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Abstract. Bayesian network classifiers (BNCs) are probabilistic classi-
fiers showing good performance in many applications. They consist of a
directed acyclic graph and a set of conditional probabilities associated
with the nodes of the graph. These conditional probabilities are also
referred to as parameters of the BNCs. According to common believe,
these classifiers are insensitive to deviations of the conditional probabil-
ities under certain conditions. The first condition is that these proba-
bilities are not too extreme, i.e. not too close to 0 or 1. The second is
that the posterior over the classes is significantly different. In this pa-
per, we investigate the effect of precision reduction of the parameters
on the classification performance of BNCs. The probabilities are either
determined generatively or discriminatively. Discriminative probabilities
are typically more extreme. However, our results indicate that BNCs
with discriminatively optimized parameters are almost as robust to pre-
cision reduction as BNCs with generatively optimized parameters. Fur-
thermore, even large precision reduction does not decrease classification
performance significantly. Our results allow the implementation of BNCs
with less computational complexity. This supports application in embed-
ded systems using floating-point numbers with small bit-width. Reduced
bit-widths further enable to represent BNCs in the integer domain while
maintaining the classification performance.

Keywords: Bayesian Network Classifiers, Custom-precision Analysis,
Discriminative Classifiers

1 Introduction

Pattern recognition is about identifying patterns in input data and assigning
labels to this data. Examples of pattern recognition are regression and classifica-
tion. A classifier has to be learned from a set of training samples by identifying
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discriminative properties such that new unlabeled samples can be correctly clas-
sified. Many approaches and algorithms for this purpose exists. Some of the most
competitive approaches are support vector machines [16], neural networks [7] and
Bayesian network classifiers (BNCs) [5].

BNCs are probabilistic classifiers that assume a joint probability distribution
over the input data and the class labels. They classify new input data as the max-
imum a-posteriori estimate of the class given this data using the assumed proba-
bility distribution. The probability distribution is represented by a Bayesian net-
work (BN). BNs consist of a directed acyclic graph, i.e. the structure, and a set
of local conditional probability densities, i.e. the parameters. The classification
performance of a BNC is determined by the assumed probability distribution.
Finding probability distributions that result in good classifiers is addressed by
the tasks of structure [1,5,8,14] and parameter learning [6,8,12,15,16]. Structure
learning is not considered in this paper and we assume fixed graph structures.
In detail, we consider BNCs with naive Bayes (NB) structures, cf. Figure 1, and
tree augmented network structures (TAN) [5].

Parameter learning in BNCs resorts to identifying a probability distribution
over the input data and the class labels. This distribution must be compatible
with the assumed structure of the BNC. For learning these distributions, we use
the maximum likelihood (ML), the maximum conditional likelihood (MCL), and
the maximum margin (MM) objectives.

C

X1 X2 X3 . . . XL

Fig. 1. Naive Bayes structure.

The process of parameter learning and classification is typically performed
on a computer using high numerical precision, i.e. double-precision floating-point
calculations. However, this high precision causes large storage requirements,
cf. Table 1. Additionally, the necessary calculations depend on complex com-
puter architectures to be performed efficiently. In contrast to up-to-date com-
puters this requirements are often not met by embedded systems, low energy
computers or integrated solutions that need to optimize the used hardware re-
sources. To aid complexity reduction we investigate the performance of BNCs
with reduced precision probability parameters. Especially, we are interested in
comparing the robustness of generatively (ML) and discriminatively (MCL, MM)
optimized probability distributions with respect to precision reduction of their
parameters using various BN structures.
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Table 1. Number of probability parameters (# parameters) and the storage require-
ments (storage) for these parameters in BNCs with different graph structures (for dif-
ferent datasets). Each parameter is assumed to be stored in double-precision floating-
point format, i.e. 64 bits are required for each parameter. Details on the structures and
datasets are provided in Section 5.

data structure # parameters storage [kB]

