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Abstract. We propose the formalism of Monadic Second Order Logic (MSO)
as a unifying framework for representing and reasoning with various semantics
of abstract argumentation. We express a wide range of semantics within the pro-
posed framework, including the standard semantics due to Dung, semi-stable,
stage, cf2, and resolution-based semantics. We provide building blocks which
make it easy and straight-forward to express further semantics and reasoning
tasks. Our results show that MSO can serve as a lingua franca for abstract argu-
mentation that directly yields to complexity results. In particular, we obtain that
for argumentation frameworks with certain structural properties the main compu-
tational problems with respect to MSO-expressible semantics can all be solved in
linear time. Furthermore, we provide a novel characterization of resolution-based
grounded semantics.

1 Introduction

Starting with the seminal work by Dung [18] the area of argumentation has evolved
to one of the most active research branches within Artificial Intelligence (see, e.g.,
[6]). Dung’s abstract argumentation frameworks, where arguments are seen as abstract
entities which are just investigated with respect to how they relate to each other, in terms
of “attacks”, are nowadays well understood and different semantics (i.e., the selection of
sets of arguments which are jointly acceptable) have been proposed. In fact, there seems
to be no single “one suits all” semantics, but it turned out that studying a particular
setting within various semantics and to compare the results is a central research issue
within the field. Different semantics give rise to different computational problems,
such as deciding whether an argument is acceptable with respect to the semantics under
consideration, that require different approaches for solving these problems.

This broad range of semantics for abstract argumentation demands for a unifying
framework for representing and reasoning with the various semantics. Such a unifying
framework would allow us to see what the various semantics have in common, in what
they differ, and ideally, it would offer generic methods for solving the computational
problems that arise within the various semantics. Such a unifying framework should be
general enough to accommodate most of the significant semantics, but simple enough
to be decidable and computationally feasible.
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In this paper we propose such a unifying framework. We express several semantics
within the framework, and we study its properties. The proposed unifying framework is
based on the formalism of Monadic Second Order Logic (MSO), which is a fragment of
Second Order logic with relational variables restricted to unary. MSO provides higher
expressiveness than First Order Logic while it has more appealing algorithmic proper-
ties than full Second Order logic. Furthermore, MSO plays an important role in various
parts of Computer Science. For instance, by Büchi’s Theorem, a formal language is reg-
ular if and only if it can be expressed by MSO (this also provides a link between MSO
and finite automata); furthermore, by Courcelle’s Theorem, MSO expressible properties
can be checked in linear time on structures of bounded treewidth.

Main Contributions. The results in this paper can be summarized as follows:

(1) We express a wide range of semantics within our proposed framework, including
the standard semantics due to Dung, semi-stable, stage, cf2, and resolution-based
semantics. For the latter, we present a new characterization that admits an MSO-
encoding without quantification over sets of attacks and thus provides additional
algorithmic implications.

(2) We provide MSO-building blocks which make it easy and straight-forward to ex-
press other semantics or to create new ones or variants.

(3) We also illustrate that any labeling-based semantics can be canonically expressed
within our framework. We show that the main computational problems can be
solved in linear time for all semantics expressible in our framework when restricted
to argumentation frameworks of certain structures. This includes decision problems
such as skeptical and brave acceptance, but also counting problems, for instance,
determining how many extensions contain a given argument.

Our results show that MSO is indeed a suitable unifying framework for abstract ar-
gumentation and can serve as a lingua franca for further investigations. Furthermore,
recent systems [28,29] showed quite impressive performance for evaluating MSO for-
mulas over graphs, thus the proposed framework can be exploited as a rapid-prototyping
approach to experiment with established and novel argumentation semantics.

Finally, we want to emphasise that in contrast to existing work [19,20,21,22] our
goal is not to provide new complexity results for a particular argumentation semantics,
but we propose MSO as a general logical framework for specifying argumentation se-
mantics, having fixed-parameter tractability results as a neat side effect (compared to
other approaches discussed below). Thus, in contrast to previous work, where MSO
techniques were used as an auxiliary tool for achieving tractability results for particular
semantics, our approach intends to raise MSO to a new conceptual level.

Related Work. Using MSO as a tool to express AI formalisms has been advocated
in [26,27]. In terms of abstract argumentation MSO-encodings were given in [19,22]
and implications in terms of parameterized complexity also appeared in [20,21].

Finding a uniform logical representation for abstract argumentation has been sub-
ject of several papers. While [7] used propositional logic for this purpose, [24] showed
that quantified propositional logic admits complexity-adequate representations. An-
other branch of research focuses on logic programming as common grounds for differ-
ent argumentation semantics, see [32] for a survey. Finally also the use of constraint
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satisfaction techniques was suggested [1,8]. All this research was mainly motivated
by implementation issues and led to systems such as ASPARTIX [23]. As mentioned
above, also MSO can serve this purpose, but in addition yields further results “for free”,
in particular in terms of complexity.

2 Background

We start this section by introducing (abstract) argumentation frameworks [18] and re-
calling the semantics we study in this paper (see also [4]).

