
On Multiple Keyword Sponsored Search
Auctions with Budgets?

Riccardo Colini-Baldeschi1,??, Monika Henzinger2,? ? ?,
Stefano Leonardi1,??, and Martin Starnberger2,? ? ?

1 Sapienza University of Rome, Italy
2 University of Vienna, Austria

Abstract. We study multiple keyword sponsored search auctions with
budgets. Each keyword has multiple ad slots with a click-through rate.
The bidders have additive valuations, which are linear in the click-through
rates, and budgets, which are restricting their overall payments. Addi-
tionally, the number of slots per keyword assigned to a bidder is bounded.

We show the following results: (1) We give the first mechanism for mul-
tiple keywords, where click-through rates differ among slots. Our mech-
anism is incentive compatible in expectation, individually rational in ex-
pectation, and Pareto optimal. (2) We study the combinatorial setting,
where each bidder is only interested in a subset of the keywords. We
give an incentive compatible, individually rational, Pareto optimal, and
deterministic mechanism for identical click-through rates. (3) We give
an impossibility result for incentive compatible, individually rational,
Pareto optimal, and deterministic mechanisms for bidders with dimin-
ishing marginal valuations.

1 Introduction

In sponsored search (or adwords) auctions advertisers bid on keywords. Such
auctions are used by firms such as Google, Yahoo, and Microsoft [11]. The search
result page for each keyword contains multiple slots for ads and each bidder is
assigned to a limited number of slots on a search result page. The slots have a
click-through rate (CTR), which is usually decreasing by the position of the slot
on the search result page. The true valuation of the bidders is private knowledge
and is assumed to depend linearly on the CTR. Moreover, valuations are assumed
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to be additive, i.e., the total valuation of a bidder is equal to the sum of his
valuations for all the slots that are assigned to him.

A further key ingredient of an adwords auction is that bidders specify a bud-
get on the payment charged for the ads, effectively linking the different keywords.
The deterministic Vickrey auction [18] was designed to maximize social welfare
in this and more general settings without budget restrictions. However, the intro-
duction of budgets dramatically changes the nature of the problem. The Vickrey
auction may charge more than the budget and is no longer feasible. Moreover,
bidders might get assigned to slots even though their budget is arbitrary small
and other bidders are interested in those slots. Thus, as was observed before [7,8],
maximizing social welfare is not the right optimality criterion to use. In a seminal
paper by Dobzinski et al. [7,8], they considered the multi-unit case with additive
valuations, which in the sponsored search setting corresponds to each keyword
having only one slot and all slots having identical CTR. They gave an incen-
tive compatible (IC) auction based on Ausubel’s ascending clinching auction [3]
that produces a Pareto optimal (PO) and individually rational (IR) allocation
if budgets are public. They also showed that this assumption is strictly needed,
i.e., that no deterministic mechanism for private budgets exists if we insist on in-
centive compatibility, individual rationality, and on obtaining an allocation that
is Pareto optimal. This impossibility result for deterministic mechanisms was
strengthened for our setting to public budgets in Dütting et al. [9]. The question
was open what optimality result can be achieved for randomized mechanisms.
Due to the impossibility results for deterministic mechanisms it is unlikely that
“strong” optimality criteria, such as bidder optimality, are achievable. Thus, the
first question to study is whether Pareto optimality, which is a basic notion of
optimality, can be achieved with randomized mechanisms. Note that if an alloca-
tion is Pareto optimal then it is impossible to make a bidder better off without
making another bidder or the auctioneer worse off, and is therefore the least one
should aim for.

