
Event-driven Actors for Supporting Flexibility and
Scalability in Service-based Integration Architecture

Huy Tran and Uwe Zdun

Software Architecture Research Group
University of Vienna, Austria.

firstname.lastname@univie.ac.at

Abstract. Service-based software systems are often built by incorporating func-
tionalities from other software systems or platforms. A widely used approach in
practice is to introduce an intermediate integration layer for hiding the complex-
ity and heterogeneity of the integrated systems or platforms. However, existing
approaches introduce limited support for the flexibility of the integration archi-
tecture. It is challenging to alter the integration architecture, e.g., due to some ex-
ceptions or unanticipated situations such as peak loads or emergencies, because
of rigid dependency structures in the integration architecture defined at design
or deployment time. In this paper, we propose DERA as a novel approach that
exploits event-driven architecture concepts for enhancing the flexibility and scal-
ability of service-based integration architectures. Our approach provides primi-
tive concepts that can easily be analyzed with tools or be used to depict a current
snapshot of the integration architecture using graphical notations close to the in-
tuitive perception of stakeholders. We show the applicability of DERA through
an industrial case study in the field of software platform integration and evaluate
the scalability of our approach.

Keywords: Event-driven architecture, event actors, services, service-based integration
architecture, flexibility, scalability, substitutability.

1 Introduction

Service-oriented architectures (SOA) provide efficient means for exposing functional-
ity of software systems or platforms in terms of services with standardized interfaces.
Service-based systems can be built by incorporating services provided by other sys-
tems or platforms. Instead of directly dealing with the heterogeneity and variety of
the integrated systems or platforms, an intermediate integration layer is often intro-
duced for bringing systems or platforms into the service-oriented world and providing
the required service integration and composition logic [15]. Figure 1 illustrates a high-
level overview of a simplistic platform integration layer design. There is a considerable
amount of existing approaches for realizing the integration layer, such as using compos-
ite services, enterprise service buses, messaging infrastructures, or business processes.

A certain flexibility is often required at the level of the integration layer to not only
support rapid tailoring and customization of the integration architecture but also enable



Platform
Service

Platform
Service

Adapter

Facade

Application
Component

Application
Component

S
er

vi
ce

-b
as

ed
 

p
la

tf
o

rm
 in

te
g

ra
ti

o
n

Adapter
A

p
p

lic
at

io
n

P
la

tf
o

rm

Data
Mapper

Fig. 1: Overview example for service-based platform integration architectures

the ability to deal with some exceptions or unanticipated situations such as peak loads
or emergencies. The mentioned existing approaches introduce only limited support for
the flexibility of the integration architecture through dynamic bindings of the consti-
tuting elements (e.g., dependency injection or aspect weaving techniques are used in
some of the mentioned approaches) [7,9,8]. Altering the integration architecture is very
challenging because of the rigid dependency structures in the integration architecture
defined at design or deployment time. Such rigid dependencies also might cause scala-
bility problems as sophisticated algorithms and coordination techniques are required to
efficiently schedule and distribute integration and composition logic [14,4].

Event-driven communication styles are potential solutions for facilitating high flexi-
bility, scalability, and concurrency of distributed systems [18]. Due to the intrinsic loose
coupling of the participants, the event-based architectural style is used in many large-
scale distributed software systems today. The advantages of event-driven communica-
tion styles have been extensively exploited in a considerable amount of work propos-
ing different combinations of event-driven architectures (EDA) with business process
management and SOAs [12,25]. To the best of our knowledge, none of the existing
approaches has exploited EDA for resolving the aforementioned problems in service-
based integration architectures. Another issue hindering the use of EDA is that software
architects and developers often find the event-driven communication style unintuitive
(compared to other paradigms such as remote procedure calls or messaging) and large
architectures with many event actors and numerous events hard to comprehend.

In this paper, we propose DERA as a novel approach leveraging the event-driven
architecture style to enable flexibility of integration architectures for supporting var-
ious kinds of runtime evolution and dynamic adaptation while minimizing the non-
deterministic nature of event-based applications. In particular, our approach encapsu-
lates constituting elements (e.g., components, functions, adapters, proxies) using event
actors with explicit interfaces. It exploits the event-based communication style to loosen
the dependencies among the actors. The interfaces of the actors, described in terms of
incoming and outgoing events, are formally specified and constrained to, on the one



hand, enable the support for changing actors at runtime (e.g., replacing actors or chang-
ing their execution order). On the other hand, well-defined interfaces of actors also
reduce the non-deterministic behavior in EDAs. The proposed graphical notations of
the DERA concepts can be used to visually depict a current snapshot of the event-
driven service integration architecture that is closer to the stakeholders’ perception than
studying only the event actors’ inputs and outputs and their event processing rules. In
this paper, we present concepts and formalizations to establish the foundation of our
approach as well as a prototypical implementation. We show the applicability of our
approach using an industrial case study in the field of service platform integration. Fi-
nally, we evaluate the performance and scalability of our approach, as good scalability
is one of the central promises of EDAs and a central integration layer is a potential
bottleneck in an integration architecture. We can show that our approach offers linear
scalability and has only a moderate performance overhead compared to a hard-coded
Java implementation with rigid dependencies among the actors.

The paper is structured as follows. Section 2 introduces the case study. We present
the DERA (Dynamic Event-driven Actors) approach in Section 3. In Section 4, we de-
scribe a prototypical implementation of DERA, revisit the case study and elaborate on
how DERA can help to improve the flexibility in the case study, and report on the evalu-
ation of DERA’s performance and scalability. We compare to related work in Section 5,
and finally we conclude and discuss future work in Section 6.

