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Abstract—Most existing algorithms for parallel or dis-
tributed reduction operations are not able to handle temporary
or permanent link and node failures. Only recently, methods
were proposed which are in principal capable of tolerating
link and node failures as well as soft errors like bit flips or
message loss. A particularly interesting example is the push-
flow algorithm. However, on closer inspection, it turns out that
in this method the failure recovery often implies severe perfor-
mance drawbacks. Existing mechanisms for failure handling
may basically lead to a fall-back to an early stage of the
computation and consequently slow down convergence or even
prevent convergence if failures occur too frequently. Moreover,
state-of-the-art fault tolerant distributed reduction algorithms
may experience accuracy problems even in failure free systems.

We present the push-cancel-flow (PCF) algorithm, a novel
algorithmic enhancement of the push-flow algorithm. We show
that the new push-cancel-flow algorithm exhibits superior
accuracy, performance and fault tolerance over all other
existing distributed reduction methods. Moreover, we employ
the novel PCF algorithm in the context of a fully distributed
QR factorization process and illustrate that the improvements
achieved at the reduction level directly translate to higher level
matrix operations, such as the considered QR factorization.

I. INTRODUCTION

Global all-to-all reduction operations, such as summation
or averaging, are among the most frequently performed
operations on HPC systems. While fast and efficient im-
plementations of all-to-all reductions exist for today’s HPC
systems [1], they are quite fragile in the sense that a single
failure leads to a wrong result on many nodes. Furthermore,
it is commonly expected that the future may bring a slight
shift from traditional parallel HPC systems towards less
tightly coupled systems which need to be more distributed
in nature due to the extreme scale and complexity required
to go to Exascale and beyond. Hence, in the future we
may face hardware systems where even such simple and
atomic operations as global all-to-all reductions have to be
robust against various types of system failures. Due to the
low complexity of a single reduction/aggregation operation,
it is clear that fault tolerance at the algorithmic level is
the only relevant approach in this case. In general, fault
tolerance at the algorithmic level is anticipated to become
more important in future HPC systems, since we have to
prepare for a lot more soft errors than today due to the
shrinking integrated circuit scale and the increasing overall
system complexity.

In this paper, we investigate how the fault tolerance

mechanisms incorporated in modern distributed reduction
algorithms influence their behavior in practice. Algorithms
like the push-flow algorithm [2], [3] have been shown
to be able to handle link and node failures as well as
soft errors like bit flips or message loss. But commonly,
fault tolerance questions are treated at a theoretical level
where practical aspects like floating-point arithmetic are
neglected. We perform a closer inspection which reveals
several weaknesses of these fault tolerance concepts not
discussed in the literature so far. Subsequently, we illustrate
how the discovered (practical) problems can be resolved.
Our improvements preserve all existing (theoretical) fault
tolerance properties.

While traditional all-to-all reductions for parallel systems
require complex structured communication sequences [4],
gossip-based [5] distributed reduction algorithms [2], [3],
[5]–[8] are entirely based on randomized communication
schedules and nearest-neighbor communication. Thus, they
do not require any kind of synchronization. In contrast to
traditional parallel all-to-all reduction algorithms, distributed
reduction algorithms produce on each node a sequence of es-
timates of the target aggregate which converges towards the
correct value. Therefore, at each point of time t during the
computation, the local error of the estimate of the aggregate
at every node is bounded by some ε(t) > 0. The convergence
speed of the distributed approaches we consider in this paper
strongly depends on the topology of the system on which
the computation is performed. However, in fact they exhibit
the same scaling behavior as existing parallel approaches,
since both, the parallel as well as the distributed reduction
algorithms, require a short network diameter. More precisely,
a system with n nodes which allows for utilizing an efficient
traditional parallel reduction method requiringO(log n) time
steps (either due to a suitable physical network topology
or due to some overlay network and very efficient rout-
ing technology), will also allow for a fast gossip-based
reduction in O(log n + log ε−1) time (cf. [5]), where ε is
the accuracy of the aggregate reached at all nodes. Thus,
while gossip-based computation of aggregates up to machine
precision introduces a constant overhead compared to state-
of-the-art parallel algorithms, higher level matrix operations,
such as linear or eigenvalue solvers, can benefit from the
iterative nature of gossip-based reduction algorithms for
saving communication costs (cf. [9]). More generally, all
commonly required functionality in numerical linear algebra



(cf. BLAS [10]) is based on the computation of sums and dot
products. In a distributed setting, these building blocks can
be computed by the reduction algorithms considered here.
Hence, providing fault tolerance already on this lowest level
allows for the design of naturally fault tolerant distributed
matrix computations [9], [11] (cf. Section IV).