Our Results. We give a positive answer to the above question and also present
two further related results. Specifically, the paper contains the following three
results: (1) Multiple keywords with multiple slots: We show that the multi-unit
auction of Dobzinski et al. [7,8] can be adapted to study adwords auctions with
multiple keywords having multiple slots, and budget limits for each bidder. We
specifically model the case of several slots with different CTR, available for each
keyword, and a bound on the number of slots per keyword (usually one) that
can be allocated to a bidder. We first provide an IC, IR, and PO deterministic
auction that provides a fractional allocation for the case of one keyword with
divisible slots. Note that the impossibility result in [9] does not hold for divisible
slots. In contrast, the impossibility result in [7,8] for multi-unit auctions applies
also to this setting, and achieving IC, IR, and PO deterministic auctions is only
possible if budgets are public. Thus, we restrict ourselves to the public budget
case. Our auction is a one-shot auction, i.e., each bidder interacts only once
with the auction. We then show how to probabilistically round this fractional
allocation for the divisible case to an integer allocation for the indivisible case
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with multiple keywords (i.e., the adwords setting) and get an auction that is IC
in expectation, IR in expectation, and PO.

(2) Multiple keywords with combinatorial constraints and multiple slots: So
far we assumed that every bidder is interested in every keyword. In the second
part of the paper we study the case that bidders are interested in only a subset
of the keywords, i.e., bidders have a non-zero identical valuation only on a subset
of the keywords. The valuations are additive and each bidder is assigned at most
one slot for a given keyword. We restrict the model by allowing only identical
slots for each keyword, i.e., we require that all slots have the same CTR. This
setting extends the combinatorial one-slot per keyword model considered by Fiat
et al. [12] to multiple slots. We present a variation of the clinching auction that
is deterministic, IC, IR, and PO.

(3) Finally, we also study non-additive valuations, namely valuations with
diminishing marginal valuations. Diminishing marginal valuation (also called
submodular) functions are widely used to model auction settings with marginal
utilities being positive functions that are non-increasing in the number of items
already allocated to the bidders. We show that even in the multi-unit (one slot
per keyword) case there is no deterministic, IC, IR, and PO auction for pri-
vate diminishing marginal valuations and public budgets. This shows how bud-
gets complicate mechanism design: For the non-budgeted version of this setting
Ausubel [3] gave his deterministic mechanism.

Related Work. Ascending clinching auctions are used in the FCC spectrum auc-
tions, see [16,4,3]. For a motivation of adwords auctions see [17] on Google’s
auction for TV ads.

We first compare our results with those of a recent, unpublished work by Goel
et al. [14] that was developed independently at the same time. They studied IC
auctions with feasible allocations that must obey public polymatroid constraints
and agents with identical or separable valuations (see their Lemma 3.10) and
public budgets. The problem of auctions with polymatroid constraints was first
studied by Bikhchandani et al. [6] for unbudgeted bidders and concave utilities.
The auction in [14] is an adaption of the ascending auction in [6] to the case
of budgeted bidders. The polymatroid constraints generalize on one hand the
the multi-unit case in [7,8] and the multiple slots with different CTRs model
presented in this paper. On the other hand, the PO ascending auction in [14]
only returns allocations for divisible items whereas in Sect. 4 of this paper we
demonstrate that these allocations can be rounded to allocations for indivisible
items if we allow the auction to yield incentive compatibility in expectation.
In Sect. 5, we present an IC, IR, and PO deterministic auction with feasible
allocations of indivisible slots that obey matching constraints for the case of
multiple identical slots.

There are three extensions of Dobzinski et al. [7,8]: (1) Fiat et al. [12] studied
an extension to a combinatorial setting, where items are distinct and different
bidders may be interested in different items. The auction presented in [12] is IC,
IR, and PO for additive valuations and single-valued bidders (i.e., every bidder
does not distinguish between the keywords in his public interest set). This is
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a special case of our combinatorial setting in Sect. 5 with multiple keywords
but only one slot per keyword. (2) Bhattacharya et al. [5] dealt with private
budgets, and gave an auction for one infinitely divisible item, where bidders
cannot improve their utility by underreporting their budget. This leads to a
randomized IC in expectation auction for one infinitely divisible item with both
private valuations and budgets. (3) Several papers [1,2,10,13] studied envy-free
outcomes that are bidder optimal, respectively PO, in an one-keyword adwords
auction. In this setting they give (under certain conditions on the input) an IC
auction with both private valuations and budgets.

