
A Distributed Eigensolver for Loosely Coupled Networks

Hana Straková and Wilfried N. Gansterer
University of Vienna

Research Group Theory and Applications of Algorithms
Vienna, Austria

hana.strakova@univie.ac.at, wilfried.gansterer@univie.ac.at

Abstract—We introduce and analyze a new distributed
eigensolver (dOI) for square matrices based on orthogonal
iteration. In contrast to standard parallel eigensolvers, our
approach performs only nearest neighbor communication and
provides much more flexibility with respect to the properties
of the hardware infrastructure on which the computation is
performed. This is achieved by utilizing distributed summation
methods with randomized communication schedules which do
not require global synchronization across the nodes. Our algo-
rithm is particularly attractive for loosely coupled distributed
networks with arbitrary network topologies and potentially
unreliable components.

Based on a novel distributed matrix-matrix multiplication
algorithm and on an extension of a distributed QR factoriza-
tion algorithm proposed earlier, we introduce our distributed
eigensolver dOI. We analyze and illustrate the advantages of
dOI in terms of higher flexibility with respect to the underlying
network and lower communication cost compared to a related
distributed algorithm. Moreover, we investigate the inner-outer
iterative structure of dOI and propose an adaptive strategy for
adjusting the accuracy in the inner iteration to substantially
reduce the overall communication cost of dOI.

Keywords-distributed eigensolver; distributed orthogonal it-
eration;gossip algorithm; push-sum algorithm; randomized
communication schedule

I. INTRODUCTION

We investigate the problem of computing k extreme eigen-
pairs of a matrix A ∈ Rn×n distributed column-wise over
a loosely coupled distributed system (e. g., a P2P network).
We propose a localized approach which only requires nearest
neighbor communication. It is based on a novel distributed
matrix-matrix multiplication algorithm and on a distributed
algorithm for computing a QR factorization [1], which we
enhance with the ability to trade bandwidth for latency.

A. Motivation and Basic Idea

Motivating eigenvalue problems arise in various types
of network analyses (e. g., identifying performance-limiting
bottlenecks in computer networks or detecting communities
in social networks), as important information about prop-
erties of the network structure can be obtained from the
spectral analysis of the network [2].

When analyzing large-scale networks in practice, it is
often—e. g., due to various technical limitations or due to se-
curity constraints—not possible to gather all data at a single

node and perform the analysis in a centralized way (using a
“fusion center” approach). Classical parallel algorithms are
designed for tightly coupled parallel target systems, such as
static shared memory or distributed memory systems, with
static, regular topology and with reliable communication,
where (global) synchronization of processes across the nodes
in the system can be guaranteed. Such algorithms are not
suitable for decentralized loosely coupled distributed sys-
tems, such as P2P networks or sensor networks, which are
in the focus of this paper. In such networks it cannot be
assumed that individual nodes have any knowledge about
global system properties, such as the system’s (in general
arbitrary) topology. Moreover, the structure of such networks
may change during the computation due to potential link
and/or node failures, and (global) synchronization across
nodes is very difficult and expensive or even impossible. We
denote algorithms which are designed for such decentralized
loosely coupled distributed systems as distributed algorithms
in order to distinguish them from classical parallel algo-
rithms.

The basic idea pursued in this paper for designing dis-
tributed algorithms is to utilize gossip-based summation
methods with randomized communication schedules. In par-
ticular, we employ the push-sum algorithm [3], for comput-
ing, e. g, vector norms or dot products in matrix computa-
tions. These techniques greatly increase the flexibility with
respect to the properties of the hardware infrastructure and
reduce the synchronization requirements between the nodes.
They also increase the potential for recovering from (link or
node) failures, as discussed in [4].

B. Related Work and Contributions

Gossiping protocols have been studied quite extensively
(see, e. g., [5], [6]). Due to their attractive properties, such as
no specific requirements in terms of topology, synchroniza-
tion or reliability, they have been widely utilized, e. g., for
signal processing in wireless sensor networks [7]. However,
most of the existing work focusses on rather simple gossip-
based distributed operations, such as information dissemina-
tion [8] or network organization [9]. Most relevant for our
approach are gossip-based data aggregation methods, such as
the push-sum algorithm [3] for averaging or summing values
distributed over a network. Distributed algorithms for matrix

operations based on gossiping have been explored very little
so far. Recently, a gossip-based distributed QR factorization
approach was investigated and compared to state-of-the-art
parallel QR factorization algorithms [1].

