s o u r c e . o c l I s T y p e O f (ObjectNode)
and i n . s o u r c e = d a t a . baseObjec tNode)−>s i z e () > 1

c o n t e x t MergeData
inv : s e l f . e x p r e s s i o n −>notEmpty ()
inv : s e l f . b a s e A c t i v i t y N o d e . incoming−>f o r A l l (i n |

Data . a l l I n s t a n c e s ()−> s e l e c t (d a t a | i n . s o u r c e . o c l I s T y p e O f (ObjectNode)
and i n . s o u r c e = d a t a . baseObjec tNode)−>s i z e () > 1

c o n t e x t S o r t D a t a inv : s e l f . key−>notEmpty ()

Listing 3: OCL Constraints for the EMML Mashup Model Extension

To explore the generalizability of our modeling approach we tried to map the con-
cepts and model abstractions of the Enterprise Mashup Markup Language (EMML) [4].
EMML is an XML-based standard that supports the specification of processing flows
for Web mashups in a platform- and vendor-independent manner. Table 1 contains a list
of EMML statements (taken from the reference [4]) and shows how each statement can
be mapped to our UML2 profile. In Table 1a we can see, that many statements (e.g.
control flow-related) can directly be mapped to plain UML2 (e.g. <if>).

For a large part of the domain-specific statements (e.g. <mashup>) this is also the
case. To cover the remaining, we had to extend our model. Figure 5 shows, that we have
extended the Script stereotype – the primary extension point of our model – to introduce
8 new stereotypes. Listing 3 shows the corresponding OCL constraints (e.g. JoinData
needs at least two incoming activity edges originating Data objects) and Table 1b shows
how they are mapped to EMML. The remaining statements are listed in Table 1c. We
considered them either to be “generic” in a sense that they are not very specific for the
domain of “data mashups” (e.g. <constructor>) or to mainly exist for debugging
purpose (e.g. <assert>). Hence, we used the Script “fallback” to cover them.

(a) Plain UML2

EMML UML2
<input> ActivityParameterNode
<variables> ObjectNode / ObjectFlow
<include>

Activity<macro>
<macros>
<if>

DecisionNode
<for>
<foreach>
<break>
<while>
<parallel> ForkNode / JoinNode
<sequence> ControlFlow

(b) UML2 Stereotypes

EMML UML2
<mashup> MashupActivity
<directinvoke> Invocation<invoke>
<annotate> AnnotateData
<filter> FilterData
<group> GroupData
<join> JoinData
<merge> MergeData
<sort> SortData
<xslt> DataTemplate
<output> Output

(c) Script Fallbacks

EMML UML2
<script>

Script

<select>
<appendresult>
<assert>
<assign>
<constructor>
<template>
<display>
<datasource>
<sql*>

Table 1: Mapping of EMML language elements to UML2

As we could show, our modeling approach provides a model-driven abstraction that
can be used to model the essence of mashups expressed in languages like EMML in
a technology-independent way that supports implementing features for model-driven
generation of system integration code, analysis, or adaptation based on the abstract
models. EMML code could be generated from our models and Section 7 will show that
it is feasible to implement a model-driven interpreter that can execute instances of our
meta-model on-the-fly.

5 Integration of the UML2 Profile with Existing Models

Different meta-models can be integrated via a common meta-meta-model, like MOF
for UML2. That is, every single meta-model to be integrated has to be defined us-
ing the same meta-meta-model. The profile definition mechanism of UML2 provides
straightforward means to define meta-models. As a standard modeling language, lots of
different UML2 profiles and UML2-derived meta-models have been proposed. Hence,
basing model integration on the common UML2 meta-model allows for an straightfor-
ward integration with other UML2-based meta-models.

Using an extension of our illustrative example, we will demonstrate the model inte-
gration capabilities of our mashup meta-model via the standard UML2 extension mech-
anisms. As mentioned before, mashups may very likely be used in larger architectures.
For instance, our example mashup from Section 3.2 may be used by a macroflow [13],
a long-running, interruptible process flow which depicts the business-oriented process
perspective (e.g. a business process).

<<Macroflow>>
Purchase

Handover Goods

Take Order

<<MashupActivity>>
Order Mashup

<<MashupActivity>>
Order Processing Mashup
{refinedNodes = Order Mashup}

<<Script>>
Check Parameter

<<Data>>
order

<<MapData>>
chargeMoney

<<Script>>
Prepare order

<<Script>>
Prepare chargeMoney

<<PrimitiveData>>
parameterOK

[parameterOK = false]

[else]

...