Definition 1. An argumentation framework (AF) is a pair F = (A,R) where A is a set
of arguments and R ⊆ A × A is the attack relation. The pair (a, b) ∈ R means that
a attacks b. We say that an argument a ∈ A is defended (in F ) by a set S ⊆ A if, for
each b ∈ A such that (b, a) ∈ R, there exists a c ∈ S such that (c, b) ∈ R.

Example 1. In the following we use the AF F = ({a, b, c, d, e}, {(a, b), (b, a), (b, c),
(c, d), (d, e), (e, c)}) as running example. The graph representation is given as follows:

a b c d e

Semantics for argumentation frameworks are given via a function σ which assigns
to each AF F = (A,R) a set σ(F ) ⊆ 2A of extensions. We first consider for σ
the functions naive , stb, adm , com , prf , grd , stg , and sem which stand for naive,
stable, admissible, complete, preferred, grounded, stage, and semi-stable semantics,
respectively. Towards the definition of these semantics we introduce two more formal
concepts.

Definition 2. Given an AF F = (A,R), the characteristic function FF : 2A ⇒ 2A

of F is defined as FF (S) = {x ∈ A | x is defended by S }. For a set S ⊆ A and an
argument a ∈ A, we write S �R a (resp. a�R S) in case there is an argument b ∈ S,
such that (b, a) ∈ R (resp. (a, b) ∈ R). Moreover, for a set S ⊆ A, we denote the set of
arguments attacked by S as S⊕R = {x | S �R x }, and resp. S	R = {x | x �R S },
and define the range of S as S+

R = S ∪ S⊕R .

Example 2. In our running example FF ({a}) = {a}, FF ({b}) = {b, d}, {a}⊕R = {b},
{b}⊕R = {a, c} and {a}+R = {a, b}, {b}+R = {a, b, c}.

Definition 3. Let F = (A,R) be an AF. A set S ⊆ A is conflict-free (in F ), if there are
no a, b ∈ S, such that (a, b) ∈ R. cf (F ) denotes the collection of conflict-free sets of
F . For a conflict-free set S ∈ cf (F ), it holds that

– S ∈ naive(F ), if there is no T ∈ cf (F ) with T ⊃ S;
– S ∈ stb(F ), if S+

R = A;
– S ∈ adm(F ), if S ⊆ FF (S);
– S ∈ com(F ), if S = FF (S);
– S ∈ grd(F ), if S ∈ com(F ) and there is no T ∈ com(F ) with T ⊂ S;
– S ∈ prf (F ), if S ∈ adm(F ) and there is no T ∈ adm(F ) with S ⊂ T ;
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– S ∈ sem(F ), if S ∈ adm(F ) and there is no T ∈ adm(F ) with S+
R ⊂ T

+
R ;

– S ∈ stg(F ), if there is no T ∈ cf (F ), with S+
R ⊂ T

+
R .

We recall that for each AF F , stb(F ) ⊆ sem(F ) ⊆ prf (F ) ⊆ com(F ) ⊆ adm(F )
holds, and that each of the considered semantics σ except stb satisfies σ(F ) 6= ∅.
Moreover grd yields a unique extension for each AF F (in what follows identified by
grd(F )), which is the least fix-point of the characteristic function FF .

Example 3. Our running example F has four admissible sets, i.e. adm(F ) = {∅, {a},
{b}, {b, d}}, with {a} and {b, d} being the preferred extensions. The grounded exten-
sion is the empty set, moreover com(F ) = {∅, {a}, {b, d}} and stb(F ) = sem(F ) =
stg(F ) = {{b, d}}.

On the base of these semantics one can define the family of resolution-based seman-
tics [3], with the resolution-based grounded semantics being its most popular instance.

Definition 4. Given AF F = (A,R), a resolution β ⊂ R of F is a ⊆-minimal set
of attacks such that for each pair {(a, b), (b, a)} ⊆ R (a 6= b) either (a, b) ∈ β
or (b, a) ∈ β. We denote the set of all resolutions of an AF F by γ(F ). Given a
semantics σ, the corresponding resolution-based semantics σ∗ is given by σ∗(F ) =

min
⊆

⋃
β∈γ(F )

{σ((A,R \ β))}.

Example 4. For our example AF F we get the two resolutions {(a, b)} and {(b, a)}. In
the case of resolution based grounded semantics this yields two candidates for exten-
sions grd((A,R \ {(a, b)})) = {b, d} and grd((A,R \ {(b, a)})) = {a}. As they are
not in ⊆-relation both are resolution-based grounded extensions and thus grd∗(F ) =
{{a}, {b, d}}.

Finally, let us consider the semantics cf2, which was introduced in [5] as part of a
general schema for argumentation semantics. cf2 semantics gained some interest as it
handles even and odd length cycles of attacks in a similar way. Towards a definition of
cf2 semantics we need the following concepts.