A major advantage of gossip-based all-to-all reduction
algorithms is their flexibility which can be exploited for
tolerating failures at the algorithmic level. This has been
illustrated in [2], [3] where the push-sum algorithm [6]
has been enhanced to the more resilient push-flow algo-
rithm (PF).

1) Contributions of this paper: First of all, we iden-
tify common problems of existing distributed reduction
algorithms, such as numerical inaccuracies which clearly
restrict their practical applicability. We also show that these
problems get worse with increasing scale, i. e., with an
increasing number of nodes. The main contribution of this
paper is the push-cancel-flow algorithm (PCF), an improved
version of the recently introduced PF algorithm [2], [3],
which (i) improves the numerical accuracy in the final results
and (ii) can even recover from permanent failures (such
as permanent link failures) with very low overhead. Note
that the computational efficiency of the PF algorithm in a
failure-free environment is fully preserved in our new PCF
algorithm. Last, but not least, we illustrate in a prototypical
case study of a fully distributed QR factorization that the
achieved improvements can be directly carried over to higher
level matrix algorithms.

2) Related Work: Fault tolerant methods for large scale
computer systems have a long tradition. Solution approaches
span a wide range from entirely hardware based solutions
to methods working exclusively at the algorithmic level.

A classical generic, entirely hardware-based approach is
TMR (triple modular redundancy, [12]), where three identi-
cal systems are run in parallel and the results are determined
by a two-out-of-three voting. Due to resource and energy
constraints this approach is not suitable nowadays and can-
not cope with the challenges raised by future extreme scale
systems. Contrary to TMR, more recent approaches incor-
porate redundancy at the message passing level, i. e., in MPI
libraries, resulting in much more efficient solutions [13].
However, such approaches focus only on communication
correctness, i. e., the correctness of the messages sent over
MPI.

A widely used fault tolerance paradigm is check-
point/restart (C/R), where the system state is—either auto-
matically or by a user request—written to stable storage,
such that the application can be continued from a previously
stored checkpoint. The major drawback shared by all flavors
of C/R approaches is the overhead introduced by the expen-
sive disk I/O. To avoid this bottleneck and to reduce the
overhead of C/R in the absence of system failures, diskless
checkpointing was introduced [14]. Another property shared

by C/R methods is that they require information about
occurring failures such that the recovery procedures can be
launched. Consequently, silently occurring soft errors like
bit-flips are out of scope of purely C/R-based solutions and
require a more sophisticated logic, e. g., at the algorithmic
level.

Due to the ever shrinking integrated circuit technology
soft errors are expected to become the rule rather than the
exception. Even though hardware solutions for soft error
resilience (like ECC memory) are available, they are very
expensive and limited to a small number of soft errors due
to the overhead they introduce. Therefore, fault tolerance
already at the algorithmic level is a necessity to meet the
fault tolerance challenges which are anticipated for the
future.

A classical technique which targets the emerging need
of soft error resilience in the context of matrix operations
is ABFT (algorithm-based fault tolerance [15]). In ABFT
soft error resilience is achieved by extending the input
matrices by checksums and by adapting the algorithms such
that these checksums are updated correctly. Consequently,
the checksums are used for detecting and recovering from
soft errors. The original ABFT work [15] was restricted to
a single soft error and matrix-matrix multiplication. Later
work extended the principal concept to handle more fail-
ures [16] and to integrate it with matrix factorizations [17].
Moreover, in the last years the ABFT concept was extended
to fail-stop failures [18], where a failed process cannot be
continued and all its data is lost. The utilization of naturally
available redundancy in iterative solvers for increasing fault
tolerance was investigated in [19]. In contrast to classical
ABFT work where failures are detected and corrected in
the final result, recent ABFT-based approaches focus on
detecting soft errors as early as possible to avoid their
propagation [20]. Furthermore, ABFT-based factorization
algorithms were shown to perform well on hybrid [21] as
well as on large-scale [22] systems.