A distributed orthogonal iteration method in the sense
defined in this paper was proposed by Kempe and McSh-
erry [10]. This method, which we denote as KOI, differs
from our distributed eigensolver in several pivotal aspects.
First, KOI is restricted to computing eigenpairs of the adja-
cency matrix of the network where the computation is per-
formed. Second, in KOI every node always communicates
with all its neighbors at once and therefore they actually do
not exploit the full flexibility and fault tolerance potential
which is offered by randomized communication schedules.
Third, KOI does not exploit the potential of gossip-based
algorithms for substantially reducing communication cost by
accuracy-performance trade-offs.

Another distributed eigensolver based on power iteration
was introduced in [11]. It differs from our work in similar
aspects as KOI: the algorithm is designed for the adjacency
matrix of the underlying network, nodes communicate with
all neighbors and the potential of gossip-based algorithms
for reducing communication cost by accuracy-performance
trade-offs has not been investigated. Moreover, this method
is designed for computing only one eigenvector without the
corresponding eigenvalue.

Contributions of this Paper. We present and analyze a
new distributed orthogonal iteration algorithm dOI for the
in-network computation of principal eigenpairs of a square
matrix. dOI only requires nearest neighbor communication,
even for matrices which differ from the adjacency matrix of
the network. In contrast to existing work, dOI is based exclu-
sively on communication with randomly selected neighbors
instead of using fixed communication schedules. We intro-
duce a distributed matrix-matrix multiplication dmmm and
we extend the distributed QR factorization dmGS presented
in [1] in order to support trading bandwidth against latency.
We utilize both distributed algorithms in the dOI algorithm.

Furthermore, we exploit the potential of gossip-based
algorithms for accuracy-performance trade-offs and we sug-
gest and evaluate an adaptive variant of dOI which adjusts
the inner accuracy in each iteration of the orthogonal it-
eration process. We illustrate that, compared to KOI, dOI,
and in particular, the adaptive dOI, have substantially lower
communication cost in many scenarios and that they are
more flexible with respect to the hardware infrastructure.

Synopsis. In Section II, related work is summarized. In
Section III, the distributed eigensolver dOI is introduced.
We describe the two main building blocks dmmm and
dmGS. For the latter, we present an enhanced version of
an algorithm proposed earlier. In Section IV we discuss the
main strengths of dOI and illustrate them with simulation
results. Section V concludes the paper and summarizes

ongoing and future work.

II. BACKGROUND

In this section first we review the central building block
for all distributed algorithms discussed in this paper. Second,
we review the structure of the standard orthogonal iteration
method and third, we summarize important facts about
KOI [10].

A. Gossip Protocols and Push-Sum

Gossip (or epidemic) protocols are communication pro-
tocols for distributed systems based on randomized infor-
mation exchange which do not assume synchronized com-
putation, reliable communication links or global knowledge
about the topology of the underlying network. All commu-
nication is usually restricted to nearest neighbors.

All distributed matrix algorithms presented in this paper
are based on the push-sum algorithm [3], an iterative gossip
algorithm for computing a sum or an average of values
distributed over N nodes. Push-sum starts with one value
sl stored in each node l and then iteratively approximates in
every node the average

∑N
l=1

sl
N or the sum

∑N
l=1 sl. The

push-sum algorithm proceeds in rounds, which we call PS-
rounds. In each PS-round, every node sends its current state
to one randomly chosen neighbor, and updates its current
approximation of the result based on information received
from its neighbors. The final accuracy of the estimates in
nodes depends on the number of PS-rounds executed.

We call the above described approach scalar push-sum,
because the nodes exchange messages containing scalars.
However, this concept can be extended to vector push-
sum and matrix push-sum, when the nodes exchange mes-
sages containing vectors or matrices, which are summed up
element-wise.

In [3] it was shown that the scalar push-sum converges to
a final accuracy ε within O(log(N/ε)) PS-rounds, under the
assumption that each node can communicate with any other
node in the network. Similar convergence rates are achieved
also for some more general topologies [5], [4].

