
Architectural Decision Making for Service-Based Platform Integration:
A Qualitative Multi-Method Study

Ioanna Lytra1, Stefan Sobernig2, Uwe Zdun1

1Faculty of Computer Science
University of Vienna, Austria

Email: firstname.lastname@univie.ac.at

2Institute for IS and New Media
WU Vienna, Austria

Email: stefan.sobernig@wu.ac.at

Abstract—Nowadays the software architecture of a system is
often seen as a set of design decisions providing the rationale
for the system design. When designing a software architecture
multiple levels of design decisions need to be considered.
For example, the service-based integration of heterogeneous
platforms and the development of applications on top of those
integration services requires high-level as well as technology-
, domain-, and application-dependent architectural decisions.
In this context, we performed a series of qualitative studies
following a multi-method approach. First, we conducted a
systematic literature review from which we derived a pattern
language for platform integration featuring 40 patterns, as
well as a pattern-based architectural decision model. Then, we
performed interviews with 9 platform experts from 3 companies
for revising the architectural knowledge captured by the pat-
tern language and the decision model. Finally, we participated
in a case study and observed the decision-making process to
validate the results further. Our observations resulted in 1)
a qualitatively validated, pattern-based architectural decision
model and 2) a generalized model of the different levels
and stages of architectural decision making for service-based
platform integration.

I. INTRODUCTION

In recent years, software architecture is less and less
seen as only the components and connectors constituting
a system’s principal design, and more and more as a set
of principal design decisions governing a system [1, 2].
The idea to gather the architectural knowledge about a
software system became a focus of the software architecture
community. Key in this context is to document not only
the components and connectors, but also the rationale for
an architectural design using means such as architectural
decision models. An architectural decision model (ADM)
documents the decision-making process leading to an archi-
tectural design in terms of the architectural design decisions
(ADDs) made and their relations (e.g., follow-up decisions,
implication dependencies). The ADDs and their relations are
collected in a structured form, for example, by using text
templates and/or diagrammatic modeling based on a meta-
model for ADDs [3, 4].

In this paper, we address the decision making for a
particular kind of software architectures: software architec-
tures based on one or more software platforms. A soft-
ware platform is a collection of software sub-systems, like
communication middleware and databases, and interfaces
which together form a reusable infrastructure for developing
a set of related software applications. To build a concrete

application by reusing software artifacts in a platform, the
platform lays out a customization and configuration process
on top of its interfaces [5]. A software platform, therefore,
abstracts from details inside and underneath the platform and
thereby facilitates developing, maintaining, and deploying
domain-specific software applications. Today, many software
systems are based on software platforms. Examples include
SAP R/3 for enterprise resource planning, the Facebook
Platform for social networks, Amazon’s S3 for distributed
data storage, Google’s Android and Apple’s iOS platforms
for mobile applications, and Mobicents as a reusable VoIP
infrastructure.

Architectural design decisions (ADDs) must be captured
for each and every architecture when being designed. Doc-
umenting ADDs in a disciplined manner is tedious work
consuming critical amounts of time. Besides, ADDs depend
on the amount of knowledge available at a relatively early
time in the software development process; and architects
cannot leverage any scaffolding in ADD documentation
processes [6]. At the same time, certain design decisions
taken in a given technical domain, such as SOA and service-
based platform integration, are found to be taken repetitively.
This is due to certain design decisions reflecting established
design knowledge in the field; or certain technology or
development process choices being firm requirements in
the field. It has been proposed to base the application-
generic knowledge in decision models on software patterns
[6, 7] by reusing the recurring knowledge embodied in
the pattern descriptions. In this context, we address the
following research questions that have, to the best of our
knowledge, not been addressed so far:

What are recurring architectural design decisions on
service-based platform integration documented by existing
software patterns and pattern collections?

Early works on architectural decision modeling (such
as [3]) stressed application-specific architectural knowl-
edge, while in more recent works (such as [4]) also deci-
sion models for application-generic architectural knowledge
have been proposed [8]. When integrating heterogeneous
service platforms for supporting domain-specific software
applications, decisions ranging from high-level architec-
tural decisions to implementation-technology-dependent and
application-dependent decisions must be tackled to specify
the system’s architecture. Motivated by these findings on
multi-level decision-making, we investigated:

What are the levels of decision making when designing
an architecture for service-based platform integration?

To address these two research questions, we conducted a
series of three qualitatively-driven studies on architectural
decision making. To identify patterns relevant for service-
based platform integration solutions, as well as their poten-
tial relationships and the relevant forces and consequences of
applying the patterns, we performed a systematic literature
review [9]. We reviewed in depth 402 patterns from 11 pat-
tern collections. The result was a candidate pattern language
containing 29 patterns (plus 11 referenced patterns). From
this pattern language we derived a pattern-based architec-
tural decision model. Next, we interviewed platform experts
[10, 11] to validate the architectural knowledge documented
in the pattern language and the architectural decision model.
Finally, we participated in an industry case study [10]
on service-based platform integration in the context of a
European research project to learn from the industry partners
about the decision-making process.

By integrating the results of the three studies to answer
the two research questions, we arrived at two major con-
tributions: First, we documented a pattern language and a
pattern-based architectural decision model for service-based
platform integration [12], validated and refined through
expert interviews and a case study. Second, the analysis of
the decision-making process has led to a model identifying
the levels and stages of architectural decision making in
service-based platform integration.

The remainder of this paper is structured as follows. In
Section II, we introduce a motivating example for service-
based platform integration. Section III describes in detail the
steps we followed in our multi-method empirical study, and
Section IV presents the results of this qualitative study. In
Sections V and VI we discuss the limitations of our approach
and the learned lessons from our study respectively. Finally,
we discuss the related work in Section VII and summarize
our conclusions in Section VIII.