USPS
NB 8650 67.6

TAN-CR 20840 162.8

MNIST
NB 6720 52.5

TAN-CR 39980 312.3

TIMIT (4 classes) NB 1320 10.3

TIMIT (6 classes) NB 1998 15.6

Some of our findings can be related to results from sensitivity analysis of
BNs [3, 4]. Amongst others, the framework of sensitivity analysis describes the
dependency of inference queries to variations in the local conditional probabil-
ity parameters. The precision reduction of the probability parameters resorts to
such variations and can, therefore, be interpreted in this framework. However,
the focus in this paper is different. We are particularly interested in analyzing the
classification performance of BNCs when reducing the bit-width of all parame-
ters simultaneously. Additionally, we are interested in comparing the robustness
of the classification of BNCs with generatively and discrimatively optimized pa-
rameters with respect to this precision reduction. As the local conditional proba-
bility parameters of discriminatively optimized BNCs tend to be more extreme,
we suspected classification rates of these classifiers to depend stronger on the
used precision than the classification rates of BNCs with generatively optimized
parameters. Nevertheless, our results demonstrate that this is not true.
Our main findings are:

– The number of extreme conditional probability values, i.e. probabilities close
to 0 or 1, in BNCs with discrimatively optimized parameters is larger than
in BNCs with generatively optimized parameters, cf. Section 5.1. Using re-
sults from sensitivity analysis, this suggests that BNCs with discrimatively
optimized parameters might be more susceptible to precision reduction than
BNCs with generatively optimized parameters. Nevertheless, we observed
in experiments that BNCs with both types of parameters can achieve good
classification performance using reduced precision floating-point parameters.
In fact, the classification performance is close to BNCs with parameters rep-
resented in full double-precision floating-point format, cf. Section 5.2.

– The reduction of the precision allows for mapping the classification process
of BNCs to the integer domain, cf. Section 4. Thereby, exact computation
in that domain, reduced computational complexity and implementation on
simple embedded hardware is supported. In fact, some of the considered
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BNCs can perform classification using integer arithmetic without significant
reduction of performance.

The outline of this paper is as follows: In Section 2 we provide a motivating
example demonstrating that there is large potential in reducing the precision of
the parameters of BNCs. Afterwards, we introduce probabilistic classification,
BNCs, and the sensitivity of BNs to changes of their parameters in Section 3.
An approach for mapping the parameters of BNCs to the integer domain is
presented in Section 4 and various experiments are provided in Section 5. Finally,
we conclude the paper in Section 6 and provide a perspective on future work.

2 Motivating Example

In this section we provide an example demonstrating that the parameters of BNs
employed for classification do not require high precision. They can be approx-
imated coarsely without reducing the classification rate significantly. In some
cases, only a few bits for representing each probability parameter of a BNC are
necessary to achieve classification rates close to optimal.

The probability parameters of BNCs, these classifiers are introduced in detail
in Section 3, are typical stored in double-precision floating-point format [10,
11]. We use logarithmic probability parameters w = log(θ), with 0 ≤ θ ≤ 1,
represented as

w = (−1)s

(
1 +

52∑
k=1

bk2−k

)
2(
∑10

l=0 e
l2l−1023), (1)

where s ∈ {0, 1}, bk ∈ {0, 1} for all k, and el ∈ {0, 1} for all l. The term

– (−1)s is the sign,

– (1 +
∑52
i=1 b

k2−k) is the mantissa, and

– (
∑10
l=0 e

l2l − 1023) is the exponent

of w, respectively. In total 64 bits are used to represent each log-parameter.
Processing these parameters on desktop computers does not impose any prob-
lems. However, this large bit-width of the parameters can be a limiting factor
in embedded systems or applications optimized for low run-times or low energy-
consumption.

The range of the parameters using double-precision floating-point format
is about ±10300 and by far larger than required; The distribution of the log-
parameters of a BNC with maximum likelihood parameters for handwritten digit
data (USPS data, details are provided in Section 5) is shown in Figure 2(a). Ad-
ditionally, the distribution of the values of the exponent is shown in Figure 2(b).
All the log-parameters are negative and their range is [−7; 0]. The range of the
exponent of the logarithmic parameters is [−10; 2].

The required bit-width to store the logarithmic parameters in a floating-point
format, cf. Equation (1), can be reduced in three aspects:
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(b) exponent of logarithmic conditional
probabilities in double-precision

Fig. 2. Histograms of (a) the log-parameters, and (b) the exponents of the log-
parameters of a BNC for handwritten digit data with ML parameters assuming NB
structure.

