
X

On Multiple Keyword Sponsored Search Auctions with Budgets

RICCARDO COLINI-BALDESCHI, Sapienza University of Rome
MONIKA HENZINGER, University of Vienna
STEFANO LEONARDI, Sapienza University of Rome
MARTIN STARNBERGER, University of Vienna

We study multiple keyword sponsored search auctions with budgets. Each keyword has multiple ad slots

with a click-through rate. The bidders have additive valuations, which are linear in the click-through rates,
and budgets, which are restricting their overall payments. Additionally, the number of slots per keyword

assigned to a bidder is bounded.

We show the following results: (1) We give the first mechanism for multiple keywords, where click-
through rates differ among slots. Our mechanism is incentive compatible in expectation, individually rational

in expectation, and Pareto optimal. (2) We study the combinatorial setting, where each bidder is only

interested in a subset of the keywords. We give an incentive compatible, individually rational, Pareto
optimal, and deterministic mechanism for identical click-through rates. (3) We give an impossibility result

for incentive compatible, individually rational, Pareto optimal, and deterministic mechanisms for bidders

with diminishing marginal valuations.

1. INTRODUCTION
In sponsored search (or adwords) auctions advertisers bid on keywords. Such auctions
are used by firms such as Google, Yahoo, and Microsoft [Edelman et al. 2005]. The
search result page for each keyword contains multiple slots for ads and each bidder is
assigned to a limited number of slots on a search result page. The slots have a click-
through rate (CTR), which is usually decreasing by the position of the slot on the search
result page. The true valuation of the bidders is private knowledge and is assumed to
depend linearly on the CTR. Moreover, valuations are assumed to be additive, i.e., the
total valuation of a bidder is equal to the sum of his valuations for all the slots that
are assigned to him.

A further key ingredient of an adwords auction is that bidders specify a budget on
the payment charged for the ads, effectively linking the different keywords. The de-
terministic Vickrey auction [Vickrey 1961] was designed to maximize social welfare in
this and more general settings without budget restrictions. However, the introduction
of budgets dramatically changes the nature of the problem. The Vickrey auction may
charge more than the budget and is no longer feasible. Moreover, bidders might get
assigned to slots even though their budget is arbitrary small and other bidders are
interested in those slots. Thus, as was observed before [Dobzinski et al. 2008; 2011],
maximizing social welfare is not the right optimality criterion to use. In a seminal pa-
per by Dobzinski et al. [2008; 2011], they considered the multi-unit case with additive
valuations, which in the sponsored search setting corresponds to each keyword having
only one slot and all slots having identical CTR. They gave an incentive compatible (IC)
auction based on Ausubel’s ascending clinching auction [Ausubel 2004] that produces
a Pareto optimal (PO) and individually rational (IR) allocation if budgets are public.
They also showed that this assumption is strictly needed, i.e., that no deterministic
mechanism for private budgets exists if we insist on incentive compatibility, individual
rationality, and on obtaining an allocation that is Pareto optimal. This impossibility re-
sult for deterministic mechanisms was strengthened for our setting to public budgets
in [Dütting et al. 2012]. The question was open what optimality result can be achieved
for randomized mechanisms. Due to the impossibility results for deterministic mech-
anisms it is unlikely that “strong” optimality criteria, such as bidder optimality, are
achievable. Thus, the first question to study is whether Pareto optimality, which is a
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basic notion of optimality, can be achieved with randomized mechanisms. Note that if
an allocation is Pareto optimal then it is impossible to make a bidder better off with-
out making another bidder or the auctioneer worse off, and is therefore the least one
should aim for.

Our Results.. We give a positive answer to the above question and also present two
further related results. Specifically, the paper contains the following three results: (1)
Multiple keywords with multiple slots: We show that the multi-unit auction of Dobzin-
ski et al. [2008; 2011] can be adapted to study adwords auctions with multiple key-
words having multiple slots, and budget limits for each bidder. We specifically model
the case of several slots with different CTR, available for each keyword, and a bound
on the number of slots per keyword (usually one) that can be allocated to a bidder. We
first provide an IC, IR, and PO deterministic auction that provides a fractional alloca-
tion for the case of one keyword with divisible slots. Note that the impossibility result
in [Dütting et al. 2012] does not hold for divisible slots. In contrast, the impossibility
result in [Dobzinski et al. 2008; 2011] for multi-unit auctions applies also to this set-
ting, and achieving IC, IR, and PO deterministic auctions is only possible if budgets
are public. Thus, we restrict ourselves to the public budget case. Our auction is a one-
shot auction, i.e., each bidder interacts only once with the auction. We then show how
to probabilistically round this fractional allocation for the divisible case to an integer
allocation for the indivisible case with multiple keywords (i.e., the adwords setting)
and get an auction that is IC in expectation, IR in expectation, and PO.

(2) Multiple keywords with combinatorial constraints and multiple slots: So far we
assumed that every bidder is interested in every keyword. In the second part of the
paper we study the case that bidders are interested in only a subset of the keywords,
i.e., bidders have a non-zero identical valuation only on a subset of the keywords. The
valuations are additive and each bidder is assigned at most one slot for a given key-
word. We restrict the model by allowing only identical slots for each keyword, i.e., we
require that all slots have the same CTR. This setting extends the combinatorial one-
slot per keyword model considered by Fiat et al. [2011] to multiple slots. We present a
variation of the clinching auction that is deterministic, IC, IR, and PO.

(3) Finally, we also study non-additive valuations, namely valuations with dimin-
ishing marginal valuations. Diminishing marginal valuation (also called submodular)
functions are widely used to model auction settings with marginal utilities being posi-
tive functions that are non-increasing in the number of items already allocated to the
bidders. We show that even in the multi-unit (one slot per keyword) case there is no
deterministic, IC, IR, and PO auction for private diminishing marginal valuations and
public budgets. This shows how budgets complicate mechanism design: For the non-
budgeted version of this setting Ausubel [2004] gave his deterministic mechanism.

Related Work.. Ascending clinching auctions are used in the FCC spectrum auctions,
see [Milgrom 2000; Ausubel and Milgrom 2002; Ausubel 2004]. For a motivation of
adwords auctions see [Nisan et al. 2009] on Google’s auction for TV ads.

We first compare our results with those of a recent, unpublished work by Goel et al.
[2012] that was developed independently at the same time. They studied IC auctions
with feasible allocations that must obey public polymatroid constraints and agents
with identical or separable valuations (see their Lemma 3.10) and public budgets. The
problem of auctions with polymatroid constraints was first studied by Bikhchandani
et al. [2008] for unbudgeted bidders and concave utilities. The auction in [Goel et al.
2012] is an adaption of the ascending auction in [Bikhchandani et al. 2008] to the
case of budgeted bidders. The polymatroid constraints generalize on one hand the the
multi-unit case in [Dobzinski et al. 2008; 2011] and the multiple slots with different
CTRs model presented in this paper. On the other hand, the PO ascending auction
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in [Goel et al. 2012] only returns allocations for divisible items whereas in Section 4
of this paper we demonstrate that these allocations can be rounded to allocations for
indivisible items if we allow the auction to yield incentive compatibility in expecta-
tion. In Section 5, we present an IC, IR, and PO deterministic auction with feasible
allocations of indivisible slots that obey matching constraints for the case of multiple
identical slots.

There are three extensions of Dobzinski et al. [2008; 2011]: (1) Fiat et al. [2011]
studied an extension to a combinatorial setting, where items are distinct and different
bidders may be interested in different items. The auction presented in [Fiat et al. 2011]
is IC, IR, and PO for additive valuations and single-valued bidders (i.e., every bidder
does not distinguish between the keywords in his public interest set). This is a special
case of our combinatorial setting in Section 5 with multiple keywords but only one
slot per keyword. (2) Bhattacharya et al. [2009] dealt with private budgets, and gave
an auction for one infinitely divisible item, where bidders cannot improve their utility
by underreporting their budget. This leads to a randomized IC in expectation auction
for one infinitely divisible item with both private valuations and budgets. (3) Several
papers [Aggarwal et al. 2009; Ashlagi et al. 2010; Dütting et al. 2011; Fujishige and
Tamura 2007] studied envy-free outcomes that are bidder optimal, respectively PO, in
an one-keyword adwords auction. In this setting they give (under certain conditions
on the input) an IC auction with both private valuations and budgets.

Our impossibility result in Section 6 is related to two impossibility results: Lavi and
May [2011] show that there is no IC, IR, and PO deterministic mechanism for indi-
visible items and bidders with monotone valuations. Our result for indivisible items is
stronger as it applies to bidders with non-negative and diminishing marginal valua-
tions. In [Goel et al. 2012] the same impossibility result for divisible items and bidders
with monotone and concave utility functions was given. Note that neither their result
nor ours implies the other.

2. PROBLEM STATEMENT AND DEFINITIONS
We have n bidders and m slots. We call the set of bidders I := {1, . . . , n} and the set
of slots J := {1, . . . ,m}. Each bidder i ∈ I has a private valuation vi, a public budget
bi, and a public slot constraint κi, which is a positive integer. Each slot j ∈ J has a
public quality αj ∈ Q≥0. The slots are ordered such that αj ≥ αj′ if j > j′, where ties
are broken in some arbitrary but fixed order. We assume in Section 3 and 4 that the
number of slots m fulfills m =

∑
i∈I κi as the general case can be easily reduced to this

setting.
Divisible case: In the divisible case we assume that there is only one keyword with

infinitely divisible slots. Thus the goal is to assign each bidder i a fraction xi,j ≥ 0
of each slot j and charge him a payment pi. A matrix X = (xi,j)(i,j)∈I×J and a pay-
ment vector p are called an allocation (X, p). We call ci =

∑
j∈J αjxi,j the weighted

capacity allocated to bidder i. An allocation is feasible if it fulfills the following con-
ditions: (1) the sum of the fractions assigned to a bidder does not exceed his slot con-
straint (

∑
j∈J xi,j ≤ κi ∀i ∈ I); (2) each of the slots is fully assigned to the bidders

(
∑
i∈I xi,j = 1 ∀j ∈ J); and (3) the payment of a bidder does not exceed his budget limit

(bi ≥ pi ∀i ∈ I).
Indivisible case: We additionally have a set R of keywords, where |R| is public. The

goal is to assign each slot j ∈ J of keyword r ∈ R to one bidder i ∈ I while obeying
various constraints. An assignment X = (xi,j,r)(i,j,r)∈I×J×R where xi,j,r = 1 if slot j
is assigned to bidder i in keyword r, and xi,j,r = 0 otherwise, and a payment vector p
form an allocation (X, p). We call ci =

∑
j∈J

αj
|R| (

∑
r∈R xi,j,r) the weighted capacity al-

located to bidder i. An allocation is feasible if it fulfills the following conditions: (1) the
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number of slots of a keyword that are assigned to a bidder does not exceed his slot con-
straint (

∑
j∈J xi,j,r ≤ κi ∀i ∈ I, ∀r ∈ R); (2) each slot is assigned to exactly one bidder

(
∑
i∈I xi,j,r = 1 ∀j ∈ J, ∀r ∈ R); and (3) the payment of a bidder does not exceed his

budget limit (bi ≥ pi ∀i ∈ I).
Combinatorial indivisible case: In the combinatorial case not all keywords are iden-

tical. Every bidder i ∈ I has a publicly known set of interest Si ⊆ R, and valuation
vi for all keywords in Si and a valuation of zero for all other keywords. We model this
case by imposing xi,j,r = 0 ∀r /∈ Si.

Note that in all cases the budgets are bounds on total payments across keywords
and not bounds on prices of individual keywords.

Properties of the auctions: The utility ui of bidder i for a feasible allocation (X, p)
is civi − pi, the utility of the auctioneer (or mechanism) is

∑
i∈I pi. We study auctions

that select feasible allocations obeying the following conditions: (Bidder rationality)
ui ≥ 0 for all bidders i ∈ I, (Auctioneer rationality) the utility of the auctioneer fulfills∑
i∈I pi ≥ 0, and (No-positive-transfer) pi ≥ 0 for all bidders i ∈ I. An auction that on

all inputs outputs an allocation that is both bidder rational and auctioneer rational
is called individually rational (IR). A feasible allocation (X, p) is Pareto optimal (PO)
if there is no other feasible allocation (X ′, p′) such that (1) the utility of no bidder in
(X, p) is less than his utility in (X ′, p′), (2) the utility of the auctioneer in (X, p) is no
less than his utility in (X ′, p′), and (3) at least one bidder or the auctioneer is better
off in (X ′, p′) compared with (X, p). An auction is incentive compatible (IC) if it is a
dominant strategy for all bidders to reveal their true valuation. An auction is said to
be Pareto optimal (PO) if the allocation it produces is PO. A randomized auction is IC
in expectation, IR in expectation, respectively PO in expectation if the above conditions
hold in expectation. We show that our randomized mechanism for indivisible slots is
PO in expectation and that each realized allocation is PO. Note that neither of these
conditions implies the other (see Appendix A).