While ABFT is a promising approach within the context
of matrix computations, this concept is not attractive for op-
erations as simple as reductions due to the missing structure,
the low complexity and the resulting high relative overhead
of checksum strategies in this kind of computation. On the
other hand, other known fault tolerance approaches are even
less suitable due to the low complexity and atomicity of a
reduction operation. Consequently, the fault tolerant compu-
tation of reduction operations in a distributed environment
requires naturally fault tolerant, self-healing algorithms. As
analyzed in [3], the PF algorithm shows superior theoretical
properties over other competing approaches.

Since ABFT-based methods operate at the matrix level
and are directly encoded into the algorithms, the correspond-
ing algorithmic modifications needed for achieving fault
tolerance are very specific for each matrix operation. In
contrast to ABFT, by building matrix operations on top of



fault tolerant reduction algorithms, i. e., by performing all
summations and dot products using a distributed reduction
algorithm as discussed in this paper, the fault tolerance
achieved on the reduction level directly translates to the
higher (matrix) level. Of course, ABFT-based methods could
still be used on top of this approach to provide an additional
layer of fault tolerance.

Summarizing, gossip-based distributed reduction algo-
rithms theoretically provide an exciting potential of fault
tolerance and a logarithmic scaling behavior with the number
of nodes. These attractive properties motivate a deeper
investigation of their behavior in practice as building blocks
for future reliable and resilient numerical algorithms.

3) Synopsis: Section II is devoted to an in-depth anal-
ysis of the shortcomings of existing distributed reduction
algorithms. In Section III we develop our main results
and present the push-cancel-flow algorithm (PCF), an im-
provement and extension of the push-flow algorithm which
overcomes the issues identified in Section II. In Section IV
we employ the PCF algorithm in the context of a fully
distributed QR factorization algorithm and show that the
improvements directly translate to higher level matrix op-
erations. Section V concludes the paper.

II. WEAKNESSES OF STATE-OF-THE-ART METHODS

In this section we want to develop an understanding why
substantial algorithmic improvements are needed such that
existing distributed reduction algorithms with theoretically
high resilience potential become useful in practice. For the
sake of clarity we restrict our discussion to the PF algorithm.
We want to point out, though, that the issues discussed in
this section are common among all existing fault tolerant
distributed reduction algorithms (cf. [23]). We start with
reviewing the basic structure and functionality of the push-
flow algorithm.

A. Review of the Push-Flow Algorithm (PF)

In principle, the PF algorithm can be viewed as a fault
tolerant extension of the push-sum algorithm [6]. The push-
sum algorithm is a gossip-based reduction algorithm which
proceeds as follows. Initially (at time t = 0), every node
i hosts some arbitrary (scalar or non-scalar) initial data
vi(0). Afterwards, every node i iteratively randomly chooses
a node in its neighborhood Ni (a nonempty fixed set
of nodes i can communicate with) and sends half of its
data, i. e., vi(t)/2, to the chosen node. Receiving nodes
combine the received data with their local data. Additionally,
scalar weights are exchanged which determine the type
of aggregation (summing, averaging, . . . ) to be performed.
Even though no global control mechanism are assumed, a
time complexity of O(log n + log ε−1) for computing an
ε-approximate of the target aggregate at each node can be
proved for fully connected networks [6]. Later, this result
was extended to all networks (i. e., local neighborhoods Ni)

Input: Local initial data vi and local weight wi for each
node i
Output: Estimate of global aggregate (

∑
k xk)/(

∑
k wk)

. . . initialization . . .
1: vi ← (xi, wi)
2: for each j ∈ Ni do
3: fi,j ← (0, 0)
4: end for

. . . on receive . . .
5: for each received pair fj,i do
6: fi,j ← −fj,i
7: end for

. . . on send . . .
8: k ← choose a random neighbor k ∈ Ni

9: ei ← vi −
∑

j∈Ni
fi,j

10: fi,k ← fi,k + ei/2
11: send fi,k to node k

Figure 1. The push-flow algorithm [3] for the local computation of a global
aggregate. The current local estimate of a node is computed as ei(1)/ei(2),
with ei = vi −

∑
j∈Ni

fi,j , where Ni denotes node i’s neighborhood.

which allow for a parallel reduction in O(log n) time [5].
This implicit characterization comprises almost all networks
of relevance. Practically, systems allow for fast reductions
either by their physical topology or by some overlay network
and efficient routing technologies. Thus, we can assume that
the neighborhoods of the nodes are defined in an arbitrary
way which allows for a fast reduction, e. g., Ni could be
defined as the set of nodes with which node i communicates
in an efficient parallel reduction process. As discussed in [3],
time complexity results for the push-sum algorithm also hold
for the PF algorithm.