1. Sign bit. Every probability θ satisfies 0 ≤ θ ≤ 1. Therefore, its logarithm
is in the range −∞ ≤ w ≤ 0. Consequently, the sign bit can be removed
without any change in the represented parameters.

2. Bit-width of the mantissa. We varied the bit-width of the mantissa of
the log-parameters while keeping the exponent unchanged. As a result, we
observed that this does not influence the classification rate significantly when
using ML parameters, cf. Figure 3(a). When using 4 or more bits to represent
the mantissa, the performance is almost the same as when using the full
double-precision floating-point format, i.e. 53 bits for the mantissa.

3. Bit-width of the exponent. Changing the bit-width of the exponent has
the largest impact on the classification performance. A change of the expo-
nent of a parameter results in a change of the scale of this parameter. The
classification rates resulting from reducing the bit-width of the exponent are
shown in Figure 3(b). Note that we reduced the bit-width starting with the
most significant bit (MSB). Only a few bits are necessary for classification
rates on par with the rates achieved using full double-precision floating-point
parameters.

Based on this motivating example demonstrating the potential of precision
reduction we can even map BNCs to the integer domain, cf. Section 4. Further
experimental results are shown in Section 5.

3 Background

3.1 Probabilistic Classification

Probabilistic classifiers are embedded in the framework of probability theory.
One assumes a random variable (RV) C denoting the class and RVs X1, . . . , XL

representing the attributes/features of the classifier. These RVs are related by
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Fig. 3. Classification rate over varying bit-width of (a) the mantissa, and (b) the
exponent, for handwritten digit data, NB structure, and log ML parameters. The clas-
sification rates using full double-precision logarithmic parameters are indicated by the
horizontal dotted lines.

a joint probability distribution P∗(C,X), where X = [X1, . . . , XL] is a random
vector consisting of X1, . . . , XL. In typical settings, this joint distribution is un-
known and a limited number of samples drawn from true distribution P∗(C,X),
i.e. a training set D, is available. This set D consists of N i.i.d. labeled sam-
ples, i.e. D = {(c(n),x(n))|1 ≤ n ≤ N}, where c(n) denotes the instantiation of
the RV C and x(n) the instantiation of X in the nth training sample. The aim
is to induce good classifiers provided the training set, i.e. classifiers with low
generalization error. Formally, a classifiers h is a mapping

h : sp(X)→ sp(C), (2)

x 7→ h(x),

where sp(X) denotes the set of all assignments of X and sp(C) is the set of
classes. The generalization error of this classifier is

Err(h) := EP∗(C,X) [1{C 6= h(X)}] , (3)

where 1{A} denotes the indicator function and EP∗(C,X) [·] is the expectation
operator with respect to the distribution P∗(C,X). The indicator function 1{A}
equals one if statement A is true and zero otherwise. Typically, the generalization
error can not be evaluated because P∗(C,X) is unknown but is rather estimated
using cross-validation [2].

BNCs with generatively optimized parameters are based on the idea of ap-
proximating P∗(C,X) by a distribution PB(C,X) and using the induced classifier
hPB(C,X), given as

hPB(C,X) : sp(X)→ sp(C), (4)

x 7→ arg max
c∈C

PB(C = c|X = x),
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for classification. In this way, each instantiation x of X is classified as the max-
imum a-posteriori (MAP) estimate of C given x under PB(C,X). BNCs with
discriminatively optimized parameters do not approximate P∗(C,X) but rather
determine PB(C,X) such that good classification performance is achieved. Dis-
criminative learning of BNCs is advantageous in cases where the assumed model
distribution PB(C,X) can not approximate P∗(C,X) well, for example because
of a too limited BN structure. Several approaches for optimizing PB(C,X) are
discussed in the next section after introducing the concept of Bayesian networks
in more detail.