3. DETERMINISTIC CLINCHING AUCTION FOR THE DIVISIBLE CASE
3.1. Characterization of Pareto Optimality
In this section we present a novel characterization of PO allocations that allows to
address the divisible case of multiple slots with different CTRs. Given a feasible al-
location (X, p), a swap between two bidders i and i′ is a fractional exchange of slots,
i.e., if there are slots j and j′ and a constant τ > 0 with xi,j ≥ τ and xi′,j′ ≥ τ then a
swap between i and i′ gives a new feasible (X ′, p) with x′i,j = xi,j − τ , x′i′,j′ = xi′,j′ − τ ,
x′i,j′ = xi,j′ + τ , and x′i′,j = xi′,j + τ . If αj < αj′ then the swap increases i’s weighted
capacity. We assume throughout this section that αj 6= αj′ for j 6= j′, the general case
requires a small modification presented in the full version of our paper. To characterize
PO allocations we first define for each bidder i the set Ni of bidders such that for every
bidder a in Ni there exists a swap between i and a that increases i’s weighted capacity.
Given a feasible allocation (X, p) we use h(i) := max{j ∈ J |xi,j > 0} for the slot with
the highest quality that is assigned to bidder i and l(i) := min{j ∈ J |xi,j > 0} for the
slot with the lowest quality that is assigned to bidder i. Now, Ni = {a ∈ I|h(a) > l(i)}
is the set of all the bidders a such that i could increase his weighted capacity (and
a could decrease his weighted capacity) if i traded with a, for example, if i received
part of a’s share of slot h(a). To model sequences of swaps we define furthermore
Nk
i = Ni for k = 1 and Nk

i =
⋃
a∈Nk−1

i
Na for k > 1. Since we have only n bidders,⋃n

k=1N
k
i =

⋃n′
k=1N

k
i for all n′ ≥ n. We define Ñi :=

⋃n
k=1N

k
i \ {i} as the set of desired

(recursive) trading partners of i. See Figure 3.1 for an example with four bidders. The
bidders a in Ñi are all the bidders such that through a sequence of trades that “starts”
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slot

l(1)

h(1)

l(2)

h(2)

l(3)

h(3)
l(4)

h(4)

N1 = {1, 2}
N3 = {1, 2, 3, 4}

N2
1 = {1, 2, 4}

N3
1 = {1, 2, 3, 4}

Ñ1 = {2, 3, 4}
Ñ3 = {1, 2, 4}

N2 = {1, 2, 4}
N4 = {1, 2, 3, 4}

N2
2 = {1, 2, 3, 4}

Ñ2 = {1, 3, 4}
Ñ4 = {1, 2, 3}

Fig. 1. Example of desired trading partners

with i and “ends” with a, bidder i could increase his weighted capacity, bidder a could
decrease his weighted capacity, and the capacity of the remaining bidders involved in
the swap would been unchanged. Now let ṽi = mina∈Ñi(va) if Ñi 6= ∅ and ṽi =∞ else.

Given a feasible allocation (X, p) we use B := {i ∈ I|bi > pi} to denote the set
of bidders who have a positive remaining budget. As we show below if for a given
assignment we know ṽi for every bidder i ∈ B then we can immediately decide whether
the assignment is PO or not.

We say that a feasible allocation (X, p) contains a trading swap sequence (for short
trading swap) if there exists a feasible allocation (X ′, p′) and two bidders u,w ∈ I such
that

(1) bidder w is a desired trading partner of u, i.e., w ∈ Ñu,
(2) for all i ∈ I \ {u,w} it holds that the weighted capacity of i and the payment of i

are unchanged by the swap, i.e.,
∑
j∈J αjxi,j =

∑
j∈J αjx

′
i,j and pi = p′i,

(3) the weighted capacity of u increases by δ > 0 and the weighted capacity of w de-
creases by δ, i.e., δ :=

∑
j∈J αj(x

′
u,j − xu,j) =

∑
j∈J αj(xw,j − x′w,j) > 0,

(4) vu > vw, u pays after the swap exactly that amount more that w’s weighted val-
uation decreases (i.e., p′u − pu = vwδ), and w pays exactly that amount less (i.e.,
pw − p′w = vwδ), and

(5) u has a high enough budget to pay what is required by (X ′, p′), i.e., bu ≥ p′u.

We say that the allocation (X ′, p′) results from the trading swap. The existence of a
trading swap is related to the ṽi of each bidder i with remaining budget.

THEOREM 3.1. A feasible allocation (X, p) contains no trading swaps if and only if
ṽi ≥ vi for each bidder i ∈ B.

The following theorem shows that the absence of trading swaps characterizes Pareto
optimality. We will use exactly this fact to prove that the mechanism of the next section
outputs a PO allocation.

THEOREM 3.2. A feasible allocation (X, p) is Pareto optimal if and only if it con-
tains no trading swaps.

Hence, the feasible allocation (X, p) is PO if and only if ṽi ≥ vi ∀i ∈ B. This novel
characterization of Pareto optimality is interesting, as the payment does not affect the
values ṽi, the payment only influences which bidders belong to B.

3.2. Multiple Keyword Auction for the Divisible Case
We describe next our deterministic clinching auction for divisible slots and show that
it is IC, IR, and PO. The auction repeatedly increases a price “per capacity” and gives
different weights to different slots depending on their CTRs. To perform the check
whether all remaining unsold weighted capacity can still be sold we solve suitable
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linear programs. We will show that if the allocation of the auction did not fulfill the
characterization of Pareto optimality given in Section 3.1, i.e., if it contained a trading
swap, then one of the linear programs solved by the auction would not have computed
an optimal solution. Since this is not possible, it will follow that the allocation is PO. A
formal description of the auction is given in the procedures AUCTION and SELL. The
input values of AUCTION are the bids, budget limits, and slot constraints that the bid-
ders communicate to the auctioneer on the beginning of the auction, and information
about the qualities of the slots. The auction is a so called “one-shot auction”, the bid-
ders are asked once for the valuations at the beginning of the auction and then they
cannot input any further data.

Algorithm 1 Clinching auction for divisible slots
1: procedure AUCTION(I, J, α, κ, v, b)
2: A← I; π ← 0; π+ ← 1
3: ci ← 0, pi ← 0, di ←∞ ∀i ∈ I
4: while

∑
i∈I ci <

∑
j∈J αj do \\ unsold weighted capacity exists

5: E ← {i ∈ A|π+ > vi} \\ bidders become exiting bidders
6: for i ∈ E do
7: (X, s)← SELL(I, J, α, κ, c, d, i) \\ sell to exiting bidder
8: (ci, pi, di)← (ci + s, pi + sπ, 0)
9: end for

10: A← A \ E \\ exiting bidders leave auction

11: d+i ←
bi−pi
π+ ∀i ∈ A

12: while ∃i ∈ A with di 6= d+i do \\ bidders with price π exist

13: i′ ← min({i ∈ A|di 6= d+i }) \\ select bidder with price π
14: (X, s)← SELL(I, J, α, κ, c, d, i′) \\ sell to bidder
15: (ci′ , pi′)← (ci′ + s, pi′ + sπ)

16: d+i′ ←
bi′−pi′
π+ ; di′ ← d+i′ \\ increase bidder’s price to π+

17: end while
18: π ← π+; π+ ← π+ + 1 \\ increase price
19: end while
20: return (X, p)
21: end procedure

Algorithm 2 Determination of the weighted capacity that bidder i′ clinches
1: procedure SELL(I, J, α, κ, c, d, i′)
2: compute an optimal solution of the following linear program

that is a vertex of the polytope defined by its constraints:
minimize γi′
s.t.: (a)

∑
i∈I xi,j = 1 ∀j ∈ J . assign all slots

(b)
∑
j∈J xi,j = κi ∀i ∈ I . slot constraint

(c)
∑
j∈J xi,j αj − γi = ci ∀i ∈ I . assign value to γi

(d) γi ≤ di ∀i ∈ I . demand constraint
(e) xi,j ≥ 0 ∀i ∈ I, ∀j ∈ J
(f) γi ≥ 0 ∀i ∈ I

3: return (X, γi′)
4: end procedure
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The demand of the bidders for weighted capacity is computed by the mechanism
based on their remaining budget and the current price. We assume throughout this
section that vi ∈ N+ and bi ∈ Q+ for all i ∈ I.1 The state of the auction is defined
by the current price π, the next price π+, the weighted capacity ci that bidder i ∈ I
has clinched so far, and the payment pi that has been charged so far to bidder i. We
define the set of active bidders A ⊆ I which are all those i ∈ I with π ≤ vi, and the
subset E of A of exiting bidders which are all those i ∈ A with π+ > vi. The auction
does not increase the price that a bidder i ∈ I has to pay from π to π+ for all bidders
at the same time. Instead, it calls SELL each time before it increases the price for a
single bidder. If the price that bidder i ∈ A has to pay for weighted capacity is π then
his demand is di = bi−pi

π . If the price he has to pay was already increased to π+ then
his demand is di = bi−pi

π+ < bi−pi
π . In this case, the demand corresponds to d+

i , that
is always equal to bi−pi

π+ . Different from the auction in [Dobzinski et al. 2008; 2011;
Bhattacharya et al. 2009] a bidder with di = d+

i is also charged the increased price π+

if he receives additional weighted capacity. Since our price is incremented by one in
each round and is not continuously increasing as in prior work, this is necessary for
proving the Pareto optimality of the allocation.

The crucial point of the auction is that it sells only weighted capacity s to bidder i at
a certain price π or π+ if it cannot sell s to the other bidders. It computes s by solving a
linear program in SELL. We use a linear program as there are two types of constraints
to consider: The slot constraint in line (b) of the LP, which constraints “unweighted”
capacity, and the demand constraint in line (d) of the LP, which is implied by the
budget limit and constraints weighted capacity. In the homogeneous item setting in
[Dobzinski et al. 2008; 2011; Bhattacharya et al. 2009] there are no slot constraints and
the demand constraints are unweighted, i.e., αj = 1 ∀j ∈ J . Thus, no linear program is
needed to decide what amount to sell to whom.

For each iteration of the outer while-loop the auction first calls SELL for each exiting
bidder i and sells him s for price π. This is the last time when he can gain weighted
capacity. Afterward, he is no longer an active bidder. Next, it calls SELL for one of the
remaining active bidders who has di 6= d+

i . It sells him the respective s and increases
his price to π+. It continues the previous step until the price of each active bidder is
increased to π+. Then it sets π to π+ and π+ to π+ + 1. To illustrate the mechanism we
give an example in Appendix D.

It is crucial for the progress and the correctness of the mechanism that there is a
feasible solution for the linear program in SELL every time that SELL is called. This is
proved in Appendix E. It follows that the final assignmentX is a feasible solution of the
linear program in SELL. Thus it fulfills conditions (1) and (2) for a feasible allocation.
Condition (3) is also fulfilled as by the definition of the demand of a bidder, the auction
guarantees that bi ≥ pi for all i. Thus, the allocation (X, p) computed by the auction is
a feasible allocation. As no bidder is assigned weighted capacity if his price is above
his valuation and the mechanism never pays the bidders, the auction is IR. As it is an
increasing price auction, it is also IC.

PROPOSITION 3.3. The auction is individually rational and incentive compatible
and the allocation (X, p) it outputs has only rational entries.

We show finally that the allocation (X, p) our auction computes does not contain any
trading swap, and thus, by Theorem 3.2 it is PO. The proof shows that every trading
swap in (X, p) would lead to a superior solution to one of the linear programs solved

1All the arguments go through if we simply assume that vi ∈ Q+ for all i ∈ I and there exists a publicly
known value z ∈ R+ such that for all bidders i and i′ either vi = vi′ or |vi − vi′ | ≥ z.
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by the mechanism. Since the mechanism found an optimal solution this leads to a
contradiction.

THEOREM 3.4. The allocation (X, p) returned by our auction is Pareto optimal.

4. RANDOMIZED CLINCHING AUCTION FOR THE INDIVISIBLE CASE
We will now use the allocation computed by the deterministic auction for divisible slots
to give a randomized auction for multiple keywords with indivisible slots that ensures
that bidder i receives at most κi slots for each keyword. The randomized auction has
to assign to every slot j ∈ J exactly one bidder i ∈ I for each keyword r ∈ R. We
call a distribution over allocations for the indivisible case Pareto superior to another
such distribution if the expected utility of a bidder or the auctioneer is higher, while
all other expected utilities are at least as large. If a distribution has no Pareto superior
distribution, we call it Pareto optimal. The basic idea is as follows: Given the PO solu-
tion for the divisible case, we construct a distribution over allocations of the indivisible
case such that the expected utility of every bidder and of the auctioneer is the same
as the utility of the bidder and the auctioneer in the divisible case. To be precise, we
do not explicitly construct this distribution but instead we give an algorithm that can
sample from this distribution. The mechanism for the indivisible case would, thus, first
call the mechanism for the divisible case (with the same input) and then convert the
resulting allocation (Xd, pd) into a representation of a PO distribution over allocations
for the indivisible case. It then samples from this representation to receive the alloca-
tion that it outputs. During all these steps the (expected) utility of the bidders and the
auctioneer remains unchanged. As the mechanism for the divisible case is IR and IC
this implies immediately that the mechanism for the indivisible case is IR in expecta-
tion and IC in expectation. To show that the final allocation is PO in expectation and
also PO ex post we use the following lemma.

LEMMA 4.1. For every probability distribution over feasible allocations in the in-
divisible case there exists a feasible allocation (Xd, pd) in the divisible case, where the
utility of the bidders and the auctioneer equals their expected utility using this proba-
bility distribution.