Classical parallel reduction approaches like recursive dou-
bling [4] require a pre-determined, sophisticated and well
synchronized sequence of data movements. Contrary to
that, the distributed reduction algorithms considered here
only require the initial data to be preserved across the
network for correctly performing an all-to-all reduction.
More precisely, mass conservation needs to be ensured,
i. e.,

∑
i vi(t) =

∑
i vi(0) needs to hold at all times t.

Obviously, mass conservation is a global property which
is violated by any kind of system failure. Consequently, the
push-sum algorithm is not suited for the robust computation
of all-to-all reductions. Henceforth, we omit explicit time
dependencies, i. e., we write vi instead of vi(t), etc., for the
sake of a concise notation.

To overcome the drawbacks of the push-sum algorithm,
the PF algorithm utilizes the graph theoretical flow concept
in the following sense. For every neighboring node j ∈ Ni

node i holds a flow variable fi,j representing the data sent to
(“flowing from node i to”) node j. Hence, the actual local
data of node i is computed as vi = vi(0) −

∑
j∈Ni

fi,j .
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Figure 2. Schematic representation of a bus network before (top) and
after (bottom) running the PF algorithm for averaging the local initial data.
Nodes are consecutively numbered from 1 to n from left to right and
represented by circles. Each circle contains the index (top) and the current
local data (bottom) of the corresponding node i which is computed as
vi −

∑
j∈Ni

fi,j with node i’s neighborhood Ni and initial data vi.

While in the push-sum algorithm data (mass) is transferred
between nodes, in the PF algorithm the nodes only share
flows. More specifically, if node i wants to send vi/2 to node
j ∈ Ni it first sets fi,j = fi,j+vi/2 (“virtual send”) and then
sends fi,j to j (“physical send”). The receiver negates the
result, i. e., it sets fj,i = −fi,j to ensure flow conservation,
i. e.,

∑
i

∑
j∈Ni

fi,j = 0. In contrast to mass conservation,
flow conservation is a local property and can be maintained
more easily. Note that flow conservation implies mass con-
servation because of

∑
i vi(0) =

∑
i(vi(0)−

∑
j∈Ni

fi,j) =∑
i vi. This implication highlights the role of the flow

concept as major source of fault tolerance. A pseudocode
of the PF algorithm is shown in Figure 1. Additionally, a
concrete example which will be discussed in Section II-B is
illustrated in Figure 2.

By utilizing graph theoretical flows, the PF algorithm
naturally recovers from loss or corruption of messages as
well as from soft errors like bit flips at the next successful
failure-free communication without even detecting or cor-
recting them explicitly (cf. [3]). Additionally, broken system
components, i. e., permanently failed links or nodes, can be
tolerated by setting the corresponding flow variables to zero,
since this algorithmically excludes the failed components
from the computation [3].

On the one hand, modern gossip-based distributed re-
duction algorithms like the PF algorithm have an attractive
potential for providing fault tolerance while preserving loga-
rithmic scaling with the number of nodes with a complexity
of O(log n + log ε−1). On the other hand, the next two
sections will reveal substantial weaknesses occurring in
practical computations. We will show how to overcome them
in Section III.
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Figure 3. Globally achievable accuracy with the PF algorithm for increas-
ing system size, different topologies and different types of aggregations.

B. Numerical Inaccuracy

A central need for reliable scientific algorithms is to
provide a pre-determined level of accuracy in the results.
In particular, resilient distributed reduction algorithms have
to be able to compute results accurate to machine precision
εmach. More precisely, the approximate aggregates r̃i at node
i of a distributed all-to-all reduction with the exact result r
should satisfy maxi |(r̃i−r)/r| ≤ c(n)εmach with a constant
c(n) which grows only modestly with n.

Existing analyses of distributed reduction algorithms are
commonly of a purely theoretical nature and neglect the
effects of floating-point arithmetic. Nevertheless, basic al-
gorithms like the push-sum algorithm, which are not fault
tolerant, meet the accuracy requirement stated above. In
contrast to that, reduction algorithms which integrate mech-
anisms for achieving fault tolerance at the algorithmic level,
commonly exhibit inaccuracies, especially with increasing
n (cf. [23]). In the following, we illustrate the fundamental
accuracy problems for the case of the PF algorithm with a
simple example which can be easily analyzed.