...

Figure 6: Integrating the Mashup Model with a Macroflow Model

Suppose that the company from our example scenario (see Section 4) also provides a
physical “brick and mortar” store. The left side of Figure 6 depicts a very simplistic and
high-level macroflow model of the whole buying process. The first as well as the last
activities have to be conducted by a human (i.e. the shop assistant). That is, after taking
the order, the original mashup model (from Section 4) shall be used to process it. Hence,
we insert an activity node (Order Mashup) to be refined. Using the ActivityRefinement
stereotype and the refinedNodes tag, we can then specify that our order processing
mashup refines the mentioned activity node in the macroflow model.

This way of integrating different compatible meta-models using a tagged value in-
troduced in the mashup profile (i.e., refinedNodes) is one way of model integration
– in this case with other activity models. Other types of UML2 models can easily be
integrated in the same way. Another option is named-based matching. For instance, the
object nodes in our mashup models can easily be matched by name with the correspond-
ing classifiers in class or component models that describe them in detail. Class models
can also be used to describe the service interfaces used in a mashup.

A model-driven generator or interpreter can then use the linking tagged values or
names to navigate both models and generate code for different system artifacts. The big
benefit of our UML2 profile is that mashups can easily be integrated with models in
other types of models and that UML2 already provides a wide variety of models that
can be used to describe all kinds of other artifacts relevant for mashups.

6 Implementing a Model-driven Tool Chain

The presented UML2 meta-models have been developed and specified using a textual
DSL. Frag [14, 15], a tailorable language, specifically designed for the task of defining
DSLs, provides the syntactic foundation of this DSL. Among other things, Frag sup-
ports the tailoring of its object system and the extension with new language elements.
Hence, it provides a good basis for defining a UML2-based textual DSL because it
is easy to tailor Frag to support the definition of the UML2 meta-classes. Frag auto-
matically provides us with a syntax for defining application models using the UML2
meta-classes. In addition Frag also provides a constraint language similar to OCL as
well as a model validator. Using the model validator we can easily check a models
conformance to its meta-models as well as its model constraints.
d e f i n e a new s t e r e o t y p e
FMF : : S t e r e o t y p e c r e a t e MashupOutput \

−s u p e r c l a s s e s Microf low : : Outpu t \
−a t t r i b u t e s { t y p e S t r i n g }

d e f i n e a new model c o n s t r a i n t
MashupOutput addInvar iant [notEmpty [s e l f t y p e]]

Listing 4: Frag DSL example

Note, that the textual syntax of the DSL is mainly intended to be used internally
in the model validator, as a common syntax for model integration, and for debugging
purposes. The developers should mainly work with UML2 and OCL tools to define
the models and constraints. The main contribution of our prototypical tool chain is
to validate and demonstrate that a model validation support following our concepts is
feasible and can be implemented with moderate effort from scratch.

7 Implementing a Model-driven Interpreter

As a proof-of-concept, we have also implemented a basic model-driven interpreter, that
is able to execute instances of our mashup meta-model on-the-fly. Using the Frag lan-
guage, and mainly due to its realization of the transitive mixins concept [15], it could
be implemented in roughly 450 lines of code. Mixins allow us (among other things) to
add methods to classes dynamically at runtime.

c r e a t e e x e c u t o r c l a s s e s
FMF : : C l a s s c r e a t e M a s h u p A c t i v i t y E x e c u t o r −method e x e c u t e a r g s { . . . }
FMF : : C l a s s c r e a t e S c r i p t E x e c u t o r −method e x e c u t e a r g s { . . . }
add m i x i n s
Mashup : : M a s h u p A c t i v i t y mixins M a s h u p A c t i v i t y E x e c u t o r
Microf low : : S c r i p t mixins S c r i p t E x e c u t o r

Listing 5: Defining Mixin Classes

Thus, the basic idea of our model execution-approach is to use mixins to extend
our (Frag-specified) meta-model with additional execution functionality. For instance,
Listing 5 shows how we define two mixin classes (MashupActivityExecutor
and ScriptExecutor), both implementing the method execute. For every de-
fined stereotype a corresponding executor mixin – containing the execution-logic – is
needed. For instance, the execution-logic of the MashupActivityExecutor is to
execute the model’s initial node. The initial node’s execution logic is to traverse its out-
going activity edge and execute the next activity node. In Listing 5 we can see, that the
previously defined mixin classes are then directly attached to the classes of the meta-
model (e.g. Microflow::Script).
d e f i n e a model i n s t a n c e
UML2 : : A c t i v i t y c r e a t e A1
Mashup : : M a s h u p A c t i v i t y c r e a t e M1 −b a s e A c t i v i t y A1
e x e c u t e t h e model i n s t a n c e
M1 e x e c u t e