Definition 5. Given an AF F = (A,R) and a set S ⊆ A. By SCC(F ) we denote the
set of all strongly connected components of F . DF (S) denotes the set of arguments
a ∈ A attacked by an argument b ∈ S occurring in a different component. Finally, for
F = (A,R) and a set S of arguments, F |S := (A∩S,R∩(S×S)) andF−S := F |A\S .

Example 5. To illustrate DF consider our example AF and the set {b, d}. We have two
components {a, b} and {c, d, e} and that b attacks c. Hence c ∈ DF ({b, d}). Also b
attacks a and d attacks e but as both conflicts are within one component they do not add
to the set DF ({b, d}) and we have DF ({b, d}) = {c}.

Definition 6. Given an AF F = (A,R), for S ⊆ A we have that S ∈ cf2 (F ) if
one of the following conditions holds: (i) |SCC(F )| = 1 and S ∈ naive(F ); (ii)
∀C ∈ SCC(F ) : C ∩ S ∈ cf2 (F |C −DF (S)).

Example 6. For our example AF we obtain cf2 (F ) = {{a, e}, {a, d}, {a, c}, {b, d}}.
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Labeling-based semantics. So far we have considered so-called extension-based se-
mantics. However, there are several approaches defining argumentation semantics via
certain kind of labelings instead of extensions. As an example we consider the complete
labelings from [11].

Definition 7. Given an AF F = (A,R), a function L : A → {in, out, undec} is a
complete labeling iff the following conditions hold: (i) L(a) = in iff for each b with
(b, a) ∈ R, L(b) = out; (ii) L(b) = out iff there exists b with (b, a) ∈ R, L(b) = in.

There is a one-to-one mapping between complete extensions and complete labelings,
such that the set of arguments labeled with “in“ corresponds to a complete extension.

Example 7. The example AF has three complete labelings corresponding to the three
complete extensions: the labeling L1 corresponding to ∅ with L1(a) = L1(b) =
L1(c) = L1(d) = L1(e) = undec; the labeling L2 corresponding to {a} with L2(a) =
in, L2(b) = out, and L2(c) = L2(d) = L2(e) = undec; and the labeling L3 corre-
sponding to {b, d} with L1(b) = L1(d) = in and L3(a) = L3(c) = L3(e) = out.

Monadic Second Order Logic. Informally, Monadic Second Order Logic can be seen
as an extension of First Order Logic that admits quantification over sets. First Order
Logic is built from variables x, y, z, . . . referring to elements of the universe, atomic
formulas R(t1, . . . , tk), t1 = t2, with ti being variables or constants, the usual Boolean
connectives, and quantification ∃x, ∀x. MSO1 extends the language of First Order
Logic by set variablesX,Y, Z, . . . , atomic formulas t ∈ X with t a variable or constant,
and quantification over set variables. We further consider MSO2 an extension of MSO1

which is only defined on graphs (which is perfectly fine for our purposes). MSO2 adds
variables XE , Y E , ZE , . . . ranging over sets of edges of the graph and quantification
over such variables. In the following when talking about MSO we refer to MSO2.

For an MSO formula φ we usually write φ(x1, . . . , xp, X1, . . . Xq) to denote that
the free variables of φ are x1, . . . , xp, X1, . . . Xq . For a graphG = (V,E), v1, . . . , vp∈
V , and A1, . . . Aq ⊆ V , we write G |= φ(v1, . . . , vp, A1, . . . Aq) to denote that the
formula φ holds true for G if xi is instantiated with vi and Xj is instantiated with Aj ,
1 ≤ i ≤ p, 1 ≤ j ≤ q.

3 Encoding Argumentation Semantics in MSO

Building Blocks. We first introduce some shorthands simplifying notation when dealing
with subset relations and the range of extensions.

X ⊆ Y = ∀x (x ∈ X → x ∈ Y ) x /∈ X = ¬(x ∈ X)
X ⊂ Y = X ⊆ Y ∧ ¬(Y ⊆ X) x ∈ X+

R = x ∈ X ∨ ∃y(y ∈ X ∧ (y, x) ∈ R)
X 6⊆ Y = ¬(X ⊆ Y ) X ⊆+

R Y = ∀x (x ∈ X+
R → x ∈ Y +

R )
X 6⊂ Y = ¬(X ⊂ Y ) X ⊂+

R Y = X ⊆+
R Y ∧ ¬(Y ⊆

+
R X)

Another important notion that underlies argumentation semantics is the notion of a
set being conflict-free. The following MSO formula encodes that a setX is conflict-free
w.r.t. the attack relation R:

cf R(X) = ∀x, y ((x, y) ∈ R→ (¬x ∈ X ∨ ¬y ∈ X))
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Next we give a building block for maximizing extensions using an (MSO expressible)
order v:

maxA,P (.),v(X) = P (X) ∧ ¬∃Y
(
Y ⊆ A ∧ P (Y ) ∧X < Y

)
Clearly we can also implement minimization by inverting the order, i.e.,
minA,P (.),v(X) = maxA,P (.),w(X).

