
Dense Subgraphs on Dynamic Networks

Atish Das Sarma1, Ashwin Lall2, Danupon Nanongkai3, and
Amitabh Trehan4,⋆

1 eBay Research Labs, San Jose, CA, USA.
2 Department of Mathematics and Computer Science, Denison University, Granville,

OH, USA.
3 University of Vienna, Austria, and Nanyang Technological University, Singapore.
4 Information Systems group, Faculty of Industrial Engineering and Management,

Technion - Israel Institute of Technology, Haifa, Israel - 32000.

Abstract. In distributed networks, it is often useful for the nodes to be
aware of dense subgraphs, e.g., such a dense subgraph could reveal dense
subtructures in otherwise sparse graphs (e.g. the World Wide Web or so-
cial networks); these might reveal community clusters or dense regions for
possibly maintaining good communication infrastructure. In this work,
we address the problem of self-awareness of nodes in a dynamic network
with regards to graph density, i.e., we give distributed algorithms for
maintaining dense subgraphs that the member nodes are aware of. The
only knowledge that the nodes need is that of the dynamic diameter D,
i.e., the maximum number of rounds it takes for a message to traverse the
dynamic network. For our work, we consider a model where the number
of nodes are fixed, but a powerful adversary can add or remove a limited
number of edges from the network at each time step. The communication
is by broadcast only and follows the CONGEST model. Our algorithms
are continuously executed on the network, and at any time (after some
initialization) each node will be aware if it is part (or not) of a particular
dense subgraph. We give algorithms that (2+ǫ)-approximate the densest

subgraph and (3 + ǫ)-approximate the at-least-k-densest subgraph (for a
given parameter k). Our algorithms work for a wide range of parameter
values and run in O(D log1+ǫ n) time. Further, a special case of our re-
sults also gives the first fully decentralized approximation algorithms for
densest and at-least-k-densest subgraph problems for static distributed
graphs.

1 Introduction

Density is a very well studied graph property with a wide range of applications
stemming from the fact that it is an excellent measure of the strength of inter-
connectivity between nodes. While several variants of graph density problems
and algorithms have been explored in the classical setting, there is surprisingly
little work that addresses this question in the distributed computing framework.

⋆ Supported by a Technion fellowship.

This paper focuses on decentralized algorithms for identifying dense subgraphs
in dynamic networks.

Finding dense subgraphs has received a great deal of attention in graph
algorithms literature because of the robustness of the property. The density
of a subgraph only gradually changes when edges come and go in a network,
unlike other graph properties such as connectivity that are far more sensitive
to perturbation. Density measures the strength of a set of nodes by the graph
induced on them from the overall structure. The power of density lies in locally
observing the strength of any set of nodes, large or small, independent of the
entire network.

Dense sugraphs often give key information about the network structure, its
evolution and dynamics. To quote [22]:“Dense subgraph extraction is therefore
a key primitive for any in-depth study of the nature of a large graph”. Often,
dense subgraphs may reveal information about community structure in other-
wise sparse graphs e.g. the World Wide Web or social networks. They are good
structures for studying the dynamics of a network and have been used, for ex-
ample, to study link spams [22]. It is also possible to imagine a scenario where
a dynamically evolving peer-to-peer network may want to route traffic through
the densest parts of its network to ease congestion; thus, these subgraphs could
form the basis of an efficient communication backbone (in combination with
other subgraphs selected using appropriate centrality measures).

In this paper, we expand the static CONGEST model [41] and consider a
dynamic setting where the graph edges may change continually. We present
algorithms for approximating the (at least size k) densest subgraph in a dynamic
graph model to within constant factors. Our algorithms are not only designed
to compute size-constrained dense subgraphs, but also track or maintain them
through time, thereby allowing the network to be aware of dense subgraphs even
as the network changes. They are fully decentralized and adapt well to rapid
network failures or modifications. This gives the densest subgraph problem a
special status among global graph problems: while most graph problems are
hard to approximate in o(

√
n) time even on static distributed networks of small

diameters [13, 38, 20], the densest subgraph problem can be approximated in
polylogarithmic time (in terms of n) for small D, even in dynamic networks.

We now explain our model for dynamic networks, define density objective s
considered in this paper, and state our results.

Distributed Computing Model. Consider an undirected, unweighted, con-
nected n-node graph G = (V,E). Suppose that every node (vertex) hosts a pro-
cessor with unbounded computational power (though our algorithms only use
time and space polynomial in n at each vertex), but with only local knowledge
initially. We assume that nodes have unique identifiers. The nodes may accept
some additional inputs as specified by the problem at hand. The communication
is synchronous, and occurs in discrete pulses, called rounds. Further, nodes can
send messages to each of their neighbors in every round. In our model, all the
nodes wake up simultaneously at the beginning of round 1. In each round each
node v is allowed to send an arbitrary message subject to the bandwidth con-

straint of size O(log n) bits through any edge e = (v, u) that is adjacent to v, and
these messages will arrive at each corresponding neighbor at the end of the cur-
rent round. Our model is akin to the standard model of distributed computation
known as the CONGEST model [41]. The message size constraint of CONGEST
is very important for large-scale resource-constrained dynamic networks where
running time is crucial.

Edge-Dynamic Network Model. We use the edge deletion/addition model;
i.e., we consider a sequence of (undirected) graphs G0, G1, . . . on n nodes, where,
for any t, Gt denotes the state of the dynamic network G(V,E) at time t, where
the adversary deletes and/or inserts upto r edges at each step, i.e., E(Gt+1) =
(E(Gt) \ EU) ∪ EV , where EU ⊆ E(Gt) and EV ⊆ E(Gt), |EU | + |EV | ≤ r
(where Gt is the complement graph of Gt). The edge change rate is denoted by
the parameter r.

Following the notion in [33], we define the dynamic diameter of the dynamic
network G(V,E), denoted by D, to be the maximum time a message needs to
traverse the network at any time. More formally, dynamic diameter is defined as
follows:

Definition 1 (Dynamic Diameter (Adapted from [33], Definition 3)).
We say that the dynamic network G = (V,E) has a dynamic diameter of D upto
time t if D is the smallest positive integer such that, for all t′ ≤ t and u, v ∈ V ,
we have (u,max{0, t′ − D}) (v, t′), where, for each pair of vertices x, y and
times t1 ≤ t2, (x, t1) (y, t2) means that at time t2 node y can receive direct
information, through a chain of messages, originating from node x at time t1.

Note that the nodes do not need to know the exact dynamic diameter D but
only a (loose) approximation to it. For simplicity, we assume henceforth that the
nodes know the exact value of D.

There are several measures of efficiency of distributed algorithms, but we will
concentrate on one of them, specifically, the running time, that is, the number
of rounds of distributed communication. (Note that the computation that is
performed by the nodes locally is “free”, i.e., it does not affect the number of
rounds.)

We are interested in algorithms that can compute and maintain an approx-
imate (at-least-k) densest subgraph of the network at all times, after a short
initialization time. We say that an algorithm can compute and maintain a solu-
tion P in time T if it can compute the solution in T rounds and can maintain a
solution at all times after time T , even as the network changes dynamically.