2 Case study

We illustrate the application of the concepts presented in this paper in an integration
scenario of a warehouse operator application extracted from an industrial case study in
the field of service platform integration1. In the context of this application, there are
three different domain-specific service platforms, namely, a yard management system
(YMS), a warehouse management system (WMS), and a remote monitoring system
(RMS) that provide a wide variety of services. The warehouse operator application shall
utilize these services to perform various necessary tasks that are triggered by events
such as the arrival of a truck carrying products to be stored in the warehouse. The three
platforms shall be integrated using an service-based platform integration layer akin to
the one in Figure 1, and the warehouse operator application shall use the services of the
integration layer to access the services of all three platforms.

We present in Figure 2 a schematic view of one scenario of the warehouse opera-
tor application. The lifelines of the sequence diagram represent the proxy components
which are responsible for interacting with the service platforms involved in the scenar-
ios. One of the crucial requirements for the scenario is that we want to be able to alter
the composition logic of the warehouse operator in a flexible manner at runtime. For
instance, the warehouse operator might not need to perform getFreeDock because the
arriving truck is specially assigned to a dedicated dock in the yard. Another example is
that the warehouse operators need to call the warehouse staff to prepare for unloading
products in the truck. We will revisit and analyze this scenario in Section 4.

1 http://indenica.eu/fileadmin/INDENICA/user_upload/d51-casestud.pdf

http://indenica.eu/fileadmin/INDENICA/user_upload/d51-casestud.pdf


YMS WMS RMS

truckArrived(truckID)

truckReady(truckID)

startUnloading(truckID)

truckLeft(truckID)

unloadingFinished(dockID)

getFreeDock

moveTruckToDock(dockID)

store(truckID,unitID)

registerStorageUnit(unitID)

transportStorageToBinLocation(unitID,storageID)
unitStored(unitID,storageID)

searchAndReserveBinLocation(unitID, storageID)

storeStarted(unitID)

loop(# bins)

requestCamera(locationID)requestCamera(userID)

receiveVideo(locationID)receiveVideo(userID)

par

Operator

Se
rv

ic
e-

ba
se

d 
Pl

at
fo

rm
 In

te
gr

at
io

n

Fig. 2: The behavior of the unloading scenario

3 Dynamic Event-driven Actors (DERA)

3.1 DERA primitive concepts

Figure 3 depicts the meta-model of the primitive concepts forming a DERA system.
The semantics of these basic event actors are provided in Table 1. The central notions
of DERA are events and event actors. An event can be considered essentially as “any
happening of interest that can be observed from within a computer” [20] (or a software
system). An example of an event from the business domain is the arrival of a purchase
order. An event is associated with one or more ObjectReferences for obtaining refer-
ences to data sources managed in ObjectPools. Events may also have some attributes
such as their unique identifier, correlation identifiers, timing attributes, and so on.

An event type is a representation of a class of events that share a common set of
attributes. An instance of an event type is a concrete occurrence of that event type
that has a unique identifier and is instantiated with concrete values of the event type’s
attributes. An example of an event type are incoming customer orders, whilst the corre-
sponding instance of this type is an incoming order from Alice. Given a concrete event
e, typeof(e) will be used to denote the event type of e.

The encapsulation of a particular computational unit (e.g., an executable function, a
component, a proxy, or an adapter) that performs a concrete task, for instance, executing
composition logic of a number of service invocations, performing the role of a service
adapter or proxy, accessing and transforming data, to name but a few, is an event actor



*event

+ register()
+ unregister()
+ fire()
+ activate()
+ deactivate()
+ dispose()

Execution
Domain

actor
* + notify()

+ match()

EventActor

+ trueEvent[*]
+ falseEvent[*]

Condition Barrier

+ id: String
+ eventAttributes[*]

Event

+ reference : String

ObjectReference

*

+ inputEvent[*]
+ outputEvent[*]

ActorInterface

EventBridge

/src target1 *

+ create()
+ read()
+ update()
+ delete()

ObjectPool + start()

Trigger

+ eval()

Predicate 1
predicate

+ func()

Behavior
behavior 1

*

*

* objectRef

event

objectRef

Fig. 3: Meta-model for the primitive DERA concepts and their relationships

(or actor for short). Each actor has a well-defined interface represented by the Actor-
Interface class. The actor’s interface defines a set of events that the actor awaits (aka
input events) and a set of events that the actor will emit after finishing its execution (aka
output events). Particular behavior of each actor is defined through a concrete instance
of the Behavior class. The execution of an actor is triggered by the arrival of any of
the input events. At the end of its execution, the actor will emit all of its output events
that, in turn, may trigger the executions of other actors.

In Table 1, we present the graphical notations of the DERA actors that can be used
to visually depict a snapshot of a DERA system at a particular point in time. A formal
behavior definition for each type of actor is given as a Finite State Machine (FSM).
The transitions between two states represents the occurrence of DERA operation invo-
cations such as (un)register, (de)activate, notify, match, func, fire, and so
forth, (see Definition 2 below). Any snapshot of a DERA system can easily be trans-
formed into an FSM or another formal representation (like a Petri Net) to perform
formal analysis of the system snapshot. The DERA prototype is based on Java. De-
veloping DERA applications using the Java APIs is rather tedious as they offer a lower
abstraction level than DERA system models. For this reason, we additionally provide
DeraDSL, a domain-specific language (DSL) for supporting the model-driven specifi-
cation of DERA systems. The second column of Table 1 shows the code required for
definingeach of the actor type in DeraDSL. Note that DeraDSL’s constructs will be
mapped to the meta-model depicted in Figure 3 and consequently to the Java imple-
mentation of DERA for execution. We explain DeraDSL in detail in Section 4.1.

Event actors are defined based on well-defined event interfaces:

Definition 1 (Event actor interface). An interface Ix of a DERA event actor x can be
described by a 2-tuple (•x, x•), where •x is a set of input events expected by x and x•
is a set of output events to be emitted by x (•x and x• can be empty sets).