Standard Encodings. In the following we provide MSO-characterizations for the dif-
ferent argumentation semantics. The characterizations for adm, stb, prf are borrowed
from [19] while those for sem, stg are borrowed from [22].

naiveA,R(X) = maxA,cf R(.),⊆(X)

admR(X) = cf R(X) ∧ ∀x, y
(
((x, y) ∈ R ∧ y ∈ X)→
∃z(z ∈ X ∧ (z, x) ∈ R)

)
comA,R(X) = admR(X) ∧ ∀x((x ∈ A ∧ x /∈ X)→

∃y((y, x) ∈ R ∧ ¬∃z(z ∈ X ∧ (z, y) ∈ R)))
grdA,R(X) = minA,comA,R(.),⊆(X)

stbA,R(X) = cf R(X) ∧ ∀x(x ∈ A→ x ∈ X+
R )

prf A,R(X) = maxA,admR(.),⊆(X)

semA,R(X) = maxA,admR(.),⊆+
R
(X)

stgA,R(X) = maxA,cf R(.),⊆+
R
(X)

These characterisations are straight-forward translations of the definitions and thus can
be easily checked to be correct.

Based on the above characterizations, we proceed with encodings for the resolution-
based semantics as follows. Via resR(X

E), given as

∀x, y
(
XE ⊆ R ∧ (x, x) ∈ R→ (x, x) ∈ XE∧

(x 6= y ∧ (x, y) ∈ R)→ ((x, y) ∈ XE ↔ (y, x) 6∈ XE)
)
,

we express modified frameworks (A,R \ β) where β is a resolution according to Defi-
nition 4. Now resolution-based semantics are characterised by

σ∗A,R(X) = ∃XE(resR(X
E) ∧ σA,XE (X) ∧ (1)

∀Y ∀Y E(resR(Y E) ∧ σA,Y E (Y )→ Y 6⊂X)).

Labeling-based semantics. There are several approaches to define argument seman-
tics via different kind of argumentation labelings and almost all argumentation se-
mantics admit a characterization via argument labelings. The general concept be-
hind labelings is to use a fixed set of labels and assign to each argument a subset of
them, or just a single label. Such labelings are valid if for each argument the as-
signed labels satisfy certain (qualitative) conditions concerning the labels of attack-
ing arguments and the labels of the attacked arguments. Additionally one might de-
mand that the set of arguments labeled by a specific label is maximal or minimal. All
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these properties can be easily expressed in MSO, which we illustrate for complete la-
belings. We encode an in, out, undec labeling L as a triple (Lin,Lout,Lundec) where
Ll := { a ∈ A | L(a) = l }. To have these three sets disjoint, one uses the formula
ϕ = ∀x ∈ A((x ∈ Lin ∨ x ∈ Lout ∨ x ∈ Lundec) ∧ (x 6∈ Lin ∨ x 6∈ Lout) ∧ (x 6∈
Lin ∨ x 6∈ Lundec) ∧ (x 6∈ Lundec ∨ x 6∈ Lout)). Now we can give an MSO formula
comA,R(Lin,Lout,Lundec) expressing whether such a triple is a complete labeling:

ϕ ∧ ∀x ∈ X(x ∈ Lin ↔ (∀y ∈ X((y, x) ∈ R→ y ∈ Lout)))

∧ ∀x ∈ X(x ∈ Lout ↔ (∃y ∈ X((y, x) ∈ R ∧ y ∈ Lin)))

Further, one can directly encode preferred labelings, which are defined as complete
labelings with maximal Lin.

prf A,R(Lin,Lout,Lundec) = comA,R(Lin,Lout,Lundec) ∧ ¬∃L′in,L′out,L′undec

(Lin ⊂ L′in ∧ comA,R(L′in,L′out,L′undec))

MSO-characterization for cf2 . The original definition of cf2 semantics is of recursive
nature and thus not well suitable for a direct MSO-encoding. Hence we use an alterna-
tive characterisation of cf2 [25]. For this purpose we need the following definitions.

Definition 8. Given an AF F = (A,R), B ⊆ A, and a, b ∈ A, we define a ⇒B
F b

if and only if there exists a sequence (bi)1≤i≤n with bi ∈ B, b1 = a, bn = b and
(bi, bi+1) ∈ R.

The relation ⇒B
F can be encoded in MSO by first defining a relation R̂R,B(u, v) =

(u, v) ∈ R∧u ∈ B∧v ∈ B capturing the allowed attacks and borrowing the following
MSO-encoding for reachability [12]: reachR(x, y) = ∀X(x ∈ X ∧ [∀u, v(u ∈ X ∧
R(u, v)→ v ∈ X)]→ y ∈ X). Finally we obtain⇒B

R (x, y) = reachR̂R,B
(x, y).

Definition 9. For AF F = (A,R) and sets D,S ⊆ A we define: ∆F,S(D) = { a ∈
A | ∃b ∈ S : b 6= a, (b, a) ∈ R, a 6⇒A\D

F b }. ∆F,S denotes the least fixed-point of
∆F,S(.).