B. Orthogonal iteration

Classical (sequential) orthogonal iteration [12] is shown
in the left part of Algorithm 2. This iterative eigensolver
starts with a given matrix A ∈ Rn×n and an arbitrary matrix
Q0 ∈ Rn×k. Each iteration consists of two steps – matrix-
matrix multiplication (Line 3 in the left part of Algorithm 2)
followed by a reduced QR factorization (Line 4 in the left
part of Algorithm 2). It can be shown [12] that the columns
of the matrices Qi converge to the extreme k eigenvectors of
A and the diagonal elements of the matrices Ri converge to
the corresponding k eigenvalues of A under the assumption
that the leading k + 1 eigenvalues are distinct in absolute
value: |λ1| > |λ2| > ... > |λk| > |λk+1| ≥ ... ≥ |λn|.

C. Existing Distributed Orthogonal Iteration (KOI)

A distributed orthogonal iteration algorithm for computing
k principal eigenvectors of the adjacency matrix A ∈ Rn×n

of the underlying network with N = n nodes was introduced
in [10].

KOI assumes row-wise distribution of matrices A ∈ Rn×n

and Qi ∈ Rn×k. As in Algorithm 2, the first step of KOI
is a matrix-matrix multiplication. Each node l, in order
to compute the row Vi(:, l) = A(:, l) · Qi in iteration i,
needs all rows Qi(:, j), where A(j, l) 6= 0. Because A is
the (weighted) adjacency matrix of the underlying network,
each node l needs only the rows of Qi from its direct
neighbors. As a result, Vi is computed exactly, but each node
needs to communicate with all neighbors and if only nearest
neighbor communication is admitted, KOI works only for
the adjacency matrix of the underlying system.

The second step is reformulated in order to avoid the QR
factorization, because it was not available to the authors.
They substituted this step with a mathematically equivalent
sequence of an outer product of vectors, distributed summing
of matrices, Cholesky factorization and solving a linear
system.

Although in [10] the term “push-sum” is used for the
distributed summation in KOI, it is rather a consensus
algorithm. Nodes do not communicate only with a single
randomly chosen neighbor, but with all neighbors at once,
which besides of availability of all connections requires also
full synchronization across nodes [13].

III. DISTRIBUTED ORTHOGONAL ITERATION (DOI)

In this section we introduce dOI, a distributed algorithm
for computing k principal eigenpairs of a matrix A ∈ Rn×n

which is distributed column-wise over N nodes. The dOI
algorithm corresponds to the classical orthogonal iteration
(see Algorithm 2) with the difference that the two central
matrix computations were replaced by their distributed ver-
sions: distributed matrix-matrix multiplication dmmm (see
Section III-A) and distributed QR factorization dmGS (see
Section III-B). Except of push-sum, utilized in dmmm and
dmGS for distributed summation, the computations in dOI
are executed locally. Thus, if each push-sum estimates the
sum in double precision accuracy, which can be achieved
by executing enough PS-rounds (see [3]), dOI behaves as
centralized orthogonal iteration with double precision matrix
computations (see also Section IV). V̂ , Q̂, R̂ in Algorithm 2
stand for the version of V,Q,R when computed using
gossip-based building block.

A. Distributed Matrix-Matrix Multiplication (dmmm)

dmmm (see Line 3 in the right part of Algorithm 2) com-
putes a product of two matrices in a distributed manner and it
is based on a matrix push-sum algorithm (see Section II-A).
It expects as input a square matrix A ∈ Rn×n distributed
column-wise and a matrix Q ∈ Rn×k, k ≤ n distributed

Algorithm 1 Orthogonal Iteration (OI)

Input: A ∈ Rn×n, arbitrary Q0 ∈ Rn×k, number of iterations t

Output: k eigenvectors Qt ∈ Rn×k, k eigenvalues diag(Rt),
Rt ∈ Rk×k

1: i = 0;
2: repeat
3: [Vi] = A ·Qi

4: [Qi+1, Ri+1] = qr(Vi)

5: i = i+ 1;

6: until i == t

row-wise over N nodes, N ≤ n. If N < n, nodes may
contain more than one column of A, resp. more than one
row of Q.