Our impossibility result in Sect. 6 is related to two impossibility results: Lavi
and May [15] show that there is no IC, IR, and PO deterministic mechanism for
indivisible items and bidders with monotone valuations. Our result for indivisible
items is stronger as it applies to bidders with non-negative and diminishing
marginal valuations. In [14] the same impossibility result for divisible items and
bidders with monotone and concave utility functions was given. Note that neither
their result nor ours implies the other.

2 Problem Statement and Definitions

We have n bidders and m slots. We call the set of bidders I := {1, . . . , n} and
the set of slots J := {1, . . . ,m}. Each bidder i ∈ I has a private valuation vi,
a public budget bi, and a public slot constraint κi, which is a positive integer.
Each slot j ∈ J has a public quality αj ∈ Q≥0. The slots are ordered such that
αj ≥ αj′ if j > j′, where ties are broken in some arbitrary but fixed order. We
assume in Sect. 3 and 4 that the number of slots m fulfills m =

∑
i∈I κi as the

general case can be easily reduced to this setting.

Divisible case: In the divisible case we assume that there is only one keyword
with infinitely divisible slots. Thus the goal is to assign each bidder i a fraction
xi,j ≥ 0 of each slot j and charge him a payment pi. A matrix X = (xi,j)(i,j)∈I×J
and a payment vector p are called an allocation (X, p). We call ci =

∑
j∈J αjxi,j

the weighted capacity allocated to bidder i. An allocation is feasible if it fulfills
the following conditions: (1) the sum of the fractions assigned to a bidder does
not exceed his slot constraint (

∑
j∈J xi,j ≤ κi ∀i ∈ I); (2) each of the slots is

fully assigned to the bidders (
∑
i∈I xi,j = 1 ∀j ∈ J); and (3) the payment of a

bidder does not exceed his budget limit (bi ≥ pi ∀i ∈ I).

Indivisible case: We additionally have a set R of keywords, where |R| is public.
The goal is to assign each slot j ∈ J of keyword r ∈ R to one bidder i ∈
I while obeying various constraints. An assignment X = (xi,j,r)(i,j,r)∈I×J×R
where xi,j,r = 1 if slot j is assigned to bidder i in keyword r, and xi,j,r =
0 otherwise, and a payment vector p form an allocation (X, p). We call ci =∑
j∈J

αj

|R| (
∑
r∈R xi,j,r) the weighted capacity allocated to bidder i. An allocation

is feasible if it fulfills the following conditions: (1) the number of slots of a keyword
that are assigned to a bidder does not exceed his slot constraint (

∑
j∈J xi,j,r ≤

κi ∀i ∈ I,∀r ∈ R); (2) each slot is assigned to exactly one bidder (
∑
i∈I xi,j,r =
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1 ∀j ∈ J, ∀r ∈ R); and (3) the payment of a bidder does not exceed his budget
limit (bi ≥ pi ∀i ∈ I).

Combinatorial indivisible case: In the combinatorial case not all keywords are
identical. Every bidder i ∈ I has a publicly known set of interest Si ⊆ R, and
valuation vi for all keywords in Si and a valuation of zero for all other keywords.
We model this case by imposing xi,j,r = 0 ∀r /∈ Si.

Note that in all cases the budgets are bounds on total payments across key-
words and not bounds on prices of individual keywords.