II. MOTIVATING EXAMPLE

To illustrate the research context of service-based platform
integration, we give an example (see Figure 1) extracted
from the industry case study on industry automation reported
in Section IV: Three heterogeneous platforms, a Warehouse
Management System (WMS), a Yard Management System
(YMS) and a Remote Maintenance System (RMS) are
integrated to allow an operator application to utilize the
services provided by these platforms. The YMS manages
the scheduling and coordination of trucks in a yard, as
well as the loading and unloading of the goods from these
trucks. The WMS handles the storage of the goods (or
storage bins) into racks via conveyor systems. The RMS
system is connected to the warehouse to monitor every
incident occurring in the warehouse and the yard. It also
supports remote communication of operators and workers
in the warehouse and the yard.

An operator application uses the services of the three plat-
forms via a domain-specific virtual service platform (VSP)

which performs service-based platform integration. The
overall architecture is schematically illustrated in Figure 1.
The VSP must handle various integration aspects including
interface adaptation between the platforms; integration of
service-based and non-service-based solutions; routing, en-
riching, aggregation, splitting, etc. of messages and events;
handling synchronization and concurrency issues, and so on.
To design the details of such integration solutions and the
applications on top of it, for all the integration aspects high-
level architectural decisions as well as application-specific
decisions need to be considered. Furthermore, decisions
regarding the technologies employed in the platforms, the
applications, and the VSP must be made.

YMS WMS RMS

VSP

Service-based Applications
(e.g., Operator Web Portals)

tailored platform service
adapters/proxies

tailored connection
configurations

tailored service adapters/
proxies/facades

provided platform
services

integration adapters platform-specific service
invocations

Figure 1. Service-based Platform Integration

III. RESEARCH STUDY DESIGN

When designing our study, we faced the problem of
the two research questions being substantially different in
terms of their views on architectural decision making; while
pattern descriptions relate to architectural decisions and deci-
sion drivers content-wise, the issue of decision-making levels
requires a process view. A single research method could
not accommodate both views. Also, the research questions
required both exploratory and confirmatory approaches. For
example, after having identified candidate pattern material
and architectural design decisions as initial results, their
recurring character should be explained based on practition-
ers’ experience. At the same time, the research questions
are closely related, given that different patterns can address
different decision-making levels. Consequently, we adopted
a multimethod design [13], following a sequential timing for
three qualitative study projects.

Figure 2 gives an overview of our research study de-
sign: The first method applied was a systematic literature
review from which we distilled an initial pattern language
and a preliminary architectural decision model according
to the procedures in [6, 7]. The systematic review step

was performed by the authors in cooperation with a forth
postdoc researcher (i.e., the authors in [12]; referred to as
reviewers hereafter). The second instrument was intended (1)
to validate and to improve our pattern language and decision
model, as well as (2) to explore how decision making in
platform integration architectures is performed. For this, we
performed semi-structured interviews [11] with experts on
three platforms used in industry. The interviews’ data were
synthesized using the constant comparison method [10] and
used to revise the pattern language and the decision model.
Based on the integrated interview findings, we designed
a case study (e.g., the study proposition) which was then
performed as the third and final inquiry step. With this, we
were able to document specific design decisions required
in the decision-making process. The second and the third
research steps were taken by the three authors. In the
subsequent sections, we elaborate on the individual study
parts in greater detail.

generalizing

coding

summarizing

3 iterations

distill

distill

Pattern
Language (PL)

Architectural
Decision Model

(ADM)

Systematic
Literature Review

Interview

Coded
Interview

Field Memos

Improved PL/
ADM

Case Study

Design Decisions
(from Case Study)

Design Levels
(in Case Study)

Decision Levels for
Platform Integration

Architecture Design
(in Case Study)

Figure 2. An Exploratory, Sequential, Qualitative Multimethod Design

A. Systematic Literature Review
As an initial step, a systematic review of the pattern

literature was conducted to identify, gather, and filter relevant
pattern descriptions from pattern sources on distributed
system design [14], enterprise application architecture [15],
messaging [16], remoting middleware [17], service design
[18] and process-driven SOA [19]. In addition, software
design [20] and software architecture [21, 22] patterns have
been consulted. The goal of this systematic review was to
derive a solution space for the technical domain of service-
based platform integration, by integrating selected subsets of
these pattern collections into a dedicated pattern language.
By studying the forces and consequences of the patterns
of the resulting pattern language, an architectural decision
model was derived with certain patterns entering the decision
model as decision alternatives and options (see [6, 7]).

The practice of systematically selecting and integrat-
ing parts of existing pattern languages while adding new,
context-specific relations between the integrated patterns has
been reported before [22, 23]. While pattern catalogues, pat-
tern collections, and pattern languages have been used before
to extract and populate decision models [6, 7], our approach
based on a systematic pattern literature review (following
the guidelines by [9]) is novel. The steps performed in the
systematic review process are documented below.

1) Review Questions: The questions guiding the system-
atic review were the following:

RQ1 Which patterns or pattern collections exist that support
designing service-based software system?

RQ2 Which patterns or pattern collections document inte-
gration of service-based software systems?

RQ3 Which patterns and pattern collections describe the
architecture and design of an integration platform?

2) Pattern Search: The process for searching relevant
pattern descriptions and pattern collections was performed
manually by the authors in a coordinated manner. In a first
step, the authors held a brainstorming session and identified
initial pattern candidates based on their experience in the
field. Second, conferences, journals, and book series specific
to the pattern community were selected. This selection
corresponds to the established stages of publishing pattern
material, with pattern descriptions and pattern collections
first being disclosed to a pattern audience at a PLoP confer-
ence. The PLoP conference series guarantees that the pattern
material has been reviewed and edited under the guidance of
a shepherd, reviewed by a program committee, and discussed
in a writer’s workshop. From there, the pattern material may
be submitted to a pattern journal, such as LNCS Transactions
on Pattern Languages of Programming (TPLoP), which
subjects the material to the additional scientific review pro-
cess of an academic, archival journal. Alternatively, pattern
material may grow into a book publication. We considered
papers originating from 33 conferences proceedings of PLoP
and EuroPLoP, 2 issues of an archival journal (TPLoP), 5
pattern collection books, and 25 pattern books.