Case Study—Bus Network: Consider a system consisting
of n nodes, connected via a bus-style network which only
allows for communication with neighboring nodes, i. e., for
1 < i < n node i can only communicate with its neighbors
i−1 and i+1. Moreover, node 1 can only communicate with
node 2 and node n can only communicate with node n− 1.
Again, Ni denotes the neighborhood of node i. Assume that
every node hosts a single scalar value vi and that these local
values are initialized as v1 = n + 1 and vi = 1 for all
1 < i ≤ n. For the sake of simplicity, we omit the weights in
the PF algorithm here and assume them to be constantly one
due to a regular, synchronous communication schedule. The
upper part of Figure 2 illustrates this initial configuration.
The flow variables hosted by a node are visually identified
as the outgoing arcs.

If the PF algorithm is used to compute the global average
(at each node) in this setup and if the effects of floating-
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Figure 4. The PF algorithm algorithm is executed on a 6D hypercube and a single system failure is injected per experiment. The failure handling takes
place after 75 (left) and 175 (right) iterations, respectively. Although the local accuracies achieved until the time of the failure differ strongly (much better
in the right case), the PF algorithm falls back almost to the beginning of the computation in both cases.

point arithmetic are ignored, it reaches the state shown in
the lower part of Figure 2. More specifically, convergence
is reached if for all 1 < i ≤ n the flow variables have the
values fi−1,i = n− i+1 and fi,i−1 = −n+ i−1. Note that
for growing n, the target aggregate remains two, whereas
the values of the local flows grow linearly with n. Thus,
several nodes can be expected to experience cancellation
and accuracy problems in floating-point arithmetic since
the average—and therefore also the local sum of flows∑

j∈Ni
fi,j—is constant, whereas the individual flows grow

linearly and cancel each other out. Even if the sum of flows
is stored in a single variable (for efficiency reasons) the
updates of this variable will still lead to inaccurate results
due to the linearly growing flow variables.

This example illustrates that several system parameters in-
fluence the final accuracy of the results of the PF algorithm.
More specifically, the achievable accuracy depends on (i) the
number of nodes, (ii) the network topology, (iii) the initial
data distribution, and (iv) the type of target aggregate.

In Figure 3 we present experimental results for more
realistic setups which verify the aforementioned concerns
about the achievable numerical accuracy. Concretely, we
evaluate the PF algorithm on 3D torus (2i × 2i × 2i) and
hypercube (23i dimensional) topologies for computing sums
and averages. We can clearly see how the resulting accuracy
is influenced by varying system parameters. The major issue
is obviously that the resulting accuracy rapidly gets worse
with increasing scale.

C. Restart Implied by Failure Handling

As discussed in Section II-A there are two ways how
system failures are handled in the PF algorithm. First, it
naturally recovers from soft errors like lost messages or bit
flips just by following the steps in the algorithm. Second,
permanently failed components are excluded from the com-
putation by setting the corresponding flow variables to zero:
e. g., if the link between nodes i and j fails permanently, fi,j

and fj,i are set to zero. To provide a concise presentation we
restrict our discussion in the following to a single permanent
link failure. While the importance of handling a single
permanently failed link might not be clear at the first sight,
we want to point out that a permanently failed node can
be interpreted as a permanent failure of all its connecting
communication links.

As we saw in the lower part of Figure 2, when the PF
algorithm has converged, an equilibrium state is reached
in which the flow variables describe a data flow which
guarantees that every node can locally compute the global
target aggregate. Moreover, we saw that the flows are
not directly connected to the aggregate values and might
even differ from those by orders of magnitude. So if we
“artificially” set flows to zero, e. g., as a reaction to a
failure in the system, the local values of the corresponding
nodes may change arbitrarily within the range of the initial
data and therefore it may happen that the computation of
the aggregate is basically restarted. Concluding, the basic
problem in handling permanent failures in the PF algorithm
is, that—in contrast to the local values, which converge to
the target aggregate—the flow variables converge to arbitrary
values which depend on the execution of the PF algorithm.
Thus, if we set a flow variable to zero, we have no control
over the impact of this action on the local approximates of
the target aggregate.