Example 8. Consider our example AF F and the set {b, d}. Towards the least fixed-
point ∆F,{b,d} first consider ∆F,{b,d}(∅). The arguments attacked by {b, d} are a, c, e,
but a and e having paths back to their attackers and thus ∆F,{b,d}(∅) = {c}. Next
consider ∆F,{b,d}({c}). Still d attacks e but e 6⇒A\{c}

F d. Thus ∆F,{b,d}({c}) = {c, e}
which is also the least fixed-point ∆F,{b,d} of ∆F,{b,d}(.).

One can directly encode whether an argument x is in the operator ∆F,S(D) by
∆A,R,S,D(x) = x ∈ A∧ ∃b ∈ S(b 6= x∧ (b, x) ∈ R ∧¬ ⇒A\D

F (x, b))} and thus also
whether x is in the least fixed-point ∆F,S , by ∆A,R,S(x) = ∃X ⊆ A(x ∈ X ∧ ∀a(a ∈
X ↔ ∆A,R,S,X(a)) ∧ ¬∃Y ⊂ X(∀b(b ∈ Y ↔ ∆A,R,S,Y (b)))).

Definition 10. For AF F we define the separation of F as [[F ]] =
⋃
C∈SCCs(F ) F |C .
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Example 9. To obtain the separation of our example AF we have to delete all attacks
that are not within an single SCC. That is we simple remove the attack (b, c) and ob-
tain the AF ({a, b, c, d, e}, {(a, b), (b, a), (c, d), (d, e), (e, c)}) as the separation of our
example AF.

The attack relation of the separation of an AF (A,R) is given by R[[(A,R)]](x, y) =
x ∈ A ∧ y ∈ A ∧ (x, y) ∈ R∧ ⇒A

R (y, x).
The following result provides an alternative characterization for cf2 semantics.

Proposition 1 ([25]). For any AF F , S ∈ cf2 (F ) iff S ∈ cf (F )∩naive([[F−∆F,S ]]).

Example 10. For example consider the cf2 extension {a, d} of our running example.
Clearly {a, d} ∈ cf (F ) and as illustrated before ∆F,{b,d} = {c, e}. We obtain [[F −
∆F,S ]] = ({a, b, d}, {(a, b), (b, a)}) and thus also {a, d} ∈ naive([[F −∆F,S ]]).

Using the above Proposition we obtain the following MSO characterisation of cf2 .

cf2 (X) = cf R(X) ∧ naiveÂ,R[[(Â,R)]]
(X) where Â(x) = x ∈ A ∧ ¬∆A,R,X(x)

4 Algorithmic Implications

Most computational problems studied for AFs are computationally intractable (see, e.g.,
[19]), while the importance of efficient algorithms is evident. An approach to deal
with intractable problems comes from parameterized complexity theory and is based on
the fact, that many hard problems become polynomial-time tractable if some problem
parameter is bounded by a fixed constant. In case the order of the polynomial bound is
independent of the parameter one speaks of fixed-parameter tractability (FPT).

One popular parameter for graph-based problems is treewidth [9] which intuitively
measures how tree-like a graph is. One weakness of treewidth is that it only captures
sparse graphs. The parameter clique-width [17] generalizes treewidth, in the sense that
each graph class of bounded treewidth has also bounded clique-width, but clique-width
also captures a wide range of dense graphs.3

Both parameters have already been considered for abstract argumenta-
tion [19,20,21] and are closely related to MSO by means of meta-theorems. One such
meta-theorem is due to [13] and shows that one can solve any graph problem that can
be expressed in MSO1 in linear time for graphs of clique-width bounded by some fixed
constant k, when given together with a certain algebraic representation of the graph, a
so called k-expression. A similar result is Courcelle’s seminal meta-theorem [15,16]
for MSO2 and treewidth (which is also based on a certain structural decomposition of
the graph, a so called tree-decomposition). Together with results from [10,30] stating
that also k-expressions and tree-decompositions can be computed in linear time if k is
bounded by a constant we get the following meta-theorem.

3 As we do not make direct use of them, we omit the formal definitions of treewidth and clique-
width here; the interested reader is referred to other sources [19,20]. We just note that these
parameters are originally defined for undirected graphs, but can directly be used for AFs, as
well.
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Theorem 1. For every fixed MSO formula φ(x1, . . . , xi, X1, . . . Xj , X
E
1 , . . . X

E
l )

and integer c, there is a linear-time algorithm that, given a graph (V,E) of
treewidth ≤ c, vk ∈ V , Ak ⊆ V , and Bk ⊆ E decides whether (V,E) |=
φ(v1, . . . , vi, A1, . . . Aj , B1, . . . Bl). If φ is in MSO1, then this also holds for graphs of
clique-width ≤ c.

The theorem can be extended to capture also counting and enumeration problems [2,14].
In the next theorem we give fixed-parameter tractability results w.r.t. the parameters

treewidth and clique-width for the main reasoning problems in abstract argumentation.