3) Inclusion and Exclusion Criteria: Patterns and pat-
tern collections, published till February 20th, 2012 were
included, provided that the articles met certain minimum re-
quirements: Firstly, the pattern or pattern collection concerns
one of the review questions reported before. Secondly, the
article presents one or more patterns, in one of the shapes
established in the various pattern communities. In particular,
the patterns are described in an established pattern form [24]
as single patterns, pattern compounds, pattern stories, pattern
catalogues, or pattern languages (see [23]). In our in-depth
analysis we studied all patterns with regard to the review
questions and excluded those that are not addressing one of
the review questions. In total we selected 11 sources with
402 patterns for further in-depth analysis1.

4) Quality Assessment: Each pattern publication identi-
fied was evaluated according to the following criteria: (1) At
least a single version of the pattern collection must have been
reviewed by a pattern audience (e.g., a writers’ workshop at
a PLoP conference, TPLoP journal review); (2) At least three
known uses are reported; (3) The pattern or pattern collection
was considered by the related work [4] on documenting
architectural decision in the SOA technical domain.

5) Pattern Extraction: The data extracted from the search
phase were the publication sources, a categorisation of the
pattern material (e.g., single pattern, pattern story, etc.), short

1Details about the systematic literature review can be found in [25].

Table I
EXCERPT FROM THE INTERVIEW INSTRUMENT

Question Type
Adaptation and Integration

1.1 Can the services from the source platform be directly used in
the VSP platform?

closed

Interface Design
2.1 Have the platform services been exposed as services using
standard interfaces/technologies?

closed

Communication Style
3.1 How important is performance for the connection? open

summarizing descriptions, pattern forces and consequences
and other referenced patterns. In accordance with the review
guidelines in [9], the extraction was performed by the
authors independently from each other.

6) Synthesis: We selected 29 out of the 402 patterns in
our in-depth analysis for inclusion in the pattern language,
plus 11 patterns that are referenced by the pattern language.
Detailed results are presented in Section IV-A.

B. Interview Data Collection and Analysis
The interview instrument was carefully designed using

the guidelines by Hove and Anda [26]. We performed
3 interviews with 9 experts from 3 different companies
that offer the 3 platforms introduced in Section II. The
platform experience of the interviewees varied between 1
to 4 years, and most of them had more than 3 years of
industry experience. Almost all of them had experience in
service technology and were either software designers or
developers for the platforms. The interview instrument was
mainly based on the decision model and consisted of 4
categories (Adaptation and Integration, Interface Design,
Communication Style and Communication Flow) and 29
questions. This questionnaire comprised open-ended, as well
as closed-ended questions. Out of the 29 questions, 24
questions were based on general architectural knowledge and
5 concerned technical platform details needed for preparing
the case study. Table I contains an excerpt from the interview
instrument2.

The interviews varied between 100 and 150 min. in
length. The interviews were recorded on site, using field
notes which were then transformed into a structured format
through a process of coding. That is, we used a coding
scheme to categorize decisions, decision alternatives, and
levels/stages of decision making to map the interviewees’
answers to concepts such as patterns in our pattern language,
relationships between patterns, and correlations between
application-generic and application-specific decisions. For
example an interviewee’s statement that “the interface can
be accessed remotely without any changes” implies the
pattern REMOTE PROXY as a code.

Having analyzed each interview’s data, the pattern lan-
guage and the decision model were reviewed by applying a
process of data saturation [27]. In particular, new patterns
and new connections between the patterns were added to
the pattern language. Decision categories and levels/stages

2The complete interview instrument can be found in [25].

of decision making were documented. Apart from that,
patterns and pattern connections that were considered either
irrelevant or superfluous were selected as candidates for
removal during subsequent iterations.

C. Case Study Research

Our integration case study was both confirmatory and
exploratory in nature. Our task was to discuss and to design
architectural views together with the platform experts to
reflect on the integration architecture based on four inte-
gration scenarios. First of all, we studied to which extent
the pattern language corresponds to the platform integration
domain and the architectural decision model helps navigate
the design space. We evaluated the applicability and the
appropriateness of the pattern language and of the decision
model by making decisions in the context of the case study
using these two assets as our main guidance. Apart from
that, we analyzed the case study design to gain insights
into the decision-making process and to derive hypotheses.
The design of a common case study on integrating the
three platforms allowed us to define and to explore new
decision levels, correlations between application-generic and
application-specific design decisions, and different stages of
the decision-making process.

IV. RESULTS

A. Pattern Language and Architectural Decision Model

Having synthesized a set of 29 patterns (plus 11 refer-
enced patterns), the authors distilled a pattern language by
assigning each pattern to one (or several) of the previously
identified thematic categories, resulting in 6 Adaptation
and Integration patterns, 6 Interface Design patterns, 8
Communication Style patterns and 9 Communication Flow
patterns. The full pattern language is reported in a patterns
publication [12]. The pattern language documents relations
between the patterns, within and between the four categories.
In Figure 3, the 6 Integration and Adaptation patterns and
their relationships are depicted. The patterns are related in
four ways: First, a pattern can represent a variant of a
more generic pattern description (e.g., REMOTE PROXY) as
a variant of PROXY). Second, patterns can play the role
of alternative (exclusive-or) or complementary (inclusive-or)
design practices when applied at the same design level (e.g.,
for integration and adaptation, or denoting communication
styles). As an example in Figure 3, the REMOTE PROXY
and the INTEGRATION ADAPTER pattern are alternatives for
each other, each realizing an integration platform with differ-
ent capabilities (i.e., direct proxy vs. interface adaptation).
Third, adopting one particular pattern (i.e., INVOCATION
ADAPTER) leads to evaluating another pattern at the same
level of abstraction under certain conditions or requirements
(e.g., the COMPONENT CONFIGURATOR if runtime adapt-
ability is needed). Finally, some patterns (e.g., PROTOCOL
PLUGIN) are used as part of the solution of a higher-level
pattern (e.g., REMOTE PROXY) to realize a certain aspect of
the solution (i.e., multi-protocol support).