This is illustrated in Figure 4 which shows example runs
of the PF algorithm where a single permanent link failure
was introduced at different points of time. As we can see, in
terms of local accuracy the computation is basically restarted
from the beginning no matter how late the failure occurs.

To overcome this major issue, we will develop an im-
proved algorithm in Section III where also the flow variables
are forced to converge to the target aggregate.



III. IMPROVING FAULT TOLERANCE AND ACCURACY

In Section II we identified major issues in the failure
handling and accuracy of the PF algorithm. As we have
seen, the key issue—responsible for all the problems shown
in Section II—is that the flow variables do not converge
to the target aggregate but to some value which depends
on the execution of the PF algorithm. In the following,
we introduce the push-cancel-flow algorithm (PCF) which
operates similarly to the PF algorithm with the additional
benefit that all flow variables converge to the target ag-
gregate. Moreover, the fault tolerance properties of the PF
algorithm are preserved.

A. The Push-Cancel-Flow Algorithm (PCF)

To preserve the fault tolerance properties of the PF
algorithm we have to stick with the concept of exchanging
flows, i. e., whatever data the nodes exchange has to be
exchanged via flows. This restriction guarantees that the
resulting algorithm has the same fault tolerance properties
as the PF algorithm since its fault tolerance is solely based
on utilizing the flow concept. In general, the ideas behind
the PCF algorithm can be implemented in various ways. The
resulting algorithms differ slightly in terms of computational
efficiency and fault tolerance. In the following, we will
describe step by step how to derive the computationally most
efficient variant of the PCF algorithm (see Figure 5) from
the PF algorithm (see Figure 1).

First of all, a local flow vector ϕi is introduced to store
the sum over all local flows of a node i. Therefore, ϕi =∑

j∈Ni
fi,j and the current local data is computed simply

as (si, wi)−ϕi. The basic idea behind the PCF algorithm is
that if flow conservation holds, i. e., fi,j = −fj,i, the flows
should be added to ϕi and ϕj and afterwards they should be
set to zero. Proceeding this way, we would ensure that the
flow variables converge to the target aggregate because they
only get updated by the current estimates of neighboring
nodes (cf. Figure 1, line 10 and Figure 5, line 31) which
converge to the target aggregate per definition.

To solve this problem the PCF algorithm uses two flow
variables fi,j,1 and fi,j,2 instead of a single flow variable
fi,j . At each point of time these two flows serve a different
purpose. We speak about an active flow for exchanging
current data, i. e., for imitating the PF algorithm, and a
passive flow where we want to achieve fi,j = −fj,i = 0.
Hence, if both passive flows are zero, active and passive
flows change their roles. This procedure is continuously
repeated. Moreover, control variables ci,j ∈ {1, 2} and
ri,j ∈ N are introduced. The current active flow between
i and j is stored in ci,j and ri,j counts how often active and
passive flows changed their roles. We use the notation cci,j
for denoting the complementary value of ci,j in the sense
that cci,j = 2 for ci,j = 1 and vice versa.

The additional logic for achieving the desired convergence
properties of the PCF algorithm only affects the handling

Input: Local initial data xi and local weight wi for each
node i
Output: Estimate of global aggregate (

∑
k xk)/(

∑
k wk)

. . . initialization . . .
1: vi ← (xi, wi), ϕi ← (0, 0)
2: for each j ∈ Ni do
3: {ϕi, fi,j,1, fi,j,2} ← (0, 0)
4: {ci,j , ri,j} ← 1
5: end for

. . . on receive . . .
6: for all received tuples 〈fj,i,1, fj,i,2, cj,i, rj,i〉 do
7: if ci,j 6= cj,i and ri,j = rj,i then
8: ci,j ← cj,i
9: end if

10: if ci,j = cj,i then
11: ϕi ← ϕi − (fi,j,ci,j + fj,i,ci,j )
12: fi,j,ci,j ← −fj,i,ci,j
13: if (fj,i,cci,j = −fi,j,cci,j and ri,j = rj,i) then
14: fi,j,cci,j ← 0
15: ri,j ← ri,j + 1
16: else
17: if (fj,i,cci,j = 0 and ri,j + 1 = rj,i) then
18: ci,j ← cci,j
19: fi,j,cci,j ← 0
20: ri,j ← ri,j + 1
21: else
22: if ri,j ≤ rj,i then
23: ϕi ← ϕi − (fi,j,cci,j + fj,i,cci,j )
24: fi,j,cci,j ← −fj,i,cci,j
25: end if
26: end if
27: end if
28: end if
29: end for