Properties of the auctions: The utility ui of bidder i for a feasible allocation
(X, p) is civi − pi, the utility of the auctioneer (or mechanism) is

∑
i∈I pi. We

study auctions that select feasible allocations obeying the following conditions:
(Bidder rationality) ui ≥ 0 for all bidders i ∈ I, (Auctioneer rationality) the
utility of the auctioneer fulfills

∑
i∈I pi ≥ 0, and (No-positive-transfer) pi ≥ 0

for all bidders i ∈ I. An auction that on all inputs outputs an allocation that is
both bidder rational and auctioneer rational is called individually rational (IR).
A feasible allocation (X, p) is Pareto optimal (PO) if there is no other feasible
allocation (X ′, p′) such that (1) the utility of no bidder in (X, p) is less than
his utility in (X ′, p′), (2) the utility of the auctioneer in (X, p) is no less than
his utility in (X ′, p′), and (3) at least one bidder or the auctioneer is better
off in (X ′, p′) compared with (X, p). An auction is incentive compatible (IC)
if it is a dominant strategy for all bidders to reveal their true valuation. An
auction is said to be Pareto optimal (PO) if the allocation it produces is PO.
A randomized auction is IC in expectation, IR in expectation, respectively PO
in expectation if the above conditions hold in expectation. We show that our
randomized mechanism for indivisible slots is PO in expectation and that each
realized allocation is PO.

3 Deterministic Clinching Auction for the Divisible Case

3.1 Characterization of Pareto Optimality

In this section we present a novel characterization of PO allocations that al-
lows to address the divisible case of multiple slots with different CTRs. Given a
feasible allocation (X, p), a swap between two bidders i and i′ is a fractional ex-
change of slots, i.e., if there are slots j and j′ and a constant τ > 0 with xi,j ≥ τ
and xi′,j′ ≥ τ then a swap between i and i′ gives a new feasible (X ′, p) with
x′i,j = xi,j−τ , x′i′,j′ = xi′,j′−τ , x′i,j′ = xi,j′+τ , and x′i′,j = xi′,j +τ . If αj < αj′

then the swap increases i’s weighted capacity. We assume throughout this section
that αj 6= αj′ for j 6= j′, the general case requires a small modification presented
in the full version of our paper. To characterize PO allocations we first define for
each bidder i the setNi of bidders such that for every bidder a inNi there exists a
swap between i and a that increases i’s weighted capacity. Given a feasible alloca-
tion (X, p) we use h(i) := max{j ∈ J |xi,j > 0} for the slot with the highest qual-
ity that is assigned to bidder i and l(i) := min{j ∈ J |xi,j > 0} for the slot with
the lowest quality that is assigned to bidder i. Now, Ni = {a ∈ I|h(a) > l(i)} is
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the set of all the bidders a such that i could increase his weighted capacity (and a
could decrease his weighted capacity) if i traded with a, for example, if i received
part of a’s share of slot h(a). To model sequences of swaps we define further-
more Nk

i = Ni for k = 1 and Nk
i =

⋃
a∈Nk−1

i
Na for k > 1. Since we have only n

bidders,
⋃n
k=1N

k
i =

⋃n′

k=1N
k
i for all n′ ≥ n. We define Ñi :=

⋃n
k=1N

k
i \ {i} as

the set of desired (recursive) trading partners of i. See Fig. 3.1 for an example
with four bidders. The bidders a in Ñi are all the bidders such that through a se-
quence of trades that “starts” with i and “ends” with a, bidder i could increase
his weighted capacity, bidder a could decrease his weighted capacity, and the
capacity of the remaining bidders involved in the swap would been unchanged.
Now let ṽi = mina∈Ñi

(va) if Ñi 6= ∅ and ṽi =∞ else.

slot #

l(1)

h(1)

l(2)

h(2)

l(3)

h(3)
l(4)

h(4)

N1 = {1, 2}
N3 = {1, 2, 3, 4}

N2
1 = {1, 2, 4}

N3
1 = {1, 2, 3, 4}

Ñ1 = {2, 3, 4}
Ñ3 = {1, 2, 4}

N2 = {1, 2, 4}
N4 = {1, 2, 3, 4}

N2
2 = {1, 2, 3, 4}

Ñ2 = {1, 3, 4}
Ñ4 = {1, 2, 3}

Fig. 1. Example of desired trading partners

Given a feasible allocation (X, p) we use B := {i ∈ I|bi > pi} to denote the
set of bidders who have a positive remaining budget. As we show below if for a
given assignment we know ṽi for every bidder i ∈ B then we can immediately
decide whether the assignment is PO or not.