In the drafting phase of our architectural decision model,
we considered such identified pattern relations as indicators
of architectural decisions points to be documented for a
single concrete (or even multiple) integration platform archi-
tectures. For capturing such recurring, pattern-based archi-
tectural design decisions (ADDs), we adopted the following
description scheme (see also Figure 3):

• Decision context: Arriving at a decision point is mo-
tivated by previous decisions taken. Also, the same
decision point may be reached several times while
constructing an architecture; yet, depending on the
given context, different decision options and drivers
become relevant. For instance, while Decision 1 in
Figure 3 for a given architecture refers to the REMOTE
PROXY pattern in the context of the overall integration
platform design, the REMOTE PROXY is also relevant in
the context of designing the communication flow (e.g.,
to bridge to a backend platform service).

• Decision point: The point of decision making docu-
ments the essence of the decision problem. Depend-
ing on the decision context (e.g., proxying with or
without adaptation), the decision description can refer
to the problem and solution statements of decision-
related patterns (e.g., REMOTE PROXY and INTEGRA-
TION ADAPTER).

• Options: In our pattern-based ADD model, the range
of adoptable patterns represent the options space at a
given decision point in a decision context. For Decision
1 in Figure 3, applying either the REMOTE PROXY or
the INTEGRATION ADAPTER are alternative options.

• Decision drivers: The actual drivers for selecting one
of the available options can partly be mined from the
forces and consequences documented for the decision-
related patterns.

Figure 3 illustrates how decisions of our pattern-based
ADD model are derived from the pattern language. Table II
shows 2 exemplary decisions that have been derived from
the excerpt from the pattern language shown in the figure.

B. Interviews and Improvement Iterations

The results from performing the interviews with the
platform experts were manifold. The importance of key
patterns of our pattern language has been confirmed from
the point of view of the independent experts. For example,
either PROXIES or ADAPTERS are needed in all cases for
invoking the platform services. Some patterns, like SERVICE
ABSTRACTION LAYER and EXTENSION INTERFACE were
regarded as being useful, but not critical for integrating
the platforms at hand. The industry experts agreed that
those patterns are rather needed in the field of enterprise
applications. In addition, we found that patterns initially
omitted in the first version of the pattern language (e.g.,
PUBLISH-SUBSCRIBER) were used very often by the plat-
form experts. These patterns were added to the pattern
language for the next iterations. Apart from that, new
connections between the patterns were introduced. Also,

Integration with
in/compatible
interfaces?

Local or remote
connection?

Figure 3. Example excerpt: Pattern Language and 2 Derived ADD Model
Fragments

we identified some candidate patterns for removal from
the pattern language. For example, the GATEWAY pattern
was not considered relevant because its purpose is covered
by the SERVICE ABSTRACTION LAYER pattern. Along with
the improvements to our pattern language we updated our
decision model accordingly.

These interviews were also used as a preparation for the
design of the case study. During this process we gathered
existing platform services that were combined in four inte-
gration scenarios for the needs of an operator application.
We noticed that during the interviews the interviewees
could not avoid getting into technical details that mainly
focused on the technologies used by the platforms and
for their integration with other platforms. These technical
details introduce constraints that exclude patterns from the
pattern language and narrow down the design space. Hence,
another important finding of our interviews was that, in the
domain of platform integration, decision making has to be
performed at multiple application-generic and application-
specific levels, and at multiple stages (see Section IV-D).

C. Case Study Design

During the design of the case study, the general architec-
tural decisions were refined during multiple stages; reflecting
the single platform technologies, the integration solutions,
and the operator application requirements, respectively. The
design decisions were documented as instances of the archi-
tectural decision model. The outcome of this process was an

Table II
EXEMPLARY DECISIONS IN THE ADD MODEL

Decision Context Decision Point Options and Patterns Dependencies
Integration of a platform service D1 – Which kind of component will be

used for integrating the platform service
into the service-based integration plat-
form?

• None (direct calls from application to platform)
• Integration component with same interface (select pattern PROXY or a

PROXY variant)
• Integration component with a different interface (select pattern

ADAPTER or an ADAPTER variant)
An integration component (such as a
PROXY or ADAPTER) has been selected
for integrating a platform service into the
service-based integration platform.

D2 – Is the connection between platform
and service-based integration platform a
local or a remote connection?

• Local (Select local variant of PROXY or ADAPTER, as selected in other
decisions)

• Remote (Select remote variant of PROXY or ADAPTER, as selected in
other decisions)

initial design of the integration solution, for which we used
different architectural views to describe the adaptation and
the communication levels. The names and the annotations
of the design elements signal the use of a specific design
pattern in many cases. Due to space limitations, we only
present 2 very small excerpts from a component diagram and
from a communication flow diagram in Figure 4 to illustrate
the different views that have been developed (using the
visual notation from [16]). In the next section, we illustrate
examples of decision making levels and stages in the context
of the case study, which also provide more details about the
case study design. ; see http://www.eaipatterns.com/

R
M

S
VS

P

OperatorApp

O
pe

ra
to

r
A

pp
lic

at
io

n

YM
S

OperatorAppFacade

Truck
Management

Video
Handling

Truck
ManagementProxy

Video
HandlingAdapter

W
M

S Dock
Management

Dock
ManagementProxy

Communication
FlowManager

YMS

WMS

Operator
Application

WMSNotificationEnricher

YMSNotificationEnricher

PlatformNotificationAggregator

Integration and Adaptation

Communication Flow

BA

A B

Figure 4. Excerpts from the Case Study Designs

D. Decision-Making Levels and Stages
Approaches to modeling architectural decision making

usually focus only on the one or two levels of decision
making and knowledge acquisition (i.e., the application-
generic and application-specific levels [8]). From analyzing
our interviews, we found that in platform-based software
development multiple levels of decisions and multiple deci-
sion times (i.e., stages) must be considered. Each decision
level is commonly performed by a different stakeholder or

stakeholder group (e.g., platform supplier, system integra-
tor), often working in different organizations. At each stage,
the decision space derives from the decisions taken at prior
stages. In addition, at each stage the results of decision
making at different levels must be taken into account. That
is, starting from generic knowledge about a specific form
of software platform integration (Level-1), architectural and
technical knowledge about each of the platforms integrated
(Level-2), about each of the integration technologies and so-
lutions used (Level-3), and about the applications developed
based on top of the platforms (Level-4) must be considered.