The benefits of specifying well-defined interfaces for DERA event actors are man-
ifold. Firstly, they enable us to conceptually capture a snapshot of current state of the



Actor Notation DeraDSL construct Formal behavior definition

EventActor EventActor <name>

input [inputEvents]

output [outputEvents]

func [actor-behavior]

activate

unregister

notify

match

func

fire

register unregister

deactivate

Barrier Barrier <name>

input [inputEvents]

output[outputEvents] deactivate unregister

notify

match fire

register unregister

got 
all input

¬ got all 
input

activate

match

Condition Condition <name>

input[inputEvents]

when-true[trueEvents]

when-false[falseEvents]

eval [predicate]

deactivate unregister

notify

match

register unregister

activate

eval() = true

¬ eval() = true

fire(trueEvents) fire(falseEvents)

Trigger Trigger <name>

output [outputEvents] activate
unregister

fire

register unregister

deactivate

start

EventBridge EventBridge <name>

target [targetDomains] activate
unregister

notify

register unregister

deactivate

notify(target)

Table 1: Notations and formal definitions of behaviors of DERA actors



DERA system and derive a directed graph that comprises event actors connected via
their inputs and output events at design time or runtime. As a result, we are able to
support monitoring and analysis of important properties such as reachability (safety or
deadlock checking), liveliness, performance, quality of services, of DERA systems de-
scribed in terms of such graphs. On the other hand, well-defined interfaces also enable
us to support changes at runtime, e.g., substituting an event actor by another with a
compatible interface or changing the execution order of event actors by substituting an
event actor by another having the same input events but different output events.

3.2 DERA architecture

Figure 4 shows an overview of the DERA tool-chain on the left-hand side and the DERA
runtime architecture on the right-hand side. DeraDSL will be described in Section 4.1.
In this section, we focus on the DERA runtime architecture.

Developer

DeraDSL

DERA
Code Generator

DERA Engine

DeraDSL code

Executable codedeploys/
manages/
monitors/

Execution Domain

Execution Domain

Execution Domain

event
bridge

event
bridge

develops/
verifies

Fig. 4: Overview of DERA development toolchain and system architecture

DERA is designed so that each event actor only concentrates on its own task, its
well-defined interfaces defining its input events and the events it is going to emit. There
are no tight dependencies between two particular event actors except “virtual connec-
tions” established via the event-based communications. This is realized using the notion
of event channels which are abstractions used for delivering events among communicat-
ing parties. All actors in an execution domain of a DERA system are connected to the
same channel, and all events are published via the channel. All events published on a
channel are consumed by all actors registered for the channel. Hence, actors are loosely
coupled. This loose coupling leads to the flexibility and scalability of DERA. That is,
event actors can be distributed for better load balancing or performance optimization
purposes without requiring any sophisticated distribution algorithms.

Event channels are also used as a means to implement logical execution domains.
Execution domains are useful for supporting runtime governance activities such as de-
ployment, management, and monitoring, as they can be used to group event actors and
events. An execution domain might host one or many DERA applications while a cer-
tain DERA application can span across several execution domains. Two DERA exe-
cution domains can be connected by EventBridges which are special event actors



responsible for forwarding events from a DERA execution domain to another (see Fig-
ure 4). The original function of event bridges may also be extended with extra features
such as enriching or transforming the content of events.

Definition 2 (DERA system). A DERA system S can be described by a 4-tuple
(E ,A, C,O), where

1. E is a finite set of events.
2. A is a finite set of event actors. Each event actor x ∈ A has a well-defined interface
Ix(•x, x•), where •x ⊆ E and x• ⊆ E and can perform a particular function.

3. C is an event channel that is responsible for delivering an event received from a
certain event actor exactly once to all other actors registered to the channel. An
event actor x ∈ A consumes an incoming event e ∈ E from the channel C only if
match(x, e)=true (for definition of match() see below). The channel is assumed
to be reliable, i.e., no message is lost or altered.

4. O is a set of basic operations, including (but not limited to)
– register(x), where x ∈ A, indicates that the actor x is registered to the event

channel C.
– unregister(x), where x ∈ A, indicates that the actor x unregisters to the

event channel C.
– fire(x,E) or fire(x, e), where x ∈ A, E ⊆ E , and e ∈ E , indicates that the

actor x fires a set of events E or a single event e, respectively.
– match(x, e), where x ∈ A, e ∈ •x, returns true if the event e matches the

interface of the actor x and false otherwise.
– func(x), where x ∈ A, denotes a concrete task or an arbitrary user-defined

behavior of the event actor x.
– deactivate(x) and activate(x), where x ∈ A: deactivate(x) is used for

putting the execution of x on hold and activate(x) is used for resuming its
execution, for instance, after a deactivate(x).

The interface operations register() and unregister() are mainly used for the
management of a DERA execution domain, and deactivate() and activate() deal
with lifecycle management. The operation func() is the placeholder where one can put
in a certain user-defined behavior such as invoking a service, accessing a database, or
opening and reading a local file. Please note that the execution of the operation func()

is not allowed to change the event actor’s interface (i.e., input and output events) or emit
new events. The main goal of this constraint is to reduce the non-deterministic nature of
the event-based communication styles employed in DERA. Changing an event actor’s
input and output events must be explicitly declared through its interface. As a result, we
can conceptually establish the dependencies between event actors by observing their
interface descriptions. The dependencies can be used for many important tasks such as
monitoring and verifying properties of DERA systems and applications.

Definition 3 (Event matching). Given a DERA system S described by the 4-tuple
(E ,A, C,O). Let x be an event actor (x ∈ A) having an interface Ix = (•x, x•).
An event e1 ∈ E matches the interface Ix if and only if there exists at least one
event e2 ∈ •x such that e1 and e2 are of the same event type (i.e., typeof(e1) =

typeof(e2)).