In order to compute the product V = AQ, where Vij =∑n
k=1AikQkj , each node first locally computes the outer

product of the corresponding column of A and row of Q. The
resulting n× k matrices in all nodes serve as initial values
for the matrix push-sum. Then, matrix push-sum computes
in each node l a matrix V̂ l, which is an estimate of an
element-wise sum of the initial matrices from all nodes and
at the same time an estimate of the product V = AQ. After
the matrix push-sum each node l keeps only the rows of
matrix V̂ l which correspond to the rows of matrix Q stored
in this node l. The rows of matrix V̂ l kept in all nodes form
the matrix V̂i, which is then used as an input for dmGS.

B. Distributed QR Factorization (dmGS)

dmGS ([1]) is a distributed gossip-based algorithm for
computing a reduced QR factorization of an arbitrary matrix
V ∈ Rn×k, n ≥ k, distributed row-wise over a loosely
coupled distributed system. It computes a matrix Q ∈ Rn×k

with orthonormal columns, distributed row-wise over the
nodes, and an upper-triangular matrix R ∈ Rk×k, such
that V = QR. Matrix R is either distributed column-wise
over the nodes or each node keeps its own local estimate
of the matrix R, depending on the storage resources in
each node. Simulations showed that dmGS preserves known
properties of the sequential orthogonalization algorithms
in terms of factorization error and orthogonality of the

Algorithm 2 Distributed Orthogonal Iteration (dOI)

Input: A ∈ Rn×n, arbitrary Q0 ∈ Rn×k, number of iterations t

Output: k eigenvectors Qt ∈ Rn×k, k eigenvalues diag(Rt),
Rt ∈ Rk×k

1: i = 0;
2: repeat
3: [V̂i] = dmmm(A, Q̂i)

4: [Q̂i+1, R̂i+1] = dmGS(V̂i)

5: i = i+ 1;

6: until i == t

computed matrix Q.

Trading Bandwidth for Latency. With the increasing num-
ber of nodes N , dmGS scales like the push-sum algorithm.
As mentioned in Section II-A, for many important topologies
the number of rounds required in the push-sum algorithm
scales as O(logN) for a fixed final accuracy ε. It has been
shown in [1] that dmGS also scales well with increasing
number of rows n of the input matrix V , but it does not scale
well with increasing number of columns k. A modification of
dmGS where we replace several calls of scalar push-sum by
one call of a vector push-sum improves the scaling behavior
of dmGS with k and reduces communication cost in terms
of number of messages sent per node by a factor of k. This
modification, which is well known under the term “message
coalescing” for MPI codes, does not have any influence on
the numerical accuracy or convergence and is suitable if
bandwidth can be traded for latency.

Although distributed and parallel algorithms are designed
for systems with different assumptions, it is interesting to
compare the cost needed. In [1] a detailed comparison of the
original dmGS to parallel mGS and to the communication-
optimal CAQR algorithm [14] have been provided. The
updated comparison of dmGS using vector push-sum to
the parallel algorithms is summarized in Table I. Due to
the improvement, dmGS is now comparable to the parallel
mGS in number of messages sent and only by a factor√
N/log2(N) worse than CAQR. But remember that in

contrast to these parallel algorithms it requires only nearest
neighbor communication. For the rest of this paper, we
operate with the version of dmGS which is based on a vector
push-sum algorithm.

Operation count # words # messages
mGS 2nk2

N
N2 logN

2 2N logN

CAQR 2k3

3 + 2k2n
N

3N2 log(N)

(4
√
N)

3
√

(N) log3(N)

8

dmGS O(k2(logN+n/N)) O(k2 log(N)) O(k log(N))

Table I
COMPARISON OF DMGS TO STATE-OF-THE-ART PARALLEL

ALGORITHMS (N = K = N)