Inspired by the guidelines on multi-stage, multi-level
transformations on feature models by Czarnecki et al. [28],
we documented the observed decision-making process. Fig-
ure 5 depicts an abbreviated example on decisions related
to the communication style in our case study. Here, an
architectural decision is illustrated using a transformation
between two feature models. In our case study, and in the
example in Figure 5, the four levels represent decisions
to be taken by different stakeholder roles (i.e., integration
architect, platform supplier, system integrator, and applica-
tion engineer). The reusable, pattern-based ADDs form the
basis of Level-1 decisions. The original decision space for
each role is modeled as an initial feature model at Stage-0.
Each subsequent stage sets a discrete decision time in which
decisions at different levels of abstractions are addressed
at Level-1 by the integration architect(s) through reviews
of historical decisions taken at the other levels. Levels of
abstraction are represented by, e.g., appending increasingly
specific branches to the decision outcomes (here: the feature
trees) for each level.

The flow of decisions in Figure 5 illustrates the process
of narrowing down the communication style to be adopted
by the service-based integration platform. For instance, at
Stage-1 (in Level-2) the architects of the WMS platform
supplier have opted for the Windows Communication Foun-
dation (WCF) technology for building asynchronous services
(i.e., the AsyncPattern ChannelFactory approach).
As a result, the integration architects at Level-1 can refute all
the synchronous communication alternatives from the initial
architectural decision model. Next, at Stage-2, the decisions
about the integration middleware (Level-3) were considered.
Given the predominantly asynchronous communication style
adopted by the integrated platforms, the platform integrator
chose a message-oriented middleware (ActiveMQ) to drive

synchronous asynchronous

(sync.) RPC

CommStyle

... ...

asynchronous

CommStyle

Channels

WCF

Invokers

EventsAsyncPattern

Channels

WCF

AsyncPattern

derived
from

Level-1
(architecture):
integration architect

Level-2
(platform):

platform supplier

Level-3
(integration):
system integrator

async. RPC Messaging

asynchronous

CommStyle

Messaging

One-Way
Request-

Acknowledge

Request-Reply

...

ActiveMQ

ActiveMQConnection

Producer

Consumer

Session

MessageListener

ActiveMQ

ActiveMQConnection

Producer

Consumer

Session

MessageListener

VSPComm

ActiveMQ ApacheCXF

...

Level-4
(application):

application engineer

asynchronous

CommStyle

Messaging

Request-Reply
Request-

Acknowledge

AndroidComm

RabbitMQ AIDL IPC/RPC

KSoap2

RabbitMQ

Consumer

...

Consumer

OnReceiveMessageHandler

OnReceiveMessageHandler

...

S
ta

g
e
-0

S
ta

g
e
-2

S
ta

g
e
-3

implies

implies

implies

S
ta

g
e
-1

derived
from

derived
from

derived
from

derived
from

derived
from

derived
from

...

...... ...

implies

...

Figure 5. Exemplary Levels and Stages of Decision Making

the integration platform. For the Level-1 decision space,
this meant to refute all the communication style patterns
except those related to MESSAGING. Reviewing the decisions
taken for the operator application (Level-4) at the final
stage (Stage-3), it turned out that the engineers of the
Android-driven application had decided for the RabbitMQ
message-oriented middlware and that the application had
been built around required notifications about the status
of its requests (i.e., using a special callback technique: a
OnReceiveMessageHandler). Reviewing this decision
step meant to specialize the decisions available to the
integration architects for the operator application connection
even further. That is, any one-way MESSAGING can be ex-
cluded for subsequent decision steps. Also, this application-
level decision demanded a particular configuration of the
message connection in the VSP (Level-3), i.e., mandatory
message producers and message consumers, to deliver the
notifications to the client application.

We have observed this decision scheme in our case study.
The dimensions (levels and stages) result from the nature of
distributed decision making (e.g., given that the developers
of platforms, applications, and integration solutions are
often not working in the same organization). However, the

Pattern-Based

Architectural

Decision Model

Design &

Architecture of

Platform P

Design &

Architecture of

Platform P

Design &

Architecture of

Platform P

Design &

Architecture of

Platform P

Design &

Architecture of

Platform P

Platform P:

Service Wrapper

Layer

Design & Architecture of

Platform P
Design & Architecture of

Platform P

Generic Parts of the

Service-based Integration

Platform Architecture SP

Design & Architecture of

Platform P
Design & Architecture of

Platform P

Architecture of a Domain-

Specific, Service-based

Integration Platform SPAP

Design & Architecture of

Platform P
Design & Architecture of

Platform P

Domain-Specific Application

Architecture AP Based on

Integration Platform SPAP

Level-1 Level-2 Level-3 Level-4

derives from

Figure 6. Artifacts and their Architectural Knowledge Derivation Rela-
tionships in Different Levels of Decision Making

decisions taken influence the design space left open for later
decisions, and each additional stage introduced, excludes
or refines decisions that must be made in the subsequent
steps. Hence, we propose to extend the existing architectural
decision making concepts with support for multiple levels
and for multiple stages of decision making along those lines.
Our general model of the artifacts at the different decision-
making levels and their architectural knowledge derivation
relationships are shown in Figure 6.

V. LIMITATIONS AND THREATS

Systematic Literature Review: In conducting the sys-
tematic review of pattern literature, we deviated from the
original guidelines [9] in important ways: Most importantly,
we conducted a purely manual search over a confined selec-
tion of conference proceedings, journals, and book series;
rather than a semi-automated search process supported by
(scientific) search engines. While this practice is consis-
tent with closely related work on pattern-based architecture
decision-modeling [7, 8], there is the risk that we have
missed relevant pattern material. It simply might be the
case that relevant architectural knowledge about service-
based platform integration has not yet been documented in
pattern form. We consider this threat a minor one because
we have found pattern material covering all aspects of the
considered cases and we have not found any evidence in our
interviews that relevant architectural knowledge is missing.
As for the manual search, we explicitly excluded pattern
materials which had not been published at any of the pattern
community venues.

