
De�nition and Enactment of Instance-Spanning

Process Constraints

Maria Leitner, Juergen Mangler, and Stefanie Rinderle-Ma

University of Vienna
Faculty of Computer Science

Research Group Work�ow Systems and Technology
{maria.leitner,juergen.mangler,stefanie.rinderle-ma}@univie.ac.at

Abstract. Currently, many approaches address the enforcement and
monitoring of constraints over business processes. However, main focus
has been put on constraint veri�cation for intra-instance process con-
straints so far, i.e., constraints that a�ect single instances. Existing ap-
proaches addressing instance-spanning constraints only consider certain
scenarios. In other words, a holistic approach considering intra-instance,
inter-instance, and inter-process constraints is still missing. This paper
aims at closing this gap. First of all, we show how the Identi�cation and
Uni�cation of Process Constraints (IUPC) compliance framework enables
the de�nition of instance-spanning process constraints in a �exible and
generic way. Their enactment and enforcement is demonstrated within a
prototypical implementation based on a service-oriented architecture.

Keywords: Instance-spanning Process Constraints, Process-based Com-
pliance Management, Process Engine, Web-based Business Processes

1 Introduction

Process constraints have become an important instrument to de�ne, enact, and
enforce regulations, standards, or other requirements that are imposed on busi-
ness processes and work�ows. Powerful approaches have arisen that enable mod-
eling, monitoring, and verifying process constraints throughout the entire process
life cycle e.g., [8, 4].

Current approaches typically focus on a particular topic, like (1) authoriza-
tion, (2) security in general, (3) checking of structural requirements at design-
time or (4) result-checking at run-time. Additionally, they typically either deal
with rule enactment (cmp. [9]), covering process speci�c topics such as pro-
viding and monitoring rules in conjunction with process models, or with rule
enforcement which deals with certain (process) tasks e.g., separation/binding
of duties of tasks (e.g. [2]) or synchronization [5, 12]. All the above mentioned
approaches provide intra-instance constraints. They are typically de�ned in a
process schema and enforced in single instances. As stated in [2], these con-
straints can be enforced statically in the process schema and dynamically during
process execution.

leitner
Textfeld
“The final publication is available at springerlink.com”
published at: 13th International Conference on Web Information Systems Engineering - WISE 2012, Springer, LNCS 7651, pp. 652-658 (2012)

However, this specialization on particular topics (and related components in
Process-Aware Information Systems (PAIS)) for single process instances, poses
a problem when considering inter-instance, inter-process or inter-organizational
constraints (further denoted as instance-spanning). Inter-instance constraints
apply to multiple instances of a single process schema. Typically, instances of a
process are enacted within an organization. Inter-process constraints are de�ned
over single or multiple instances of multiple process schemas. Inter-organizational
constraints are a special case of inter-process constraints; the enforcement of
these constraints is managed over multiple organizations.

As most of the above mentioned approaches cover di�erent formalizations,
implementations (for speci�c components), and/or topics; the instance-spanning
aspect has to be separately handled for every approach. Examples for exist-
ing parallel evolution of instance-spanning approaches for di�erent topics in-
clude e.g., inter-instance authorization constraints [13, 14] or inter-process task
synchronization constraints e.g., [3]. An additional problem is that solutions
for inter-process constraints often cannot directly be transferred to instance-
spanning scenarios, as there is no standardized way for describing:

1. Process Scope: Which set of processes or instances does a constraint refer to?
2. Constraint Scope: Which set of tasks does a constraint refer to? I.e., there is no

standardized way to describe that a constraint covers e.g., tasks from all instances
of a certain process, or tasks from particular instances from di�erent processes.

3. Enactment & Enforcement Aspects: How to de�ne certain basics of integrating
constraints with processes. This includes (1) referring to processes structure which
is de�ned by e.g., Linear Temporal Logic (LTL) [11] and Compliance Rule Graphs
(CRG) [4], or (2) dealing with process data, time and resource identi�cation.

The contribution of this paper is a comprehensive conceptual framework
based on [7], for the speci�cation of instance-spanning constraints. Instead of
modifying speci�c approaches to make them instance-spanning aware, we want
to introduce (1) a formalism, and (2) an architecture, how to enact and enforce
instance-spanning constraints. We think that this can lead to uni�ed enactment
and enforcement of process constraints for PAIS, without the need of di�erent
infrastructures and/or components for di�erent constraint topics. The semantic
understanding of the enforcement has to be concentrated at enforcing compo-
nents, while enactment can remain generic: checking conditions and forwarding
the semantic part of constraints to enforcing components. Moreover, we illus-
trate our �ndings with examples for instance-spanning process constraints. In
addition, we evaluate our �ndings with a proof-of-concept prototype for this ar-
chitecture. In the following, Section 2 shows how instance-spanning constraints
are speci�ed in the IUPC framework. Furthermore, Section 3 displays the en-
actment of these constraints. Section 4 gives an overview on related work and
Section 5 concludes the paper.