1.1 Problem definition

Let G = (V,E) be an undirected graph and S ⊆ V be a set of nodes. Let us
define the following:

Graph Density. The density of a graph G(V,E) is defined as |E|/|V |.
SubGraph Density. The density of a subgraph defined by a subset of nodes S
of V (G) is defined as the density of the induced subgraph. We will use ρ(S) to

Fig. 1. The distributed Edge Insert and Delete Model.
Each node of G0 is a processor.
Each processor starts with a list of its neighbors in G0.
Pre-processing: Processors may exchange messages with their neighbors.
for t := 1 to T do

Adversary deletes and/or inserts upto r edges at each step i.e. E(Gt+1) =
(E(Gt) \EU)∪EV , where EU ⊆ E(Gt) and EV ⊆ E(Gt) (where Gt is the
complement graph of Gt).
if edge (u, v) is inserted or edge (u, v) is deleted then

Nodes u and v may update their information and exchange messages
with their neighbors.
Computation phase:
Nodes may communicate (synchronously, in parallel) with their immedi-
ate neighbors. These messages are never lost or corrupted, may contain
the names of other vertices, and are received by the end of this phase.

end if
At the end of this phase, we call the graph Gt.

end for
Success metrics:
1. Approximate Dense Subgraphs: Graph S′

T : The induced graph of a

set S′
T ⊆ VT , s.t., ρ(S′

T) ≥
ρ(S∗

T)
α

, where S∗
T ⊆ V , s.t., ρ(S∗

T) = max ρ(ST)
over all ST ⊆ VT .

2. Approximate at-least-k-Dense Subgraphs: Graph Sk
T : The induced

graph of a set Sk ⊆ V, |Sk| ≥ k, s.t., ρ(Sk) ≥ ρ(Sk∗)
α

, where Sk∗ ⊆
V, |Sk∗| ≥ k, s.t., ρ(Sk∗) = max ρ(S) over all S ⊆ V, |S| ≥ k.

3. Communication per edge. The maximum number of bits sent across
a single edge in a single recovery round. O(log n) in CONGEST model.

4. Computation time. The maximum total time (rounds) for all nodes
to compute their density estimations starting from scratch assuming it
takes a message no more than 1 time unit to traverse any edge and we
have unlimited local computational power at each node.

denote the density of the subgraph induced by S. Therefore, ρ(S) = |E(S)|
|S| . Here

E(S) is the subset of edges (u, v) of E where u ∈ S and v ∈ S. In particular,
when talking about the density of a subgraph defined by a set of vertices S
induced on G, we use the notation ρG(S). We also use ρt(S) to denote ρGt

(S).
When clear from context, we omit the subscript G.

The problem we address in this paper is to construct distributed algorithms
to discover the following:

– (Approximate) Densest subgraphs: The densest subgraph problem is to
find a set S∗ ⊆ V , s.t. ρ(S∗) = max ρ(S) over all S ⊆ V . A α-approximate

solution S′ will be a set S′ ⊆ V , s.t. ρ(S′) ≥ ρ(S∗)
α

.
– (Approximate) At-least-k-densest subgraphs: The densest at-least-k-

subgraph problem is the previous problem restricted to sets of size at least
k, i.e., to find a set Sk∗ ⊆ V, |Sk∗| ≥ k, s.t. ρ(Sk∗) = max ρ(S) over all

S ⊆ V, |S| ≥ k. A α-approximate solution Sk will be a set Sk ⊆ V, |Sk| ≥ k,

s.t. ρ(Sk) ≥ ρ(Sk∗)
α

.
In the distributed setting, we require that every node knows whether it is in

the solution S′ or Sk or not. We note that the latter problem is NP-Complete,
and thus it is crucial to consider approximation algorithms. The former problem
can be solved exactly in polynomial time in the centralized setting, and it is an
interesting open problem whether there is an exact distributed algorithm that
runs in O(D poly logn) time, even in static networks.

1.2 Our Results

We give approximation algorithms for the densest and at-least-k-densest sub-
graph problems which are efficient even on dynamic distributed networks. In par-
ticular, we develop an algorithm that, for a fixed constant c and any ǫ > 0, (2+ǫ)-
approximates the densest subgraph in O(D log1+ǫ n) time provided that the
densest subgraph has high density, i.e., it has a density at least (cDr logn)/ǫ (re-
call that r and D are the change rate and dynamic diameter of dynamic networks,
respectively). We also develop a (3+ǫ)-approximation algorithm for the at-least-
k-densest subgraph problem with the same running time, provided that the value
of the density of the at-least-k-densest subgraph is at least (cDr logn)/kǫ. We
state these theorems in a simplified form and some corollaries below. Below, ǫ
can be set as any arbitrarily small constant. We note again that at the end of
our algorithms, every node knows whether they are in the returned subgraph or
not.

Theorem 2. There exists a distributed algorithm that for any dynamic graph
with dynamic diameter D and parameter r returns a subgraph at time t such
that, w.h.p., the density of the returned subgraph is a (2 + ǫ)-approximation to
the density of the densest subgraph at time t if the densest subgraph has density
at least Ω(Dr logn).

Theorem 3. There exists a distributed algorithm that for any dynamic graph
with dynamic diameter D and parameter r returns a subgraph of size at least
k at time t such that, w.h.p., the density of the returned subgraph is a (3 + ǫ)-
approximation to the density of the densest at least k subgraph at time t if the
densest at least k subgraph has density at least Ω(Dr logn/k).

We mention two special cases of these theorems informally below. We prove
the most general theorem statements depending on the parameters r and D in
Section 3.

Corollary 4. Given a dynamic graph with dynamic diameter O(log n) and a
rate of change r = O(logα n) for some constant α (i.e. r is poly-logarithmic
in n), there is a distributed algorithm that at any time t can return, w.h.p., a
(2 + ǫ)-approximation of densest subgraph at time t if the densest subgraph has
density at time t at least Ω(logα+2 n).

Corollary 5. Given a dynamic graph with dynamic diameter O(log n) and a
rate of change r = O(logα n) for some constant α (i.e. r is poly-logarithmic
in n), there is a distributed algorithm that at any time t can return, w.h.p., a
(3 + ǫ)-approximation of k-densest subgraph at time t if the k-densest subgraph
has density at time t at least Ω(logα+2 n/k).

Our algorithms follow the main ideas of centralized approximation algorithms
[29, 4, 11]. These centralized algorithms cannot be efficiently implemented even
on static distributed networks. We show how some ideas of these algorithms
can be turned into time-efficient distributed algorithms with a small increase in
the approximation guarantees. Similar ideas have been independently discovered
and used to obtain efficient streaming and MapReduce algorithms by Bahmani
et al. [8].

Notice that this is already a wide range of parameter values for which our
results are interesting, since the density of densest subgraphs can be as large as
Ω(n) while the diameter in peer-to-peer networks is typically O(log n), and the
parameter r depends on the stability of the network. A caveat, though, is that in
the theorems above, D refers to the flooding time of the dynamic network, and
not the diameter of any specific snapshot - understanding a relationship between
these quantities remains open.

Further, our general theorems also imply the following for static graphs (by
simply setting r = 0). No such results were known in the distributed setting even
for static graphs.

Corollary 6. In a static graph, there is a distributed algorithm that obtains,
w.h.p., (2 + ǫ)-approximation to the densest subgraph problem in O(D logn)
rounds of the CONGEST model.