To include only pattern materials of accepted quality, we
relied on the established quality assurance procedures in
the pattern community (e.g., shepherding, writers’ work-
shops). To reduce the overall bias of personal judgement
(e.g., due to individual research interests, experiences, time
constraints), the search step, the quality-assessment step,
and the extraction step were performed by each of the
reviewers independently from each other. The results were
then synthesized in joint re-iterations. In addition, in the
overall sequential research design, we validated our resulting
pattern language and decision model through interviews with
9 independent industry experts. Despite these efforts, an
author’s bias cannot be completely excluded.

Interviews: To ensure that the conclusions we took
away from the interviews are valid, we discuss how we
dealt with the threats to external and to internal validity
[11, 29]. As with all qualitative studies, there is the threat to
validity with regard to the generalizability of results (external
validity) that the small size of considered cases is not enough
to generalize the results to other cases of service-based
platform integration. We have tried to limit this threat by
focusing on patterns as sources of architectural knowledge.
In our point of view, it is more likely that similar established
best practices are used for other cases of service-based
platform integration than if we would have analysed novel,
innovative approaches. Apart from that, our interviewees
come from three different broad domains (warehouse man-
agement, yard management, telecommunications) which of
course does not permit us to do any statistical generalization
but it offers a broad span of domains in our sample.

As with all qualitative designs, there is the threat to
validity that the authors themselves have been an instrument
in the study (internal validity) and might have accidentally
influenced the study’s outcomes or made misinterpretations
because of, e.g., limited knowledge, wrong assumptions, and
personal bias. We tried to avoid this threat by keeping an

open mind, by encouraging the interview participants to talk
and by observing rather than steering the discussion. Also,
we included both open-ended and closed-ended questions
to get the widest range of feedback. However, it cannot be
fully excluded that we influenced the results by our partici-
pation in the studies or by our interpretation. Regarding the
threats to construct and interpretation validity, we employed
observer triangulation [11] so that three different researchers
were involved as observers and interviewers.

Generalizability: The limitations of the literature
search in our systematic-review setup imply that our find-
ings, namely the pattern language and the derived archi-
tectural decisions, cannot be reused for similar architecting
activities in related SOA settings with different emphasis.
With the focus on the integration and adaptation view,
our review questions and the subsequent pattern search
did not cover related SOA concerns such as monitoring or
middleware framework design. Pattern material and patterns,
even if identified partly, have not been incorporated. Due
to the literature filtering and quality assessment, possible
connection points to such concerns might have been missed.

The different levels of knowledge among the researchers
involved poses another threat. As for the systematic review
and pattern extraction, the reviewer group consisted of a
pattern expert and senior researcher, two experienced post-
doc researchers and a doctoral student focusing on pattern-
related research [12]. This heterogeneous distribution of
pattern knowledge among the authors certainly affected the
preparation of the review protocol, the quality assessment of
the pattern material, and the extraction of pattern data for
drafting the pattern language. By continuously switching the
roles of extractor and checker [30], and multiple iterations
over the selected pattern material, this effect might have
been substantially lowered, yet not neutralized. The expert
opinions collected from the interviews are directly dependent
on the 9 experts’ experience with the platforms, service-
oriented architecting, middleware technologies and software
patterns. However, we benefited from a relatively mature
expert pool with 7 out of 9 interviewees having more than
3 years of industry experience.

While the aforementioned limitations and risks threaten
the generalizability of our results, our methodological ap-
proach and the sequential multi-method research design [31]
can be applied to comparable research activities on pattern-
based architecting.

VI. LESSONS LEARNED

Empirical methods in software engineering are marked
by a high level of investigation costs [31]. The time effort
required by the authors for preparing and for conducting the
systematic review was considerable, caused by face-to-face
coordination meetings, numerous phone conferences over a
period of two months, the role shifting during pattern extrac-
tion etc. Identifying and approaching experienced subjects
for the interview and case study steps was facilitated by
the involvement of the authors in a large-scale European
research project with major industry partners.

In our study, we have learned that using software pat-
terns facilitates iterative architectural decision making [6].
The actual forces and consequences in pattern descriptions
document abstracted choices at a given decision point.
While our pattern language does not document ADDs for
a concrete integration platform architecture, it identifies
observed designs for a family of these architectures. In the
case study, the pattern language was reused by the architects
for sketching a concrete architecture by referencing pattern
descriptions from within ADD descriptions. In addition, the
pattern form complemented the qualitative research methods
used in our study. The structured presentation of patterns and
pattern collections facilitated the systematic review. Patterns
proved to be an important communication vehicle between
the interviewers and the interviewees to bridge the gap
between their different technology backgrounds.

At the same time, when preparing our study, we became
aware of documented limitations of software patterns as
empirical research objects. Especially forcing subjects in
experiments into using and applying architectural styles
and design patterns resulted in observations indicating an
increased level of development and maintenance effort. The
complexity of learning and comprehending pattern material
affected the observations. Such effects have more systemat-
ically been reported for research designs involving patterns
and artificial software artifacts of lower complexity (toy
applications). While the earlier studies adopted experimental
designs, we learned two lessons from these. First, our
research design should not impose design decisions (in terms
of patterns) onto our subjects [31]. Second, the architecting
process must be observed in the context of a real, not
artificially constructed development project. The first risk
was mitigated by confronting the experts not directly with
the selected SOA patterns, but rather with design decisions
derived from our pattern language. With this, patterns played
only an indirect role for the observed architecting process.
As for the second risk, the architecture designed in our case
study applies to a large-scale software prototype which is to
be delivered in the context of a European research project;
as such, the architecture is not specific to or was not created
for the purpose of our study alone.