2 Design of Instance-spanning Process Constraints

As stated in the introduction, we will formalize instance-spanning constraints
based on the Identi�cation and Uni�cation of Process Constraints (IUPC) frame-

work [7]. The purpose of the IUPC framework is to provide a means to integrate
existing approaches that deal with various constraints topics (as explained in the
introduction). Due to space limitations, we will only provide the extension of the
main IUPC concepts (see [7] for a comprehensive de�nition), enriched with some
examples how instance-spanning approaches �t in. We found instance-spanning
constraints to typically have three dimensions - Localization, Span and De-
pendency:

Property 1 (Localization). If a constraint is connected to a task, this task can
basically occur in a process, multiple processes, or processes in multiple organi-
zations. Four di�erent restriction scenarios are possible:

(1) A constraint should only be enacted for a certain instance (typically denoted
as intra-instance localization). I.e.: ∀a : a.instance = CONST.

(2) A constraint is enacted for tasks in all instances of a process (typically
denoted as inter-instance localization). I.e. ∀a : a.instance.process =
CONST.

(3) A constraint is enacted for tasks in instances of many process (typically
denoted as inter-process localization). I.e. ∀a : a.organization = CONST.

(4) A constraint is enacted for tasks in instances of processes that are present
in more than one organization (typically denoted as inter-organizational
localization). I.e. ∀a : a.organization 6= CONST.

Property 2 (Span). A constraint e.g., separation of duty, often a�ects multiple
tasks at once. Five di�erent scenarios are possible:

(5) All a�ected tasks are in the same instance (typically denoted as intra-
instance constraint) e.g., ∀a, b : a.instance = b.instance ∧ a.organization
= b.organization. As instances are unique, this de�nition should be su�cient.

(6) A�ected tasks are spread over multiple instances of a process (typically
denoted as inter-instance constraint). This is the typical case of inter-
instance synchronization, as described in the related work e.g., ∀a, b : a.-
instance.process = b.instance.process ∧ a.organization = b.organization.

(7) A�ected tasks are spread over multiple instances of multiple processes (typ-
ically denoted as inter-process constraint). E.g., ∀a, b : a.organization =
a.organization.

(8) A�ected tasks are spread over multiple instances of multiple processes of mul-
tiple organization (typically denoted as inter-organization constraint)
e.g., ∀a, b : a.instance.process 6= b.instance.process ∧ a.organization 6= b.or-
ganization.

(9) A�ected tasks are spread over multiple instances of single processes that exist
in multiple organizations (typically denoted as trans-organizational con-
straint) e.g., ∀a, b : a.instance.process = b.instance.process ∧ a.organization
6= b.organization.

Property 3 (Dependency). This characteristic deals with the temporal aspect
of constraint enactment. We de�ne Dependent constraints to utilize behavior

tuples to realize e.g., Case Handling, Retain Familiar patterns (work�owpat-
terns.com) in conjunction with a worklist. For preceding enactments, a con-
straint may save a value e.g., ∀a : a.behavior_data[count_invocations]+ = 1;
now it is possible to enact e.g., only every second time. We de�ne Independent
constraints as being independent of subsequent or preceding enactments.

To integrate these characteristics into the IUPC framework (cf. [7]), we
utilize the following rules: Often, simple intra-instance constraints are de�ned
in the Linkage, Condition and/or Behavior. For example, separation of duty
constraints are de�ned in the Condition as comparison if two tasks are executed
in the same instance such as b.instance = c.instance. In case of inter-instance
constraints, the Context (P × IP) de�nes which process (P ∈ Pn) and which
instances (i.e. IP ⊆ I) are a�ected by the constraint. On the other hand, the
Context((P × IP)) speci�cation of inter-process constraints de�nes a set of
processes and instances i.e. Pn ⊆ P and IP ⊆ I. As a motivational example
shown in Fig. 1, we specify intra-instance (C1), inter-instance (C2) and inter-
process (C3) constraints based on the IUPC framework in [7].

Constraint	C1

Constraint	C2

Constraint	C3

Fig. 1. Constraint Examples

3 Enactment of Instance-spanning Constraints

Architecture The architecture of our framework consists of a work�ow execution
engine (EE), worklist handler (WH), constraint engine (CE), users, external
services, and data sources and is shown in Fig. 2. Depending on the type of task,
manual or automated, the work�ow execution engine delegates tasks either to a
WH (manual task) or an external service (automated task). In case of manual
tasks, the WH o�ers tasks to users which further can accept and execute them.
On the other hand, automated tasks are delegated to an external service (e.g., a
scheduler in scienti�c work�ows) which further distributes tasks to data sources
(e.g., nodes). Please note that the steps between a scheduler and a node are often
not visible due to encapsulation. But to provide a comprehensive approach, these
steps have to be considered for e.g., compliance checking. Throughout these two
cases, a CE supports the enactment and monitoring of constraints during process
execution.