Corollary 7. In a static graph, there is a distributed algorithm that obtains,
w.h.p, (3 + ǫ)-approximation to the k-densest subgraph problem in O(D logn)
rounds of the CONGEST model.

Notice that this is an unconditional guarantee for static graphs (i.e. does not
require any bound on the density of the optimal) and is the first distributed
algorithm for these problems in the CONGEST model.

Back to dynamic graphs, in addition to computing the (2+ ǫ)-approximated
densest and (3 + ǫ)-approximated at-least-k-densest subgraphs, our algorithm
can also maintain them at all times with high probability. This means that, at
all times (except for a short initialization period), all nodes are aware of whether
they are part of the approximated at-least-k densest subgraphs, for all k.

Even though we assume that all the nodes know the value D, all our algo-
rithms work if some upper-bound D′ of D is known instead; all the algorithms
and analysis work identically using D′ rather than D.

Organization. Our algorithms are described in Section 2 and the approximation
guarantees are proved in Section 3. We mention related work at the end of the
paper in Section 4.

2 Algorithm

2.1 Main Algorithm

The nature of our algorithm is such that we continuously maintain an approx-
imation to the densest subgraph in the dynamic network. At any time, after a
short initialization period, any node knows whether it is a member of the out-
put subgraph of our algorithm. In this section, we give the description of the
algorithm and fully specify the behavior of each of the nodes in the network.
The running time analysis and the approximation guarantees are deferred to the
following sections.

Our main protocol for maintaining a dense subgraph is given in Algorithm 1.
It maintains a family of p = O(log1+ǫ n) candidates for the densest subgraph F =
{V0, V1, . . . , Vp}, where V0 = V (G), Vi ⊆ Vi−1 for all i, along with an approxima-
tion of the number of nodes and edges in each graph R = {(m0, n0), . . . , (mp, np)},
where each mi and ni are the approximate number of edges and nodes, respec-
tively, of the subgraph of Gt (the current graph) induced by Vi. The algorithm
works in phases in which it estimates the size of the current subgraph Vj and the
number of edges in it using the algorithms discussed in the following subsection.
At the end of the phase it computes the next subgraph Vj+1 using a criterion
in Line 9 of Algorithm 1 (explained further in Section 3). After p such rounds,
the algorithm has all the information it needs to output an approximation to
the densest subgraph. This process is repeated continuously, and the solution is
computed from the last complete family of graphs (i.e., complete computation
of p subgraphs).

At any time, the densest subgraph can be computed using the steps outlined
in Algorithm 2. This procedure works simply by picking the subgraph with the
highest density, even if the size of this subgraph is less than k. If the graph
turns out to be less than size k, we pad it by having the rest of the nodes run a
distributed procedure to elect appropriately many nodes to add to the subgraph
and get its size up to at least k.

Any time a densest subgraph query is initiated in the network, the nodes
simply run Algorithm 2 based on the subgraphs continuously being maintained
by Algorithm 1, and compute which of them are in the approximation solution.
At the end of this query, each node is aware of whether it is in the approximate
densest subgraph or not.

2.2 Approximating the number of nodes and edges

Our algorithms make use of an operation in which the number of nodes and
edges in a given subgraph need to be computed. We just mention the algorithm
idea here and present the detailed algorithm in Appendix A.

Algorithm Approx-Size-Estimation. We achieve this in O(D) rounds using
a modified version of an algorithm from [32]. Their algorithm allows for approxi-
mate counting of the size of a dynamic network with high probability. We modify
it to work for any subgraph that we are interested in. We also show how it can

Input: 1 ≥ ǫ > 0
Output: The algorithm maintains a family of sets of nodes F = {V0, V1, . . . , Vp} and
induced graph sizes R = {(m0, n0), (m1, n1), . . . , (mp, np)}.
1: Let δ = ǫ/24.
2: Let j = 0. Let V0 = V (i.e., we mark every node as in V0).
3: repeat

4: Compute nj , a (1+ δ)-approximation of |Vj | (i.e., (1+ δ)|Vj | ≥ nj ≥ (1− δ)|Vj|).
At the end of this step every node knows nj . See Algorithms 3 and 4 for detailed
implementation.

5: if nj = 0 then

6: Let j = 0. (Note that we do not recompute n0.)
7: end if

8: Let Gt be the network at the beginning of this step. Let Ht be the subgraph of
Gt induced by Vj . We compute mj , the (1 + δ)-approximation of the number of
edges in Ht (i.e., (1+ δ)|E(Ht)| ≥ mj ≥ (1− δ)|E(Ht)|). At the end of this step
every node knows mj . See Algorithm 5 for detailed implementation.

9: Let Gt′ be the network at the beginning of this step. Let Ht′ be the subgraph
of Gt′ induced by Vj . Let Vj+1 be the set of nodes in Vj whose degree in Ht′ is
at least (1+ δ)mj/nj . At the end of this step, every node knows whether it is in
Vj+1 or not.

10: Let j = j + 1.
11: until forever

Algorithm 1: Maintain(ǫ)

be used to approximate the number of edges in this subgraph at a given time.
In the interest of space, these results can be found in Appendix A described
under algorithms RandomixedApproximateCounting, Count Nodes, and
Count Edges.

3 Analysis

We analyze approximation ratios of the algorithm presented in Section 2, the
guarantee depending on parameters of the algorithm. We divide the analysis
into two parts: the first part is for the densest subgraph problem and the second
for the at-least-k densest subgraph problem. Although the second part subsumes
the first part (if we ignore the value of constant approximation ratio), we present
the first part since it has a simpler idea and a better approximation ratio.

3.1 Analysis for the densest subgraph problem

Theorem 8. Let t be the time Algorithm 2 finishes, Vi be the output of the algo-
rithm, H∗ be the optimal solution and T be the time of one round of Algorithm 1
and 2 (i.e., T = cD log1+ǫ n for some constant c). If ρt(H

∗) ≥ 24Tr/ǫ then
Algorithm 2 gives, w.h.p., a (2 + ǫ)-approximation, i.e.,

ρt(Vi) ≥ ρt(H
∗)/(2 + ǫ) .

Input: k, the parameter for the densest at-least-k subgraph problem, the algorithm
Maintain(ǫ) (cf. Algorithm 1), and its parameter notations.
Output: The algorithm outputs a set of nodes Vi ∪ V̂ (every node knows whether it
is in the set or not) such that |Vi ∪ V̂ | ≥ k.
1: Let i = maxi mi/max(k, ni) .
2: if ni < (1 + δ)k then

3: Let ∆ = (1 + δ)k − ni. (Every node can compute ∆ locally.)
4: repeat

5: Every node not in Vi locally flips a coin which is head with probability ∆/n0.
6: Let V̂ be the set of nodes whose coins return heads.
7: Approximately count the number of nodes in V̂ using the algorithm Approx-

Size-Estimation discussed in Section 2.2 with error parameter δ passed to
Count Edges under it. Let ∆′ be the result returned. (Note that ∆′/(1+δ) ≤
|V̂ | ≤ (1 + δ)∆′ w.h.p.)