VII. RELATED WORK

In this work we create reusable ADDs in the context
of platform integration based on design patterns. Many
ADD approaches propose prescriptive ADD meta-models
[3, 32, 33] that introduce relationships between decision
alternatives and activities related to them. By reusing and
linking ADDs to patterns as design artifacts [7, 8], docu-
menting architecture decisions and design rationale can be
substantially facilitated. For instance, Capilla et al. [33] con-
sider architectural patterns as concrete decision alternatives
using a structured Wiki as an ADD documentation tool and a
SOA-centric industry case study. Patterns on process-driven
SOA [19], on enterprise application integration [15] and
on remoting middleware and messaging systems [16, 17]
have been documented in the literature, but not focusing

on service-based platform integration as in our pattern
language.

In the design decision literature, many approaches con-
sider multiple levels of decision making and distinguish
between application-generic and application-specific knowl-
edge. Examples of generic knowledge are software patterns
[20, 21], architectural styles, and reusable architectural de-
cisions [7]. Decision models [2, 3] and models created in
architecture description languages (ADLs) are examples of
application-specific knowledge. A number of approaches
(e.g., [3, 7]) capture technology-specific knowledge using
decision meta-models and/or decision templates. Zimmer-
mann et al. [32] introduce four levels of an decision-
making process: the executive decision level (process and
requirement analysis patterns), the conceptual decision level
(high-level architectural patterns), the technological decision
level (design and remoting patterns) and the implementa-
tion decision level (concrete technology options). So far,
however, the integration of multiple levels of application-
generic and application-specific architectural decisions has
not been studied systematically. In our work, we study the
inter-decision connections and observe the decision making
process in the context of service-based platform integration
and we abstract the different levels and stages of this process.

Our multi-level and staged decision making approach is
inspired by the staged configuration of feature models [28]
which is used for product line configurations. In contrast
to this approach, we support the decision making on the
architectural level rather than on the concrete software
characteristics. In addition, the required knowledge is not
completely known during the early stages, but the decision
models get concretized and decision models from previous
stages get refined through iteration cycles. To the best of our
knowledge, an approach to defining stages in architectural
decision making does not exist in the literature so far.

VIII. CONCLUSIONS AND FUTURE WORK

In this empirical work, we employed multiple qualitative
methods to explore the practice of architectural decision
making in service-based platform integration. First, we
performed a systematic literature review from which we
distilled a pattern language and a pattern-based architectural
decision model. In the next stage, we performed interviews
with platform experts and conducted a case study. Our
intention was to validate both the pattern language and
the decision model and to investigate the decision making
process in this context. The results of these research steps
were a refined pattern language and a reusable architectural
decision model. In addition, we propose a model capturing
the four levels of decision making for platform integration,
as identified in our case study. Based on this model, we
documented design decisions for all levels and stages of
decision making.

The evidence presented in this paper indicates that the
notion of decision levels and decision stages applies to
architectural decision making in general. As for platform-
driven software development, the four decision levels (e.g.,

architecture, platform, integration, application; see Section
IV-D) could be characteristic and are likely to apply to
other, platform-like software development approaches (e.g.,
software product lines). This motivates us to follow up
on this conjecture in our future research. Our finding of
multiple levels and multiple stages in architecture decision
making also relates to the way architectural decision-making
techniques are designed and how these decision-making
techniques are classified [34]. For example, our finding
converges with the recently proposed decision-making tech-
nique by Zimmermann et al. [32], also indicating the need
for integrating levelled decision making. In systematic re-
views on decision-making techniques (such as [34]), levelled
and staged decision making have not yet been considered,
for example, in terms of discriminating between domain-
specific groups of decision makers (as represented by our
four levels, e.g., integration architect, platform supplier).

As for our reusable, pattern-based architectural decision
model (ADM), on the one hand, we plan to refine it further
by performing further qualitative studies (e.g., interviews,
case studies) with an increased number of participants. On
the other hand, and based on the refined ADM, we want
to assess its cost-benefit balance [35] for documenting ar-
chitectural design rationale empirically. For example, while
benefits from pattern-based decision documentation have
been indicated [6–8], the use of patterns can also cause extra
pattern learning and pattern search efforts.

Acknowledgements: This work was partially supported
by the EU FP7 project INDENICA, grant no. 257483.

REFERENCES
[1] R. N. Taylor and A. van der Hoek, “Software Design and Architecture:

The once and future focus of software engineering,” in Proc. 2007
Future of Softw. Eng. Conf. IEEE, 2007, pp. 226–243.

[2] A. Jansen and J. Bosch, “Software Architecture as a Set of Architec-
tural Design Decisions,” in Proc. 5th Work. IEEE/IFIP Conf. Softw.
Architecture. IEEE, 2005, pp. 109–120.

[3] J. Tyree and A. Ackerman, “Architecture Decisions: Demystifying
Architecture,” IEEE Softw., vol. 22, no. 19-27, 2005.

[4] O. Zimmermann, T. Gschwind, J. Kuester, F. Leymann, and N. Schus-
ter, “Reusable Architectural Decision Models for Enterprise Ap-
plication Development,” in Proc. 3rd Int. Conf. Quality of Softw.
Architecture, ser. LNCS, vol. 4880. Springer, Jul. 2007, pp. 15–
32.

[5] Y. Ghanam, F. Maurer, and P. Abrahamsson, “Making the leap to a
software platform strategy: Issues and challenges,” Inform. Software
Tech., vol. 54, no. 9, pp. 968–984, 2012.

[6] N. Harrison, P. Avgeriou, and U. Zdun, “Using Patterns to Capture
Architectural Decisions,” IEEE Softw., vol. 24, no. 4, pp. 38–45, Jul.
2007.

[7] O. Zimmermann, U. Zdun, T. Gschwind, and F. Leymann, “Combin-
ing Pattern Languages and Reusable Architectural Decision Models
into a Comprehensive and Comprehensible Design Method,” in Proc.
7th Work. IEEE/IFIP Conf. Softw. Architecture. IEEE, 2008, pp.
157–166.