Enforcement and Monitoring of Process Constraints For a better understanding,
we will show how previously de�ned constraints (cf. constraint C1-3) are enforced

Fig. 2. Architecture of the Compliance Framework

Application Details

X
X
X

X
X
X
X
X

X

X

Attributes

static task related
id
type
input

instance
instance.process
organization
input[attribute].value
output[attribute].value

static data-element related
id

output

run-time

type
instance

organization
value

instance.process

design-time

X

X
X

X
X

e.g. prepareSurgery
type = task
list of inputs; e.g. patientID
list of outputs; e.g. duration, testResult
e.g. InstanceChild
e.g. TreatmentHeadTrauma
e.g. Hospital, Laboratory
e.g. input[patientID].value=2645
e.g. output[testResult].value=false

e.g. costs, age
type = data
e.g. InstanceChild
e.g. TreatmentHeadTrauma
e.g. Hospital
e.g. age=5

(dynamic) behavior tuple
behavior_data[id]

behavior_data[id].value

X

X

behavior directive; e.g. behavior_data[role] = doctor
writable by constraint, readable by constraint and e.g. worklist
behavior value; e.g. behavior_data[role].value = Bob
readable by constraint, writable by constraint and e.g. worklist

Execution Engine

Constraint Engine

Worklist Handler

(a) Resource assignment for
 process prepareSurgery:{a,b,c}

a b c

1

2

3

1
2

step to b
notify Constraint Engine
check if SP {b}
SP {b}, allow exection, behavior deleg. {role=doctor}

4

5

Rule Base

delegate b to Worklist Handler

6

allocate resource {role=doctor}

Resource executes b

10

report results to Execution Engine

Resource

3
4
5
6
7
8
9
10

notify Constraint Engine {resource=Alice}
allow Resource utilization

8

7

9

(b) Common Attributes of Tasks and Data Elements

Fig. 3. Resource Assignment and Common Attributes

and monitored in the system. The function sequence to enact and monitor re-
source assignments (constraint C1) is shown in Fig. 3. Similar to constraint C1,
this function sequence can be adapted to all instance-spanning constraints such
as constraints C2 and C3.

Prototype In order to elaborate the prototype, we �rst de�ne a set of common
terms to be used. Processes contain tasks with a well de�ned input/ouput and
data elements (i.e., variables modi�ed at runtime) and are speci�ed in our pro-
totype. In Fig. 3, we give a set of common attributes that, as a precondition,
have to be accessible in order to monitor or enact constraints. The static task
and data element related attributes, are dealing with typical properties of tasks
(type=task) and data elements (type=data) like id. We also assume that for
each task it is possible to �nd out the instance it belongs to. Please note that
process is a property of the instance, as every instance belongs to exactly one
process. The attribute organization is independent of instance and process

as one process is able to run in multiple organizations. This coordination of

processes in di�erent organizations is a desirable side-e�ect of our approach.
Furthermore, the dynamic behavior tuple realizes a shared space to coordinate
the enactment of constraints. Constraints can (1) store values that are available
for later enactments of constraints on the same task, and (2) share information
with enforcing components such as worklists.

In Fig. 2 below the architecture, a short summary depicts the implemen-
tation of the prototype. For implementation, we rely on the service-oriented
process testbed. As shown in the Fig., each component is a service e.g., the EE
carries out tasks and the WH manages the assignment of tasks to users (i.e.,
manual tasks) or other services (i.e., automated tasks). As an EE we use CPEE
(Cloud Process Execution Engine, http://cpee.org) as described in [10, 6]. This
event based engine allows for a loosely coupled CE that only consumes events
during the execution of instances. For the CE, we rely solely on the event type
running/syncing_before which allows to delay the process execution.

By requiring only minimal event based interaction with enforcing compo-
nents, we ensure that our approach can be easily integrated with other existing
solutions. Typically, the EE and WH are tightly coupled in PAIS when specify-
ing process constraints (e.g., authorization constraints). In our approach, EE and
WH are independent from each other. Hence, a separated process model-related
enactment and task-related enforcement of constraints is supported. execution
engines in case of inter-organizational business processes.