8: until (1 + δ)∆ ≤ ∆′ ≤ (1 + 2δ)∆
9: end if

10: return Vi ∪ V̂

Algorithm 2: Densest Subgraph(k)

The rest of this subsection is devoted to proving the above theorem. Let t,
Vi and H∗ be as in the theorem statement (note that V̂ in Algorithm 2 is empty
when k = 0). Let t′ be the time that Vi is last computed by Algorithm 1. Let
t′′ be the time Algorithm 1 starts counting the number of edges in Vi. We prove
the theorem using the following lemmas. The main idea is to first lower bound
ρt′′(Vi) using ρt′(H

∗) and then use it to obtain a lower bound for ρt′(Vi) in terms
of ρt(H

∗). Finally, the proof is completed by lower bounding ρt(Vi) in terms of
ρt′(Vi).

Lemma 9. ρt′′(Vi) >
1−δ

2(1+δ)2 ρt′(H
∗).

Proof. Let H ′ be the densest subgraph of Gt′ . Note that

ρt′(H
∗) ≤ ρt′(H

′) . (1)

Let i∗ be the smallest index such that V (H ′) ⊆ Vi∗ and V (H ′) 6⊆ Vi∗+1. Note
that i∗ exists since the algorithm repeats until we get Vj = ∅. Let v be any vertex
in V (H ′) \ Vi∗ . Let Ht′,i be the subgraph of Gt′ induced by nodes in Vi. Note
that

ρt′(H
′) ≤ 2 degH′ (v) ≤ 2 degHt′,i

(v) . (2)

The first inequality is because we can otherwise remove v from H ′ and get a
subgraph of Gt′ that has a higher density than H ′. The second inequality is
because H ′ ⊆ Ht′,i. Since v is removed from Vi∗ ,

degHt′,i
(v) < (1 + δ)

mi∗

ni∗
, (3)

where δ = ǫ/24 as in Algorithm 1. By the definition of Vi,

mi∗

ni∗
≤ mi

ni

. (4)

Note that t− t′′ ≤ T by the definition of T . Note also that ni ≥ (1− δ)|Vi| and
mi ≤ (1 + δ)|Et′′(Vi)| with high probability. It follows that

mi

ni

≤ 1 + δ

1− δ
ρt′′(Vi) . (5)

Combining Eq.(1)-(5), we get ρt′(H
∗) < 2 (1+δ)2

1−δ
ρt′′(Vi) and thus the lemma.

We now make the following observation:

Observation 10 ρt′(H
∗) ≥ (1− δ)ρt(H

∗) .

Proof. Note that t− t′ ≤ T and thus Et(H
∗) − Et′(H

∗) ≤ Tr. Since ρt(H
∗) ≥

Tr/δ, ρt′(H
∗) ≥ ρt(H

∗)·|V (H∗)|−Tr

|V (H∗)| ≥ ρt(H
∗)− Tr > (1 − δ)ρt(H

∗) .

We now combine the above Lemma 9 and Observation 10 to obtain the
following lemma:

Lemma 11. ρt′(Vi) > ((1−δ)2

2(1+δ)2 − δ)ρt(H
∗) .

Proof. By directly combining Lemma 9 and Observation 10 we get the following:

ρt′′(Vi) >
(1− δ)2

2(1 + δ)2
ρt(H

∗) ≥ (1− δ)2

2(1 + δ)2δ
T r .

Moreover, observe that there are at most Tr edges removed from Vi in total, i.e.,
Et′′(Vi)− Et(Vi) ≤ Tr. Thus

ρt′(Vi) ≥
ρt′′(Vi) · |Vi| − Tr

|Vi|
≥ ρt′′(Vi)− Tr >

(

1− 2(1 + δ)2δ

(1− δ)2

)

ρt′′(Vi)

>

(

1− 2(1 + δ)2δ

(1 − δ)2

)(

(1− δ)2

2(1 + δ)2
ρt(H

∗)

)

=

(

(1− δ)2

2(1 + δ)2
− δ

)

ρt(H
∗) .

We are now ready to prove the theorem.

Proof (Proof of Theorem 8). Note that t−t′ ≤ T and thus Et′(Vi)−Et(Vi) ≤ Tr.

Note that ρt′(Vi) > βρt(H
∗) ≥ βTr/δ, where β = (1−δ)2

2(1+δ)2 − δ. We have

ρt(Vi) ≥
ρt′(Vi) · |Vi| − Tr

|Vi|
≥ ρt′(Vi)− Tr > (1 − δ

β
)ρt′(Vi).

Now using Lemma 11 and the value of β, we get the following:

ρt(Vi) > (1− δ

β
)βρt(H

∗) = (β − δ)ρt(H
∗) =

(

(1− δ)2

2(1 + δ)2
− 2δ

)

ρt(H
∗).

The theorem follows by observing that (1−δ)2

2(1+δ)2 − 2δ ≥ 1
2+ǫ

for any ǫ ≤ 1 and

δ ≥ ǫ/24.

3.2 Analysis for the at-least-k densest subgraph problem

Theorem 12. Let t be the time Algorithm 2 finishes, Vi ∪ V̂ be the output of
the algorithm, H∗ be the optimal solution and T be the time of one iteration
of Algorithm 1 and Algorithm 2 (so T = O(D log1+ǫ n)). If kρt(H

∗) ≥ 24Tr/ǫ

then Algorithm 2 returns a set Vi ∪ V̂ of size at least k that is, w.h.p., a (3 + ǫ)-
approximated solution, i.e.,

ρt(Vi ∪ V̂) ≥ ρt(H
∗)/(3 + ǫ) .

The proof of this theorem is placed in Appendix B, and we just mention the
main idea here. The proof follows a similar framework as that of Theorem 8.

Let t, Vi and H∗ be as in the theorem statement. Let t′ be the time that Vi

is last computed by Algorithm 1. Let t′′ be the time Algorithm 1 starts counting
the number of edges in Vi. The crucial difference here is to obtain a strong lower
bound for ρt′′(Vi ∪ V̂) in terms of ρt′(H

∗) and ρt(H
∗). This is then translated to

a lower bound on ρt′(Vi ∪ V̂) and subsequently ρt(Vi∪ V̂) to complete the proof.
The crucial lemma and its proof turn out to be more involved than that of the
densest subgraph theorem and the case-based analysis is detailed in Appendix B.

3.3 Running Time Analysis

In this section we analyze the time that it takes for the nodes to generate an
approximation to the densest subgraph. Algorithm 1 continuously runs this pro-
cedure so that it always maintains an approximation that is guaranteed to be
near-optimal since we assume that the network does not change too quickly. The
time that it takes for Algorithm 1 to compute a complete family of subgraphs
is simply O(Dp) = O(D log1+ǫ n) since there are p = O(log1+ǫ n) rounds (Sec-
tion 2.1), each of which is completed in O(D) time (Section 2.2). Note that step
9 of Algorithm 1 can be done in a single round since every node already knows
mj/nj and can easily check, in one round, the number of neighbors in Gt′ that
are in Vj .