Lemma 4.1 implies that any probability distribution over feasible allocations in the
indivisible case that is Pareto superior to the distribution generated by our auction
would lead to a feasible allocation for the divisible case that is Pareto superior to
(Xd, pd). This is not possible as (Xd, pd) is PO. Additionally, each realized allocation
is ex-post Pareto optimal: if in the indivisible case there existed a Pareto superior al-
location to one of the allocations that gets chosen with a positive probability in our
auction, then a Pareto superior allocation would exist in the divisible case. By the
same argument as above this would lead to a contradiction.

We still need to explain how to use the PO allocation (Xd, pd) for the divisible case
to give a probability distribution for the indivisible case with expected utility for every
bidder equal to the utility in the divisible case and how to sample efficiently from this
distribution. Given an input for the indivisible case we use it as is as an input for
the algorithm for the divisible case, ignoring the number of keywords. Based on the
allocation (Xd, pd) for the divisible problem we construct a matrix M ′ of size |J | × λ,
where λ is the least common denominator of all the xdi,j values and where each column
of M ′ corresponds to a feasible assignment for the indivisible one-keyword case. Note
that the same assignment can occur in multiple columns of M ′. The matrix M ′ is our
representation of the distribution over allocations in the indivisible case. To sample
from the distribution we pick for each r ∈ R a column uniformly at random from
the columns of M ′. The r-th choice gives the assignment of bidders to the slots of
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keyword r. The payments are set equal to pd. We give in Appendix I the construction of
M ′ such that after the above sampling step the expected weighted capacity allocation
to bidder i ∈ I equals

∑
j∈J αjx

d
i,j , i.e., its weighted capacity in the divisible case.

Additionally, all of the slots are fully assigned to the bidders, and hence, the stated
properties are fulfilled by the randomized auction. An example for the randomization
is given in Appendix J.

5. THE COMBINATORIAL CASE WITH MULTIPLE SLOTS
We consider single-valued combinatorial auctions with multiple identical slots in mul-
tiple keywords. Every bidder i ∈ I has valuation vi on all keywords of his interest
set Si. All other keywords are valued zero. The interest sets Si and the budgets bi are
public knowledge. We further restrict to the case where at most one slot per keyword
is allocated to a single bidder (i.e., κi = 1). We require that at least m bidders are
interested in each keyword, where m is the number of slots for a keyword.

In our auction, we extend the techniques of Fiat et al. [2011] for their single-slot per
keyword setting to our multi-slot per keyword setting as follows: (1) We extend their
B-matchings based approach by giving capacities, equal to the number of unsold slots,
to vertices that represent keywords. (2) We extend the concept of trading alternating
paths in the bidder/keyword bipartite graph, which in turn allows us to give a charac-
terization of Pareto optimality for the multi-slot case. While in the single-slot case it
is sufficient to restrict the attention to simple trading alternating paths, in our case
there might be trading options where the same bidder or item can appear many times
along the same path. The crucial insight is that there always exists a simple trading
path whenever there exists a non-simple one.

We characterize a feasible allocation (H, p) by a tuple H = (H1, H2, . . . ,Hn), where
Hi ⊆ Si represents the set of keywords that are allocated to bidder i, and by a vector of
payments p = (p1, p2, . . . , pn) with pi ≤ bi for all i ∈ I. The utility of bidder i is defined
by ui := vi|Hi| − pi, and the utility of the auctioneer is

∑n
i=1 pi. We base the allocation

of the items in the clinching auction on B-matchings computed on a bipartite graph G
with the union of keywords and bidders (I∪R) as vertex set and the preferences {(i, t) ∈
I × R|t ∈ Si} as edge set. The vertices have degree constraints, which represent the
demand constraints for the bidders and the number of unsold slots for the keywords.
The B-matchings are the subgraphs of G, which fulfill the constraints, and have a
maximal number of edges. The idea of the auction is to sell slots at the highest possible
price such that all slots are sold and there exists no competition between bidders. On
the contrary, the existence of a trading path indicates that there exists competition on
the assignment of the first slot in the path. We define the auction in Algorithm 4 and
prove the following theorem in Appendix K.

THEOREM 5.1. The allocation (H∗, p∗) produced by Algorithm 4 is incentive com-
patible, individually rational, and Pareto optimal.

6. IMPOSSIBILITY FOR DIMINISHING MARGINAL VALUATIONS
We assume in this section that we have multiple homogeneous indivisible items and
bidders with private diminishing marginal valuations and public budgets. We show
that there is no IC, IR, and PO deterministic mechanism for this case.

Bidder i’s marginal valuation for obtaining a further item when k items are al-
ready assigned to him is vi(k + 1). His valuation for obtaining k + 1 items is therefore∑k+1
j=1 vi(j). The marginal valuations have to fulfill vi(k) ≥ vi(k+1) for k ≥ 1. The initial

clinching auction in [Ausubel 2004] was indeed proposed for the case of diminishing
marginal valuations but without budget limits.
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We use that the case of additive valuations, which was studied by Dobzinski et al.
[2008; 2011], is a special case of ours, and that they showed that their auction is the
only IC, IR, and PO deterministic auction for that case. We study bidders with dimin-
ishing marginal valuations that report additive valuations in order to raise the price
paid by the other bidders and consequently decrease their demand. A possible decrease
of the price charged to the non-truth telling bidders follows.

THEOREM 6.1. There is no incentive compatible, individually rational, Pareto op-
timal, and deterministic mechanism for multiple homogeneous indivisible items and
agents with private diminishing marginal valuations and public budget limits.
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A. PARETO OPTIMALITY IN EXPECTATION
Let us assume that we have two bidders, a single indivisible item, and a uniformly
distributed random variable Y ∼ U(0, 1). Consider first the case that bidder 1 has
valuation v1 = 1 and budget b1 = 1, bidder 2 has valuation v2 = 2 and budget b2 = 1,
and we have a value ỹ ∈ (0, 1). If we sell the item to the bidder 2 for price p2 = 1 (and
p1 = 0) for every realization y of Y with y 6= ỹ the allocation is PO in expectation.
However, only if we sell the item to bidder 2 also for y = ỹ every possibly realized
allocation is PO. Hence, PO in expectation does not imply that each realized allocation
is PO. Next consider the case that bidder 1 has valuation v1 = 1 and budget b1 = 1, and
bidder 2 has valuation v2 = 2 and budget b2 = 0.5. If we sell the item to bidder 1 for
price p1 = 1 (and p2 = 0) for every realization y ∈ (0, 1) each realized allocation is PO
because v1 > b2. However, we could select the bidder who gets the item with probability
one half, and both bidders have to pay p1 = p2 = 0.5 independent of the assignment.
Hence, the allocation is not PO in expectation, and therefore, PO in expectation is not
implied if every realized allocation is PO.

B. PROOF OF THEOREM 3.1
We show first that given a feasible allocation (X, p) that contains a trading swap, there
exists a bidder u ∈ B with ṽu < vu. This direction follows directly from the definition of
a trading swap. The valuation of u’s desired trading partner w is vw ≥ ṽu and we know
that vu > vw. Thus, vu > ṽu.

We will show now the other direction, i.e., that given a feasible allocation (X, p) such
that ∃u ∈ B : ṽu < vu it exists a trading swap in (X, p). We know that there is a bidder
u ∈ B with ṽu < vu. Thus, we can select the smallest k ∈ {1, . . . , n} for which there is a
bidder ak ∈ Nk

u who has vak = ṽu. We define for all p ∈ {1, . . . , k− 1} the bidder ap such
that ap ∈ Np

u and ap+1 ∈ Nap and set a0 := u. Since we selected the smallest k, we know
that ap 6= ap′ if p 6= p′. The fact that ap+1 ∈ Nap implies that h(ap+1) > l(ap). Hence, we
could swap a fraction of size εp+1 := min{xap,l(ap), xap+1,h(ap+1)} of the slots h(ap+1) and
l(ap) between the bidders ap+1 and ap with p ∈ {0, . . . , k−1}. Such a swap increases the
weighted capacity that is assigned to bidder ap by δp+1 := εp+1(αh(ap+1) − αl(ap)), while
the weighted capacity that is assigned to bidder ap+1 is decreased by δp+1. We define
δ := min({ ba0−pa0vak

} ∪ {δp|p ∈ {1, . . . , k}}) and τp+1 := δ
αh(ap+1)−αl(ap)

∀p ∈ {0, . . . , k −
1} and define an allocation (X ′, p′) as follows: We set x′ap,h(ap+1) := xap,h(ap+1) + τp+1

and x′ap,l(ap) := xap,l(ap) − τp+1 for all p ∈ {0, . . . , k − 1}, x′ap,h(ap) := xap,h(ap) − τp and
x′ap,l(ap−1) := xap,l(ap−1) +τp for all p ∈ {1, . . . , k}, and x′i,j = xi,j for all other (i, j) ∈ I×J .
Moreover, we set p′ak := pak − vakδ, p′a0 := pa0 + vakδ, and p′i := pi for all other i ∈ I.
Thus, with w = ak it follows that (X ′, p′) fulfills conditions (1)-(5) of a trading swap.

Next we show that (X ′, p′) is a feasible allocation. By the definition of X ′ for all i ∈ I
it holds that

∑
j∈J x

′
i,j =

∑
j∈J xi,j = κi as whenever for some τ with −1 ≤ τ ≤ 1, x′i,j is

set to xi,j + τ for some j ∈ J , x′i,l is set to xi,l − τ for some other l ∈ J . Additionally for
every j ∈ J it holds that

∑
i∈I x

′
i,j =

∑
i∈I xi,j = 1 as whenever x′ap,j is set to xap,j+τ for

some τ with −1 ≤ τ ≤ 1, either x′ap+1,j
is set to xap+1,j − τ , or x′ap−1,j

is set to xap−1,j − τ .
Finally, p′i ≤ pi ≤ bi for all i 6= u and by our construction p′u ≤ bu. This shows that
conditions (1) - (3) of a feasible allocation hold for (X ′, p′).

C. PROOF OF THEOREM 3.2
We assume without loss of generality that the bidders are ordered by their valuation,
i.e., vi ≥ vi′ if i > i′.
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The allocation that results from a trading swap in (X, p) is Pareto superior to (X, p).
Hence, a Pareto optimal allocation cannot contain a trading swap. That proves the one
direction.

The following part of the proof shows the other direction of the theorem, i.e., (X, p)
is PO if it contains no trading swap. We use Theorem 3.1 and show instead that if
ṽi ≥ vi ∀i ∈ B then there exists no Pareto superior allocation (X ′, p′). Let us assume
that we have a feasible allocation (X ′, p′) that is Pareto superior to (X, p). The utility of
the auctioneer does not decrease. Thus, the sum of the payments of the bidders fulfills∑
i∈I p

′
i ≥

∑
i∈I pi. If

∑
i∈I p

′
i >

∑
i∈I pi then an allocation (X ′, p′′) where

∑
i∈I p

′′
i =∑

i∈I pi exists, which is Pareto superior compared to (X, p) as well: simply give the
additional payments back to some of the bidders. Therefore, it suffices to consider the
case where

∑
i∈I p

′
i =

∑
i∈I pi.

Let qi =
∑
j∈J αj(x

′
i,j − xi,j) be the weighted capacity change of bidder i. Since (X, p)

and (X ′, p′) are feasible allocations,
∑
i∈I xi,j = 1 for all j ∈ J , and

∑
i∈I x

′
i,j = 1 for all

j ∈ J . Hence,
∑
i∈I qi =

∑
i∈I
∑
j∈J αj(x

′
i,j − xi,j) =

∑
j∈J αj(

∑
i∈I x

′
i,j −

∑
i∈I xi,j) = 0.

It follows that (a)
∑
b∈I:qb≤0(−qb) =

∑
i∈I:qi>0 qi. As

∑
i∈I pi =

∑
i∈I p

′
i it also follows

that (b)
∑
b∈I:qb≤0(pb − p′b) =

∑
i∈I:qi>0(p′i − pi).

We partition the bidders into the following three sets: I− = {b ∈ I|qb ≤ 0}, B+ =
{i ∈ B|qi > 0}, and C+ = {i ∈ I \ B|qi > 0} = I \ (I− ∪ B+). We will show below that
(A)

∑
b∈I−(pb− p′b) ≥

∑
b∈I−(−qbvb) ≥

∑
i∈B+ qivi, (B)

∑
i∈B+ qivi ≥

∑
i∈B+(p′i− pi), and

(C) C+ = ∅.
Since

∑
i∈C+(p′i−pi) ≤ 0, (b) implies that

∑
b∈I−(pb−p′b) ≤

∑
i∈B+(p′i−pi). Combined

with (A) and (B) it follows that
∑
b∈I−(pb−p′b) =

∑
i∈B+(p′i−pi) and that all the inequal-

ities in (A) and (B) are actually equations, specifically (c)
∑
b∈I−(−qbvb) =

∑
i∈B+ qivi.

Furthermore, (A) implies that the total change in utility (comparing (X, p) to (X ′, p′))
for all bidders b ∈ I−, which is

∑
b∈I−(qbvb − p′b + pb), equals 0, and (B) implies that

the change in utility for all bidders i ∈ B+, which is
∑
i∈B+(qivi − p′i + pi), equals 0.