Theorem 2. For each argumentation semantics σ that is expressible in MSO, the fol-
lowing tasks are fixed-parameter tractable w.r.t. the treewidth of the given AF:

– Deciding whether an argument a ∈ A is in at least one σ-extension (Credulous
acceptance).

– Deciding whether an argument a ∈ A is in each σ-extension (Skeptical accep-
tance).

– Verifying that a set E ⊆ A is a σ-extension (Verification).
– Deciding whether there exists a σ-extension (Existence).
– Deciding whether there exists a non-empty σ-extension (Nonempty).
– Deciding whether there is a unique σ-extension (Unique).

If σ is expressible in MSO1, then the above tasks are also fixed-parameter tractable
w.r.t. the clique-width of the AF.

Proof. The result follows by Theorem 1 and the following MSO-encodings: Credulous
acceptance: φσCred(x) = ∃X (x ∈ X ∧ σR(X)); Skeptical acceptance: φσSkept(x) =
∀X (σR(X) → x ∈ X); Verification: φσVer(X) = σR(X); Existence: φσExists =
∃XσR(X); Nonempty: φσ

Exists¬∅
= ∃X∃x(σR(X) ∧ x ∈ X); and Unique: φσU =

∃XσR(X)) ∧ ¬∃Y (Y 6= X ∧ σR(Y )). We would like to note that these encodings do
not use quantification over edge sets whenever σ is free of such a quantification. ut

MSO is also a gentle tool for studying the relation between different semantics, as
illustrated by Theorem 3.

Theorem 3. For any argumentation semantics σ, σ′ expressible in MSO, the following
tasks are fixed-parameter tractable w.r.t. the treewidth of the given AF.

– Deciding whether σ(F ) = σ′(F ) (Coincidence).
– Deciding whether arguments skeptically accepted w.r.t. σ are also skeptically ac-

cepted w.r.t. σ′ (Skepticism 1).
– Deciding whether arguments credulously accepted w.r.t. σ are also credulously ac-

cepted w.r.t. σ′ (Skepticism 2).
– Deciding whether σ(F ) ⊆ σ′(F ) (Skepticism 3).

If σ is expressible in MSO1 the above tasks are also fixed-parameter tractable w.r.t. the
clique-width of the AF.
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Proof. The result follows by Theorem 1 and the following MSO-encodings: Coinci-
dence: φσCoin(x) = ∀X (σR(X)↔ σ′R(X)); Skepticism 1: φσsk1(x) = ∀x(φσSkept(x)→
φσ
′

Skept(x)); Skepticism 2: φσsk1(x) = ∀x(φσCred(x) → φσ
′

Cred(x)); Skepticism 3:
φσsk1(x) = ∀X(σA,R(X)→ σ′A,R(X)). ut

One prominent instantiation of the first problem mentioned in Theorem 3 is deciding
whether an AF is coherent, i.e., whether stable and preferred extensions coincide.

Most of the characterizations we have provided so far are actually in MSO1 and
by the above results we obtain fixed-parameter tractability for treewidth and clique-
width. The notable exception is the schema (1) we provided for the resolution-based
semantics. There is no straight forward way to reduce this MSO2 formula into MSO1

(and thus providing complexity results in terms of clique-width) and in general it is
unclear whether this is possible at all. Surprisingly, in the case of resolution-based
grounded semantics one can get rid off the explicit quantification over sets of attacks as
we show next.

5 An MSO1-characterization for grd∗

We provide a novel characterisation of resolution-based grounded semantics that avoids
the quantification over sets of attacks in schema, as in (1), and thus yields an MSO1-
encoding. To this end we first restrict the class of resolutions we have to consider when
showing that a given set is a complete extension of some resolved AF.

Lemma 1. For each AF F = (A,R) and E ∈ grd∗(F ), there exists a resolution β
with { (b, a) | a ∈ E, b 6∈ E, {(a, b), (b, a)} ⊆ R } ⊆ β such that E ∈ com(A,R \ β).

Proof. As E ∈ grd∗(F ) we have that there exists a resolution β′ such that E ∈
grd(A,R \ β′). Now let us define β as { (b, a) | a ∈ E, {(a, b), (b, a)} ⊆ R } ∪
(β′ ∩ (A \E ×A \E)). Clearly E is conflict-free in (A,R \ β). Next we show that (i)
E⊕R\β′ = E⊕R\β and (ii) E	R\β′ ⊇ E

	
R\β .

For (i), let us first consider b ∈ E⊕R\β′ . Then there exists (a, b) ∈ R \ β′ with
a ∈ E and by construction also (a, b) ∈ R \ β and thus b ∈ E⊕R\β . Now let us consider
b ∈ E⊕R\β . Then there exists (a, b) ∈ R \ β with a ∈ E and by construction either
(a, b) ∈ R \ β′ or (b, a) ∈ R \ β′. In the first case clearly b ∈ E⊕R\β′ . In the latter
case b attacks E and as E is admissible in (A,R \ β′) there exists c ∈ E such that
(c, b) ∈ R \ β′, hence b ∈ E⊕R\β′ . For (ii) consider b ∈ E	R\β , i.e., exists a ∈ E such
that (b, a) ∈ R \ β. By the construction of β we have that (a, b) 6∈ R and therefore
(b, a) ∈ R \ β′. Hence also b ∈ E	R\β′ .