When the nodes need to compute an approximation to the at-least-k-densest
subgraph in Algorithm 2, they can do so by choosing the densest subgraph among
the last complete family of subgraphs found by Algorithm 1. Unfortunately, there
is no guarantee that the densest such graph has at least k nodes in it, so we fix
this via padding. The subgraph is padded to contain at least k nodes by having
each node that is not part of the subgraph attempt to join the subgraph with
an appropriate probability. It can be shown via Chernoff bounds that, with high
probability, within O(log n) such attempts there are enough nodes added to the
subgraph to get its size to at least k. As a result, Algorithm 2 runs in O(D logn)
time.

4 Related Work

The problem of finding size-bounded densest subgraphs has been studied ex-
tensively in the classical setting. Finding a maximum density subgraph in an

undirected graph can be solved in polynomial time [23, 35]. However, the prob-
lem becomes NP-hard when a size restriction is enforced. In particular, finding
a maximum density subgraph of size exactly k is NP-hard [6, 19] and no approx-
imation scheme exists under a reasonable complexity assumption [28]. Recently
Bhaskara et al. [10] showed integrality gaps for SDP relaxations of this problem.
Khuller and Saha [29] considered the problem of finding densest subgraphs with
size restrictions and showed that these are NP-hard. Khuller and Saha [29] and
also Andersen and Chellapilla [4] gave constant factor approximation algorithms.
Some of our algorithms are based on of those presented in [29].

Our work differs from the above mentioned ones in that we address the
issues in a dynamic setting, i.e., where edges of the network change over time.
Dynamic network topology and fault tolerance have always been core concerns of
distributed computing [7, 36]. There are many models and a large volume of work
in this area. A notable recent model is the dynamic graph model introduced by
Kuhn, Lynch and Oshman in [32]. They introduced a stability property called
T -interval connectivity (for T ≥ 1) which stipulates the existence of a stable
connected spanning subgraph for every T rounds. Though our models are not
fully comparable (we allow our networks to get temporarily disconnected as long
as messages eventually make their way through it), the graphs generated by our
model are similar to theirs except for our limited rate of churn. They show that
they can determine the size of the network in O(n2) rounds and also give a
method for approximate counting. We differ in that our bounds are sublinear in
n (when D is small) and we maintain our dense graphs at all times.

We work under the well-studied CONGEST model (see, e.g., [41] and the
references therein). Because of its realistic communication restrictions, there
has been much research done in this model (e.g., see [36, 41, 39]). In particular,
there has been much work done in designing very fast distributed approximation
algorithms (that are even faster at the cost of producing sub-optimal solutions)
for many fundamental problems (see, e.g., [17, 16, 26, 27]). Among many graph
problems studied, the densest subgraph problem falls into the “global problem”
category where it seems that one needs at least Ω(D) rounds to compute or
approximate (since one needs to at least know the number of nodes in the graph
in order to compute the density). While most results we are aware of in this
category were shown to have a lower bound of Ω(

√

n/ logn), even on graphs with
small diameter (see [13] and references therein), the densest subgraph problem
is one example for which this lower bound does not hold.

Our algorithm requires certain size estimation algorithms as a subroutine.
An important tool that also addresses network size estimation is a Controller.
Controllers were introduced in [1] and they were implemented on ‘growing’ trees,
but this was later extended to a more general dynamic model [30, 18]. Network
size estimation itself is a fundamental problem in the distributed setting and
closely related to other problems like leader election. For anonymous networks
and under some reasonable assumptions, exact size estimation was shown to be
impossible [12] as was leader election [5] (using symmetry concerns). Since then,
many probabilistic estimation techniques have been proposed using exponen-

tial and geometric distributions [32, 3, 37]. Of course, the problem is even more
challenging in the dynamic setting.

Self-* systems [9, 14, 15, 31, 34, 42, 21, 40, 24, 25, 43] are worth mentioning here.
Often, a crucial condition for such systems is the initial detection of a particular
state. In this respect, our algorithm can be viewed as a self-aware algorithm
where the nodes monitor their state with respect to the environment, and this
could be used for developing powerful self-* algorithms.

5 Future Work and Conclusions

We have presented efficient decentralized algorithms for finding dense subgraphs
in distributed dynamic networks. Our algorithms not only show how to com-
pute size-constrained dense subgraphs with provable approximation guarantees,
but also show how these can be maintained over time. While there has been
significant research on several variants of the dense subgraph computation prob-
lem in the classical setting, to the best of our knowledge this is the first formal
treatment of this problem for a distributed peer-to-peer network model.

Several directions for future research result naturally out of our work. The
first specific question is whether our algorithms and analyses can be improved
to guarantee O(D+logn) rounds instead of O(D logn), even in static networks.
Alternatively, can one show a lower bound of Ω(D logn) in static networks?
Bounding the value D in terms of the instantaneous graphs and change rate r
would also be an interesting direction of future work. It is also interesting to show
whether the densest subgraph problem can be solved exactly in O(D poly logn)
or not in the static setting, and to develop dynamic algorithms without density
lower bound assumptions. Another open problem (suggested to us by David
Peleg) that seems to be much harder is the at-most-k densest subgraph problem.
One could also consider various other definitions of density and study distributed
algorithms for them, as well as explore whether any of these techniques extend
directly or indirectly to specific applications. Finally, it would be interesting to
extend our results from the edge alteration model to allow node alterations as
well.

References

1. Afek, Y., Awerbuch, B., Plotkin, S.A., Saks, M.E.: Local management of a global
resource in a communication network. In: FOCS. pp. 347–357. IEEE Computer
Society (1987)

2. Afek, Y., Matias, Y.: Elections in anonymous networks. Information and Compu-
tation 113, 113–2 (1994)

3. Aggarwal, S., Kutten, S.: Time optimal self-stabilizing spanning tree algorithms.
In: Shyamasundar, R.K. (ed.) FSTTCS. Lecture Notes in Computer Science, vol.
761, pp. 400–410. Springer (1993)

4. Andersen, R., Chellapilla, K.: Finding dense subgraphs with size bounds. In: WAW
’09: Proceedings of the 6th International Workshop on Algorithms and Models for
the Web-Graph. pp. 25–37 (2009)

5. Angluin, D.: Local and global properties in networks of processors (extended ab-
stract). In: Miller, R.E., Ginsburg, S., Burkhard, W.A., Lipton, R.J. (eds.) STOC.
pp. 82–93. ACM (1980)

6. Asahiro, Y., Hassin, R., Iwama, K.: Complexity of finding dense subgraphs. Dis-
crete Appl. Math. 121(1-3), 15–26 (2002)

7. Attiya, H., Welch, J.: Distributed Computing: Fundamentals, Simulations and Ad-
vanced Topics. John Wiley & Sons (2004)

8. Bahmani, B., Kumar, R., Vassilvitskii, S.: Densest subgraph in streaming and
mapreduce. PVLDB 5(5), 454–465 (2012)

9. Berns, A., Ghosh, S.: Dissecting self-* properties. Self-Adaptive and Self-
Organizing Systems, International Conference on 0, 10–19 (2009)

10. Bhaskara, A., Charikar, M., Vijayaraghavan, A., Guruswami, V., Zhou, Y.: Poly-
nomial integrality gaps for strong sdp relaxations of densest k-subgraph. In: SODA.
pp. 388–405 (2012)