3.2 Bayesian Networks and Learning Bayesian Network Classifiers

Bayesian Networks (BNs) [8,12] are used to represent joint probability distribu-
tions in a compact and intuitive way. A BN B = (G,PG) consists of a directed
acyclic graph G = (V,E), where V = {X0, . . . , XL} is the set of nodes and E the
set of edges of the graph, and a set of local conditional probability distributions
PG = {P(X0|Pa(X0)), . . . ,P(XL|Pa(XL))}. The terms Pa(X0), . . . , Pa(XL) de-
note the set of parents of X0, . . . , XL in G, respectively. We abbreviate the con-
ditional probability P (Xi = j|Pa(Xi) = h) as θij|h and the corresponding log-

arithmic probability as wij|h = log(θij|h). Each node of the graph corresponds
to an RV and the edges of the graph determine dependencies between these
RVs. Throughout this paper, we denote X0 as C, i.e. X0 represents the class,
and assume that C has no parents in G, i.e. Pa(C) = ∅. A BN induces a joint
probability PB(C,X1, . . . , XL) by multiplying the local conditional distributions
together, i.e.

PB(C,X1, . . . , XL) = P(C)

L∏
i=1

P(Xi|Pa(Xi)). (5)

BNs for classification can be optimized in two ways: firstly, one can select
the graph structure G, and secondly, one can learn the conditional probabilities
PG . Selecting the graph structure is known as structure learning and selecting
PG is known as parameter learning. The structures considered throughout this
paper are fairly simple. In detail, we used naive Bayes structures, cf. Figure 1,
and tree augmented network structures (TAN) [5].

For learning the parameters PG of a BN two paradigms exist, namely gener-
ative parameter learning and discriminative parameter learning:

– In generative parameter learning one aims at identifying parameters repre-
senting the generative process that results in the data of the training set.
An example of this paradigm is maximum likelihood (ML) learning. Its ob-
jective is maximization of the likelihood of the data given the parameters.
Formally, ML parameters PML

G are learned as

PML
G = arg max

PG

N∏
n=1

PB(c(n),x(n)), (6)
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where PB(C,X) is the joint distribution in (5) induced by the BN (G,PG).
– In discriminative learning one aims at identifying parameters leading to good

classification performance on new samples from P∗(C,X). Several objectives
for this purpose are known in the literature. Throughout this paper, we
consider the maximum conditional likelihood (MCL) [15] objective and the
maximum margin (MM) [6,13] objective.
MCL parameters PMCL

G are obtained as

PMCL
G = arg max

PG

N∏
n=1

PB(c(n)|x(n)), (7)

where again PB(C,X) is the joint distribution induced by the BN (G,PG)
and PB(C|X) denotes the conditional distribution of C given X determined
from PB(C,X) as PB(C,X) = PB(C|X) · PB(X). Thus, MCL parameters
maximize the conditional probability of the class instantiations given the
instantiations of the attributes.
MM parameters PMM

G are found as

PMM
G = arg max

PG

N∏
n=1

min
(
γ, d(n)

)
, (8)

where d(n) is the margin of the nth sample given as

d(n) =
PB(c(n)|x(n))

maxc6=c(n) PB(c|x(n))
, (9)

and γ > 1 is a parameter controlling the margin. In this way, the margin
measures the ratio of the likelihood of the nth sample belonging to the correct
class c(n) to belonging to the strongest competing class. The nth sample is
correctly classified if d(n) > 1 and vice versa.

3.3 Sensitivity of Bayesian Networks

The sensitivity of a BN B = (G,PG) describes the change in a query with re-
spect to changes in the local conditional probabilities in PG . For example, a
query is the calculation of a posterior probability of the form PB(Xq|Xe), with
Xq,Xe ⊆ {C,X1, . . . , XL} and Xq ∩Xe = ∅. Several results on estimating and
bounding this sensitivity exist in the literature, cf. for example [3, 17]. The re-
sults therein essentially state that the sensitivity of BNs depends mainly on
probability parameters being close to 0 or 1 and queries being close to uniform.

In this context, consider the following theorem:

Theorem 1 (from [3]). Let Xi be a binary RV in a BN B = (G,PG), then∣∣∣∣∣∂PB(Xi|Xe)

∂τXi|Pa(Xi)

∣∣∣∣∣ ≤ PB(Xi|Xe) · (1− PB(Xi|Xe))

PB(Xi|Pa(Xi)) · (1− PB(Xi|Pa(Xi))
, (10)
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where τXi|Pa(Xi) is a meta-parameter such that PB(Xi = 0|Pa(Xi)) = τXi|Pa(Xi)

and PB(Xi = 1|Pa(Xi)) = 1− τXi|Pa(Xi).