[8] U. van Heesch and P. Avgeriou, “A Pattern-based Approach Against
Architectural Knowledge Vaporization,” in Proc. 14th Annu. Europ.
Conf. on Pattern Languages of Programs, ser. CEUR Workshop
Proceedings, vol. 566. CEUR-WS.org, 2009.

[9] B. Kitchenham, O. Brereton, D. Budgen, M. Turner, J. Bailey, and
S. Linkman, “Systematic literature reviews in software engineering –
a systematic literature review,” Inform. Software Tech., vol. 51, no. 1,
pp. 7–15, 2009.

[10] C. B. Seaman, “Qualitative methods in empirical studies of software
engineering,” IEEE Trans. Softw. Eng., vol. 25, no. 4, pp. 557–572,
Jul. 1999.

[11] C. Robson, Real World Research - A Resource for Social Scientists
and Practitioner-Researchers. Blackwell Publishing, 2002.

[12] I. Lytra, S. Sobernig, H. Tran, and U. Zdun, “A Pattern Language for
Service-Based Platform Integration and Adaptation,” in Proc. 17th
Annu. Europ. Conf. on Pattern Languages of Programs. Hillside,
Jul. 2012.

[13] A. Tashakkori and C. Teddlie, Handbook of Mixed Methods in Social
& Behavioral Research, 2nd ed. Sage Publications, Inc., 2010.

[14] F. Buschmann, K. Henney, and D. C. Schmidt, Pattern-Oriented Soft-
ware Architecture – A Pattern Language for Distributed Computing.
Wiley, 2007.

[15] M. Fowler, Patterns of Enterprise Application Architecture. Boston,
MA, USA: Addison-Wesley Longman Publishing Co., Inc., 2003.

[16] G. Hohpe and B. Woolf, Enterprise Integration Patterns: Designing,
Building, and Deploying Messaging Solutions. Addison-Wesley,
2004.

[17] M. Völter, M. Kircher, and U. Zdun, Remoting Patterns: Foundations
of Enterprise, Internet and Realtime Distributed Object Middleware.
Wiley, 2005.

[18] R. Daigneau, Service Design Patterns: Fundamental Design Solutions
for SOAP/WSDL and Restful Web Services. Addison-Wesley, 2012.

[19] C. Hentrich and U. Zdun, Process-Driven SOA: Patterns for Aligning
Business and IT. Infosys Press, 2012.

[20] E. Gamma, R. Helm, R. E. Johnson, and J. Vlissides, Design Patterns
– Elements of Reusable Object-Oriented Software. Addison-Wesley,
1994.

[21] F. Buschmann, R. Meunier, H. Rohnert, P. Sommerlad, and M. Stal,
Eds., Pattern-Oriented Software Architecture – A System of Patterns.
Wiley, 2000.

[22] P. Avgeriou and U. Zdun, “Architectural patterns revisited – A pattern
language,” in Proceedings of EuroPLoP 2005, Irsee, Germany, Jul.
2005, pp. 1–39.

[23] F. Buschmann, K. Henney, and D. C. Schmidt, Pattern-Oriented
Software Architecture – On Patterns and Pattern Languages. Wiley,
Apr. 2007.

[24] J. O. Coplien, Software Patterns. SIGS Books, 1996.
[25] I. Lytra, S. Sobernig, and U. Zdun, “Architectural Decision Making

for Service-Based Platform Integration: A Qualitative Multi-Method
Study,” Faculty of Computer Science, University of Vienna, Tech.
Rep. TR-SWA-20120601, 2012.

[26] S. E. Hove and B. Anda, “Experiences from Conducting Semi-
structured Interviews in Empirical Software Engineering Research,”
in Proc. 11th IEEE Int. Software Metrics Symp. IEEE, 2005, pp.
23–32.

[27] B. Glaser and A. Strauss, The Discovery of Grounded Theory. Aldin,
1967.

[28] K. Czarnecki, S. Helsen, and U. W. Eisenecker, “Staged Configuration
Through Specialization and Multi-Level – Configuration of Feature
Models,” Softw. Process: Improvement & Practice, vol. 10, no. 2, pp.
143–169, 2005.

[29] C. Wohlin, P. Runeson, M. Host, C. Ohlsson, B. Regnell, and A. Wess-
lén, Experimentation in Software Engineering – An Introduction.
Kluwer Academic Publishers, 2000.

[30] P. Brereton, B. Kitchenham, D. Budgen, M. Turner, and M. Khalil,
“Lessons from applying the systematic literature review process
within the software engineering domain,” J. of Syst. and Softw.,
vol. 80, no. 4, pp. 571–583, 2007.

[31] D. Falessi, M. Babar, G. Cantone, and P. Kruchten, “Applying
empirical software engineering to software architecture: challenges
and lessons learned,” Emp. Softw. Eng., vol. 15, pp. 250–276, 2010.

[32] O. Zimmermann, J. Koehler, F. Leymann, R. Polley, and N. Schuster,
“Managing architectural decision models with dependency relations,
integrity constraints, and production rules,” J. of Syst. and Softw.,
vol. 82, no. 8, pp. 1249–1267, 2009.

[33] R. Capilla, O. Zimmermann, U. Zdun, P. Avgeriou, and J. Küster, “An
Enhanced Architectural Knowledge Metamodel Linking Architectural
Design Decisions to other Artifacts in the Software Engineering
Lifecycle,” in Proc. 5th Europ. Conf. Softw. Architecture, ser. LNCS,
vol. 6903. Springer, 2011, pp. 303–318.

[34] D. Falessi, G. Cantone, R. Kazman, and P. Kruchten, “Decision-
making techniques for software architecture design: A comparative
survey,” ACM Comput. Surv., vol. 43, no. 4, pp. 33:1–33:28, 2011.

[35] D. Falessi, L. Briand, G. Cantone, R. Capilla, and P. Kruchten, “The
Value of Design Rationale Information,” ACM Trans. Softw. Eng.
Method., 2012, to be published.