. . . on send . . .
30: k ← choose a neighbor uniformly at random
31: fi,k,ci,k ← fi,k,ci,k + ((si, wi)− ϕi)/2
32: ϕi ← ϕi + ((si, wi)− ϕi)/2
33: Send 〈fi,k,1, fi,k,2, ci,k, ri,k〉 to k

Figure 5. The PCF algorithm for the local computation of a global
aggregate. The current local estimate of a node is computed as ei(1)/ei(2),
with ei = vi − ϕi.

of received messages (lines 6–29) whereas the initialization
part (lines 1–5) and the part for sending messages (lines
30–32) are completely analogous to the PF algorithm. For
a received message we distinguish two cases: In the first
case (lines 7–9), the receiving node gets informed about a
change of active and passive flow and updates its local values
accordingly. In the second case (lines 10-29), first the active
flow is included into ϕi analogously to the PF algorithm and
afterwards the passive flows are processed. In the handling of
the passive flows we have to distinguish the following three
cases: (i) lines 13–16: Flow conservation was achieved and
the process of setting the passive flows to zero is started,
(ii) lines 17–21: The process of setting the passive flows
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Figure 6. The accuracy experiments carried out for the PF algorithm in
Section II-B (see Figure 3) are repeated for the PCF algorithm. In all cases
the target accuracy of ε = 10−15 is reached in strong contrast to the results
achieved by the PF algorithm (cf. Figure 1).

to zero was successful and the active/passive flows change
their roles and (iii) lines 22–25: Flow conservation does not
hold for the passive flows and the passive flows are treated
like the active flows.

Strictly speaking, the algorithm shown in Figure 5 cannot
tolerate bit flips. In order to preserve the full range of fault
tolerance capabilities of the PF algorithm also in the PCF
algorithm, updated flows cannot be included directly into the
overall sum of flows ϕi (cf. lines 11, 23 and 32). Hence, in
this case, the sum of flows gets only updated prior to the
“cancellation” of a flow (cf. line 19). Therefore, active and
passive flows have to be included into the computation of the
local estimate to provide correct results. In contrast to the
summation in the PF algorithm this summation is much more
robust due to the different behavior of the flow variables as
described above.

B. Correctness and Convergence

By the fact that for the active flows nothing else than
the PF algorithm is executed it is clear that the PCF
algorithm and the PF algorithm are equivalent and produce
(theoretically) identical results. Hence, the correctness and
convergence of the PCF algorithm follow immediately from
the respective properties of the PF algorithm. Moreover,
since the aggregate data is only exchanged via flows, the
PCF algorithm directly inherits—depending on the concrete
implementation—all or almost all fault tolerance properties
from the PF algorithm.

Summarizing, the PCF algorithm is equivalent to the PF
algorithm and provides the additional property that all flow
variables converge to the target aggregate. This is achieved
by overlapping the actual computation (active flows) with
incorporating conserved flows in a locally stored overall sum
of flows (passive flows).
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Figure 8. Factorization errors of the dmGS(PF) and the dmGS(PCF) on
a failure-free hypercube network.

C. Experimental Results

To illustrate the superior fault tolerance and accuracy
properties of the PCF algorithm over the PF algorithm we
repeat the experiments carried out in Sections II-B and II-C
replacing the PF algorithm with the PCF algorithm.

First, in Figure 6 we study how the techniques introduced
in the PCF algorithm influence the resulting accuracy. We
see that in all cases the chosen target accuracy of ε =
10−15 is reached. Moreover, the error increase with growing
network size is much slower than for the PF algorithm
(cf. Figure 3).

The second problem which we discussed in Section II-C
is an inefficient failure handling of the PF algorithm which
leads to major fall-backs in convergence. In Figure 7 the
superior fault tolerance properties of the PCF algorithm
are depicted by a direct comparison to the results achieved
by the PF algorithm (shown in light colors and dashed).
For the experiments in Figs. 4 and 7 we initially used
exactly the same random seed, i. e., the simulated random
communication schedules are the same. Hence, since the
PF algorithm and PCF algorithm behave identically for the
same communication schedules and initial data (if no failures
occur), we see no difference between the two algorithms
until the first failure occurs. After the failure handling, we
see that the PCF algorithm tolerates the failure without any
fall-back in the convergence in strong contrast to the PF
algorithm.