Definition 4 (DERA application). A DERA application Φ running in a DERA system
S can be described by a 4-tuple (A,E,Estart, Efinish), where

– A ⊆ A is a finite set of event actors constituting the functionality of the application;
– E ⊆ E is a finite set of events published and consumed by the event actors of A;
– Estart ⊆ E is a finite set of events that indicate the start of the application;
– Efinish ⊆ E is a finite set of events that indicate the end of the application.

module eu.indenica.casestudy.yms
domain YMS {
Trigger y1 output [ymsTruckArrived]
EventActor y2 input [facadeMoveTruckToDock] output [ymsMoveTruckToDockFinished]
func [MoveTruck]

EventActor y3 input [ymsMoveTruckToDockFinished] output [ymsTruckReady]
func [CheckTruckReadyForUnloading]

Barrier y4 input [ymsTruckReady, facadeStartUnloading] output [ymsStartedUnloading]
EventActor y5 input [ymsStartedUnloading, ymsUnloadingNotFinished] output [ymsStore]
func [StoreUnit]

Condition y6 input [ymsStore] when-true [ymsUnloadingFinished]
when-false [ymsUnloadingNotFinished]

EventActor y7 input [ymsUnloadingFinished] output [ymsTruckLeft] func [CheckTruckInDock]
Application YMS start-with [ymsTruckArrived] end-with [ymsTruckLeft]

}
y3y1 y2

y7

y4 y5 y6

Fig. 5: DERA application and its corresponding graphical representation

We present in Figure 5 an excerpt of the composition logic of the proxy component
of the integration architecture that is responsible for interacting with the YMS platform
in the scenario shown in Figure 2. The proxy component is described using the pro-
gramming constructs provided by DeraDSL. Given the specification of the actors and
their interfaces, we can build an intuitive graphical representation of a snapshot of the
application using the notation from Table 1. Note that the dashed lines among event ac-
tors are not real dependencies but virtual connections achieved by analyzing the inputs
and outputs of the actors captured in the snapshot of the application.

3.3 Event actor substitution

There are several studies in programming languages (especially object-oriented pro-
gramming) and component-based systems, on the substitutability of data types, objects,
and components [22,17]. The event actor substitution in approach is based on the well-
known Liskov substitution principle [17]. There are three crucial features of DERA
actors that enable us to substitute a certain actor at runtime. Firstly, each actor x explic-
itly exposes a well-defined event-based interface Ix(•x, x•). Secondly, the interactions
among actors are loosely coupled through event-based communication. Thirdly, the en-
capsulation of a computational unit that performs a concrete task (i.e., the operation



func() of an EventActor) is not allowed to alter the interface. These features allow
us to substitute an actor by one or a set of other actors that introduce (1) an interface
which is compatible to the original actor’s interface (called strong substitution below)
or (2) a different interface (called weak substitution below).

Strong substitution occurs when the developers have to replace or upgrade an ex-
isting functionality with a different (e.g., better or bug-fixed) version while preserving
the overall structure and behavior of the DERA application. It is achieved by defining a
new actor y with the same interface as x. x can be replaced with y using the operation
deactivate(x) to temporarily put the execution of x on hold, and using the operations
register(y) and activate(y) to enable the execution of y.

Definition 5 (Strong substitution). Let x be an event actor having an interface
Ix(•x, x•). An event actor y posing an interface Iy(•y, y•) is said to be a strong
substitution for x if all the following constraints are satisfied:

1. Type requirement: y must be of the same type or a subtype of x. That is, if x is of type
EventActor, then y must be of type EventActor or a subtype of EventActor.

2. Input requirement (applied for every event actor x, such that •x 6= ∅): •y = •x,
i.e., y has to be able to accept the same input events as x does.

3. Output requirement (applied for every event actor x, such that x• 6= ∅): y• = x•,
i.e., y has to fire the same output events as x does.

Weak substitution occurs when the developers want to alter the structure and be-
havior of one or all running instances of a DERA application, for instance, skipping
some tasks to deal with exceptions or unanticipated circumstances such as peak loads
and emergencies or adding new functionalities. This is difficult to achieve with many
existing integration architectures due to rigid dependency structures. We can support
the required flexibility in DERA by substituting existing event actors with newly de-
fined event actors posing different interfaces. This kind of substitution is called weak
substitution as it is not going to preserve the original structure and behavior.

Definition 6 (Weak substitution). In a DERA applicationΦ = (A,E,Estart, Efinish),
let x ∈ A be an event actor having an interface Ix(•x, x•). A weak substitution y for
x can be achieved by relaxing one or more of the conditions for strong substitutions.

To illustrate possible relaxations of strong substitution conditions, let us consider
the following examples:

1. Type requirement: x and y can be instances of a) the same or b) different types.
2. Input requirement (applied for every event actor x, such that •x 6= ∅): there are no

constraints on the input, but a potential case may be one of the following:
a) •x ⊆ •y, i.e., y is able to be triggered by more input events than x,
b) •y = •x ∩

(⋃
z•,∀z ∈ A ∧ z 6= x

)
, i.e., y only considers to accept a subset

of x’s input events that are going to be emitted by other event actors,
c) •x ∩ •y = ∅

3. Output requirement (applied for every event actor x, such that x• 6= ∅): there are
no constraints on the output, but a potential case may be one of the following:



a) x• ⊆ y•, i.e., y can emit more events than x.
b) y• = x• ∩

(⋃
•z,∀z ∈ A ∧ z 6= x

)
, i.e., y only considers to fire a subset of

x’s output events that are going to be consumed by other event actors.
c) x• ∩ y• = ∅

Weak substitutions lead to different levels of changes ranging from light or moder-
ate adjustments (e.g., 2(a), 2(b), 3(a), and 3(b)) to significant and disruptive alterations
(e.g., 2(c) and 3(c)) of event actors’ interfaces. In some situations, these changes may
become undesirable as they can result in anomalies such as dead tasks, deadlocks, or
livelocks. It would be unrealistic to require the developers to ensure that a certain sub-
stitution must lead to an expected and sound state of the running DERA applications.
Instead, exploiting powerful reasoning mechanisms based on formal methods such as
process algebras [16,19] or Petri-nets [21] can help developers to analyze a certain
runtime snapshot of DERA applications to detect potential flaws and correct the sub-
stitution before applying it. Also, existing approaches on behavior inheritance [5] or on
using change patterns for preserving certain system properties [24] can be leveraged
in the context of DERA to enhance the soundness of actor substitutions. Studying the
applicability of those mechanisms is one of our planned future works.