We say that a feasible allocation (X, p) contains a trading swap sequence (for
short trading swap) if there exists a feasible allocation (X ′, p′) and two bidders
u,w ∈ I such that

1. bidder w is a desired trading partner of u, i.e., w ∈ Ñu,
2. for all i ∈ I \{u,w} it holds that the weighted capacity of i and the payment

of i are unchanged by the swap, i.e.,
∑
j∈J αjxi,j =

∑
j∈J αjx

′
i,j and pi = p′i,

3. the weighted capacity of u increases by δ > 0 and the weighted capacity of w
decreases by δ, i.e., δ :=

∑
j∈J αj(x

′
u,j − xu,j) =

∑
j∈J αj(xw,j − x′w,j) > 0,

4. vu > vw, u pays after the swap exactly that amount more that w’s weighted
valuation decreases (i.e., p′u − pu = vwδ), and w pays exactly that amount
less (i.e., pw − p′w = vwδ), and

5. u has a high enough budget to pay what is required by (X ′, p′), i.e., bu ≥ p′u.

We say that the allocation (X ′, p′) results from the trading swap. The existence
of a trading swap is related to the ṽi of each bidder i with remaining budget.

Theorem 1. A feasible allocation (X, p) contains no trading swaps if and only
if ṽi ≥ vi for each bidder i ∈ B.
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The following theorem shows that the absence of trading swaps characterizes
Pareto optimality. We will use exactly this fact to prove that the mechanism of
the next section outputs a PO allocation.

Theorem 2. A feasible allocation (X, p) is Pareto optimal if and only if it con-
tains no trading swaps.

Hence, the feasible allocation (X, p) is PO if and only if ṽi ≥ vi ∀i ∈ B. This
novel characterization of Pareto optimality is interesting, as the payment does
not affect the values ṽi, the payment only influences which bidders belong to B.

3.2 Multiple Keyword Auction for the Divisible Case

We describe next our deterministic clinching auction for divisible slots and show
that it is IC, IR, and PO. The auction repeatedly increases a price “per capac-
ity” and gives different weights to different slots depending on their CTRs. To
perform the check whether all remaining unsold weighted capacity can still be
sold we solve suitable linear programs. We will show that if the allocation of the
auction did not fulfill the characterization of Pareto optimality given in Sect. 3.1,
i.e., if it contained a trading swap, then one of the linear programs solved by the
auction would not have computed an optimal solution. Since this is not possible,
it will follow that the allocation is PO. A formal description of the auction is
given in the procedures Auction and Sell. The input values of Auction are
the bids, budget limits, and slot constraints that the bidders communicate to the
auctioneer on the beginning of the auction, and information about the qualities
of the slots. The auction is a so called “one-shot auction”, the bidders are asked
once for the valuations at the beginning of the auction and then they cannot
input any further data.

The demand of the bidders for weighted capacity is computed by the mecha-
nism based on their remaining budget and the current price. We assume through-
out this section that vi ∈ N+ and bi ∈ Q+ for all i ∈ I.3 The state of the auction
is defined by the current price π, the next price π+, the weighted capacity ci that
bidder i ∈ I has clinched so far, and the payment pi that has been charged so far
to bidder i. We define the set of active bidders A ⊆ I which are all those i ∈ I
with π ≤ vi, and the subset E of A of exiting bidders which are all those i ∈ A
with π+ > vi. The auction does not increase the price that a bidder i ∈ I has to
pay from π to π+ for all bidders at the same time. Instead, it calls Sell each time
before it increases the price for a single bidder. If the price that bidder i ∈ A has
to pay for weighted capacity is π then his demand is di = bi−pi

π . If the price he

has to pay was already increased to π+ then his demand is di = bi−pi
π+ < bi−pi

π .