IV. A HIGHER LEVEL APPLICATION

We investigate a distributed QR factorization algorithm
as a prototypical example of how a distributed reduction
algorithm can be used for designing distributed higher level
matrix computations. A fully distributed QR factorization
(dmGS) based on the push-sum algorithm [6] has been
introduced in [11]. The dmGS originates from the modified
Gram-Schmidt orthogonalization method [24], but summa-
tions in each computation of a vector norm or a dot product
are replaced by a call of a distributed reduction (originally
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Figure 7. The fault tolerance experiments carried out for the PF algorithm in Section II-C (see Figure 4) are repeated for the PCF algorithm. From the
point on where the results differ, i. e., the point where the failure handling takes place, the results for the PF algorithm (depicted in Figure 4) are indicated
in light colors.

the push-sum algorithm). Except for the distributed summa-
tion via reductions, all computations are done locally in the
nodes.

However, beyond reported message loss or known un-
availability of communication links, the push-sum algorithm
cannot tolerate any types of failures. In contrast to push-
sum, the PF algorithm and the PCF algorithm are much
more fault-tolerant in terms of tolerating link and node
failures as well as soft errors like bit flips or message
loss. Since dmGS uses distributed reductions as a black
box, it is beneficial to use such resilient algorithms as a
building block for designing more robust distributed matrix
algorithms. However, it needs to be explored whether the
distributed algorithms based on fault tolerant reduction al-
gorithms also preserve known (numerical) properties of the
standard algorithms without fault tolerance capabilities. In
the following we denote with dmGS(PF) and dmGS(PCF)
the dmGS algorithm based on the PF algorithm and PCF
algorithm, respectively.

We compared dmGS(PF) and dmGS(PCF) in terms of
a relative factorization error ‖V − QR‖∞/‖V ‖∞ when
factorizing random matrices V ∈ Rn×16, n ≥ m distributed
over a hypercube with N nodes. In our experiments, we
chose n = N , but dmGS works for all n ≥ N (see [11]).
Since dmGS does not depend on a specific reduction al-
gorithm, we expect that the improvements of the PCF
algorithm over the PF algorithm shown in Section III directly
translate to dmGS, e. g., dmGS(PCF) should deliver more
accurate results than dmGS(PF). Each reduction was given
a prescribed target accuracy ε = 10−15 in all simulations,
and a maximal number of iterations per reduction was set
to terminate reductions which did not achieve this target
accuracy.

The factorization error of dmGS(PF) and dmGS(PCF) is
depicted in Figure 8. All results shown are averaged over
50 runs to account for the variations due the randomized
communication schedules of the gossip-based reduction al-

gorithms. We see that dmGS(PF) does not reach the accuracy
ε = 10−15 prescribed as target accuracy for the reductions.
Moreover, with increasing number of nodes the factorization
error increases. In contrast, dmGS(PCF) always achieves the
target accuracy ε = 10−15 set for individual reductions and
the factorization error does not increase with the number
of nodes. Similarly, the improved accuracy of the PCF
algorithm translates to the orthogonalization error of dmGS.

V. CONCLUSIONS

State-of-the-art distributed reduction algorithms like the
PF algorithm scale equally well with the number of nodes
as their deterministic parallel counterparts. Moreover, dis-
tributed approaches show an exciting potential for fault
tolerance at the algorithmic level and can in principle tolerate
link and node failures as well as soft errors like bit flips or
message loss.

We analyzed the PF algorithm and identified significant
shortcomings in terms of numerical accuracy as well as
in terms of performance degradations caused by its failure
handling mechanism. Moreover, we presented the novel PCF
algorithm which resolves the discovered problems of the PF
algorithm. We performed numerical experiments to illustrate
the superior properties of the PCF algorithm. While the
PCF algorithm overcomes all discovered shortcomings of
the PF algorithm, it preserves the attractive properties of
the PF algorithm in terms of flexibility, scalability and fault
tolerance. Finally, we illustrated for the case of a fully
distributed QR factorization algorithm that the improvements
achieved with the PCF algorithm can be directly exploited
in the context of higher level distributed matrix operations.
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