4 Implementation – Case Study Revisited – Evaluation

4.1 DERA Implementation

A prototypical implementation of the DERA concepts has been developed to show the
feasibility of our approach and implement the case study presented in the next sec-
tion. In our implementation, we have defined an abstraction layer covering all primitive
concepts of DERA presented in Figure 3. This layer is independent from the underlying
technologies. The implementation layer realizes the concepts of the abstraction layer us-
ing a particular technology, in our case the Java Concurrency Utilities packages2. These
packages, which are available in Java JDK 1.5 and later, provide sufficient concurrency
utilities. In particular, in our DERA implementation, the event-driven communication
style is realized using asynchronous event callbacks. The creation and execution of
event actors are managed using the built-in ExecutorService with fixed thread pools
and the synchronization among actors is done through the synchronized() construct.

The DERA EventChannels represent a means for delivering events among com-
munication parties and can be realized by asynchronous communication styles. Thus,
it is possible to incorporate existing powerful libraries and frameworks such as Java
Message Service3 or PADRES [11] in the DERA implementation. For the evaluation
purpose presented in the next section, we opted for implementing DERA EventChan-

nels based on pure Java asynchronous multi-threading. Each EventChannel has a
number of event distributors mapped to a pool of light-weight Java threads. These event
distributors receive and deliver events following a round-robin scheduling strategy.

The DERA EventBridges used to enable DERA systems to support distributed
event processing (see Figure 4) have been realized using REST Web services. REST

2 http://docs.oracle.com/javase/1.5.0/docs/guide/concurrency/index.html
3 http://jcp.org/en/jsr/detail?id=343

http://docs.oracle.com/javase/1.5.0/docs/guide/concurrency/index.html
http://jcp.org/en/jsr/detail?id=343


services are a good match for DERA’s flexible and scalable architecture because of
the use of the scalable and stateless concepts of the Web in the REST architectural
style. In the DERA implementation, the REST services are used for transmitting events
between two (possible distributed) execution domainA andB that are connected via an
EventBridge. The EventBridge is realized using a REST Service that is connected
as an event actor to domain B. An event actor on domain A acts as a REST client
forwarding all events raised within A to the REST service. The REST service delivers
all received events to B. A bidirectional bridge can be established by adding a second
REST service to the event bridge actor on channel A.

As mentioned before, DeraDSL has been developed aiming at minimizing the noise
of Java language structures and supporting efficient DERA application development.
We leverage Xtext4, which is a powerful framework supporting textual language devel-
opment with several advanced features, for instance, syntax coloring, code completion,
validation, excellent integration with Java, and many others, to implement DeraDSL.
Furthermore, combining Xtext with Xtend5 helps us on mapping DeraDSL’s elements
onto the Java-based constructs and libraries that implement DERA. We partially de-
scribed some primary elements of DeraDSL in Table 1 and used them to illustrate the
development of DERA applications in Figure 5.

4.2 Case study revisited

Developing the warehouse operator application, motivated in Section 2, using the
DERA prototype is fairly straightforward. First, we need to define an EventActor

for encapsulating each task to be carried out. Then, we need to assign the input and
output events of that actor. A Barrier may be necessary when we need to wait for
more than one event arriving before some other tasks can be performed. For decisions,
such as checking if there are enough storage locations in the warehouse to store all
units, Condition is used. We show an excerpt of the DeraDSL code defining the
warehouse operator composition logic using DERA actors in Listing 1.1. In this
excerpt, the concrete definitions of the operation func() of the event actors are in a
separate modules and can be cross-referenced. Thus, these functions are omitted in
the code. The management operations such as (de)register and (de)activate

are also not visible but we will discuss them in the next section. The warehouse
operator requires some events from the integration facade, namely, PlatformFacade,
defined in the lower part of the code excerpt. Thus, we create an event bridge named
OperatorToFacade for delivering events from the WarehouseOperator domain
to the PlatformFacade domain. Likewise, the event bridge FacadeToOperator is
defined in the PlatformFacade domain for sending events back.

module eu.indenica.casestudy.warehouse.operator
domain WarehouseOperator {
EventActor TruckArrivedNotified input [facadeTruckArrived] output [
operatorTruckArrivedNotified]

EventActor GetFreeDock input [operatorTruckArrivedNotified] output [operatorGetFreeDock]
Barrier b1 input [facadeGetFreeDockFinished, operatorGetFreeDock] output [
operatorGetFreeDockFinished]

4 http://xtext.org
5 http://xtend-lang.org

http://xtext.org
http://xtend-lang.org


EventActor MoveTruckToDock input [facadeGetFreeDockFinished] output [
operatorMoveTruckToDock]

EventActor RequestCamera input [operatorTruckArrivedNotified] output [operatorRequestCamera
]

Barrier b2 input [operatorRequestCamera, facadeRequestCameraFinished] output [
operatorRequestCameraFinished]

EventActor VideoReceiving input [operatorRequestCameraFinished] output [
operatorReceiveVideo]

Barrier b3 input [operatorMoveTruckToDock, facadeMoveTruckToDockFinished,
operatorReceiveVideo, facadeReceiveVideoFinished,facadeTruckReady] output [
operatorTruckReadyNotified]

EventActor StartUnloading input [operatorTruckReadyNotified] output [operatorStartUnloading
]

Barrier b4 input [operatorStartUnloading, facadeStoreStarted] output [
operatorStoreStartedNotified]

EventActor StoringMonitoring input [operatorStoreStartedNotified,
operatorStoringNotFinished] output [operatorStoringMonitoring]