The theorem states that the magnitude of the partial derivative of PB(Xi|Xe)
with respect to τXi|Pa(Xi) is bounded above. The bound depends on the query

under the current parameters PB(Xi|Xe) and on the conditional probabilities
PB(Xi|Pa(Xi)). The partial derivative is large whenever PB(Xi|Xe) is close to
uniform and whenever PB(Xi = 0|Pa(Xi)) is close to 0 or 1. In classification the
query of interest is the probability of the class variable given the features, i.e.
PB(Xi|Xe) = PB(C|X). Discriminative objectives for parameter learning in BNs
aim at good class separation, i.e. PB(C|X) or 1 − PB(C|X) is typically large.
However, also the parameters tend to be extreme, i.e. PB(Xi|Pa(Xi)) is close
to 0 or 1 (some empirical results supporting this are shown in Section 5.1). We
expect the bound to be large for discriminatively optimized parameters, as the
denominator in the above theorem scales the bound inversely proportional [3].
Hence, either the bound is loose or the partial derivative is actually large re-
sulting in high sensitivity to parameter deviations. This could be the tripping
hazard for BNCs with discriminatively optimized parameters. However, exper-
imental observations in Section 5.2 show a robust classification behavior using
discriminatively optimized small bit-width parameters.

The above Theorem only describes the sensitivity with respect to a single
parameter. There are some extensions of sensitivity analysis describing the sen-
sitivity of queries with respect to changes of many parameters [4]. However, to
the best of the authors knowledge, these do not extend to changes of all param-
eters, which is the focus of this paper. Furthermore, in classification we are not
directly interested in the sensitivity of certain queries. The focus is rather on
the maximum of a set of queries, i.e. the sensitivity of the MAP classification.
Further analytical analysis is intended for future work.

4 BNCs in the Integer Domain

In this section we present how to cast classification using BNCs to the integer
domain. This is possible when using reduced precision log-parameters for the
BNCs. Without reduced precision, the mapping can not be achieved consider-
ing the large range of numbers representable by double-precision floating-point
numbers.

Remember, a BNC given by the BN B = (G,PG) assigns an instantiation x
of the attributes to class

c = arg max
c′∈sp(C)

PB(c′,x) (11)

= arg max
c′∈sp(C)

P(C = c′)
L∏
i=1

P(Xi = x(Xi)|Pa(Xi) = x(Pa(Xi))), (12)
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where x(Xk) denotes the entry in x corresponding to Xk. This classification rule
can be equivalently stated in the logarithmic domain, i.e. x is assigned to class

c = arg max
c′∈sp(C)

[
log P(C = c′) +

L∑
i=1

log P(Xi = x(Xi)|Pa(Xi) = x(Pa(Xi)))

]
. (13)

As shown in Sections 2 and 5 the logarithmic probabilities in the above equation
can often be represented using only a few bits without reducing the classification
rate significantly. In many cases, 2 bits for the mantissa and 4 bits for the
exponent are sufficient to achieve good classification rates. Using these 6 bits,
the logarithmic probability wij|h = log θij|h is given as

wij|h = −(1 + bi,1j|h · 2
−1 + bi,2j|h · 2

−2) · 2
(∑3

k=0 e
i,k
j|h·2

k−7
)
. (14)

Hence,

c = arg max
c′∈sp(C)

[
w0

c′ +

L∑
i=1

wi
x(Xi)|x(Pa(Xi))

]
(15)

= arg min
c′∈sp(C)

[
−w0

c′ −
L∑

i=1

wi
x(Xi)|x(Pa(Xi))

]
(16)

= arg min
c′∈sp(C)

[
(1 + b0,1c′ · 2

−1 + b0,2c′ · 2
−2) · 2

(∑3
k=0 e

i,k

c′ ·2
k−7

)
+ (17)

L∑
i=1

(1 + bi,1x(Xi)|x(Pa(Xi))
2−1 + bi,2x(Xi)|x(Pa(Xi))

2−2) · 2
(∑3

k=0 e
i,k
x(Xi)|x(Pa(Xi))

2k−7
)]
.