In this case, the demand corresponds to d+i , that is always equal to bi−pi
π+ . Dif-

ferent from the auction in [7,8,5] a bidder with di = d+i is also charged the

3 All the arguments go through if we simply assume that vi ∈ Q+ for all i ∈ I and
there exists a publicly known value z ∈ R+ such that for all bidders i and i′ either
vi = vi′ or |vi − vi′ | ≥ z.
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Algorithm 1 Clinching auction for divisible slots

1: procedure Auction(I, J, α, κ, v, b)
2: A← I; π ← 0; π+ ← 1
3: ci ← 0, pi ← 0, di ←∞ ∀i ∈ I
4: while

∑
i∈I ci <

∑
j∈J αj do . unsold weighted capacity exists

5: E ← {i ∈ A|π+ > vi} . bidders become exiting bidders
6: for i ∈ E do
7: (X, s)← Sell(I, J, α, κ, c, d, i) . sell to exiting bidder
8: (ci, pi, di)← (ci + s, pi + sπ, 0)
9: end for

10: A← A \ E . exiting bidders leave auction
11: d+i ←

bi−pi
π+ ∀i ∈ A

12: while ∃i ∈ A with di 6= d+i do . bidders with price π exist
13: i′ ← min({i ∈ A|di 6= d+i }) . select bidder with price π
14: (X, s)← Sell(I, J, α, κ, c, d, i′) . sell to bidder
15: (ci′ , pi′)← (ci′ + s, pi′ + sπ)

16: d+i′ ←
bi′−pi′
π+ ; di′ ← d+i′ . increase bidder’s price to π+

17: end while
18: π ← π+; π+ ← π+ + 1 . increase price
19: end while
20: return (X, p)
21: end procedure

Algorithm 2 Determination of the weighted capacity that bidder i′ clinches

1: procedure Sell(I, J, α, κ, c, d, i′)
2: compute an optimal solution of the following linear program

that is a vertex of the polytope defined by its constraints:
minimize γi′

s.t.: (a)
∑
i∈I xi,j=1 ∀j ∈ J . assign all slots

(b)
∑
j∈J xi,j=κi ∀i ∈ I . slot constraint

(c)
∑
j∈J xi,j αj − γi=ci ∀i ∈ I . assign value to γi

(d) γi≤di ∀i ∈ I . demand constraint
(e) xi,j≥0 ∀i ∈ I, ∀j ∈ J
(f) γi≥0 ∀i ∈ I

3: return (X, γi′)
4: end procedure
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increased price π+ if he receives additional weighted capacity. Since our price is
incremented by one in each round and is not continuously increasing as in prior
work, this is necessary for proving the Pareto optimality of the allocation.

The crucial point of the auction is that it sells only weighted capacity s to
bidder i at a certain price π or π+ if it cannot sell s to the other bidders. It
computes s by solving a linear program in Sell. We use a linear program as
there are two types of constraints to consider: The slot constraint in line (b) of
the LP, which constraints “unweighted” capacity, and the demand constraint in
line (d) of the LP, which is implied by the budget limit and constraints weighted
capacity. In the homogeneous item setting in [7,8,5] there are no slot constraints
and the demand constraints are unweighted, i.e., αj = 1 ∀j ∈ J . Thus, no linear
program is needed to decide what amount to sell to whom.