Listing 6: Executing a MashupActivity

Having the mixin classes attached, it is then possible to directly execute any instance
of our meta-model. Listing 6 depicts both the instantiation of the meta-model as well as
the execution of the newly created instance via the execute method.

8 Related Work

A considerable amount of work has been done on the design and development of DSLs
that are tailored specifically to facilitate the development of Web mashups (see e.g. [1–
3]). In particular, the idea of seeing Web mashups as compositions of Web services and
Web data leads to the design of numerous service composition languages. For instance,
the Bite language [7] has been proposed as a simplified variant of the Web Services
Business Process Execution Language (WS-BPEL) [16], a current standard technology
for business process execution in the context of Web services. Like our approach this
approach uses a behavioral model as the foundation of a mashup model. But BPEL is
designed for long-running, transactional business processes (macroflows) and contains
many language elements not useful for mashup composition, whereas our approach
offers a model focused on the short-running microflows typically required for mashup
composition tasks. Rosenberg et al. [8] demonstrate the applicability of Bite to model
RESTful Web services and collaborative workflows.

Our model-based approach does not compete with the already existing languages
and approaches. But rather it provides a model-driven abstraction that can be used to
model the essence of mashups expressed in these languages. This has been demon-
strated in Section 4 for the Enterprise Mashup Markup Language [4], a standard pro-
posed by the Open Mashup Alliance. In contrast to our approach, the existing modeling

approaches are not based on a standard modeling language that provides convenient
ways to model other system parts as well like the UML2 (e.g. in UML2 service inter-
faces can be modeled as extensions of UML2 class diagrams). Our approach can be
used to augment those other mashup modeling languages with links to UML2 models
for other system parts via the standard UML2 extension mechanisms.

Model-driven development in the context of Web mashups and Web data integra-
tion is nothing new and numerous approaches have been presented before. For example,
Daniel et al. present mashArt [5], a model-driven approach to UI and service compo-
sition on the Web, consisting of component model for mashup components as well
as an event- and flow-based service composition model. A meta-model for context-
aware component-based mashup applications is presented by Pietschmann et al. [6].
The model provides means to describe all necessary application aspects on a platform-
independent level, such as its components, control and data flow, layout, as well as
context-aware behavior. Koch et al. present UWE [17], a model-driven approach for
Web application development. The proposed UML2 profile aims to cover the entire de-
velopment life cycle of Web systems and therefore clearly surpasses the scope of our
own meta-model. Similarly, Kapitsaki et al. [18] also suggest a UML2 profile for mod-
eling Web applications using UML2 class and state transition diagrams. A conceptual
modeling approach to business service mashup development is presented in [19]. Boz-
zon et al. demonstrate the feasibility of modeling Web mashups as Business Processes
using BPMN (Business Process Management Notation). In summary, these approaches
attach great importance to the integration of the data and the user interface layer – which
is the main focus of the meta-models of these approaches.

In contrast to these approaches, our approach tries to be as generic as possible and
focus on the microflow abstraction needed to support features for model-driven gener-
ation of system integration code, analysis, or adaptation. Thus, our meta-model consti-
tutes the bare minimum needed to model the microflows of Web mashups. Also, our
main focus lies in the Web data integration and service composition aspect of Web
mashups. In future extension of our model we plan to extend it to also support the user
interface layer integration.

9 Conclusion and Future Work

In this paper we introduced an UML2 profile for semi-formally modeling the essence of
Web data mashups based on activity diagrams and formal constraints in the OCL. We
divided our meta-model into an abstract microflow layer and a mashup specific layer.
We were able to show the applicability of our approach in a prototype implementation,
realizing a mashup DSL and a model-driven interpreter. We showed the generalizability
of our approach by mapping it to a standard mashup language, the EMML. We argued
and showed how other UML2 diagrams can be integrated with our approach. Hence,
the UML2 profile together with the model-driven approach help to make the mashup
approach usable in a system integration context, in which the mashups and other de-
pendent components must be changed together. The approach can potentially be used
to better support the adaptation and analysis of mashups – especially together with other
system components. As future work we plan to apply our approach in for these tasks.