IV. THE STRENGTHS OF DOI

In this section we present simulation results showing
convergence behavior and numerical accuracy of dOI. More-
over, we summarize the advantages of dOI over the KOI
algorithm from [10]. We focus on test cases where the
classical orthogonal iteration algorithm performs well. We
used random symmetric matrices A ∈ Rn×n with elements
from the interval [−100, 100] and for each matrix k = 5
eigenpairs were computed. The first six eigenvalues of each
input matrix satisfy |λ1| > |λ2| > |λ3| > |λ4| > |λ5| > |λ6|

and the minimal distance between these eigenvalues is 10.
The matrix Q0 was initialized with the first k unit vectors of
size n. Each dOI ran for a prescribed number t of iterations
and push-sum algorithms were terminated as soon as esti-
mates in all nodes reached a given level of accuracy ε. We
consider the following network topologies: fully connected
(each node is connected with every other node), hypercube
topology, random topology (each (randomly deployed) node
is connected to all nodes in some radius) and random regular
topology with degree d (each node is connected to randomly
selected d nodes).

A. Increased Flexibility

As summarized in Section II, KOI is designed for adjan-
cency matrices. In principle, KOI could compute eigenpairs
of a matrix which is not the adjacency matrix of the network.
However, it would have to use multi-hop communication
to obtain the right rows of Qi in each iteration i and for
that complex routing in the network would be needed. In
contrast, fully gossip-based dOI is much more flexible in
respect to the underlying hardware infrastructure. It can
handle matrices with no requirements on the structure and/or
larger than the number of nodes N in the underlying network
when using communication only with direct neighbors. If
N < n, each node stores n/N consecutive columns of the
matrix A, resp. rows of the matrix Q. Before every push-
sum each node computes the initial value as local sum of the
corresponding elements of all stored rows, resp. columns.

Fig. 1 shows relative residuals when computing 5 dom-
inant eigenpairs of randomly generated matrix A ∈ Rn×n

over a network with hypercube topology and N = n =
29. We can notice that the final accuracy of residuals
corresponds to the accuracy level ε set in the push-sum
algorithms. The interesting aspect is that the convergence
speed is always the same, for sequential OI as well as for
dOI with different ε.

Fig. 2 shows communication cost required for a prescribed
final accuracy when n ≥ N . dOI computed the first 5 dom-
inant eigenpairs of a matrix A ∈ R256×256 distributed over
networks with hypercube topology with sizes N = 25; 26; 27

and 28 and ε = 10−15. We can see that the number of
messages per node stays similar regardless of the size of the
underlying network.

B. Reduced Communication Cost

Total number Mk of messages sent per iteration of KOI
can be expressed as MK = 2|E|+ rdCO ·2|E|, where |E| is
the number of edges (undirected links) in the network and
rdCO is the number of rounds in the distributed summing
(consensus) in KOI. Total number Md of messages sent per
iteration in dOI is Md = N · rdPS + N · rdPS · (2k − 1),
where rdPS is the number of PS-rounds and (2k− 1) is the
number of push-sum algorithms in dmGS.

First, we investigate how the number of messages sent
scales with increasing N if we compute five principal
eigenpairs of the adjacency matrix of a fully connected
network. We have MK = N(N − 1) + 1 · N(N − 1),
because |E| = N(N − 1) and in one iteration of consensus
each node exchanges information with every other node, and
Md = N · O(logN) + N · O(logN) · (2k − 1), because
rdPS = O(logN) (see [3]). The simulations confirm the
theoretical result that in this case dOI scales better than KOI
with increasing N (see Fig. 3).

For other topologies it is more difficult to compare the
communication cost theoretically, since it depends in differ-
ent ways on the concrete underlying topology. In particular,
with increasing number of edges |E| the number of messages
sent per iteration in KOI increases, but the number of
rounds rdCO to converge decreases. Similar influence we
can observe in dOI: the stronger connected the network,
the smaller number of PS-rounds rdPS . However, it is not
easy to see, which term will be dominating. Investigation
of the concrete influence of the topology is planned for
the near future. In this paper we present comparison of
communication cost based on simulations (see Fig. 6).

An important aspect of distributed gossip-based algo-
rithms, e. g., dmmm and dmGS, is their ability to adjust
the invested cost to the accuracy of the result. The higher
accuracy ε is prescribed for push-sum the more PS-rounds
are executed and thus, more messages are exchanged. Our
goal is to use this property to minimize the overall cost of
dOI. KOI cannot apply such adapting strategy because the
matrix-matrix multiplication is computed exactly.