Barrier b5 input [operatorStoringMonitoring, facadeUnitStored] output [operatorUnitStored]
Condition isStoringFinished input [operatorUnitStored] when-true [operatorStoringFinished]
when-false [operatorStoringNotFinished]

Barrier b6 input [operatorStoringFinished, facadeUnloadingFinished, facadeTruckLeft] output
[operatorFinished]

EventBridge OperatorToFacade target [eu.indenica.casestudy.facade.PlatformFacade]
Application WarehouseOperator start-with [facadeTruckArrived] end-with [operatorFinished]

}
module eu.indenica.casestudy.facade
domain PlatformFacade {
...
EventBridge FacadeToOperator target [eu.indenica.casestudy.warehouse.operator.
WarehouseOperator]

...
}

Listing 1.1: Excerpt of the code defining the warehouse operator application

Even though DeraDSL can help on better formulating DERA elements, the code
shown in Listing 1.1 is still not close to the developers’ perception. At a certain stage,
for instance, after finishing development or before deploying, a snapshot of a DERA
system and application can be taken and visually depicted using the graphical notations
described in Table 1. Accordingly, we can establish an equivalent intuitive graphical
representation, as shown in Figure 6, of the aforementioned code. The events from the
PlatformFacade domain to the WarehouseOperator domain are shown for illustrat-
ing the relationship between two domains. We can see that the semantics of DERA
concepts and notations are close to that of traditional conditional structures in existing
programming languages or widely-used formal models such as such as process alge-
bras [16,19] or Petri-nets [21]. As a result, existing formal analysis techniques can be
leveraged (see Section for details).

4.3 Event actor substitutions

In this section, we illustrate weak substitutions for the change requirements introduced
in Section 2. The first requirement is to to skip the execution of the task GetFree-

Dock. This can be achieved through a weak substitution, i.e., by defining a new actor
MoveTruckToDockNew that directly consumes the event operatorTruckArrivedNo-
tified emitted by the actor app, as illustrated in Listing 1.2.

EventActor MoveTruckToDockNew input[operatorTruckArrivedNotified] output[
operatorMoveTruckToDock]



Request
Camera

Receive
Video

Storing
Monitoring

is
Storing
Finished

Get
FreeDock

MoveTruck
ToDock

Truck
Arrived
Notified

b1

b2

b3 Start
Unloading

b4 b5 b6

facade
TruckArrived

FacadeTo
Operator

facade
Unloading
Finished

facade
TruckLeft

facade
Unit
Stored

facade
Store
Started

facade
Request
Camera
Finished

facade
GetFreeDock
Finished

facade
MoveTruck
ToDock
Finished

facade
Receive
Video
Finished

facade
TruckReady

WarehouseOperator Execution Domain

Fig. 6: The graphical representation of the warehouse operator application

register [MoveTruckToDockNew] // register the new actor
deactivate [MoveTruckToDock] // temporarily suspend the old actor
deactivate [b1] // we do not need this Barrier
... // verifications can be performed here to detect potential anomalies
activate [MoveTruckToDockNew] // now we can activate the new actor

Listing 1.2: Skipping the existing event actor GetFreeDock

In the second requirement from Section 2 the warehouse operators need to call the
warehouse staff to prepare for unloading products in the truck. This implies that a new
actor, namely, CallWarehouseStaff, must be executed before the StartUnloading
actor. We demonstrate in Listing 1.3 how the new actor can be incorporated into the
existing warehouse operator composition logic using weak substitutions.

EventActor CallWarehouseStaff input[operatorStoreStartedNotified] output[
operatorCallWarehouseStaff]
EventActor StartUnloadingNew input[operatorCallWarehouseStaff] output[operatorStartUnloading]
register [CallWarehouseStaff]
register [StartUnloadingNew]
deactivate [StartUnloading]
/* verifications can be performed here to detect anomalies */
activate [StartUnloadingNew]
activate [CallWarehouseStaff]

Listing 1.3: Adding a new event actor CallWarehouseStaff

4.4 Performance and scalability evaluation

As the integration layer stands between the service-based applications and the underly-
ing systems and platforms, it is a potential bottleneck in an integration architecture. Also
the channel concept of DERA might introduce a bottleneck that could cause scalability
problems. Thus, we conducted an evaluation of the performance and scalability of our
approach comparing to a reference implementation based on pure hard-coded Java with
rigid dependencies among the tasks. In this reference implementation we used exactly
the same tasks (a simple service invocation in a server running on the same machine) as



��

����

�����

�����

�����

�����

�����

�����

�����

���� ���� ���� ���� ���� ���� ���� ���� ���� �����

�
�
�
�
�
��
�
�
��
��
�
��
�
�
�

����������������������

����
����

���
���

���
���
���
��
��
��

����
����

������������
������������

tasks java σjava dera σdera

50 148 8.2 323.9 23.7
100 293.9 5.1 582.4 26.4
150 403.5 22.1 819.0 31.1
200 569.9 12.7 1042.3 34.4
250 640.9 32.5 1216.0 46.9
300 745.5 6.6 1310.6 22.9
350 865.2 8.7 1484.4 28.8
400 986.4 7.6 1648.8 47.9
450 1103.5 8.6 1813.2 56.5
500 1224.9 8.8 1951.6 22.3
550 1342.1 8.0 2095.7 25.0
600 1466.5 11.2 2245.2 27.8
650 1592.4 20.0 2418.9 20.6
700 1734.8 77.0 2565.7 19.0
750 1827.1 15.6 2721.4 18.9
800 1954.8 52.3 2869.0 20.3
850 2076.6 38.8 3019.5 22.8
900 2186.4 60.8 3165.4 18.9
950 2309.9 25.5 3290.0 24.7

1000 2439.8 16.8 3464.6 22.1

Fig. 7: Evaluation of DERA scalability

in the DERA actor’s tasks. We hard-coded the integration in Java, offering no flexibility,
to exactly measure the impact of DERA’s features on performance and scalability.