Multiplying (17) by the constant 29 does not change the classification. Hence,
classification can be performed by

c = arg min
c′∈sp(C)

[
(4 + b0,1c′ · 2 + b0,2c′ ) · 2

(∑3
k=0 e

i,k

c′ ·2
k
)
+ (18)

L∑
i=1

(4 + bi,1x(Xi)|x(Pa(Xi))
· 2 + bi,2x(Xi)|x(Pa(Xi))

) · 2
(∑3

k=0 e
i,k
x(Xi)|x(Pa(Xi))

·2k
)]

which resorts to integer computations only. Furthermore, no floating-point round-
ing errors of any kind are introduced during computation when working purely
in the integer domain. Integer arithmetic is sufficient for implementation.

5 Experiments

In this section we present classification experiments using reduced precision log
probability parameters of BNCs. Throughout this section we consider the fol-
lowing three datasets:
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– TIMIT-4/6 Data. This dataset is extracted from the TIMIT speech corpus
using the dialect speaking region 4. It consists of 320 utterances from 16
male and 16 female speakers. Speech frames are classified into either four
or six classes using 110134 and 121629 samples, respectively. Each sample is
represented by 20 mel-frequency cepstral coefficients (MFCCs) and wavelet-
based features [13]. We perform classification experiments on data of both
genders (Ma+Fe).

– USPS Data. This dataset contains 11000 uniformly distributed handwrit-
ten digit images from zip codes of mail envelopes. Each digit is represented
as a 16× 16 grayscale image, where each pixel is considered as feature.

– MNIST Data [9]. This dataset contains 70000 samples of handwritten
digits. The digits represented by gray-level images were down-sampled by a
factor of two resulting in a resolution of 16× 16 pixels, i.e. 196 features.

Some of the experiments are performed using different BN structures. In detail,
we considered the naive Bayes (NB) structure, the generative TAN-CMI struc-
ture [5] and the discriminative TAN-OMI-CR and TAN-CR structures [14]. The
discriminative structures are determined by search-and-score heuristics using the
classification rate (CR) as score.

5.1 Number of Extreme Parameter Values in BNCs

We determined BNCs with ML, MCL and MM parameters. For calculating the
MCL and MM parameters we used the conjugate gradient based approaches
proposed in [13]. However, we did not use the proposed early-stopping heuristic
for determining the number of conjugate gradient iterations but rather performed
up to 200 iterations (or until there was no further increase in the objective). We
then counted the number of conditional probability parameters with a maximal
distance of ε to the extreme values 0 and 1, i.e. the count is given as

Mε =
∑
i,j,h

1{(1− θjj|h) < ε}+
∑
i,j,h

1{θjj|h < ε}. (19)

The results for USPS and MNIST data are shown in Tables 2(a) and 2(b), re-
spectively. The number of extreme parameter values in BNCs with MCL param-
eters is larger than in BNCs with MM parameters, and the number of extreme
parameter values in BNCs with MM parameters is larger than in BNCs with
ML parameters. This suggests that classification using MCL parameters is more
sensitive to parameter deviations than classification with MM parameters, and
classification using MM parameters is more sensitive to deviations than classifi-
cation with ML parameters.

5.2 Reduced Precision Classification Performance

We evaluated the classification performance of BNCs with ML, MCL and MM
parameters on the USPS, MNIST and TIMIT data. Results are shown in Fig-
ures 4, 5, and 6, respectively. Classification rates using full double-precision
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Table 2. Number of probability parameters θij|h close to the extreme values 0 and 1.
Additionally, the total number of parameters (# par.) and classification rates (CR) on
the test set using parameters in full double-precision floating-point format on (a) USPS
data and (b) MNIST data are shown.