In Fig. 1 we can see that dOI with different ε leads
to different final accuracies achieved, but the convergence
speed remains the same ! Thus, it seems to be much more
efficient to start the computation with low ε and thus
with low cost and then gradually increase the accuracy
of distributed matrix computations up to the desired final

sequential OI
dOI(10−15)
dOI(10−12)
dOI(10−8)
dOI(10−4)

#iterations

m
a
x
i=

1
,.
..
,5
‖A

Q̂
t(
:,
i)
−
λ̂
iQ̂

t(
:,
i)
‖ ∞

/
‖A

‖ ∞

350300250200150100500

100

10−2

10−4

10−6

10−8

10−10

10−12

10−14

10−16

Figure 1. Convergence behavior of sequential OI and dOI with various
accuracy levels ε on a hypercube topology with N = 29 nodes with input
matrix A ∈ R512×512.

N = 25
N = 26
N = 27
N = 28

maxi=1,...,5‖AQ̂t(:, i)− λ̂iQ̂t(:, i)‖∞/‖A‖∞

#
m
es
sa
ge
s
se
n
t
p
er

n
o
d
e

10010−210−410−610−810−1010−1210−1410−16

106

105

104

103

Figure 2. Communication cost of dOI(10−15) per node for different sizes
of hypercubes with input matrix A ∈ R256×256.

dOI(N=1000)/KOI(N=1000)

dOI(N=500)/KOI(N=500)

dOI(N=250)/KOI(N=250)

maxi=1,...,5‖AQ̂t(:, i)− λ̂iQ̂t(:, i)‖∞/‖A‖∞

(r
el
at
iv
e
to

K
O
I)

#
m
es
sa
ge
s
se
n
t
p
er

n
o
d
e

10010−210−410−610−810−1010−1210−1410−1610−18

2

1.5

1

0.5

0

Figure 3. Communication cost per node of dOI(10−15) for computing 5
eigenpairs of adjacency matrix of fully connected graphs depicted relatively
to KOI.

accuracy. Compared to the original dOI the total number of
PS-rounds and thus the total cost of such adaptive dOI can
be significantly reduced.

We simulated adaptive dOI for finding 5 dominant eigen-
pairs of matrices A ∈ Rn×n, n = 32; 64; 128; 256 over
hypercube topology with N = n nodes. Adaptive dOI
started with ε = 10−1 and the accuracy was increased by
one decimal place up to ε = 10−15 every 22 iterations.
For determining the step we used the knowledge of the
number of iterations t = 330 prescribed to converge to
final accuracy. Fig. 4 shows that adaptive dOI significantly
reduces the number of messages sent per node compared to
the original dOI with ε = 10−15. The results are averaged
over simulations for 20 different random matrices. Fig. 5
illustrates that the adaptive dOI preserves the convergence
speed compared to sequential OI.

The comparison of communication cost per node for
topologies different from the hypercube are shown in Fig. 6.
We can see the communication cost relative to KOI for
computing 2 eigenpairs of an adjacency matrix for two dif-
ferent scenarios. First, we investigated a randomly generated

adaptive dOI / dOI(N = 28)
adaptive dOI / dOI(N = 27)
adaptive dOI / dOI(N = 26)
adaptive dOI / dOI(N = 25)

maxi=1,...,5‖AQ̂t(:, i)− λ̂iQ̂t(:, i)‖∞/‖A‖∞

(r
el
at
iv
e
to

d
O
I
w
it
h
ǫ
=

10
−
1
5
)

#
m
es
sa
ge
s
se
n
t
p
er

n
o
d
e

10010−210−410−610−810−1010−1210−14

0.6

0.5

0.4

0.3

0.2

0.1

0

Figure 4. Communication cost of adaptive dOI with ε = 10−15 for
matrices A ∈ Rn×n, n = 32; 64; 128; 256 over hypercubes with N =
n depicted relatively to dOI. (averaged over 20 simulations for different
random input matrices)

adaptive dOI N = 29
sequential OI N = 29
adaptive dOI N = 25
sequential OI N = 25