4 Related Work

Mainly, research centers on intra-instance settings for constraints. First, most ap-
proaches for intra-instance constraints enable the de�nition and enforcement of
constraints on structural patterns (e.g., [8]). Furthermore, how the scope can be
extended towards data-aware process constraints is presented in e.g., [1]. Lastly,
resource assignments such as roles (e.g., [2, 13]) are extensively investigated in
literature. In case of inter-instance constraints, the work�ow role-based access
control model [13] de�nes inter-case constraints (e.g., the number of times activ-
ities are executed by single users) and reciprocal separation of duties. Moreover,
the logic-based approach in [14] gives an overview on resource, data, and time
inter-instance constraints. Since no generic solution is provided, inter-instance
constraints are not comprehensively supported in [14] either.

In summary, the enforcement of constraints has been merely addressed by
single approaches for a certain process scope (mostly intra-instance settings). In
this paper, we specify an extensive set of instance-spanning constraints which is
the �rst comprehensive approach managing multiple process scopes.

5 Conclusion

In this paper, we provide a comprehensive approach for instance-spanning con-
straints based on the IUPC framework. Furthermore, we provide an novel SOA-
based architecture where a constraint engine is tightly coupled with an execution

engine. Moreover, we demonstrate our �ndings with a proof-of-concept proto-
type. In future work, we aim at investigating instance-spanning constraints fur-
ther within inter-organizational settings. Moreover, the IUPC approach and its
implementation within the CPEE process engine will be evaluated by means of
case studies in di�erent domains such as care and virtual factories within the
EU FP7 project ADVENTURE (http://www.fp7-adventure.eu/).

Acknowledgements This work was partially supported by the Commission of
the European Union within the ADVENTURE FP7-ICT project (Grant agree-
ment no. 285220).

References

1. Awad, A., Weidlich, M., Weske, M.: Speci�cation, veri�cation and explanation of
violation for data aware compliance rules. In: Service-Oriented Computing. LNCS,
vol. 5900, pp. 500�515. Springer (2009)

2. Bertino, E., Ferrari, E., Atluri, V.: The speci�cation and enforcement of authoriza-
tion constraints in work�ow management systems. ACM Trans. Inf. Syst. Secur.
2(1), 65�104 (1999)

3. Heinlein, C.: Synchronization of concurrent work�ows using interaction expressions
and coordination protocols. In: CoopIS/DOA/ODBASE. pp. 54�71. LNCS (2002)

4. Ly, T., Rinderle-Ma, S., Knuplesch, D., Dadam, P.: Monitoring business process
compliance using compliance rule graphs. In: OTM 2011. LNCS, vol. 7044, pp.
82�99. Springer (2011)

5. Mangler, J., Rinderle-Ma, S.: Rule-Based synchronization of process activities. In:
13th Conf. on Commerce and Enterprise Computing. pp. 121�128. IEEE (2011)

6. Mangler, J., Stuermer, G., Schikuta, E.: Cloud process execution Engine-
Evaluation of the core concepts. Arxiv preprint arXiv:1003.3330 (2010)

7. Rinderle-Ma, S., Mangler, J.: Integration of process constraints from heterogeneous
sources in Process-Aware information systems. In: Int'l Workshop Enterprise Mod-
elling and Information Systems Architectures - EMISA 2011. LNI, GI (2011)

8. Sadiq, S., Orlowska, M., Sadiq, W.: Speci�cation and validation of process con-
straints for �exible work�ows. Inf. Syst. 30(5), 349�378 (2005)

9. Speci�cation, W.M.C.: Work�ow management coalition terminology & glossary
(Document no. WFMC-TC-1011. document Status-Issue 3.0). Tech. rep., Work�ow
Management Coalition Speci�cation (Feb 1999)

10. Stuermer, G., Mangler, J., Schikuta, E.: Building a modular service oriented work-
�ow engine. In: IEEE Int'l Conf on Service-Oriented Computing and Applications.
pp. 1�4. IEEE (Jan 2009)

11. van der Aalst, W.M.P., Beer, H.d., Dongen, B.v.: Process mining and veri�cation
of properties: An approach based on temporal logic. In: Int'l OnTheMove Confer-
ences. LNCS, vol. 3761, pp. 130�147. Springer (2005)

12. van der Aalst, W.M.P., ter Hofstede, A.H.M., Kiepuszewski, B., Barros, A.P.:
Work�ow patterns. Distributed and Parallel Databases 14(1), 5�51 (2003)

13. Wainer, J., Barthelmess, P., Kumar, A.: W-RBAC - a work�ow security model
incorporating controlled overriding of constraints. International Journal of Collab-
orative Information Systems 12(4), 455�485 (2003)

14. Warner, J., Atluri, V.: Inter-instance authorization constraints for secure work�ow
management. In: Proc. of the 11th ACM symposium on Access control models and
technologies. pp. 190�199. ACM (2006)