11. Charikar, M.: Greedy approximation algorithms for finding dense components in
a graph. In: APPROX. pp. 84–95 (2000)

12. Cidon, I., Shavitt, Y.: Message terminating algorithms for anonymous rings of
unknown size. Inf. Process. Lett. 54(2), 111–119 (1995)

13. Das Sarma, A., Holzer, S., Kor, L., Korman, A., Nanongkai, D., Pandurangan, G.,
Peleg, D., Wattenhofer, R.: Distributed verification and hardness of distributed
approximation. In: STOC. pp. 363–372 (2011)

14. Dijkstra, E.W.: Self-stabilizing systems in spite of distributed control. Commun.
ACM 17(11), 643–644 (November 1974), http://dx.doi.org/10.1145/361179.361202

15. Dolev, S.: Self-stabilization. MIT Press, Cambridge, MA, USA (2000)
16. Dubhashi, D.P., Grandioni, F., Panconesi, A.: Distributed Algorithms via LP Du-

ality and Randomization. In: Handbook of Approximation Algorithms and Meta-
heuristics. Chapman and Hall/CRC (2007)

17. Elkin, M.: An overview of distributed approximation. ACM SIGACT News Dis-
tributed Computing Column 35(4), 40–57 (December 2004)

18. Emek, Y., Korman, A.: New bounds for the controller problem. In: Keidar, I. (ed.)
DISC. Lecture Notes in Computer Science, vol. 5805, pp. 22–34. Springer (2009)

19. Feige, U., Kortsarz, G., Peleg, D.: The dense k-subgraph problem. Algorithmica
29 (1999)

20. Frischknecht, S., Holzer, S., Wattenhofer, R.: Networks cannot compute their di-
ameter in sublinear time. In: SODA. pp. 1150–1162 (2012)

21. Ghosh, D., Sharman, R., Raghav Rao, H., Upadhyaya, S.: Self-healing systems -
survey and synthesis. Decis. Support Syst. 42(4), 2164–2185 (2007)

22. Gibson, D., Kumar, R., Tomkins, A.: Discovering large dense subgraphs in massive
graphs. In: Böhm, K., Jensen, C.S., Haas, L.M., Kersten, M.L., Larson, P.Å., Ooi,
B.C. (eds.) VLDB. pp. 721–732. ACM (2005)

23. Goldberg, A.V.: Finding a maximum density subgraph. Tech. Rep. UCB/CSD-84-
171, EECS Department, University of California, Berkeley (1984)

24. Hayes, T., Saia, J., Trehan, A.: The forgiving graph: a distributed data struc-
ture for low stretch under adversarial attack. Distributed Computing pp. 1–18,
http://dx.doi.org/10.1007/s00446-012-0160-1, 10.1007/s00446-012-0160-1

25. Hayes, T.P., Saia, J., Trehan, A.: The forgiving graph: a distributed data structure
for low stretch under adversarial attack. In: PODC ’09: Proceedings of the 28th
ACM symposium on Principles of distributed computing. pp. 121–130. ACM, New
York, NY, USA (2009)

26. Khan, M., Pandurangan, G.: A fast distributed approximation algorithm for min-
imum spanning trees. Distributed Computing 20, 391–402 (2008)

27. Khan, M., Kuhn, F., Malkhi, D., Pandurangan, G., Talwar, K.: Efficient distributed
approximation algorithms via probabilistic tree embeddings. In: PODC. pp. 263–
272 (2008)

28. Khot, S.: Ruling out PTAS for graph min-bisection, dense k-subgraph, and bipar-
tite clique. SIAM J Computing 36(4), 1025–1071 (2006)

29. Khuller, S., Saha, B.: On finding dense subgraphs. In: ICALP (1). pp. 597–608
(2009)

30. Korman, A., Kutten, S.: Controller and estimator for dynamic networks. In: Gupta,
I., Wattenhofer, R. (eds.) PODC. pp. 175–184. ACM (2007)

31. Korman, A., Kutten, S., Masuzawa, T.: Fast and compact self stabilizing verifica-
tion, computation, and fault detection of an MST. In: Gavoille, C., Fraigniaud, P.
(eds.) PODC. pp. 311–320. ACM (2011)

32. Kuhn, F., Lynch, N.A., Oshman, R.: Distributed computation in dynamic net-
works. In: STOC. pp. 513–522 (2010)

33. Kuhn, F., Oshman, R., Moses, Y.: Coordinated consensus in dynamic networks.
In: PODC. pp. 1–10 (2011)

34. Kuhn, F., Schmid, S., Wattenhofer, R.: A Self-Repairing Peer-to-Peer System Re-
silient to Dynamic Adversarial Churn. In: 4th International Workshop on Peer-
To-Peer Systems (IPTPS), Cornell University, Ithaca, New York, USA, Springer
LNCS 3640 (February 2005)

35. Lawler, E.: Combinatorial optimization - networks and matroids. Holt, Rinehart,
and Winston (1976)

36. Lynch, N.: Distributed Algorithms. Morgan Kaufmann Publishers, San Mateo, CA
(1996)

37. Matias, Y., Afek, Y.: Simple and efficient election algorithms for anonymous net-
works. In: Bermond, J.C., Raynal, M. (eds.) WDAG. Lecture Notes in Computer
Science, vol. 392, pp. 183–194. Springer (1989)

38. Nanongkai, D., Das Sarma, A., Pandurangan, G.: A tight unconditional lower
bound on distributed randomwalk computation. In: PODC. pp. 257–266 (2011)

39. Pandurangan, G., Khan, M.: Theory of communication networks. In: Algorithms
and Theory of Computation Handbook, Second Edition. CRC Press (2009)

40. Pandurangan, G., Trehan, A.: Xheal: localized self-healing using expanders. In:
Proceedings of the 30th annual ACM SIGACT-SIGOPS symposium on Principles
of distributed computing. pp. 301–310. PODC ’11, ACM, New York, NY, USA
(2011), http://doi.acm.org/10.1145/1993806.1993865

41. Peleg, D.: Distributed computing: a locality-sensitive approach. Society for Indus-
trial and Applied Mathematics, Philadelphia, PA, USA (2000)

42. Poor, R., Bowman, C., Auburn, C.B.: Self-healing networks. Queue 1, 52–59 (May
2003), http://doi.acm.org/10.1145/846057.864027

43. Trehan, A.: Algorithms for self-healing networks. Dissertation, University of New
Mexico (2010)

Appendix

A Counting the number of nodes and edges in a subgraph

Our algorithms make use of an operation in which all the nodes (edges) in a
given subgraph need to be counted for different phases of the algorithm. We

achieve this by using the node-counting algorithm of Kuhn et al.[32, Algorithm
2] that gives a (1± ǫ)-approximation of the number of nodes in a network. There
are, however, several modifications that have to be made to their algorithm to
work in our setting, and we describe these next.