#iterations

m
a
x
i=

1
,.
..
,5
‖A

Q̂
t(
:,
i)
−
λ̂
iQ̂

t(
:,
i)
‖ ∞

/
‖A

‖ ∞

300250200150100500

100

10−2

10−4

10−6

10−8

10−10

10−12

10−14

10−16

10−18

Figure 5. Convergence behavior of sequential OI and adaptive dOI for
A ∈ Rn×n, n = 32; 512 over hypercube topology with N = n nodes.

network with N = 20 and average node degree d̄ = 7, 2,
which corresponds to a small sensor network. From the
relative comparison we can see that dOI needs about 3/4 of
the messages sent by KOI and adaptive dOI at most 2/5. The
other lines show the comparison for a random regular graph
with N = 500 nodes, where each node has a degree d = 40.
For this scenario dOI needs about 3/10 of the messages sent
by KOI and adaptive dOI slightly more than 1/10.

C. Higher Robustness

Beyond the advantages of dOI discussed so far, it is po-
tentially also more robust and resilient than other methods.
We focus on two aspects in this direction: resilience against
asynchrony between nodes and resilience against various
types of failures.

With respect to asynchrony, dOI is quite robust because
all nodes can proceed independently of each other. We
are currently investigating how much synchronization be-
tween neighbors is required in dmGS and first results show
that very efficient local synchronization strategies between

neighbors are sufficient to guarantee accurate results. The
same ideas are expected to work well for dOI. This is in
contrast to KOI, which is based on a form of a consensus
algorithm [13], where every node communicates with all
its neighbors at once in each round. As a consequence, the
nodes cannot proceed independently of each other.

With respect to failures, dOI also benefits from its ran-
domized communication schedules. In [4] the potential of
gossip-based algorithms to handle various types of failures,
such as message loss, corruption of data or node failures
has been discussed. It has been shown how dmGS can
be made resilient against message loss and node failures.
Similar techniques are expected to lead to fault tolerant
variants of dOI. In contrast to dOI, KOI does not have this
capability due to the exact computation of matrix-matrix
multiplication, which cannot tolerate failures in the network.
A more extensive investigation of the behavior of dOI in
asynchronous and unreliable systems is work in progress.

V. SUMMARY AND CONCLUSIONS

We designed and analyzed the distributed gossip-based
orthogonal iteration algorithm dOI for computing k principal
eigenpairs of a square matrix A distributed column-wise
over a loosely coupled decentralized network. The dOI
algorithm is based on a new distributed matrix multiplication
method and on the distributed QR factorization method
dmGS proposed earlier. It utilizes the push-sum algorithm
for summing distributed values.

To the best of our knowledge, the only previously existing
(truly) distributed orthogonal iteration is the one proposed
in [10], which we denote as KOI. In contrast to KOI,
our solver dOI has completely randomized communication
schedules, which leads to many attractive properties.

dOI is very flexible with respect to the underlying hard-
ware infrastructure. Whereas KOI operates only on the
adjacency matrix of the underlying network, dOI is not

adaptive dOI / KOI, random regular graph N = 500
dOI(10−15) / KOI, random regular graph N = 500

adaptive dOI / KOI, random graph N = 20
dOI(10−15) / KOI, random graph N = 20

maxi=1,2‖AQ̂t(:, i)− λ̂iQ̂t(:, i)‖∞/‖A‖∞

(r
el
at
iv
e
to

K
O
I)

#
m
es
sa
ge
s
se
n
t
p
er

n
o
d
e

10010−210−410−610−810−1010−1210−14

1.2

1

0.8

0.6

0.4

0.2

0

Figure 6. Communication cost per node of dOI(10−15) for computing 2
eigenpairs of the adjacency matrix of a random regular graph withN = 500
and d = 40 and of a random graph with N = 15 and d̄ = 7, 2 depicted
relatively to KOI.

restricted to the adjacency matrix and decouples the matrix
structure from the topology of the network. We illustrated
that the accuracy achieved by dOI is of the same order of
magnitude as the tolerance used for terminating the push-
sum algorithm. Consequently, dOI preserves the numerical
properties of the classical sequential orthogonal iteration al-
gorithm if the distributed matrix computations deliver results
to floating-point accuracy. Moreover, we also illustrated that
the convergence speed of dOI remains the same regardless
of the accuracy achieved by each instance of the push-sum
algorithm. These insights lead to an adaptive variant of dOI,
which significantly reduces the overall communication cost
by dynamically adapting the termination criterion for the
push-sum algorithm. The number of messages sent could be
reduced by a factor of two compared to the original dOI and
up to a factor of ten compared to KOI. Last, but not least,
we outlined other potentially interesting properties of dOI
in terms of robustness and resilience against asynchrony as
well as against various types of failures.