Since C+ = ∅, this implies that the total change in utility for all bidders is zero. The
utility of the auctioneer in (X, p) and in (X ′, p′) does not change either. This gives a
contradiction to the assumption that (X ′, p′) is Pareto superior to (X, p) and completes
the proof of Theorem 3.2.

To show (B) note that the increase in payment p′i − pi for a bidder i ∈ B with qi > 0
is at most qivi, otherwise the utility of the bidder would drop. This shows (B). To show
the first inequality in (A) note that the total drop in payments by a bidder b ∈ I with
qb ≤ 0 is at least −qbvb. Thus,

∑
b∈I−(pb − p′b) ≥

∑
b∈I−(−qbvb).

To show the second inequality in (A) we first show the following claims. Let s = |B+|
and let r(1), r(2), . . . , r(s) be an ordering of the bidders in B+ in increasing order of l(·)
such that two bidders i and i′ with l(i) = l(i′) are ordered by increasing v-value. We
show first that r-ordering orders the bidders by valuation.

CLAIM C.1. For 1 ≤ l < s it holds that vr(l) ≤ vr(l+1).

PROOF. Assume by contradiction that vr(l) > vr(l+1) for some 1 ≤ l < s. Since
l(r(l)) < l(r(l + 1)) ≤ h(r(l + 1)), r(l + 1) ∈ Ñr(l). Since r(l) ∈ B, it follows that
vr(l) ≤ vr(l+1). Contradiction!

Note that Ñr(l+1) ⊆ Ñr(l) ∪ {r(l)} for 1 ≤ l < s, i.e., a bidder b ∈ I can be-
long to multiple such sets. We define for each bidder b ∈ I− a unique “top” i ∈ B+

to whose set Ñi bidder b belongs. More formally, we define a mapping as follows:
Let p(b) := arg maxi∈B+:b∈Ñi r(i) which is the maximum i ∈ B+ (in r-order) with
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b ∈ Ñi. Let Ai =
∑
b∈I−∩Ñi:p(b)=i(−qb). By the definition of the mapping p we have

that (d)
∑
b∈I−∩Ñr(1)(−qbvb) ≥

∑
b∈I−∩Ñr(1)(−qbvp(b)) =

∑
i∈B+(

∑
b∈I−∩Ñi:p(b)=i(−qb))vi

=
∑
i∈B+ Aivi.

The following claim simply states that all bidders from r(l) to r(s) “receive” all their
increases in weighted capacity from bidders in Ñr(l).

CLAIM C.2. For all 1 ≤ l ≤ s it holds that
∑
l≤t≤sAr(t) =

∑
b∈I−∩Ñr(l)(−qb) ≥∑

l≤t≤s qr(t).

PROOF. Consider bidders {r(t)|t ∈ {l, . . . , s}} ⊆ B+. We show that bidder i can
increase his weighted capacity in the Pareto superior assignment X ′ only at ex-
penses of the reduction of the weighted capacity of bidders in Ñi. This in turn implies∑
b∈I−∩Ñr(l)(−qb) ≥

∑
l≤t≤s qr(t).

Let us describe the assignment X and the Pareto superior assignment X ′ by a
weighted bipartite directed graph G = (V,E ∪ E′) with the vertex set V = I ∪ J ,
the edge sets E = {(i, j) ∈ I × J |xi,j > 0} and E′ = {(j, i) ∈ J × I|x′i,j > 0}, and
the weights wi,j = xi,j ∀(i, j) ∈ I × J and wj,i = x′i,j ∀(j, i) ∈ J × I. Edges from
I to J are weighted by the corresponding real-numbered value xi,j . Edges from J
to I are weighted by the corresponding real-numbered value x′i,j . Consider a path
π = (i1, j1, i2, j2, . . . , ik−1, jk−1, ik) in the bipartite graph. We say that the path π is
an alternating path of length k with respect to the assignments X and X ′ if (it, jt) ∈ E
and (jt, it+1) ∈ E′ for all 1 ≤ t < k. It is an alternating cycle if i1 = ik. Since for any
assignment

∑
i∈I xi,j = 1 ∀j ∈ J , and

∑
j∈J xi,j = κi ∀i ∈ I, it holds that

∑
j∈J

(wi,j − wj,i) = 0 ∀i ∈ I, and (1)

∑
i∈I

(wi,j − wj,i) = 0 ∀j ∈ J. (2)

We decompose the bipartite graph in a set of at most |I| |J | alternating cycles
that we denote by Π. We start from the edge (i, j) or (j, i) with the lowest weight
λ = min(x,y)∈E∪E′ wx,y. We traverse the bipartite graph starting from edge (x, y) and
find a path going from vertex y to vertex x. This gives us a cycle π. If such a path would
not exist we could partition the set of vertices into three disjoint subsets: V1 contains x
and all the start vertices of paths ending at x, V2 contains y and all the end vertices of
a paths starting at y, and V3 contains all the remaining vertices. The edge (x, y) would
be directed from a vertex in V1 to a vertex that is not in V1 and has a positive weight
and no edge would be directed from a vertex that is not in V1 to a vertex in V1. Thus,∑
u∈V1,v∈V2∪V3

wu,v > 0 and
∑
u∈V1,v∈V2∪V3

wv,u = 0, which would contradict (1) and (2),
and hence, a cycle π has to exist.

Let us denote by λπ = λ the capacity of cycle π. We then reduce by λπ the weight of all
edges on π and we remove from the bipartite graph all edges with 0 remaining weight.
Observe that equations (1) and (2) still hold for the resulting graph. It is therefore
possible to continue this procedure until the graph is empty.

Given a cycle π = (i1, j1, i2, j2, . . . , ik−1, jk−1, ik), we abuse notation by denoting by π
also the set of bidders {i1, i2, . . . , ik}. For a bidder i ∈ π, let us define tπ(i) and t′π(i) such
that (i, tπ(i)) ∈ E and (t′π(i), i) ∈ E′ are edges of the cycle. We use α(j) for αj , which is
the quality of slot j ∈ J .
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Given a bidder i ∈ I and a set of alternating cycles Π′ ⊆ Π we define

qi(Π
′) =

∑
π∈Π′:i∈π

λπ(α(t′π(i))− α(tπ(i)))

as the increase of the weighted capacity of bidder i when moving from the assignment
X to a new assignment by the set of cycles Π′. Note that qi = qi(Π) for every bidder i.
It holds for each π ∈ Π that ∑

i∈π
qi({π}) = 0. (3)

We prove the claim now by induction on a set of cycles Π. We actually prove the
stronger statement∑

b∈Ñr(l)\B+:qb(Π)≤0

(−qb(Π)) ≥
∑

i∈Ñr(l)\B+:qi(Π)>0

qi(Π) +
∑
l≤t≤s

qr(t)(Π).

Observe that the statement above can greatly be simplified by observing that all
bidders in Ñr(l) appear in the above inequality. It is therefore enough to prove for each
set of cycles Π that ∑

i∈Ñr(l)

qi(Π) ≤ 0. (4)

It clearly holds for Π = ∅. Assume it holds for Π, we prove in the following that it then
holds also for Π′ = Π ∪ {π}.

Since ∑
i∈Ñr(l)

qi(Π
′) =

∑
i∈Ñr(l)

qi(Π) +
∑

i∈Ñr(l)∩π

qi({π}), (5)

it is sufficient to prove ∑
i∈Ñr(l)∩π

qi({π}) ≤ 0. (6)

For any bidder s ∈ Ñr(l) and for any bidder i /∈ Ñr(l) it holds that h(i) ≤ l(s). This
implies in turn that any bidder in i ∈ π ∩ Ñr(l) will only increase his weighted capacity
when swapping a fraction of a slot against a fraction of a slot that is assigned to another
bidder s ∈ π ∩ Ñr(l) in X. It follows

∑
i∈π\Ñr(l) qi({π}) ≥ 0. Combined with Equation (3)

this yields the proof of the statement of Equation (6).

We need one more auxiliary claim before completing the proof of the second inequal-
ity of (A).

CLAIM C.3. If (X ′, p′) is a Pareto superior solution to (X, p) then for every 1 ≤ l ≤ s∑
l≤t≤s

Ar(t)vr(t) ≥
∑
l≤t≤s

qr(t)vr(t) +
∑
l≤t≤s

(Ar(t) − qr(t))vr(l).

PROOF. We use backwards induction on l. For l = s, it trivially holds that
Ar(s)vr(s) ≥ qr(s)vr(s) + (Ar(s) − qr(s))vr(s).

For l < s, we use the inductive claim for l + 1, Claim C.2, and the
fact that vr(l+1) ≥ vr(l) according to Claim C.1. Thus,

∑
l≤t≤sAr(t)vr(t) =∑

l+1≤t≤sAr(t)vr(t) + Ar(l)vr(l) ≥
∑
l+1≤t≤s qr(t)vr(t)+
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l+1≤t≤s(Ar(t)−qr(t))vr(l+1) +Ar(l)vr(l) ≥

∑
l≤t≤s qr(t)vr(t)+

∑
l+1≤t≤s(Ar(t)−qr(t))vr(l)+

(Ar(l) − qr(l))vr(l) =
∑
l≤t≤s qr(t)vr(t) +

∑
l≤t≤s(Ar(t) − qr(t))vr(l).

By Claim C.2 it follows that
∑

1≤t≤s(Ar(t)− qr(t)) ≥ 0, and thus, by (d) and Claim C.3
it follows that

∑
b∈I−(−qb)vb ≥

∑
i∈B+ Aivi =

∑
1≤t≤sAr(t)vr(t) ≥

∑
1≤t≤s qr(t)vr(t) =∑

i∈B+ qivi. This completes the proof of the second inequality of (A).
To show (C) assume by contradiction that C+ 6= ∅ and consider two cases that follow

from Claim C.2:
Case 1:

∑
i∈B+ Ai >

∑
i∈B+ qi. Combined with (d) and Claim C.3 this shows that∑

b∈I−(−qbvb) ≥
∑
i∈B+ Aivi >

∑
i∈B+ qivi. But this is a contradiction to (c) above.

Case 2:
∑
i∈B+ Ai =

∑
i∈B+ qi. Note that

∑
i∈B+ Ai =

∑
b∈I−∩Ñr(1)(−qb).

Then (a) implies
∑
b∈I−\Ñr(1)(−qb) =

∑
i∈C+ qi > 0. By (c)∑

i∈B+ qivi =
∑
b∈I−(−qbvb) =

∑
b∈I−∩Ñr(1)(−qbvb)+

∑
b∈I−\Ñr(1)(−qbvb) >∑

b∈I−∩Ñr(1)(−qbvb). By Claim C.2, Claim C.3, and (d) it follows that∑
b∈I−∩Ñr(1)(−qbvb) ≥

∑
i∈B+ Aivi ≥

∑
i∈B+ qivi, which contradicts the previous

statement.

D. EXAMPLE FOR THE DIVISIBLE CASE
Bidder 1 has valuation v1 = 1, budget b1 = 1, and slot constraint κ1 = 1. Bidder 2 has
valuation v2 = 2, budget b2 = 0.5, and slot constraint κ2 = 1. The qualities of the slots
are α1 = 1 and α2 = 2. The auction starts for both bidders with a price of zero and thus
their demand is infinite. First we call SELL for bidder 1. He gets a weighted capacity
of one for price zero, since the most weighted capacity that we can assign to bidder 2 is
the quality of slot 2. Then we set the price of bidder 1 to one and call SELL for bidder 2.
After this call we sell a weighted capacity of one to bidder 2, since the most weighted
capacity that we can assign to bidder 1 is the quality of slot 2 and he can also afford
just an additional weighted capacity of one. Then we set the price of bidder 2 to one
and continue with the next iteration. Bidder 1 becomes an exiting bidder and we call
SELL for him. Bidder 2 can only afford an additional weighted capacity of one half.
Hence, we have to sell the other half that is left to bidder 1. Next we sell the other half
to bidder 2. Each bidder gets a weighted capacity of one and a half and pays a half.
The only possible assignment is that each bidder gets half of the first slot and half of
the second slot.

E. EXISTENCE OF FEASIBLE SOLUTIONS IN ALGORITHM SELL
LEMMA E.1. For every execution of procedure SELL there exists a feasible solution

to the linear program in the call.

PROOF. We show the claim by induction on the number t of calls to procedure SELL.
There is a feasible solution for the first call to SELL as the demand of every bidder is
unlimited and, thus, γi can be made as large as necessary for every bidder i. Next let
us inductively assume that there was a feasible solution for call t and let us consider
call t+1. As there exists a feasible solution for call t, SELL returns an optimal solution
(X, γ) for call t. After the call, ci′ is increased by γi′ , and thus, (X, γ̃) with γ̃i = γi for
i 6= i′ and γ̃i′ = 0 for i = i′ is a feasible solution of the linear program in call t + 1 to
SELL, which uses the new c-values. Since γ̃i′ = 0, (X, γ̃) is a feasible solution in call t+1
even if the price for bidder i′ was increased, and thus, his demand di′ was decreased.
Thus the inductive claim holds.
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F. PROOF OF PROPOSITION 3.3
Since no bidder will ever pay more than his reported valuation and the demand is set
so that bi ≥ pi, individual rationality follows.