For completeness, our modified version of Kuhn et al.’s algorithm is given
in Algorithm 3. Note that their algorithm requires an upper bound on the size
of the network (N), the very quantity that we are estimating. We later give an
algorithm that can provide this upper bound, thereby removing this assump-
tion. This algorithm works by generating a number of independent exponential
variables at each node and using the fact that the minimum of such quanti-
ties gives a means for estimating their cardinality. The first change we make is
that we do not have the entire network run this algorithm in a given phase,
but only the nodes in the current subgraph (denoted here as V ′). Though all
the nodes in the nework take part in the computation, only the nodes in V ′

generate exponentially distributed values and hence the final estimate is for this
subgraph. Secondly, we change the termination condition of the algorithm. The
algorithm of Kuhn et al. terminated when a reasonable estimate was reached at
each node. Since in our context we have a bound on the number of rounds it
takes a message to traverse the network (the dynamic diameter D), we simply
run for this many rounds and are guaranteed that by the end of D rounds all
the nodes have the same minimum values. The proof that this algorithm gives
a (1± ǫ)-approximation with high probability is nearly identical to that in [32],
and is hence omitted here.

Input: A set of nodes V ′ ⊆ V (each node knows whether it is in V ′ or not), dynamic
diameter D, and error parameter ǫ.
Output: n′, a (1 ± ǫ)-approximation of the number of nodes in
V ′.
1: Let c > 0 and let N be an upper bound on the size of the network
2: Let l = ⌈27(2 + 2c) logN/ǫ2⌉
3: Each node u ∈ V ′ generates an l-tuple of independent exponential variables

with rate 1: Zu = (Y u
1 , . . . , Y u

l); all other nodes v ∈ V − V ′ generate Zv =
(∞,∞, . . . ,∞).

4: for r = 1, . . . , D do

5: Broadcast Zu if Zu 6= (∞,∞, . . . ,∞).
6: Receive Zv1 , . . . , Zvs from neighbors.
7: for i = 1, . . . , l do

8: Zu
i = min {Zu

i , Z
v1
i , . . . , Zvs

i }
9: end for

10: end for

11: Output nu = l/
∑l

i=1
Zu

i .

Algorithm 3: [32]RandomizedApproximateCounting(V ′, D, ǫ)

As was noted above, the algorithm of Kuhn et al. needs an upper bound N
on the size of the network. In Algorithm 4, we give an algorithm that provides

this upper bound (indeed, a 2-approximation) using a similar technique. It does
not assume that nodes have unique IDs nor does it need an upper bound on the
size of V ′, but it does need to know the dynamic diameter D. The algorithm is
similar to the ELECT algorithm in [2], except that we use it here to estimate
the size of a set of nodes in a dynamic network rather than elect a leader in
a static one. This algorithm uses the maximum (rather than the minimum) of
discrete (rather than real-valued) independent exponentially distributed values.

Input: A set of nodes V ′ (each node knows whether it is in V ′ or not), dynamic
diameter D, and a failure probability δ.
Output: n′, a (2, δ)-approximation of the number of nodes in V ′ (i.e., if the number
of nodes in V ′ is n, then P (n/2 ≤ n′ ≤ 2n) > 1− δ)
1: Let l = 65 ln (1/δ)
2: for i = 1, . . . , l do

3: Each node v ∈ V ′ tosses an unbiased coin until it sees a head. Let Xv
i be the

number of tosses it performs.
4: end for

5: for r = 1, . . . , D do

6: Broadcast Xv to all of its neighbors.
7: Receive Xv1 , . . . , Xvs from neighbors.
8: for i = 1, . . . , l do

9: Xv
i = max {Xv

i , X
v1
i , . . . , Xvs

i }
10: end for

11: end for

12: Output the median of (2X
v
1 , . . . , 2X

v
l).

Algorithm 4: Count Nodes(V ′, D, δ)

The estimation guarantee of the algorithm is given by the following theorem:

Theorem 13 (Approximation guarantee). After D rounds, all the nodes
have the same estimate of n = |V ′| and this estimate n′ is such that P (n/2 ≤
n′ ≤ 2n) > 1− δ.

Proof. Consider any one coordinate of the l-tuple, say i. After D rounds, by the
definition of dynamic diameter, all the values Xv

i have been transmitted to all
the nodes, and so they all have the same maximum value. We show that 2X

v
i is

a good approximation of n.
For an arbitrary Xv

i , we have a cumulative distribution function of P (Xv
i ≤

k) = (1−1/2k). Hence, the cumulative distribution function of Xmax = maxv∈V ′Xv
i

is P (Xmax ≤ k) = (1− 1/2k)n. From this we can compute the probability:

P (lgn− 1 ≤ Xmax ≤ lg n+ 1) = P (Xmax ≤ lg n+ 1)− P (Xmax ≤ lgn− 2)

=

(

1− 1

2n

)n

−
(

1− 4

n

)n

> 1/2 (for n ≥ 4).

Hence, n/2 ≤ 2Xmax ≤ 2n with probability greater than 1/2. Using standard
Chernoff bound techniques, it is easy to show that taking the median of l =
O(ln (1/δ)) such estimates reduces the failure probability down to δ.

Note that since all the nodes know the value of D, Algorithm 4 takes pre-
cisely D rounds to execute. Also note that the maximum number of bits that
a node has to transmit per round is not too high. We can bound Xmax to
within O(log n) with high probability, and so no node communications more
than O(log (1/δ) log logn) bits in a given round with high probability.

In summary, in each phase of our algorithm we use Algorithm 4 to get an
upper bound on the size of V ′ (with high probability) and then apply the modi-
fied algorithm of Kuhn et al. (Algorithm 3) to get a (1± ǫ)-approximation of the
size of V ′ using the upper bound from the previous algorithm, all in precisely
2D rounds of communication.

We next discuss how the number of edges in the induced subgraph is com-
puted. The algorithm for counting edges is based on the one for counting the
number of nodes: each node in the subgraph u counts its degree du and simulates
the behavior of Algorithms 4 and 3 with du independent copies of the exponen-
tially distributed tuples. This increases the computation cost at each node by
a du factor, but doesn’t affect the number of rounds for the above algorithms.
Also note that since the component-wise max or min of the tuples is all that
gets transmitted, there is no increase in the amount of data being broadcast by
each node. At the end of the computation, the nodes have an estimate of two
times the number of edges in the subgraph (since both nodes at the end of an
edge report it). The details are given in Algorithm 5.

Input: A set of nodes V ′ (each node knows whether it is in V ′ or not) and number
ǫ > 0.
Output: The algorithm computes m′, a (1± ǫ)-approximation to the number of edges
in V ′.
1: Every node in V ′ broadcasts a message to its neighbors.
2: Each node u counts the number of neighbors in V ′ that communicated with it, call

this du.
3: Algorithm 4 is run, with each node u simulating du separate nodes, to get an upper

bound on
∑

u
du.

4: Algorithm 3 is run, with each node u simulating du separate nodes, to get a (1± ǫ)
estimate of

∑
u
du, call it m′.

5: Output m′/2

Algorithm 5: Count Edges(V ′, ǫ)

The analysis of the approximation guarantee for the number of edges is almost
identical to that for the number of nodes, and is omitted here. Counting the
number of edges also takes 2D rounds in total, with no node broadcasting more
than O(log n) bits in any round with high probability.

B Proof of Theorem 12

Lemma 14. ρt′′(Vi ∪ V̂) > 1−δ
3(1+δ) min

(

ρt′ (H
∗)

1+δ
, ρt′(H

∗)− 3δρt(H
∗)
)

.