(a) USPS

M0.05 M0.01 CR

structure # par. ML MCL MM ML MCL MM ML MCL MM

NB 8650 1478 4143 1837 364 2134 446 87.10 93.93 95.00

TAN-CMI 33040 12418 14712 13002 8271 9371 8428 91.90 95.70 95.37

TAN-OMI-CR 25380 6677 8167 7441 3486 3937 3624 92.40 95.73 95.40

TAN-CR 20840 5405 7344 6519 2666 3503 3009 92.57 95.97 95.87

(b) MNIST

M0.05 M0.01 CR

structure # par. ML MCL MM ML MCL MM ML MCL MM

NB 6720 3252 3289 3170 1784 1513 1520 83.73 92.00 91.97

TAN-CMI 38350 15772 25327 16790 8603 18647 9448 91.28 92.91 94.21

TAN-OMI-CR 44600 22488 29159 24048 13615 20419 15147 92.01 93.59 94.60

TAN-CR 39980 19557 25733 23308 11794 17702 16020 92.58 93.72 95.02

floating-point parameters are indicated by the dotted lines. The classification
performance resulting from BNCs with reduced precision ML, MCL, and MM
parameters are shown by the solid lines. Reduced precision parameters were de-
termined by firstly learning parameters in double-precision, and secondly reduc-
ing the precision of these parameters. Even when using only 4 bits to represent
the exponent and 1 bit to represent the mantissa, the classification rates are
close to full-precision performance on USPS data. On MNIST and TIMIT data
the results are similar when 4 and 2 bits are used to represent the mantissa,
respectively.

Furthermore, we evaluated the classification performance of BNCs with re-
duced precision parameters using a varying size of the training set. The training
sets were obtained by selecting the desired number of samples randomly from
all available samples. The remaining samples were used as test set. For every
sample size, 5 different training/test splits were evaluated. Results on USPS
data are shown in Figure 7. Classification performance using reduced precision
parameters is close to optimal for all sample sizes.
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Fig. 4. Classification rates of BNCs with (a) NB, (b) TAN-CMI, (c) TAN-OMI-CR,
and (d) TAN-CR structures using reduced precision ML, MCL, and MM parameters
on USPS data. The bit-width of the mantissa was fixed to 1 bit and the bit-width of
the exponent was varied. The classification rates for full double-precision floating-point
parameters are indicated by the horizontal dotted lines. Error bars indicate the 95 %
confidence intervals of the mean classification rate over 5 different training/test splits.

6 Conclusion and Further Work

In this paper, we presented classification results of BNCs when reducing the
precision of the probability parameters. Contrary to the authors’ expectation,
even discriminatively optimized BNCs are robust to distortions in the param-
eters resulting from the bit-width reduction. About 6 to 10 bits are necessary
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Fig. 5. Classification rates of BNCs with NB structure using reduced precision ML,
MCL, and MM parameters on MNIST data. The bit-width of the mantissa was fixed
to 4 bits and the bit-width of the exponent was varied. The classification rate for full
double-precision floating-point parameters is indicated by the horizontal dotted lines.
Error bars indicate the 95 % confidence intervals of the mean classification rate over 5
different training/test splits.
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Fig. 6. Classification rates of BNCs with NB structure using ML, MCL, and MM
parameters with reduced precision on TIMIT data with (a) 4 classes and (b) 6 classes.
The bit-width of the mantissa was fixed to 2 bits and the bit-width of the exponent
was varied. The classification rates for full double-precision floating-point parameters
are indicated by the horizontal dotted lines. Error bars indicate the 95 % confidence
intervals of the mean classification rate over 5 different training/test splits.
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Fig. 7. Classification rates of BNCs with NB structures using reduced precision ML
and MM parameters on USPS data. The parameters were learned from training sets
with varying sizes. The bit-width of the mantissa was fixed to 1 bit. The bit-width of
the exponent is 3 bits in (a) and 5 bits in (b). The classification rates for full double-
precision floating-point parameters using the same training data are indicated by the
dashed lines. Error bars indicate the 95 % confidence intervals of the mean classification
rate over 5 different training/test splits.

to represent each probability parameter while maintaining classification rates
close to full-precision performance. This allows either to implement BNCs with
reduced precision floating point arithmetic or to cast the classification to the
integer domain. In both cases, computational and run-time benefits arise when
implementing BNCs on embedded systems or low-power computers.

Future work aims to address the following issues:

1. Analytical determination of the minimum bit-width of the probability pa-
rameters of BNCs such that classification rates are close to full-precision
performance. Results from sensitivity analysis are to be used. The analysis
will be performed for different datasets and classifier structures.

2. Implementation of BNCs in the integer domain and measuring the compu-
tational complexity reduction.
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