For each iteration of the outer while-loop the auction first calls Sell for each
exiting bidder i and sells him s for price π. This is the last time when he can
gain weighted capacity. Afterward, he is no longer an active bidder. Next, it calls
Sell for one of the remaining active bidders who has di 6= d+i . It sells him the
respective s and increases his price to π+. It continues the previous step until
the price of each active bidder is increased to π+. Then it sets π to π+ and π+

to π+ + 1.
It is crucial for the progress and the correctness of the mechanism that there

is a feasible solution for the linear program in Sell every time that Sell is
called. This is proved in the full version. It follows that the final assignment X
is a feasible solution of the linear program in Sell. Thus it fulfills conditions (1)
and (2) for a feasible allocation. Condition (3) is also fulfilled as by the definition
of the demand of a bidder, the auction guarantees that bi ≥ pi for all i. Thus,
the allocation (X, p) computed by the auction is a feasible allocation. As no
bidder is assigned weighted capacity if his price is above his valuation and the
mechanism never pays the bidders, the auction is IR. As it is an increasing price
auction, it is also IC.

Proposition 1. The auction is individually rational and incentive compatible
and the allocation (X, p) it outputs has only rational entries.

We show finally that the allocation (X, p) our auction computes does not
contain any trading swap, and thus, by Theorem 2 it is PO. The proof shows
that every trading swap in (X, p) would lead to a superior solution to one of
the linear programs solved by the mechanism. Since the mechanism found an
optimal solution this leads to a contradiction.

Theorem 3. The allocation (X, p) returned by our auction is Pareto optimal.

4 Randomized Clinching Auction for the Indivisible Case

We will now use the allocation computed by the deterministic auction for di-
visible slots to give a randomized auction for multiple keywords with indivisible
slots that ensures that bidder i receives at most κi slots for each keyword. The
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randomized auction has to assign to every slot j ∈ J exactly one bidder i ∈ I for
each keyword r ∈ R. We call a distribution over allocations for the indivisible
case Pareto superior to another such distribution if the expected utility of a
bidder or the auctioneer is higher, while all other expected utilities are at least
as large. If a distribution has no Pareto superior distribution, we call it Pareto
optimal. The basic idea is as follows: Given the PO solution for the divisible
case, we construct a distribution over allocations of the indivisible case such that
the expected utility of every bidder and of the auctioneer is the same as the
utility of the bidder and the auctioneer in the divisible case. To be precise, we
do not explicitly construct this distribution but instead we give an algorithm
that can sample from this distribution. The mechanism for the indivisible case
would, thus, first call the mechanism for the divisible case (with the same input)
and then convert the resulting allocation (Xd, pd) into a representation of a PO
distribution over allocations for the indivisible case. It then samples from this
representation to receive the allocation that it outputs. During all these steps
the (expected) utility of the bidders and the auctioneer remains unchanged. As
the mechanism for the divisible case is IR and IC this implies immediately that
the mechanism for the indivisible case is IR in expectation and IC in expectation.
To show that the final allocation is PO in expectation and also PO ex post we
use the following lemma.

Lemma 1. For every probability distribution over feasible allocations in the in-
divisible case there exists a feasible allocation (Xd, pd) in the divisible case, where
the utility of the bidders and the auctioneer equals their expected utility using this
probability distribution.

Lemma 1 implies that any probability distribution over feasible allocations
in the indivisible case that is Pareto superior to the distribution generated by
our auction would lead to a feasible allocation for the divisible case that is
Pareto superior to (Xd, pd). This is not possible as (Xd, pd) is PO. Additionally,
each realized allocation is ex-post Pareto optimal: if in the indivisible case there
existed a Pareto superior allocation to one of the allocations that gets chosen
with a positive probability in our auction, then a Pareto superior allocation
would exist in the divisible case. By the same argument as above this would lead
to a contradiction.