We evaluate the DERA implementation and the Java counterpart on the Java SE
Runtime 1.6.0 u31 64-bit version on a workstation with an Intel CPU Quad-core i7 2.0
GHz and 8 gigabytes memory. To minimize the interference of the Java VM garbage
collector and dynamic memory allocations during the experiments, the Java VM is set
up with the following options: -Xms512m -Xmx1024m -Xss1m. We measured in 50
rounds the execution time of n (n = 50, 100, . . . , 950, 1000, respectively) DERA actors
running in an execution domain with a fixed thread pool of size 8 (which is the number
of CPU cores) and compare to n Java tasks running in a thread pool of the same size.

Scatter plots for the measured execution times are visualized in Figure 7 (each value
of n in the 50 rounds is depicted; the values are pretty close together). We derived the
two regression functions shown in Figure 7 from the data of the measurements using
the least-squares linear regression method. In Figure 7, we also present the average ex-
ecution time of DERA (i.e., dera) and the Java counterpart (i.e., java) along with their
standard deviations, σdera and σjava, respectively. As can be seen for the observed data,
both our approach and the Java hard-coded implementation offer approximately linear
scalability. Our approach introduces only a moderate performance overhead, especially
when considering that (1) realistic model sizes – such as those in our industrial case
study – seldom go beyond 20-50 actors and (2) the approach is indented to be used for
remote service integration and each service invoked over the network requires much
more time than what is spent in the integration layer.

5 Related work

The integration layer targeted in our approach is related to dynamic service composi-
tion approaches [10,2,7]. The dynamicity of those approaches is mostly achieved by
deferring service discovery and binding to runtime. Initially, service placeholders or



composition rules are prescribed in the configuration so that the enactment engine can
later find, select, and combine relevant services on the fly. Moreover, most of these
approaches using rigid dependency structures. However, none of the aforementioned
approaches provides sufficient supports for flexibly changing or substituting arbitrary
elements as in DERA. There are a few exceptions, such as the eFlow framework [6],
in which modifications of composite services are allowed, but in an ad-hoc manner. As
DERA actors need to interact with and incorporate various services, our approach can
benefit from the advanced techniques in discovering and binding services to enhance
the dynamicity of the interaction between DERA actors and corresponding services.
None of these approaches considers the flexibility at runtime as in our approach.

An extensively used approach for specifying service composition are process-driven
SOAs [15]. A typical process comprises a number of tasks and a control flow defining
the execution order of these tasks. BPMN6 and BPEL7 are a widely used languages
for describing processes. Unfortunately, they expose tight dependencies among service
invocations with rigid control flows and structures. The enactment of BPMN or BPEL
descriptions is usually determined at design time and very difficult to change at run-
time. There are a substantial amount of efforts focusing on relaxing the rigid structures
of process descriptions, and, therefore, enable a certain degree of flexibility of process
execution [13,24,23]. These approaches mainly target long-running transactional sys-
tems and still suffer from the tight dependencies among the tasks. In contrast, there
exists no such rigid control flows in DERA, only the virtual relationships among ac-
tors. Changing these virtual relationships can be straightforwardly achieved by altering
actor interfaces using DERA substitution mechanisms. Our approach focuses on flexi-
ble short-running composition logic for integrating software systems and platforms. A
number of approaches leverage the aspect-oriented programming paradigm for support
process modifications by specifying and weaving additional modules, such as logging,
auditing, and security, into the original composition logic [9,8]. However, the aspect-
oriented approaches do not aim at loosening the dependency structures and provide
limited supports for flexible changes at runtime.

A considerable amount of studies in the field of coordination theory are investigat-
ing methods and techniques aiming at separating computation from coordination [3]
and making the interaction between components explicit in terms of coordination mod-
els and protocols. However, as far as components are still aware of these models and
protocols which are stored in the components, their computation and interaction with
peers is likely based on, and influenced by, this data [3]. In DERA, computational el-
ements (i.e., actors) are totally unaware of the others. Communication between event
actors is fully decoupled from the behavior of the actors.

The theoretical foundation of our work benefits from existing formal methods re-
search in the field of subtyping. DERA substitution mechanisms are based on the stud-
ies on the substitutability of data types, objects, and components, especially the well-
known Liskov substitution principle [17]. DERA extends these concepts to the domain
of event-driven architectures and actors in behavior models. The implementation of
DERA, in particular, the event channels, can be realized using asynchronous commu-

6 http://www.omg.org/spec/BPMN/2.0/PDF
7 http://docs.oasis-open.org/wsbpel/2.0/wsbpel-v2.0.html

http://www.omg.org/spec/BPMN/2.0/PDF
http://docs.oasis-open.org/wsbpel/2.0/wsbpel-v2.0.html


nication styles. Therefore, our future plan is to investigate and realize event channels
using existing distributed publish-subscribe frameworks such as PADRES [11].

The concept of actor proposed in DERA is different from the actor models origi-
nally proposed in Agha’s dissertation and follow-on studies [1]. The actors in the actor
models are more complex as they encapsulate data, method, and interfaces. Moreover,
in contrast to DERA systems in which event actors are totally unaware of each other,
the actor models require that an actor must know the references, namely, mail address,
of other actors to communicate with them by exchanging messages. This constraint
clearly imposes tight dependencies among actors.

6 Conclusion

In this paper we present dynamic event actors (DERA) as a novel approach that exploits
EDA to enable the flexibility of integration architectures and support various kinds of
runtime evolution and adaptation. In particular, DERA introduces the concept of event
actors with formally specified event interfaces for representing constituting elements
(e.g., components, adapters, proxies). The communications and dependencies between
actors are neither embedded in the actors nor prescribed in rigid dependency structures
as in existing approaches. In contrast, the event-based communication style is exploited
for loosening these dependencies among actors. In addition, event substitution mecha-
nisms are proposed to enable the ability of altering DERA applications at runtime by
making changes of event actor interfaces and substituting event actors. The main focus
of our paper is to introduce DERA concepts and elements grounding on a sound for-
malization along with a prototypical implementation. The applicability of DERA has
been shown through an industrial case study. The evaluation of DERA systems shows
linear scalability with moderate performance overhead compared to an equivalent pure
Java reference implementation.