We next show incentive compatibility. By the construction of the auction, each bid-
der i never pays more than his reported valuation. If his reported valuation is ṽi and
ṽi < vi, he becomes an inactive bidder at the price ṽi. His utility cannot increase by
lying as he gets the same weighted capacity for each price π < ṽi and he will loose all
weighted capacity that he clinched at a price larger than ṽi. If his reported valuation
is ṽi > vi, he gets the same weighted capacity for each price π < vi. He might receive
additional weighted capacity at a price at least vi, but it cannot increase his utility.
Thus, the auction is IC.

All the coefficients of the affine functions used in the constraints of the first linear
program that gets solved during the auction are rational numbers and all the linear
programs have feasible solutions. Thus, there exists an optimal solution that is a ver-
tex of the polytope that is defined by the constraints of the respective linear program.
Since that optimal solution lies on the intersection of the graphs of affine functions
with rational coefficients it follows that the selected optimal solution (X, γ) has only
rational entries. The prices are rational numbers as well, and thus, ci and di are ra-
tional numbers for all i ∈ I in the next iteration. Hence, the allocation (X, p) that is
determined by the auction has only rational entries.

G. PROOF OF THEOREM 3.4
We will show that (X, p) does not contain any trading swap. Let (X, p) be the allocation
computed by the auction and assume by contradiction that there exists a trading swap,
i.e., a sequence of bidders (u = a0, a1, . . . , ak = w) that fulfills the above conditions.
Consider the Pareto superior allocation (X ′, p′) constructed in the proof of Theorem 3.1.
Define cfi :=

∑
j∈J αjxi,j and c′i :=

∑
j∈J αjx

′
i,j for all bidders i. Note that c′w = cfw − δ,

c′u = cfu + δ, and cfi = c′i ∀i ∈ I \ {u,w}. Let δ′ = δ π
π+ > 0.

We construct a modified Pareto superior allocation (X ′′, p′′) with c′′w = cfw − δ′, c′′u =
cfu + δ′, and c′′i = cfi ∀i ∈ I \ {u,w}, where c′′i =

∑
j∈J αjx

′′
i,j . Specifically, we use the

same set of bidders u = a0, . . . , ak = w, perform the swaps between the same bidders
as for (X ′, p′), but use as swap values τ ′p+1 := τp+1

π
π+ instead of τp+1 and as payments

p′′u = pu+vwδ
′, p′′w = pw−vwδ′, and p′′i = pi for all other bidders i. By the same argument

as for (X ′, p′) the allocation (X ′′, p′′) is Pareto superior to (X, p).
We will show that (X ′′, p′′) can be used to construct a smaller feasible solution to

one of the linear programs solved by SELL. Since the linear program has found the
minimal solution this leads to a contradiction with the assumption that there exists a
trading swap in (X, p).

Let bfi := bi − pi be the remaining budget of bidder i at the end of the algorithm. The
value cw of bidder w increases only when procedure SELL returns a non-zero value for
γw, where w was the last parameter when SELL was called, that is, the linear program
solved in SELL was trying to minimize γw. Since cfw > c′′w, there exists a unique call
to procedure SELL with parameters (I, J, α, κ, v, c, d, w) such that before the execution
of the linear program cw ≤ c′′w and SELL returns a value s > 0 such that cw + s > c′′w.
We call the corresponding linear program LP. Its inputs are the vectors c, d, and κ,
its variables are the matrix X = (xi,j)(i,j)∈I×J and the vector γ. Let π be the price
at the time of the call. We will show that using (X ′′, p′′) we can construct a feasible
solution for this linear program which outputs a value s′ < s. This leads to the desired
contradiction. We first show the following claim:
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CLAIM G.1. Using (X, p) we can find a feasible solution (X, γ̃) to LP with γ̃i =∑
j∈J xi,jαj − ci ∀i ∈ I that fulfills (1) for all bidders i ∈ A \ E with i 6= w and di > d+

i :

γ̃i ≤ di − bfi
π , and (2) for all bidders i ∈ A \ E with i 6= w and di = d+

i : γ̃i ≤ di − bfi
π+ .

PROOF. We first recall that the case di > d+
i happens when the LP is computed

before the demand of bidder i has been updated as in line 16 of AUCTION. The case
di = d+

i happens after the update has been made for bidder i.
First we show that (X, γ̃) fulfills the constraints of LP. Since the allocation (X, p) is

derived from the last linear program executed by the algorithm, it fulfills the condi-
tions

∑
i∈I xi,j = 1 ∀j ∈ J and

∑
j∈J xi,j = κi ∀i ∈ I. By definition

∑
j∈J xi,jαj − γ̃i =

ci ∀i ∈ I. Recall that bfi is the remaining budget of bidder i at the end of the auction,
that is, the money not spent by i. Note that bidder i clinched γ̃i = cfi − ci “weighted
capacity” after LP was executed.

Case 1: Consider first a bidder i 6= w with di > d+
i . Note that for bidders of this type

the remaining budget when LP is called is diπ and that these bidders pay a price per
“weighted capacity unit” of at least π for all capacity that was not clinched before LP
was executed. Thus, bidder i pays diπ − bfi for all the “weighted capacity” that was not
clinched before LP was executed. Thus, γ̃iπ ≤ diπ − bfi.

Case 2: Consider next a bidder i 6= w with di = d+
i . Note that for bidders of this type

the remaining budget when LP is called is diπ+ and that these bidders pay a price per
“weighted capacity unit” of at least π+ for all capacity that was not clinched before LP
since they can only clinch at the price π+ or higher. Note that we know that π+ ≤ vi :
Since i ∈ A\E it holds that vi > π, and therefore, vi ≥ π+. Thus, bidder i pays diπ+−bfi
for all the “weighted capacity” clinched after LP was executed. Thus, γ̃iπ+ ≤ diπ+−bfi.

Next we define γ′′i =
∑
j∈J x

′′
i,jαj − ci = c′′i − ci for all i ∈ I and show that (X ′′, γ′′)

is a feasible solution of LP and that γ′′w < s thus leading to a contradiction. Note that
γ′′u = γ̃u+δ′. By the definition of X ′′ for all i ∈ I it holds that

∑
j∈J x

′′
i,j =

∑
j∈J xi,j = κi

as whenever for some τ with −1 ≤ τ ≤ 1, x′′i,j is set to xi,j + τ for some j ∈ J , x′′i,l is set
to xi,l − τ for some other l ∈ J . Additionally for every j ∈ J it holds that

∑
i∈I x

′′
i,j =∑

i∈I xi,j = 1 as whenever x′′ap,j is set to xap,j + τ for some τ with −1 ≤ τ ≤ 1, either
x′′ap+1,j

is set to xap+1,j−τ , or x′′ap−1,j
is set to xap−1,j−τ . Thus (X ′′, γ′′) fulfills constraints

(a) and (b) of LP. By the definition of γ′′ constraint (c) also holds.
For constraint (d) note that for all i ∈ I \ {u,w} we know that γ′′i = γ̃i ≤ di, and thus,

constraint (d) holds for such i. For i = w, by definition of a trading swap
∑
j∈J αjx

′′
i,j <∑

j∈J αjxi,j , and thus, γ′′w < γ̃w ≤ dw. Hence constraint (d) also holds for i = w. For
i = u, we know that γ′′u = γ̃u + δ′ and we have to show that du ≥ γ′′u .

Since cfw > cw we know that w is still an active bidder when LP is executed, and
thus, vw ≥ π. Hence, bfu = bu − pu ≥ p′u − pu = vwδ ≥ πδ.

By vw ≥ π it follows from the definition of a trading swap that vu > π and that
therefore u ∈ A \ E. Consider first the case that du > d+

u . By the previous claim it
follows that du ≥ γ̃u +

bfu
π ≥ γ̃u + δ = γ′′u + δ − δ′ > γ′′u . Consider next the case that

du = d+
u . By the previous claim it follows that du ≥ γ̃u +

bfu
π+ ≥ γ̃u + δ π

π+ = γ̃u + δ′ = γ′′u .
It remains to show that γ′′w < s. Recall that by the definition of LP it holds that

cw + s > c′′w, while, by definition of γ′′w, cw + γ′′w = c′′w. Thus γ′′w < s, which leads to the
desired contradiction.
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H. PROOF OF LEMMA 4.1
We first show the following claim:

CLAIM H.1. For every feasible allocation (N, p) in the indivisible case there exists a
feasible allocation (X, p) in the divisible case where all the bidders and the auctioneer
have the same utility.

PROOF. The utility of the auctioneer stays unchanged, since we leave the payments
unchanged. We set xi,j =

|{r∈R|nj,r=i}|
|R| ∀i ∈ I, ∀j ∈ J . The utility of bidder i is the same

for (N, p) and (X, p), since the utility of bidder i is
∑
j∈J

αj
|R| |{r ∈ R|nj,r = i}|vi − pi =∑

j∈J αjxi,jvi − pi for (N, p). The slot constraint for (N, p) implies κi ≥ maxr∈R |{j ∈
J |nj,r = i}| ≥ |{(j,r)∈J×R|nj,r=i}|

|R| =
∑
j∈J

|{r∈R|nj,r=i}|
|R| =

∑
j∈J xi,j , and therefore it

implies the slot constraint in (X, p). Since all the slots are fully assigned to the bidders
in (N, p), and consequently for (X, p), it follows that (X, p) is feasible.

Given a probability distribution over feasible allocations for the indivisible case, trans-
form each feasible allocation that has a non-zero probability into a feasible allocation
for the divisible case. Then create a new allocation for the divisible case by adding up
the all of these feasible allocations for the divisible case weighted by the probability
distribution. Since the weights are created by a probability distribution, they add up
to 1, and thus, the resulting combined allocation fulfills Conditions (1) and (2) of a
feasible allocation. As the payment is identical to the payment for the indivisible case,
Condition (3) is also fulfilled.

I. CONSTRUCTION OF MATRIX M ′

We describe next how to construct M ′. Recall that all xdi,j are rational numbers. Let
λ be their least common denominator, set C = {1, . . . , λ}, and set yi,j = λxdi,j . Since∑
i∈I x

d
i,j = 1 and

∑
j∈J x

d
i,j ≤ κi, we know that

∑
i∈I yi,j = λ and

∑
j∈J yi,j ≤ λκi. We

construct a matrix M of size |J | × λ with values in I by setting yi,j values of row j to
i. More formally, for each j ∈ J and each c ∈ C we set entry mj,c = v for the unique
value v with

∑v−1
i=1 yi,j < c and

∑v
i=1 yi,j ≥ c. As a result |{c ∈ C|mj,c = i}| = yi,j ∀i ∈

I, ∀j ∈ J . The slot constraints imply that there are at most λκi entries in M that have
the value i ∈ I. Next, we replace each bidder i by κi pseudo-bidders and translate M
into a matrix P such that no pseudo-bidder has more than λ entries in P .

We construct P in the following way: we give every entry (j, c) ∈ J ×C of M that has
the value i ∈ I a unique number lj,c that is starting from 1; we assign the same value to
two entries (j, c) and (j′, c′) in P if and only if the corresponding entries in M have the
same values (mj,c = mj′,c′ ) and their numbers lj,c and lj′,c′ fulfill b lj,cλ c = b lj′,c′λ c. To be
more concrete, let the indicator variable δi,j,c = 1 if mj,c = i and δi,j,c = 0 otherwise. We
define lj,c :=

∑
(j′,c′)∈Sj,c δmj,c,j′,c′ where Sj,c = {(j′, c′) ∈ J×C|(j′ < j)∨(j′ = j∧c′ ≤ c)}

and construct matrix P of size |J | × λ by pj,c =
(∑mj,c−1

i′=1 κi′
)

+ b lj,cλ c+ 1. The matrix P
has the property that all the entries that have an identical value in P have an identical
value in M , but every value appears at most λ times in P .

Then we apply to P a swapping algorithm that gives us P ′ and that guarantees that
(1) in each column in P there is at most one entry for each pseudo-bidder, and (2) for
each j ∈ J each value appears as often in row j of P as it does in P ′. Thus, when we
convert all the entries of the pseudo-bidders of a given bidder i into entries for bidder i
we get a matrix M ′ such that each bidder i has at most κi entries in each column and
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for all i ∈ I and j ∈ J it holds that |{c ∈ C|m′j,c = i}| = yi,j . The swapping algorithm
that turns P into P ′ is presented in Algorithm 3.

Algorithm 3 Swapping Algorithm.
1: procedure SWAPPING(M )
2: J ← {1, . . . , rows(M)}
3: C ← {1, . . . , columns(M)}
4: n← max(j,c)∈J×C mj,c

5: for i ∈ {1, . . . , n} do
6: jc ← |{j ∈ J |mj,c = i}| ∀c ∈ C
7: while maxc∈C(jc) > 1 do
8: a← min({c ∈ C|jc > 1})
9: b← min({c ∈ C|jc = 0})

10: i′ ← i
11: k ← 0
12: repeat
13: k ← min({j ∈ J \ {k}|mj,a = i′})
14: mk,a ← mk,b

15: mk,b ← i′

16: i′ ← mk,a

17: until |{j ∈ J |mj,a = i′}| = 1 ∨ |{j ∈ J |mj,b = i′}| > 0
18: ja ← ja − 1
19: jb ← jb + 1
20: end while
21: end for
22: return M
23: end procedure

THEOREM I.1. Given a matrix M of size r × n with entries valued in I and where
each value appears in at most n entries, there exists a swapping algorithm that finds
a matrix M ′ with the same size and where (1) each value appears as often in row j of
M ′ as it appears in row j of M and (2) each value appears in at most one entry of each
column of M ′.