We still need to explain how to use the PO allocation (Xd, pd) for the divisible
case to give a probability distribution for the indivisible case with expected utility
for every bidder equal to the utility in the divisible case and how to sample
efficiently from this distribution. Given an input for the indivisible case we use
it as is as an input for the algorithm for the divisible case, ignoring the number of
keywords. Based on the allocation (Xd, pd) for the divisible problem we construct
a matrix M ′ of size |J | × λ, where λ is the least common denominator of all the
xdi,j values and where each column of M ′ corresponds to a feasible assignment
for the indivisible one-keyword case. Note that the same assignment can occur in
multiple columns of M ′. The matrix M ′ is our representation of the distribution
over allocations in the indivisible case. To sample from the distribution we pick
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for each r ∈ R a column uniformly at random from the columns of M ′. The r-th
choice gives the assignment of bidders to the slots of keyword r. The payments
are set equal to pd. In the full version, we give the construction of M ′ such
that after the above sampling step the expected weighted capacity allocation to
bidder i ∈ I equals

∑
j∈J αjx

d
i,j , i.e., its weighted capacity in the divisible case.

Additionally, all of the slots are fully assigned to the bidders, and hence, the
stated properties are fulfilled by the randomized auction.

5 The Combinatorial Case with Multiple Slots

We consider single-valued combinatorial auctions with multiple identical slots in
multiple keywords. Every bidder i ∈ I has valuation vi on all keywords of his
interest set Si. All other keywords are valued zero. The interest sets Si and the
budgets bi are public knowledge. We further restrict to the case where at most
one slot per keyword is allocated to a single bidder (i.e., κi = 1). We require
that at least m bidders are interested in each keyword, where m is the number
of slots for a keyword.

In our auction, we extend the B-matching based approach and the concept
of trading alternating paths in the bidder/keyword bipartite graph by Fiat et
al. [12] for their single-slot per keyword setting to our multi-slot per keyword
setting.

We characterize a feasible allocation (H, p) by a tuple H = (H1, H2, . . . ,Hn),
where Hi ⊆ Si represents the set of keywords that are allocated to bidder i, and
by a vector of payments p = (p1, p2, . . . , pn) with pi ≤ bi for all i ∈ I. The
utility of bidder i is defined by ui := vi|Hi|−pi, and the utility of the auctioneer
is

∑n
i=1 pi. We base the allocation of the items in the clinching auction on B-

matchings computed on a bipartite graph G with the union of keywords and
bidders (I∪R) as vertex set and the preferences {(i, t) ∈ I×R|t ∈ Si} as edge set.
The vertices have degree constraints, which represent the demand constraints for
the bidders and the number of unsold slots for the keywords. The B-matchings
are the subgraphs of G, which fulfill the constraints, and have a maximal number
of edges. The idea of the auction is to sell slots at the highest possible price such
that all slots are sold and there exists no competition between bidders. We define
the auction and give the proof of the following theorem in the full version.

Theorem 4. The allocation (H∗, p∗) produced by the combinatorial clinching
auction is incentive compatible, individually rational, and Pareto optimal.

6 Impossibility for Diminishing Marginal Valuations

We assume in this section that we have multiple homogeneous indivisible items
and bidders with private diminishing marginal valuations and public budgets.
We show that there is no IC, IR, and PO deterministic mechanism for this case.

Bidder i’s marginal valuation for obtaining a further item when k items are
already assigned to him is vi(k + 1). His valuation for obtaining k + 1 items is
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therefore
∑k+1
j=1 vi(j). The marginal valuations have to fulfill vi(k) ≥ vi(k + 1)

for k ≥ 1. The initial clinching auction in [3] was indeed proposed for the case
of diminishing marginal valuations but without budget limits.

We use that the case of additive valuations, which was studied by Dobzinski
et al. [7,8], is a special case of ours, and that they showed that their auction is the
only IC, IR, and PO deterministic auction for that case. We study bidders with
diminishing marginal valuations that report additive valuations in order to raise
the price paid by the other bidders and consequently decrease their demand. A
possible decrease of the price charged to the non-truth telling bidders follows.

Theorem 5. There is no incentive compatible, individually rational, Pareto op-
timal, and deterministic mechanism for multiple homogeneous indivisible items
and agents with private diminishing marginal valuations and public budget limits.
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