Ongoing and Future Work.: We are currently devel-
oping on a robust variant of dOI for asynchronous and
unreliable distributed networks. Moreover, we intend to
refine the control of the termination criterion of the push-
sum algorithm in the inner iteration such that it can be
automatically adapted by the algorithm based on purely local
information.

ACKNOWLEDGMENT

This work has been funded by the Austrian Science Fund
(FWF) in project S10608-N13 (NFN SISE).

REFERENCES

[1] H. Straková, W. N. Gansterer, and T. Zemen, “Distributed
QR factorization based on randomized algorithms,” in Pro-
ceedings of the 9th International Conference on Parallel
Processing and Applied Mathematics, Part I, ser. Lecture
Notes in Computer Science, vol. 7203, 2012, pp. 235–244.

[2] M. Fiedler, “Algebraic connectivity of graphs,” Czechoslovak
Mathematical Journal, vol. 23, no. 98, pp. 298–305, 1973.

[3] D. Kempe, A. Dobra, and J. Gehrke, “Gossip-based compu-
tation of aggregate information,” in FOCS ’03: Proceedings
of the 44th Annual IEEE Symposium on Foundations of
Computer Science. IEEE Computer Society, 2003, pp. 482–
491.

[4] W. N. Gansterer, G. Niederbrucker, H. Straková, and
S. Schulze Grotthoff, “Robust distributed orthogonalization
based on randomized aggregation,” in Proceedings of the
Second Workshop on Scalable algorithms for Large-Scale
Systems, ser. ScalA ’11. New York, NY, USA: ACM, 2011,
pp. 7–10.

[5] S. Boyd, A. Ghosh, B. Prabhakar, and D. Shah, “Randomized
gossip algorithms,” IEEE Trans. Information Theory, vol. 52,
no. 6, pp. 2508 – 2530, 2006.

[6] A.-M. Kermarrec and M. van Steen, “Gossiping in distributed
systems,” SIGOPS Oper. Syst. Rev., vol. 41, pp. 2–7, 2007.

[7] A. Dimakis, S. Kar, J. Moura, M. Rabbat, and A. Scaglione,
“Gossip algorithms for distributed signal processing,” Pro-
ceedings of the IEEE, vol. 98, no. 11, pp. 1847 –1864, 2010.

[8] R. Karp, C. Schindelhauer, S. Shenker, and B. Vocking,
“Randomized rumor spreading,” in Proceedings of the 41st
Annual Symposium on Foundations of Computer Science.
Washington, DC, USA: IEEE Computer Society, 2000, pp.
565–.

[9] D. Shah, “Gossip algorithms,” Found. Trends Netw., vol. 3,
pp. 1–125, 2009.

[10] D. Kempe and F. McSherry, “A decentralized algorithm for
spectral analysis,” Journal of Computer and System Sciences,
vol. 74, no. 1, pp. 70 – 83, 2008.

[11] M. Jelasity, G. Canright, and K. Eng-monsen, “Asynchronous
distributed power iteration with gossip-based normalization,”
in Euro-Par 2007, volume 4641 of Lecture Notes in Computer
Science. Springer-Verlag, 2007, pp. 514–525.

[12] L. N. Trefethen and D. Bau, Numerical Linear Algebra.
SIAM: Society for Industrial and Applied Mathematics, 1997.

[13] P. Denantes, F. Benezit, P. Thiran, and M. Vetterli, “Which
distributed averaging algorithm should i choose for my sensor
network?” in INFOCOM 2008. The 27th Conference on
Computer Communications. IEEE, 2008, pp. 986 –994.

[14] J. Demmel, L. Grigori, M. F. Hoemmen, and J. Langou,
“Communication-optimal parallel and sequential QR and LU
factorizations,” no. UCB/EECS-2008-89, EECS Department,
University of California, Berkeley, Tech. Rep., 2008.