AsE ∈ adm(A,R\β′) we have thatE	R\β′ ⊆ E
⊕
R\β′ and by the above observations

then also E	R\β ⊆ E⊕R\β . Thus E is an admissible set. Finally let us consider an
argument a ∈ A \ E⊕R\β . In the construction of β the incident attacks of a are not
effected and hence {a}	R\β′ = {a}

	
R\β . That is E defends a in (A,R\β) iff E defends

a in (A,R \β′). Now as E ∈ com(A,R \β′) we have that a is not defended and hence
E ∈ com(A,R \ β). ut

With this result at hand, we can give an alternative characterization for grd∗.
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Lemma 2. For each AF F = (A,R) and E ⊆ A, E ∈ grd∗(F ) if and only if the
following conditions hold:

1. there exists a resolution β with { (b, a) | a ∈ E, {(a, b), (b, a)} ⊆ R } ⊆ β and
E ∈ com(A,R \ β)

2. E is ⊆-minimal w.r.t. (1).

Proof. Let us first recall that, by definition, the grounded extension is the ⊆-minimal
complete extension and hence grd∗ = com∗.
⇒: Let E ∈ grd∗(F ). Then by Lemma 1, E fulfills condition (1). Further we

have that each set E satisfying (1) is a complete extension of a resolved AF. As by
definition E is ⊆-minimal in the set of all complete extensions of all resolved AFs it is
also minimal for those satisfying (1).
⇐: As E satisfies (1) it is a complete extension of a resolved AF. Now towards a

contradiction let us assume it is not a resolution-based grounded extension. Then there
exists G ∈ grd∗(F ) with G ⊂ E. But by Lemma 1 G fulfills condition (1) and thus
G ⊂ E contradicts (2). ut

In the next step we look for an easier characterization of condition (1).

Lemma 3. For each AF F = (A,R) and E ⊆ A the following statements are equiva-
lent:

1. There exists a resolution β with { (b, a) | a ∈ E, {(a, b), (b, a)} ⊆ R } ⊆ β and
E ∈ com(A,R \ β).

2. E ∈ com(A,R \ { (b, a) | a ∈ E, {(a, b), (b, a)} ⊆ R }) and grd∗(A \ E+
R , R ∩

((A \ E+
R )× (A \ E+

R ))) = {∅}.

Proof. In the following we will use the shorthands R∗ = R \ { (b, a) | a ∈ E,
{(a, b), (b, a)} ⊆ R } and (A′, R′) = (A \ E+

R , R ∩ ((A \ E+
R )× (A \ E+

R ))).
(1) ⇒ (2): Consider a resolution β such that E ∈ com(A,R \ β). We first show

that then also E ∈ com(A,R∗). By construction we have that for arbitrary b ∈ A that
(a) E �R b iff E �R\β b iff E �R∗ b, and (b) b �R\β E iff b �R∗ E. Hence we
have that (i)E ∈ adm(A,R\β) iffE ∈ adm(A,R∗) and (ii)E+

R = E+
R\β = E+

R∗ . By
definition of complete semantics,E ∈ com(A,R\β) is equivalent to for each argument
b ∈ A \ E there exists an argument c ∈ A such that c �R\β b and E 6�R\β c. As
R∗ ⊇ R \ β we obtain that (c, b) ∈ R \ β implies (c, b) ∈ R∗. Using (a) we obtain that
E ∈ com(A,R \ β) implies for each argument b ∈ A \ E existence of an argument
c ∈ A such that (c, b) ∈ R∗ and E 6�R∗ c, i.e., E ∈ com(A,R∗).

Now addressing grd∗(A′, R′) = {∅} we again use the assumptionE ∈ com(A,R\
β), i.e., each argument which is defended by E is already contained in E, we have that
grd(A \ E+

R\β , R \ β ∩ ((A \ E+
R )× (A \ E+

R ))) = grd(A′, R′ \ β) = {∅}. Note that
β′ = β∩R′ is a resolution of (A′, R′) and that grd(A′, R′\β) = grd(A′, R′\β′) = {∅}.
We can conclude that grd∗(A′, R′) = {∅}.

(1) ⇐ (2): Consider β′ ∈ γ(F ) s.t. grd(A′, R′ \ β′) = {∅}; such a β′ ex-
ists since grd∗(A′, R′) = {∅}. Now consider the resolution β = { (b, a) | a ∈
E, {(a, b), (b, a)} ⊆ R } ∪ β′. Again, by construction of β we have that for arbi-
trary b ∈ A: (a) E �R b iff E �R\β b iff E �R∗ b, and (b) b �R\β E iff
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b �R∗ E. Hence we obtain that E ∈ adm(A,R \ β). Using R = E+
R\β = E+

R∗ we
have grd(A \ E+

R\β , (R \ β) ∩ ((A \ E+
R ) × (A \ E+

R ))) = grd(A′, R′ \ β′) = {∅}.
Thus, E ∈ com(A,R \ β). ut

Finally we exploit a result from [3].