Proof. Let H ′ be the at-least-k densest subgraph of Gt′ . Note that

ρt′(H
∗) ≤ ρt′(H

′) . (6)

Now, define ℓ, H1, . . . , Hℓ and D using Algorithm 6 (which is similar to the
process defined in [29] to prove that the algorithm in [29] is a 2-approximation).
We note that we are not interested in the efficiency of this algorithm as it is only
used to prove the approximation guarantee.

1: Let j = 0, G0
t′ = Gt′ and D = ∅. For any set of vertices X, let Et′(X) be the set

of edges in the subgraph of Gt′ induced by X.
2: while |D| < k/(1− δ) or |Et′(D) ∩Et′(H

′)| < 1

3
Et′(H

′) do

3: For any j, let Hj be the densest subgraph of Gj

t′
.

4: D = D ∪ V (Hj).
5: Let Gj+1

t′
be the graph obtained from Gj

t′
by deleting nodes in Hj .

6: j = j + 1.
7: end while

8: Let ℓ = j − 1.

Algorithm 6: Defining ℓ, H1, . . . , Hℓ and D for the proof of Lemma 14.

Note the following simple observation:

Observation 15 For all j = 1, . . . , ℓ, ρt′(H
j) ≥ 2

3ρt′(H
′).

Proof. Since |Et′(D) ∩Et′(H
′)| < 1

3Et′(H
′) in every iteration of the while loop,

|Et′

(

V (Gj
t′) ∩ V (H ′)

)

| ≥ 2

3
|Et′(H

′)| .

That is, there are at least 2/3 fraction of edges of H ′ left in Gj
t′ . This implies

that the density of subgraph of Gj
t′ induced by nodes in H ′ is at least

ρt′
(

V (Gj
t′) ∩ V (H ′)

)

=
|Et′

(

V (Gj
t′) ∩ V (H ′)

)

|
|V (Gj

t′) ∩ V (H ′)|
≥ 2

3

|Et′(H
′)|

|V (H ′)| =
2

3
ρt′(H

′) .

Since Hj is the densest subgraph of Gj
t′ ,

ρt′(H
j) ≥ ρt′

(

V (Gj
t′) ∩ V (H ′)

)

≥ 2

3
ρt′(H

′)

as claimed.

Let i∗ be the smallest index such that V (D) ⊆ Vi∗ and V (D) 6⊆ Vi∗+1. Note
that i∗ exists since the algorithm repeats until we get Vj = ∅. Now we consider
two cases.

Case 1: ni∗ ≥ k. Let v be any vertex in V (D) \ Vi∗+1. Let j∗ be such that
v ∈ V (Hj∗). Note that Observation 15 implies that

ρt′(H
′) ≤ 3

2
ρt′(H

j∗) . (7)

Let Ht′,i∗ be the subgraph of Gt′ induced by vertices in Vi∗ . Note that

ρt′(H
j∗) ≤ 2 degHj∗ (v) ≤ 2 degHt′,i∗

(v) . (8)

The first inequality is because we can remove v from Hj∗ and get a subgraph

of Gj∗

t′ that has higher density than Hj∗ otherwise. The second inequality is
because Hj∗ ⊆ Ht′,i∗ (since V (Hj∗) ⊆ D ⊆ Vi∗). Since v is removed from Vi∗ ,

degHt′,i∗
(v) < (1 + δ)

mi∗

ni∗
(9)

where δ = ǫ/24 as in Algorithm 1. By definition of i and the fact that ni∗ ≥ k,

mi∗

ni∗
=

mi∗

max(k, ni∗)
≤ mi

max(k, ni)
. (10)

Note that |Vi ∪ V̂ | ≤ ni/(1− δ) and mi ≤ (1+ δ)|Et′′ (Vi)| with high probability.
It follows that

mi

max(k, ni)
≤ 1 + δ

1− δ
ρt′′(Vi ∪ V̂) . (11)

Combining Eq.(6) with (7)-(11), we get ρt′(H
∗) < 3 (1+δ)2

1−δ
ρt′′(Vi ∪ V̂) and thus

the lemma.
Case 2: ni∗ < k. This implies that with high probability |Vi∗ | < (1 + δ)k.

Since D ⊆ Vi∗ , |D| < (1+δ)k. By the condition in the while loop of Algorithm 6,

|Et′(Vi∗)| ≥ |Et′(D)| ≥ 1

3
|Et′(H

′)| . (12)

Note that mi∗ ≥ |Et′(Vi∗)| − Tr ≥ 1
3 |Et′(H

′)| − δkρt(H
∗). Thus,

mi∗

max(k, ni∗)
≥

1
3 |Et′(H

′)| − δkρt(H
∗)

k
≥ 1

3
ρt′(H

′)− δρt(H
∗) . (13)

By Eq.(6),

mi

max(k, ni)
≥ mi∗

max(k, ni∗)
≥ 1

3
ρt′(H

′) + δρt(H
∗) ≥ 1

3
ρt′(H

∗)− δρt(H
∗) . (14)

Note that |Vi ∪ V̂ | ≤ k/(1− δ) and mi ≤ (1 + δ)|Et′′ (Vi)| with high probability.
It follows that

mi

max(k, ni)
≤ (1+δ)|Et′′ (Vi)|

(1−δ)k ≤ 1+δ
1−δ

ρt′′(Vi ∪ V̂) .

Combining Eq.(6), (14) and (15), we get ρt′′(Vi ∪ V̂) > (1−δ)(ρt′ (H
∗)−3δρt(H

∗))
3(1+δ)

and thus the lemma.

B.1 Proof of Observation 15

Proof. Since |Et′(D) ∩Et′(H
′)| < 1

3Et′(H
′) in every iteration of the while loop,

|Et′

(

V (Gj
t′) ∩ V (H ′)

)

| ≥ 2

3
|Et′(H

′)| .

That is, there are at least 2/3 fraction of edges of H ′ left in Gj
t′ . This implies

that the density of subgraph of Gj
t′ induced by nodes in H ′ is at least

ρt′
(

V (Gj
t′) ∩ V (H ′)

)

=
|Et′

(

V (Gj
t′) ∩ V (H ′)

)

|
|V (Gj

t′) ∩ V (H ′)|

≥ 2

3

|Et′(H
′)|

|V (H ′)|

=
2

3
ρt′(H

′) .

Since Hj is the densest subgraph of Gj
t′ ,

ρt′(H
j) ≥ ρt′

(

V (Gj
t′) ∩ V (H ′)

)

≥ 2

3
ρt′(H

′)

as claimed.

Proof (Proof of Theorem 12). The theorem follows directly by using Lemma 14
and translating the lower bound on ρt′′(Vi ∪ V̂) to a lower bound on ρt(Vi ∪ V̂)
(similar to the steps in proof of Theorem 8). As can be seen, the Lemma 14 has

a factor 1−δ
3(1+δ) as compared to a similar term of (1−δ)2

2(1+δ)2 in the case for densest

subgraph. This is why we are only able to obtain a (3 + ǫ)-approximation to
this theorem rather than a (2 + ǫ)-approximation previously. The proof for the
theorem and the (3 + ǫ)-approximation is completed as before by translating
ρt′′(Vi ∪ V̂) to a lower bound on ρt(Vi ∪ V̂) and subsequently from the 1−δ

3(1+δ)

term by plugging in the appropriate value for δ in terms of ǫ.