PROOF. Our goal is to find an algorithm that swaps the values between the entries
such that each value appears only once in each column. We define J = {1, . . . , r} and
C = {1, . . . , n}. Let the indicator variable δi,j,c = 1 if mj,c = i, δi,j,c = 0 otherwise. We
define the badness of a value i ∈ I as βi(M) =

∑
j∈J

∑
c∈C(δi,j,c)−|{c ∈ C|

∑
j∈J δi,j,c >

0}| as the difference between the number of entries which have value i and the number
of columns in which i appears. Moreover, we define by β(M) =

∑
i∈I βi(M) the badness

of matrix M . When each value appears at most once in each column, the badness of the
matrix is 0. We aim at reducing the badness of the matrix at each sequence of swaps.

Let us assume that i appears more than once in column a. Then, there exists a
column b where i does not appear at all, because each value appears in at most n
entries. For the following operations we consider only the columns a and b. We now
define a sequence of swaps between pairs of entries of the two columns. We can see the
two columns as the two sides of a bipartite graph. We set vertices A = {a1, . . . , ar} on
the left side and vertices B = {b1, . . . , br} on the right side. The values of the aj and bj
are mj,a and mj,b, respectively for all j ∈ J . We set edges {(aj , bj)|j = 1, . . . , r} from left
vertices to right vertices of the same slot, and edges {(bj , ak)|mj,b = mk,a} from right
vertices to left vertices with same value.
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We define a swapping alternating path (aj1 , bj1 , . . . , ajt , bjt) on the bipartite graph.
The path starts with a vertex of the left side and ends with a vertex of the right side.
We start with aj1 , one of the vertices on the left side with value i, and set i0 = i. Vertex
ajk is followed in the path by vertex bjk . Let mjk,b = ik be the value of vertex bjk . If
value ik appears more than once on column b then we end the path. Otherwise, we
continue to the left with any of the edges (bjk , ajk+1

), if any such edge exists. Finally,
we implement t swaps by exchanging the values of the endpoints (ajk , bjk) of each edge
on the path, i.e., we exchange mjk,a with mjk,b.

We prove two claims:

CLAIM I.2. The sequence (i1, . . . , it) does not contain any value more than once and
it does not contain value i0.

PROOF. Assume that the path has reached vertex bjk on the right side of the graph.
The path continues to the left side only if the value ik appears only once on the right
side. Therefore, the sequence (i1, . . . , it) contains the values of the vertices on the right
side only once. The set does not contain i0 = i since value i does not appear on b.

CLAIM I.3. The sequence of swaps along the edges (ajk , bjk), k = 1, . . . , t, reduces the
total badness of the matrix by at least 1.

PROOF. The first swap of the path reduces the badness of bidder i = i0 by 1, since
there exists no value i on any entry of column b. We now prove that the total badness
of bidders {i1, . . . , it} does not increase. Consider any value ik with k < t. If value ik is
moved to entry mjk,a then ik appears only once in b. However, value ik is also moved
from entry mjk+1,a to mjk+1,b. Thus, the badness of bidder ik does not increase. For
value it, which is moved from mjt,b to mjt,a, we observe that either value it appears
more than once in b or that there is no entry on a that contains it. In both cases the
badness of it does not increase.

We can now use the swapping algorithm onM and get a matrixM ′ of size r×nwhere
none value appears more than once in the same column. The proof of the theorem is
therefore completed.

To construct matrix M ′ we simply reproduce the swaps that happened to matrix
P on matrix M . We define the matrix M ′ with size |J | × λ where m′j,c = min{v ∈
I|
∑v−1
i=1 κi < mj,c}. The values of the entries of M ′ correspond to the bidders in I and

in each column each value i ∈ I appears at most κi times. This methodology preserves
the amount of capacity of each slot j ∈ J that is allocated to each bidder i ∈ I (i.e.,
|{c ∈ C|m′j,c = i}| =

∑
c∈C δi,j,c = yi,j ∀i ∈ I, ∀j ∈ J). The columns of matrix M ′ are

then used in the sampling step.
The allocation of the randomized auction for multiple keywords and indivisible slots

is now constructed as follows. We select for each keyword r randomly and with equal
probability 1

λ a column l of matrix M ′ and set zi,j,r = 1 if m′j,l = i and zero otherwise.
If zi,j,r = 1 slot j of keyword r is assigned to bidder i. The expected weighted capacity
allocated to bidder i ∈ I is thus

E(
∑
j∈J

αj
|R|

∑
r∈R

zi,j,r) =
∑
j∈J

αj
|R|

∑
r∈R

Ezi,j,r =
∑
j∈J

αj
yi,j
λ

=
∑
j∈J

αjx
d
i,j .

Additionally, all of the slots are fully assigned to the bidders, and hence, the stated
properties are fulfilled by the randomized auction.
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J. EXAMPLE FOR THE INDIVISIBLE CASE
We give an example that continues the example given in Appendix D. Recall that each
bidder gets half of the first slot and half of the second slot and assume that we need an
assignment for three keywords. The least common denominator of the assignments is
two, and the matrixM has two columns (1, 1)′ and (2, 2)′. Thus, the swapping algorithm
returns the matrix M ′, which has the two columns (1, 2)′ and (2, 1)′. We can now select
with equal probability one of the two columns of M ′ for each of the three keywords.

K. THE COMBINATORIAL CASE WITH MULTIPLE SLOTS
We give a deterministic mechanism for a special case of the combinatorial setting. The
single-valued combinatorial auction of Fiat et al. [2011] solves the budgeted auction-
ing problem where different bidders are interested in different subsets of the keywords,
and each keyword has only one slot. Every bidder still values each keyword in her sub-
set the same. Valuations are additive. We extend their techniques to the multi-slot per
keyword setting as follows: (1) We extend their B-matchings based approach by giving
capacities, equal to the number of unsold slots, to nodes that represent keywords. (2)
We extend the concept of trading alternating paths in the bidder/keyword bipartite
graph, which in turn allows us to give a characterization of Pareto optimality for the
multi-slot case. While in the single-slot case it is sufficient to restrict the attention to
simple trading alternating paths, in our case there might be trading options where the
same bidder or item can appear many times along the same path. The crucial insight
is that there always exists a simple trading path whenever there exists a non-simple
one.

We slightly abuse notation by using H to denote both: the sets of the items that are
allocated to the bidders, and the B-matching that describes the allocation in graph G.

Pareto optimality has been related in previous work [Dobzinski et al. 2008; 2011] to
the non-existence of trading options between bidders. We need a new definition of a
trading path because we consider multisets of items.

Definition K.1. A path σ = (a1, t1, a2, t2, . . . , aj−1, tj−1, aj) is an alternating path
with respect to an assignment H if (ai, ti) ∈ H, ti ∈ Si+1, and ti 6∈ Hi+1 for all 1 ≤ i < j.

Definition K.2. A path σ = (a1, t1, a2, t2, . . . , aj−1, tj−1, aj) is a trading path with
respect to allocation (H, p) if the following holds: (1) σ is an alternating path in H,
(2) the valuation of bidder aj is strictly greater than the valuation of bidder a1 (i.e.,
vaj > va1 ), (3) the remaining (unused) budget b∗aj of bidder aj at the conclusion of the
auction is at least the valuation of bidder a1 (i.e., b∗aj ≥ va1 ).

Observe that the condition ti 6∈ Hi+1 is needed in this case since the slots of a key-
word have to be assigned to different bidders. This is not the case in the definition of
alternating paths given in [Fiat et al. 2011]. Furthermore all previous results only have
to deal with setting where the only possible trading paths are simple alternating paths.
We do not require that alternating paths are simple (without cycles) (as in [Fiat et al.
2011]). For example, assume that we have two keywords t1, t2 with two slots and five
bidders a1, a2, a3, a4 and a5 with S1 = S3 = {t1} and S2 = S4 = S5 = {t1, t2}. Assume
further that the current allocation H is H1 = ∅, H2 = H5 = {t2}, and H3 = H4 = {t1}.
Now σ = (a3, t1, a2, t3, a4, t1, a1) is an alternating path with respect to H. Here, the
item t1 appears twice, i.e., there is a cycle inside the path. Non-simple alternating
paths might cause problems as our mechanism can only guarantee that at termina-
tion there are no simple alternating paths in (H, p) (see Theorem K.4). Let us call two
alternating paths Pareto equivalent if they have the same start and end bidders and
produce the same change in weighted capacity for all the bidders. As the following
lemma shows we do not need the restriction to simple alternating paths as whenever
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there is a non-simple alternating path then there is a Pareto equivalent simple alter-
nating path. In the above example, σ′ = (a3, t1, a1) would be such a Pareto equivalent
simple alternating path.

LEMMA K.3. If there exists an alternating path σ = (a1, t1, . . . , tj−1, aj) that con-
tains cycles there exists also a Pareto equivalent simple alternating path.

PROOF. Assume that σ = (a1, t1, . . . , tj−1, aj) is an alternating path with a cycle.
Let sk be the first vertex of the cycle in the order. We decompose the path into σs =
(a1, . . . , sk−1, sk), σc = (sk, sk+1, . . . , si−1, sk), and σe = (sk, si+1, . . . , aj), where sk is
either a bidder or an item. If sk is an item, say t, then sk−1, sk+1, si−1, and si+1 are
bidders, and t ∈ Ssk−1

, t ∈ Ssk+1
, t ∈ Ssi−1

, and t ∈ Ssi+1
. Moreover, t ∈ Hsk−1

, t ∈
Hsi−1

, t 6∈ Hsk+1
, and t 6∈ Hsi+1

by the definition of an alternating path. Thus, the
concatenation of σs and σe is still an alternating path and it is simple. In the same
way, if sk is a bidder, say a, we have that sk−1, sk+1, si−1, and si+1 are items and
{sk−1, sk+1, si−1, si+1} ⊆ Sa, sk−1 6∈ Ha, si−1 6∈ Ha, sk+1 ∈ Ha, si+1 ∈ Ha. Thus, we can
again concatenate σs and σe and obtain a simple alternating path. The above process
can be iterated if there exist more cycles in the path.

Pareto optimality and simple trading paths are now related by the following theo-
rem.

THEOREM K.4. Any allocation (H, p) is PO if and only if (1) all slots of the keywords
are sold in (H, p), and (2) there are no simple trading paths in (H, p).

PROOF. In order to prove Theorem K.4 we need the following lemmas and the defi-
nition of Pareto equivalent trading paths.

LEMMA K.5. Let H and H
′

be two allocations with all items allocated. The sym-
metric difference H 	 H ′ between the two allocations can be decomposed into a set of
alternating paths (simple paths and paths with cycles) with respect to H.

PROOF. Let the graph G be a directed graph. The edges from the matching H are
directed from bidders to items and the edges from the matching H

′
are directed from

items to bidders. Since H and H
′

have all items allocated, in both matchings there
are m edges for every item. Moreover, each item in G will have an equal number of
incoming and outgoing edges. Thus, no item has to be the start or the end of a path,
and we can always find two edges incident to any item such that there are no two
consecutive edges from H or H

′
.

We conclude that for every trading path there is a Pareto equivalent simple trading
path and that if there are no simple trading paths then there are no trading paths at
all.

Now we are ready for the proof of Theorem K.4. This proof and the proof of Theo-
rem 5.1 follow very closely those of Fiat et al. [2011].

Let Q be the predicate that (H, p) is PO, R1 be the predicate that all items are sold
in (H, p), and R2 the predicate that there are no trading paths in G with respect to
(H, p). We seek to show that Q ⇔ R1 ∧R2.
Q ⇒ (R1 ∧R2): to prove this we show that (¬R1 ∨ ¬R2)⇒ ¬Q.
If both R1 and R2 are true then this becomes False⇒ ¬Q which is trivially true.
If the allocation (H, p) does not assign all items (¬R1) then it is clearly not PO (¬Q).

We can get a better allocation by assigning unsold items to any bidder i with such
items in Si. This increases the utility of bidder i.

If ¬R2 then there exists a trading path σ in G with respect to (H, p). Let σ = (a1, t1,
a2, t2, . . . , aj−1, tj−1, aj), with vaj > va1 and b∗aj ≥ va1 ; then we can decrease the payment
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of bidder a1 by va1 , increase the payment of bidder aj by the same va1 , and move item
ti from bidder ai to bidder ai+1 for all i = 1, . . . , j − 1. In this case, the utility of bidders
a1, a2, . . . , aj−1 is unchanged, the utility of bidder aj increases by vaj − vai > 0, and the
utility of the auctioneer is unchanged. The sum of payments by the bidders is likewise
unchanged. This contradicts the assumption that (H, p) is PO.

We now seek to prove that (R1 ∧ R2) ⇒ Q. We note above that if not all items
are allocated (¬R1) then the allocation is not PO (¬Q), thus Q ⇒ R1 and (trivially)
Q ⇒ Q ∧R1 (PO implies that all items allocated). Thus, (R1 ∧ R2) ⇒ Q ⇒ Q ∧R1. If
R1 is false this predicate becomes False ⇒ False, thus we remain with the case where
all items are allocated.