Proposition 2 ([3]). For every AF F = (A,R), grd∗(F ) = {∅} iff for each minimal
SCC S of F at least one one of the following conditions holds: (i) S contains a self-
attacking argument; (ii) S contains a non-symmetric attack; and (iii) S contains an
undirected cycle

Based on the above observations we obtain the following characterization of
resolution-based grounded semantics.

Theorem 4. For each AF F = (A,R), the grd∗-extensions are the ⊆-minimal sets
E ⊆ A such that:

1. E ∈ com(A,R′) with R′ = R \ { (b, a) | a ∈ E, {(a, b), (b, a)} ⊆ R }).
2. Each minimal SCC S of F̂ = (A \ E+

R , R ∩ A \ E
+
R × A \ E+

R ) satisfies one
of the following conditions: S contains a self-attacking argument; S contains a
non-symmetric attack; or S contains an undirected cycle

Proof. By Lemma 3, condition (1) in Lemma 2 is equivalent to E ∈ com(A,R \
{ (b, a) | a ∈ E, {(a, b), (b, a)} ⊆ R }) and grd∗(A\E+

R , R∩((A\E
+
R )×(A\E

+
R ))) =

{∅}. The former being condition (1) of the theorem. The latter, due to Proposition 2, is
equivalent to condition (2) of the theorem. ut

Having Theorem 4 at hand we can build an MSO1-encoding as follows. First we
encode the attack relation R′ as R′E(x, y) = (x, y) ∈ R∧¬(x ∈ E ∧ y 6∈ E ∧ (x, y) ∈
R ∧ (y, x) ∈ R). Then the AF F̂ = (Â, R̂) is given by:

ÂA,R,E(x) = x ∈ A ∧ x 6∈ E ∧ ¬∃y ∈ E : R′E(y, x)

R̂E,R(x, y) = (x, y) ∈ R ∧A∗A,R,E(x) ∧A∗A,R,E(y)

Based on reachability we can easily specify whether arguments are strongly con-
nected SCR(x, y) = reachR(x, y) ∧ reachR(y, x), and a predicate that captures all
arguments in minimal SCCs minSCCA,R(x) = A(x) ∧ ¬∃y (A(y) ∧ reachR(y, x) ∧
¬reachR(x, y)). It remains to encode the check for each SCC.

C1R(x) = ∃y(SCR(x, y) ∧ (y, y) ∈ R)
C2R(x) = ∃y, z(SCR(x, y) ∧ SCR(x, z) ∧ (y, z) ∈ R ∧ (z, y) 6∈ R)
C3R(x) = ∃X(∃y ∈ X ∧ ∀y ∈ X[SCR(x, y)∧

∃u, v ∈ X : u 6= v ∧ (u, y) ∈ R ∧ (y, v) ∈ R])
CR(x) = C1R(x) ∨ C2R(x) ∨ C3R(x)

Finally using Theorem 4 we obtain an MSO1-encoding for resolution-based grounded
semantics:

grd∗A,R(X) = candA,R(X) ∧ ¬∃Y (candA,R(Y ) ∧ Y ⊂ X)

where candA,R(X) stands for

comA,R′X
(X) ∧ ∀x(minSCC ÂA,R,E ,R̂E,R

(x)→ CR̂E,R
(x)).
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6 Conclusion

In this paper we have shown that Monadic Second Order Logic (MSO) provides a suit-
able unifying framework for abstract argumentation. We encoded the most popular
semantics within MSO and gave building blocks illustrating that MSO can naturally
capture several concepts that are used for specifying semantics. This shows that MSO
can be used as rapid prototyping tool for the development of new semantics.

Moreover, we gave a new characterisation of resolution-based grounded semantics
that admits an MSO1-encoding. This shows that reasoning in this semantics is tractable
for frameworks of bounded clique-width. In fact, the collection of encodings we pro-
vided here shows that acceptance as well as other reasoning tasks are fixed-parameter
tractable for several semantics w.r.t. the clique-width (hence also for treewidth).

For future work we suggest to study whether also other instantiations of the
resolution-based semantics can be expressed in MSO1 (recall that we provided already
a schema for MSO2-encodings). Moreover, it might be interesting to compare the per-
formance of MSO tools with dedicated argumentation systems. Finally, we want to
advocate the use of MSO for automated theorem discovery [31]. In fact, our encodings
allow us to express meta-statements like “does it hold for AFs F that each σ-extension is
also a σ′-extension.” Although we have to face undecidability for such formulas, there
is the possibility that MSO-theorem provers come up with a counter-model. Thus, in a
somewhat similar way as Weydert [33], who used a First Order Logic encoding of com-
plete semantics to show certain properties for semi-stable semantics of infinite AFs,
MSO can possibly be used to support the argumentation researcher in obtaining new
insights concerning the wide range of different argumentation semantics.
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