A future work plan is to utilize existing formal reasoning methods for concurrent
and distributed systems for supporting the verification of DERA system properties such
as reachability, boundedness, and liveness, at important stages of development, e.g.,
before deploying and/or substituting actors. In addition, existing approaches for estab-
lishing reliable communication channels shall be exploited and extended in the context
of DERA.

Acknowledgment. This work was partially supported by the European Union FP7
project INDENICA (http://www.indenica.eu), Grant No. 257483.

References

1. Agha, G.A.: ACTORS: A Model of Concurrent Computation in Distributed Systems. PhD
thesis (1985)

2. Alamri, A., Eid, M., Saddik, A.E.: Classification of the state-of-the-art dynamic web services
composition techniques. Int. J. Web Grid Serv. 2(2), 148–166 (Sep 2006)

3. Arbab, F., Talcott, C.L. (eds.): 5th Int’l Conf. Coordination Models and Languages, Lecture
Notes in Computer Science, vol. 2315. Springer (2002)

http://www.indenica.eu


4. Atluri, V., Chun, S.A., Mukkamala, R., Mazzoleni, P.: A decentralized execution model for
inter-organizational workflows. Distrib and Parallel Databases 22(1), 55–83 (May 2007)

5. Basten, T., van der Aalst, W.M.P.: Inheritance of behavior. Journal of Logic and Algebraic
Programming 47(2), 47–145 (2001)

6. Casati, F., Ilnicki, S., jie Jin, L., Krishnamoorthy, V., Shan, M.C.: Adaptive and dynamic
service composition in eflow. In: 12th Int’l Conf. on Advanced Information Systems Engi-
neering (CAiSE). pp. 13–31. Springer-Verlag, London, UK, UK (2000)

7. Chakraborty, D., Joshi, A.: Dynamic service composition: State-of-the-art and research di-
rections. Tech. Rep. TR-CS-01-19, Department of Computer Science and Electrical Engi-
neering, University of Maryland, USA (2001)

8. Charfi, A., Mezini, M.: AO4BPEL: An aspect-oriented extension to BPEL. World Wide Web
10(3), 309–344 (Sep 2007)

9. Cibrán, M.A., Verheecke, B., Vanderperren, W., Suvée, D., Jonckers, V.: Aspect-oriented
programming for dynamic web service selection, integration and management. World Wide
Web 10(3), 211–242 (Sep 2007)

10. D’Mello, D.A., Ananthanarayana, V.S., Salian, S.: A review of dynamic web service compo-
sition techniques. In: Advanced Computing, Communications in Computer and Information
Science, vol. 133, pp. 85–97. Springer (2011)

11. Fidler, E., Jacobsen, H.A., Li, G., Mankovski, S.: The PADRES distributed publish/subscribe
system. In: Feature Interactions in Telecommunications and Software Systems VIII, ICFI’05.
pp. 12–30 (2005)

12. Ganesan, S., Yoon, Y., Jacobsen, H.A.: NIñOS take five: the management infrastructure for
distributed event-driven workflows. In: 5th ACM Int’l Conf. on Distributed event-based sys-
tem (DEBS). pp. 195–206. ACM (2011)

13. Hallerbach, A., Bauer, T., Reichert, M.: Capturing variability in business process models: the
provop approach. J. Softw. Maint. Evol. 22, 519–546 (Oct 2010)

14. Hens, P., Snoeck, M., Backer, M.D., Poels, G.: Transforming Standard Process Models to
Decentralized Autonomous Entities. In: 5th SIKS/BENAIS Conf. on Enterprise Information
Systems. pp. 97–106. CEUR WS.org, Aachen, Germany (2010)

15. Hentrich, C., Zdun, U.: Process-Driven SOA: Patterns for Aligning Business and IT. Infosys
Press (2012)

16. Hoare, C.A.R.: Communicating Sequential Processes. Prentice Hall (Apr 1985)
17. Liskov, B.H., Wing, J.M.: A behavioral notion of subtyping. ACM Transactions on Program-

ming Languages and Systems 16(6), 1811–1841 (Nov 1994)
18. Luckham, D.C.: The Power of Events: An Introduction to Complex Event Processing in

Distributed Enterprise Systems. Addison-Wesley, Boston, MA, USA. (Dec 2001)
19. Milner, R.: Communicating and Mobile Systems: the Pi-Calculus. Cambridge University

Press, 1st edn. (Jun 1999)
20. Mühl, G., Fiege, L., Pietzuch, P.: Distributed Event-Based Systems. Springer, 1 edn. (2006)
21. Murata, T.: Petri Nets: Properties, Analysis and Applications. Proceedings of the IEEE 77(4),

541–580 (1989)
22. Pierce, B.C.: Types and Programming Languages. The MIT Press (Feb 2002)
23. Redding, G., Dumas, M., ter Hofstede, A.H.M., Iordachescu, A.: Modelling flexible pro-

cesses with business objects. In: IEEE Conf. Commerce and Enterprise Computing (CEC).
pp. 41–48 (2009)

24. Reichert, M., Dadam, P.: Enabling adaptive process-aware information systems with
ADEPT2. In: Handbook of Research on Business Process Modeling, pp. 173–203. Infor-
mation Science Reference (2009)

25. Tombros, D., Geppert, A.: Building Extensible Workflow Systems Using an Event-Based
Infrastructure. In: 12th Int’l Conf. on Advanced Information Systems Engineering (CAiSE).
pp. 325–339. Springer-Verlag (2000)


	Event-driven Actors for Supporting Flexibility and Scalability in Service-based Integration Architecture