We show the contrapositive: ¬Q ⇒ (¬R1∨¬R2). Assume ¬Q, i.e., assume that (H, p)
is not PO. Further assume R1, that H assigns all items. We will show ¬R2, i.e., that
there is a trading path with respect to (H, p). Since (H, p) is not PO, there must be some
other allocation (H ′, p′) that is not worse for all players (including the auctioneer) and
strictly better for at least one player. We can assume that (H ′, p′) assigns all items as
well, as otherwise we can take an even better allocation that would assign all items.

By Lemma K.5 we know that H and H ′ are related by a set of alternating paths
(simple and not) and cycles. On a path, the first bidder gives up one item, whereas the
last bidder receives one item more, after items are exchanged along the path. Cycles
represent giving up one item in return for another by passing items around along it.
Cycles do not change the number of items assigned to the bidders along the cycles so
we will ignore them. Moreover, by Lemma K.3 we know that every trading path that
is not simple has a Pareto equivalent simple trading path and if it does not exist any
simple trading path then there are no trading paths at all. Thus, we can focus on the
existence of simple trading paths. Let us denote the number of alternating paths by z,
and denote the start and end bidders along these z alternating paths by x1, . . . , xz and
y1, . . . , yz. We assume that the same bidder may appear multiple times amongst xi’s or
multiple times amongst yi’s, but cannot appear both as an xi and as a yi, since we can
concatenate two such paths into one. Such an alternating path represents a shuffle
of items between bidders where bidder xj loses an item, and bidder yj gains an item
when moving from H to H ′. In general, these two items may be entirely different.

Assume there are no trading paths with respect to (H, p). Then it must be the case
that for each alternating path j either vyj ≤ vxj holds, b∗yj < vxj holds, or both holds,
where b∗yj is the budget left over for bidder yj at the end of the mechanism. We define
µ = {j ∈ {1, . . . , z}|vyj ≤ vxj} and ν = {1, . . . , z} \ µ.

Now, no bidder is worse off in (H ′, p′) in comparison to (H, p), the auctioneer is not
worse off, and, by assumption, either (A) some bidder is strictly better off, or (B) the
auctioneer is strictly better off.

First, we rule out case (B) above: Consider the process of changing (H, p) into (H ′, p′)
as a two stage process: at first, the bidders x1, . . . , xz give up items. During this first
stage, the payments made by these bidders must decrease (in sum) by at least Z− =∑z
i=1 vxi . The second stage is that bidders y1, . . . , yz receive their extra items. In the

second stage, the maximum extra payment that can be received from bidders y1, . . . , yz
is no more than

Z+ =
∑
j∈µ

vyj +
∑
j∈ν

b∗yj ≤
∑
j∈µ

vxj +
∑
j∈ν

vxj = Z−, (7)

by definition of sets µ and ν above. Thus, the total increase in revenue to the auctioneer
would be Z+ − Z− ≤ 0. This rules out case B. Moreover, as the auctioneer cannot be
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worse off, Z+ = Z− and from Equation (7) we conclude that

∑
j∈µ

vyj +
∑
j∈ν

b∗yj =
∑
j∈µ

vxj +
∑
j∈ν

vxj . (8)

By definition, we have for j ∈ µ that vyj ≤ vxj , and for j ∈ ν we have that b∗yj < vxj .
Thus, if ν 6= ∅ then the left hand side of Equation (8) is strictly less than the right hand
side, a contradiction. Therefore, case (A) must hold and it must be that ν = ∅. We will
conclude the proof of the theorem by showing that these two are inconsistent. By (A),
we have that |H ′a|va−p′a = |Ha|va−pa for each bidder a whose utility does not increase,
|H ′â|vâ − p′â > |Hâ|vâ − pâ for at least one bidder â, and

∑
a∈I p

′
a =

∑
a∈I pa. We can now

derive that ∑
a∈I
|H ′a|va >

∑
a∈I
|Ha|va +

(∑
a∈I

p′a −
∑
a∈I

pa

)
,

and hence, ∑
a∈I

(|H ′a| − |Ha|)va > 0. (9)

Now, whenever a = xj for a j ∈ {1, . . . , z} we decrease |H ′a| − |Ha| by one, whenever
a = yj for a j ∈ {1, . . . , z} we increase |H ′a| − |Ha| by one. Thus, rewriting Equation (9)
we get that

∑
a∈I

(|{j ∈ {1, . . . , z}|a = yj}| − |{j ∈ {1, . . . , z}|a = xj}|)va > 0,

respectively
z∑
j=1

vyj −
z∑
j=1

vxj > 0.

Hence,
z∑
j=1

vyj >

z∑
j=1

vxj , (10)

but Equation (10) is inconsistent with Equation (8) as ν = ∅ implies that µ =
{1, . . . , z}.

We define the auction in Algorithm 4. During the execution of the algorithm there
is always a price π (initially zero), a set of unsold items R (i.e., of items with unsold
instances) of cardinality r̄ = |R|, a vector of remaining budgets b = (b1, b2, . . . , bn), and a
vector of the number of unsold slots that are instances of the same item (c1, c2, . . . , cr̄).
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Algorithm 4 Combinatorial Auction with Budgets.
1: procedure COMBINATORIAL AUCTION WITH BUDGETS(v, b, (Si)i∈I )
2: π ← 0
3: while A 6= ∅ do
4: SELL(E)
5: A← A− E
6: repeat
7: if ∃i|B(¬{i}) < t̄ then SELL({i})
8: else
9: For an arbitrary bidder i with di > D+

i (π):
10: di ← D+

i (π)
11: end if
12: until ∀i: (di = D+

i (π)) ∧ (B(¬{i}) ≥ t̄)
13: Increase π until for some i, Di(π) 6= D+

i (π)
14: end while
15: end procedure

Algorithm 5 Compute an Avoid Matching via Min Cost Max Flow.
1: procedure S-AVOID MATCHING
2: Construct interest graph G:

— Each active bidder a ∈ A on the left with capacity constraint da.
— Each unsold item r ∈ R on the right with capacity constraint cr.
— Edge (a, r) from bidder a ∈ A to unsold item r ∈ R iff r ∈ Sa.

3: Return maximal B-matching with minimal number of items assigned to bidders in S,
amongst all maximal B-matchings.

4: end procedure

Algorithm 6 Selling to the Set S of Bidders.
1: procedure SELL(S)
2: repeat
3: Compute Y = S-AVOID MATCHING
4: For arbitrary (a, r) in Y with a ∈ S, sell item r to bidder a and set Sa ← Sa \ {r}.
5: until B(¬S) ≥ t̄
6: end procedure

We denote by U the multiset formed by the multiset-union of the unsold slots of all
items and by t̄ =

∑r̄
i=1 ci its cardinality. The current demand of bidder i during the

course of the auction is the number of slots that bidder i could clinch at price π and is
denoted by di. It is either equal to Di or to D+

i , which are defined as follows:

Di(π, r̄, b) :=

{
min{r̄, |Si|, b biπ c}, if π ≤ vi
0, else

D+
i (π, r̄, b) := lim

ε→0+
Di(π + ε, r̄, b)

We now define the set A := {i ∈ I|Di > 0} of bidders with positive demand and the
subset E := {i ∈ I|Di > 0 ∧ vi = π} of the bidders in A with valuation equal to the
current price. Bidders in A are called active bidders whereas bidders in E are called
exiting bidders.

The auction continues, as long as there is a bidder that belongs to A. At every price
π we first try to sell slots to any exiting bidder because even if the utility of the exiting
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bidder does not increase with the new item, the utility of the auctioneer will. After this
check, we have to verify if any bidder can clinch any slot and eventually sell that slot
to him. We denote by B({¬i}) the number of slots assigned to bidders other than i in a
maximal B-matching, and assign to bidder i the minimal number of items amongst all
the maximal B-matchings. An item is clinched by bidder i when B(¬{i}) < t̄. If no item
is clinched, we set di = D+

i for a bidder i with di > D+
i , and this loop continues until

no bidder i can clinch an item and di = D+
i ∀i ∈ I. Only now we can raise the price.

The interest sets, the vector of the number of unsold slots, and the set of unsold items
are updated after every time a bidder clinches. The idea of the auction is to sell slots at
the highest possible price such that all slots are sold and there exists no competition
between bidders. On the contrary, the existence of a trading path indicates that there
exists competition on the assignment of the first slot in the path. Hence, the auction
contains no trading path in the final allocation.

We finally present the proof of Pareto optimality for the auction described in Algo-
rithm 4.

Theorem 5.1. The allocation (H∗, p∗) produced by Algorithm 4 is incentive compatible,
individually rational, and Pareto optimal.

PROOF. We first state the fact that the auction will sell all slots of all keywords. As
stated in Theorem K.4, this is a necessary condition for Pareto optimality.

LEMMA K.6. If the multiset-union of all interest sets S =
⊎
i∈I Si fulfills U ⊆ S, the

auction will sell all items.

At the beginning of the auction the price is zero, and thus, every bidder demands his
hole interest set Si, and all slots can be sold. During the auction the demand of bidder i
decreases either when he buys a slot, or when his demand gets updated toD+

i . The first
case does not affect the demand for the unsold slots. In the second case, the usage of
the B-matching guarantees that the other bidders demand all the unsold slots at the
current price when we decrease i’s demand.

Now we need to show that there are no trading paths in the final allocation (H∗, p∗)
produced by Algorithm 4. Consider the set of all trading paths Σ in the final allocation
(H∗, p∗).

Definition K.7. We define for every σ ∈ Σ:

— Let Y σ be the S-avoid matching used the first time some item r is sold to some
bidder a where (a, r) is an edge along σ. Y σ is either an E-avoid matching (line 4 of
Algorithm 4) or an a-avoid matching for some bidder-item edge (a, r) along σ (line 7
of Algorithm 4).

— If Y σ is an E-avoid matching, let Eσ be this set of exiting bidders.
— If Y σ is an a-avoid matching, let aσ be this bidder.
— Let Fσ ⊆ H∗ be the set of edges (a, r) such that item r was sold to bidder a at or

subsequent to the first time that some item r′ was sold to some bidder a′ for some
edge (a′, r′) ∈ σ. The edge (a′, r′) is itself in Fσ.

— Let tσ be the number of unsold instances just before the first time some edge along
σ was sold. That is, tσ is equal to the number of instances matched in Fσ.

— Let πσ be the price at which Y σ is computed.
— Let bσa be the remaining budget for bidder a before any item is sold in SELL(Eσ) or

SELL(aσ).

We partition Σ into two classes of trading paths:
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— ΣE is the set of trading paths such that σ ∈ ΣE iff Y σ is some Eσ-avoid matching
used in SELL(Eσ) (line 4 of Algorithm 4).

— Σ¬E is the set of trading paths such that σ ∈ Σ¬E iff Y σ is some aσ-avoid matching
used in SELL({aσ}) (line 7 of Algorithm 4).

LEMMA K.8. ΣE = ∅.

PROOF. We need the following claim:

CLAIM K.9. Let σ = (a1, r2, . . . , aj−1, rj−1, aj) ∈ ΣE be a trading path, and let (ai, ri)
be the last edge belonging to Y σ along σ. Then the suffix of σ starting at ai, (ai, ri, . . . , aj),
is itself a trading path.

PROOF. This follows as the valuation of ai is equal to the current price πσ when
SELL(Eσ) was executed, and the valuation of a1 is greater than or equal to πσ as edge
(a1, r1) was unsold prior to this SELL(Eσ) and does belong to the final Fσ.

From the claim above we may assume, without loss of generality, that if ΣE 6= ∅ then
∃σ ∈ ΣE such that the first edge along σ was also the first edge sold amongst all edges
of σ, furthermore, all subsequent edges do not belong to Y σ.

As no further items will be sold to a bidder a ∈ Eσ after this SELL(Eσ), the number
of items assigned to E-type bidders is equal for Y σ and Fσ. We seek a contradiction to
the assumption that Y σ was an Eσ-avoid matching. Note that the matching Fσ is an
Eσ-avoid matching by itself because exactly the number of items assigned to E-type
bidders in Y σ are being sold to them. We now show how to construct from Fσ another
matching that assigns less items to E-type bidders.

We show that the number of items assigned to bidder a1 in Fσ can be reduced by
one by giving bidder ak+1 item rk for k = 1, . . . , j − 1. This is also a full matching but it
remains to show that this does not exceed the capacity constraints daj of bidder aj .

As daj = Daj for all a ∈ A when SELL(Eσ) is executed, bidder aj has a remaining
budget greater than or equal to v1 at the conclusion of the auction, and each item
assigned to bidder aj in Fσ is sold to him at a price greater than or equal to πσ = v1,
it follows that at the time of SELL(Eσ) we have that Daj is greater than the number of
items assigned to aj in Fσ. Thus, we can increase the number of items allocated to aj
by one without exceeding the demand constraint daj .

Now, note that aj is not an E-type bidder, and the new matching constructed assigns
less items to E-type bidders than the matching Fσ. Hence, Fσ is not an Eσ-avoid
matching, and in turn neither Y σ is Eσ-avoid matching.

We have shown that ΣE = ∅. It remains to show that Σ¬E = ∅.
Assume Σ¬E 6= ∅. Order σ ∈ Σ¬E by the first time at which some edge along σ was

sold. We know that this occurs within some SELL({aσ}) for some aσ and that aσ /∈ E.
Let us define σ = (a1, r1, a2, r2, . . . , aj−1, rj−1, aj) be the last path in this order, and let
e = (aσ, rσ) = (ai, ri).