References
1. Maximilien, E.M., Ranabahu, A., Gomadam, K.: An Online Platform for Web APIs and

Service Mashups. IEEE Internet Computing 12(5) (September 2008) 32–43
2. Vallejos, J., Huang, J., Costanza, P., De Meuter, W., D’Hondt, T.: A programming language

approach for context-aware mashups. In: Proceedings of the 3rd and 4th International Work-
shop on Web APIs and Services Mashups. Mashups ’09/’10, New York, NY, USA, ACM
(2010) 4:1–4:5

3. Sabbouh, M., Higginson, J., Semy, S., Gagne, D.: Web mashup scripting language. In:
Proceedings of the 16th international conference on World Wide Web. WWW ’07, New
York, NY, USA, ACM (2007) 1305–1306

4. Open Mashup Alliance: Enterprise Mashup Markup Language. http://www.
openmashup.org/omadocs/v1.0/

5. Daniel, F., Casati, F., Benatallah, B., Shan, M.: Hosted Universal Composition: Models, Lan-
guages and Infrastructure in mashArt. In: Proceedings of the 28th International Conference
on Conceptual Modeling. ER ’09, Berlin, Heidelberg, Springer-Verlag (2009) 428–443

6. Pietschmann, S., Tietz, V., Reimann, J., Liebing, C., Pohle, M., Meißner, K.: A metamodel
for context-aware component-based mashup applications. In: Proceedings of the 12th In-
ternational Conference on Information Integration and Web-based Applications & Ser-
vices. iiWAS ’10, New York, NY, USA, ACM (2010) 413–420

7. Curbera, F., Duftler, M., Khalaf, R., Lovell, D.: Bite: Workflow Composition for the Web.
In: Proceedings of the 5th international conference on Service-Oriented Computing. ICSOC
’07, Berlin, Heidelberg, Springer-Verlag (2007) 94–106

8. Rosenberg, F., Curbera, F., Duftler, M.J., Khalaf, R.: Composing RESTful Services and Col-
laborative Workflows: A Lightweight Approach. IEEE Internet Computing 12(5) (September
2008) 24–31

9. Mellor, S.J., Clark, A.N., Futagami, T.: Guest Editors’ Introduction: Model-Driven Devel-
opment. IEEE Software 20 (2003) 14–18

10. Bock, C.: Unified Behavior Models. Journal of OO-Programming 12(5) (1999) 65–68
11. Aguilar-Savén, R.S.: Business process modelling: Review and framework. International

Journal of Production Economics 90(2) (2004) 129 – 149
12. Object Management Group: UML 2.4.1 Superstructure. http://www.omg.org/spec/

UML/2.4.1
13. Hentrich, C., Zdun, U.: Process-Driven SOA - Proven Patterns for Business-IT Alignment.

CRC Press, Taylor and Francis, Boca Raton (2012)
14. Zdun, U.: Frag. http://frag.sf.net/
15. Zdun, U.: Tailorable language for behavioral composition and configuration of software

components. Comput. Lang. Syst. Struct. 32(1) (April 2006) 56–82
16. OASIS: Web Services Business Process Execution Language. http://docs.

oasis-open.org/wsbpel/2.0/wsbpel-v2.0.pdf
17. Koch, N., Knapp, A., Zhang, G., Baumeister, H.: Uml-Based Web Engineering. In Rossi,

G., Pastor, O., Schwabe, D., Olsina, L., eds.: Web Engineering: Modelling and Implementing
Web Applications. Human–Computer Interaction Series. Springer London (2008) 157–191

18. Kapitsaki, G.M., Kateros, D.A., Pappas, C.A., Tselikas, N.D., Venieris, I.S.: Model-driven
development of composite web applications. In: Proceedings of the 10th International Con-
ference on Information Integration and Web-based Applications & Services. iiWAS ’08, New
York, NY, USA, ACM (2008) 399–402

19. Bozzon, A., Brambilla, M., Facca, F.M., Carughu, G.T.: A Conceptual Modeling Approach
to Business Service Mashup Development. In: Proceedings of the 2009 IEEE International
Conference on Web Services. ICWS ’09, Washington, DC, USA, IEEE Computer Society
(2009) 751–758