Recall that Y σ is the aσ-avoid matching used when item rσ was sold to bidder aσ.
Also, Fσ ⊆ H∗ is the set of edges added to H∗ in the course of the auction from this
point on (including the current SELL({ai})).

LEMMA K.10. Let σ, aσ = ai, and rσ = ri be as above, then there was another full
matching X when Y σ was computed as an aσ-avoid matching and X has the following
properties:

(a) The suffix of σ from ai to aj :
σ[ai, . . . , aj ] = (ai, ri, ai+1, ri+1, . . . , aj−1, rj−1, aj),

Ad Auctions Workshop, Vol. X, No. X, Article X, Publication date: June 2012.



X:28

is an alternating path with respect to X (i.e., edges (ak, rk) where i ≤ k ≤ j − 1
belong to X).

(b) The number of items assigned to ai is equal in X and in Y σ.
(c) The number of items assigned to aj is equal in X and in Fσ.

PROOF. We use the notation M(a) for the number of items assigned to bidder a in
a matching M . We know that Fσ(ai) ≥ Y σ(ai) since there is otherwise a contradiction
because Y σ is an ai-avoid matching.

Notice that if Fσ(ai) = Y σ(ai), it is possible to choose X = Fσ and the conditions
above follow trivially.

Now, consider the case where Fσ(ai) > Y σ(ai). Y σ and Fσ are both matchings that
assign all tσ instances, thus by Lemma K.5 we know that the symmetric difference
between the two matchings can by expressed by sets of alternating paths. We con-
sider the smallest such set, i.e., no two alternating paths can be concatenated. By
Lemma K.3 we know that we can obtain a Pareto equivalent set of simple alternat-
ing paths with respect to Fσ. From the fact that Fσ(ai) > Y σ(ai), we can obtain
δ = Fσ(ai) − Y σ(ai) alternating paths that start from ai. Consider one of this paths,
τ = (ai = g1, s1, g2, s2, . . . , gl), where gk are bidders, sk are items, (gk, sk) ∈ Fσ, and
(sk, gk+1) ∈ Y σ.

We argue that σ[ai, . . . , aj ] and τ are bidder disjoint, besides the first bidder ai. By
contradiction, choose u to be the first bidder other to ai in common between τ and
σ[ai, . . . , aj ]. For some i < k′ ≤ j and 1 < k ≤ l we have u = gk = ak′ . Let σ

′
be the

concatenation of the prefix of σ up to ai, followed by the prefix of τ up to gk and followed
by the suffix of σ from gk = ak′ to the end.

σ
′

= (a1, r1, . . . , ai = g1, s1, g2, . . . , gk = ak′ , rk′ , ak′+1, . . . , aj)

This is a trading path in Fσ and no edge is sold before (ai, ri) in contradiction with
the assumption that σ is the last trading path in the defined order amongst all trading
paths. Thus, σ[ai, . . . , aj ] and τ have the bidder ai in common and the other bidders
along the paths are different. It could be possible that they have some items in common
but this is no problem.2 For any such τ = (ai = g1, s1, g2, s2, . . . , gl), we can move item
sk from bidder gk to bidder gk+1 where 1 ≤ k ≤ l − 1 without violating the demand of
bidder gl because sl−1 was assigned to gl in Y σ, and gl is not the first bidder in another
alternating path.

As we can do so for all paths τ , we obtain a new full matching X by applying the
swaps of all the alternating paths to Fσ. X assigns to ai the same number of items as
Y σ and from the fact that aj does not appear in any τ , the number of items assigned
to him is again Fσ(aj).

COROLLARY K.11. Σ¬E = ∅.
PROOF. Assume that Σ¬E 6= ∅, select σ ∈ Σ¬E as in Lemma K.10, and let aσ = ai

and rσ = ri. We now seek to derive a contradiction as follows:

— when Y σ was computed there was also an alternative full matching Y ′ with fewer
items assigned to bidder ai, contradicting the assumption that Y σ is an ai-avoid
matching, or

— we show that the remaining budget of bidder aj at the end of the auction, b∗aj , has
b∗aj < v1, contradicting the assumption that σ is a trading path.

2This is the case because if there are items in common but no bidders unless ai, the edges that belong to
σ[ai, . . . , aj ] are not modified by any τ , so σ[ai, . . . , aj ] will be an alternating path with respect to the X we
will define and the number of items assigned to bidder aj does not change for the same reason.
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Let X be a matching as in Lemma K.10 and Fσ be as defined in Definition K.7. Also,
let X(a), Fσ(a), be the number of items assigned to bidder a in the full matchings X,
Fσ, respectively.

We consider the following cases regarding daj when Y σ, the ai-avoid matching, was
computed:

(a) daj > X(aj): Like in Lemma K.8, we can decrease the number of items sold to ai by
assigning item rk to bidder ak+1 for k = i, . . . , j − 1, without exceeding the demand
constraint daj .

(b) daj = X(aj): We show that bσaj ≤ (X(aj) + 1)πσ.
—Daj = D+

aj : Observe that X(aj) is smaller than the current number of unsold
items r̄, and smaller than the cardinality of the interest set Saj of bidder aj .
This follows because rj−i ∈ Saj , but no instance of rj−1 was sold to bidder aj and
an instance of rj−1 is unsold at that time by the definition of σ. Thus,

X(aj) = daj =

⌊
bσaj
πσ

⌋
>
bσaj
πσ
− 1,

and hence,

bσaj < (X(aj) + 1)πσ.

—Daj 6= D+
aj : Observe that aj /∈ E as vaj > vai and ai /∈ E. As aj /∈ E, the only

reason that Daj 6= D+
aj can be that the remaining budget of bidder aj , bσaj , is an

integer multiple of the current price πσ. Then, D+
aj = Daj − 1 and by the same

reason as above Daj = b
bσaj
πσ c. As b

bσaj
πσ c =

bσaj
πσ , it follows that

X(aj) = daj ≥ D+
aj = Daj − 1 = bσaj/π

σ − 1,

and hence,

bσaj ≤ (X(aj) + 1)πσ.

Note that the current price πσ < vai because we assume that ai was sold ri as a
result of SELL({ai}) where ai is not an exiting bidder and not of SELL(E). As (ai, ri)
was the first edge that was sold along σ, either r1 was sold to a1 for a price larger
than πσ, or r1 was sold to a1 at price πσ as a result of SELL({a1}) where a1 is not an
exiting bidder. Thus, πσ < va1 . By Condition (c) of Lemma K.10 we can deduce that

bσaj ≤ (X(aj) + 1)πσ = (Fσ(aj) + 1)πσ.

Bidder aj are sold exactly Fσ(aj) items at a price not lower than πσ. Hence, at the
end of the auction the remaining budget b∗aj of bidder aj is lesser than or equal to
πσ. This contradicts the assumption that σ is a trading path since

b∗aj ≤ π
σ < va1 .

L. PROOF OF THEOREM 6.1
We show the impossibility result for the case of two bidders and two homogeneous
items. We use the following lemmata. The first one follows closely the one in [Fiat
et al. 2011].

LEMMA L.1. Consider any auction fulfilling the conditions in Theorem 6.1. If bid-
der i reports his positive marginal valuations vi(1) and vi(2) and wins both items then
the payment pj by bidder j with j 6= i is zero.

Ad Auctions Workshop, Vol. X, No. X, Article X, Publication date: June 2012.



X:30

PROOF. Consider the case where bidder j reports vj(1) = 0 and vj(2) = 0. Then
any PO auction has to assign both items to bidder i. If any of the items were left
unassigned, or would be assigned to bidder j, we could assign it to bidder i without
changing any payment. This does not change the utility of bidder j, nor the utility of
the auctioneer, but would strictly increase the utility of bidder i.

Bidder rationality implies that bidder i pays at most vi(1) + vi(2). Additionally,
bidder i has an incentive to report smaller valuations v′i(1) and v′i(2) with pi >
v′i(1) + v′i(2) > 0 if his payment pi would be positive if he reports truthfully. Thus, IC
implies pi ≤ 0. For bidder j, it follows from bidder rationality that pj ≤ 0. Therefore, it
follows from auctioneer rationality that both bidders pay exactly zero.

Consider now the case where both bidders report nonzero valuations. For every in-
stance in which bidder j gets no item it must be that pj = 0. If pj would be positive,
bidder j would report zero valuations. Else, if pj for that instance would be negative,
bidder j would report vj(1) and vj(2) in the corresponding instance with zero valua-
tions. Both would contradict IC.

LEMMA L.2. Consider any auction fulfilling the conditions in Theorem 6.1. If all
marginal valuations are positive, v1(1) > v2(2), and v2(2) ≤ b1 then at least one item
will be assigned to bidder 1.

PROOF. Since all marginal valuations are positive, PO implies that both items have
to be assigned to the bidders. Thus, it suffices to show that we cannot assign both items
to bidder 2. Assume by contradiction, that both items get assigned to bidder 2. Then
p1 = 0 by Lemma L.1. If we increase p1 by v2(2), decrease p2 by v2(2), and assign one
of the items that is assigned to bidder 2 to bidder 1 the following happens: the utility
of the auctioneer stays unchanged; the utility of bidder 2 stays unchanged; the utility
of bidder 1 increases, since v1(1)− v2(2) > 0. Thus, it is not PO to assign both items to
bidder 2.

LEMMA L.3. Consider any auction fulfilling the conditions in Theorem 6.1. If all
marginal valuations are positive, v1(2) > v2(1) and v2(1) + v2(2) ≤ b1 then both items
will be assigned to bidder 1.

PROOF. Since all marginal valuations are positive, PO implies that both items have
to be assigned to the bidders. Additionally, Lemma L.2 implies that bidder 1 gets as-
signed to at least one item. We will now assume by contradiction that one item gets
assigned to bidder 2. By bidder rationality, bidder 1 pays at most his reported valu-
ation v1(1). If his payment p1 would be greater than v2(2), bidder 1 would report a
valuation v′1(1) between p1 and v2(2). By Lemma L.2 he would get at least one item,
and by bidder rationality would pay less. Hence, IC implies that p1 ≤ v2(2). It follows
from the assumptions that v2(1) ≤ b1 − p1. The valuation of bidder 2 for the item that
is assigned to him is smaller than the remaining budget and the marginal valuation
v1(2) of bidder 1. We could increase p1 by v2(1), decrease p2 by v2(1), and assign both
items to bidder 1, which would increase the utility of bidder 1 and make bidder 2 and
the auctioneer not worse off. Thus, it is not PO to assign one item to bidder 2. It follows
that no item can be assigned to bidder 2.

Moreover, we will use the following theorem from [Dobzinski et al. 2011]. Please note
that their definition of individual-rationality corresponds to our definition of bidder
rationality and their definition of no-positive-transfers corresponds to our definition of
auctioneer rationality.

THEOREM L.4 (THEOREM 4.1 IN [DOBZINSKI ET AL. 2011]). Let A be a determin-
istic truthful mechanism for m items and 2 players with known budgets b1 and b2
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that are generic. Assume that A satisfies PO, individual-rationality, and no-positive-
transfers. Then if v1 6= v2 the outcome of A coincides with that of the clinching auction.

We are now ready to prove the main theorem.

PROOF THEOREM 6.1. We want to show that there is no incentive compatible, in-
dividually rational, and Pareto optimal auction for multiple homogeneous indivisible
items and agents with private diminishing marginal valuations and public budgets
limits.

Let us assume that we have an auction for bidders with diminishing marginal valua-
tions that is IC, IR, and PO. If we use that auction for bidders with additive valuations
that can only report additive valuations, then it is still IR and PO. Moreover, since they
have no incentive to report another valuation with diminishing marginal valuations,
they have also no incentive to report another additive valuation. Hence, we know from
Theorem L.4 that the outcome for additive valuations has to be equal to the outcome
of the clinching auction in [Dobzinski et al. 2011] if the budgets are generic.

Consider the case of two bidders and two items such that: v1(1) = 5, v1(2) = 5, b1 = 3,
v2(1) = 2, v2(2) = 2, and b2 = 11. Since the marginal valuations of the bidders are
constant, the valuations of the bidders are additive. Additionally, the budgets b1 and
b2 are generic following the definition by Dobzinski et al. [2011] where S is a partition
of the set of items J = {1, 2} to the bidders: b2,S1 = 3 for all S, b1,S1 = 3 if |S1| = 0,
b1,S1 = −2.5 if |S1| > 0; b2,S2 = 11 for all S, b1,S2 = 9.5 if |S1| < 2, b1,S2 = 11 if |S1| = 2; thus,
for each k ∈ {1, 2} we have that bk,S1 6= bk,S2 for all S. Thus, both bidders receive one
item at prices p1 = 2 and p2 = 1.5 and the utility for the two bidders are u1 = 5− 2 = 3
and u2 = 2− 1.5 = 0.5.

Now, assume that the true marginal valuations for bidder 2 are v2(1) = 2 and
v2(2) = 1. It follows from Lemma L.3 that all items are assigned to bidder 1. Thus,
from Lemma L.1, the payment of bidder 2 will be zero and his utility will be zero too.
We conclude that bidder 2 has an incentive to lie about his marginal valuation v2(2).
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