
Paper On the Influence of Network

Impairments on YouTube Video Streaming

Arkadiusz Biernackia, Florian Metzgerb, and Kurt Tutschkub

a Institute of Computer Science, Silesian University of Technology, Gliwice, Poland
b Chair of Future Communication, University of Vienna, Vienna, Austria

Abstract—Video sharing services like YouTube have become

very popular which consequently results in a drastic shift of

the Internet traffic statistic. When transmitting video con-

tent over packet based networks, stringent quality of service

(QoS) constraints must be met in order to provide the com-

parable level of quality to a traditional broadcast television.

However, the packet transmission is influenced by delays and

losses of data packets which can have devastating influence on

the perceived quality of the video. Therefore, we conducted

an experimental evaluation of HTTP based video transmission

focusing on how they react to packet delay and loss. Through

this analysis we investigated how long video playback is stalled

and how often re-buffering events take place. Our analysis re-

vealed threshold levels for the packet delay, packet losses and

network throughput which should not be exceeded in order to

preserve smooth video transmission.

Keywords—multimedia communication, network measurements,

quality of service, video streaming.

1. Introduction

During the past years video sharing services like YouTube
in the US, Smiley in Japan, the now defunct Megavideo in
Hong-Kong, and Dailymotion in France have become very
popular. YouTube users alone request millions of videos
every day. Consequently, popularity of this kind results in
a drastic shift in Internet traffic statistic, which reports that
the share of P2P traffic is declining, primarily due to an in-
crease in traffic from Web-based video sharing services [1].
So far, there is no indication that this trend will decrease
and indeed is more likely to sustain. Thus, fulfilling the
rising demand for video traffic will be a challenging task
for both content providers as well as ISPs (Internet Service
Providers).
Video streaming in the above mentioned services is either
web-based or HTTP-based, therefore being transported us-
ing the TCP. The TCP is currently the most widely used
transport protocol in the Internet but conventionally re-
garded as inappropriate for media streaming. The primary
reason lies in the TCP reliability and retransmission mech-
anisms which can lead to undesirable transmission delays
and may violate timeliness requirements for streamed live
media. In this context, coping with packet delay and loss,
which can occur due to congestion or packet corruption, de-
mands new solutions as classical transmission procedures,
used in unreliable protocols, e.g. UDP, may be not suffi-
cient. It should also be taken into account that the HTTP

and TCP are general purpose protocols and were not specif-
ically designed or optimized for streaming media delivery.
Thus, attempts are being made to adapt media delivery to
the Internet instead of trying to adapt the Internet to mul-
timedia content streaming.

In our work we concentrate on YouTube which represents
a service that is unlike the traditional VoD systems in sev-
eral important aspects. From our perspective, the most
important difference between YouTube and other more
traditional VoD systems is that the latter usually of-
fer professionally-produced video content such as movies,
news, sport events, or TV series. The quality and popu-
larity of this content are well-controlled and predictable.
In contrast, YouTube videos can be uploaded by anyone
with access to the Internet. The quality of these video clips
vary significantly making network optimizations for spe-
cific content unreasonable.

Internet connections are characterized by a number of sta-
tistically determined characteristics including latency and
reliability. These traits are not guaranteed – in fact, they
can fluctuate considerably depending on the local ISP net-
work load, remote server load, background traffic, as well
as network infrastructure quality. Video delivered by more
traditional channels such as satellite, DVD, cable or digi-
tal TV broadcasting requires usually not to much buffering
space at a client side because data arrives at a media player
with mostly deterministic delay, rate and very limited or
infrequent data drops. Video delivered over the Internet
is much more problematic because there is no guarantee
that the data will flow to a user at a sufficient rate and
determined delay. Instead, it arrives with a rate and de-
lay that can change consistently during video file transmis-
sion. Therefore, buffering is of increasing importance for
video streams when they are transmitted over the Internet,
including Web-based streaming. The YouTube client soft-
ware manages buffering and playing of the received content
using several behaviors [2].

In our work we study the efficiency of three possible stream-
ing client playback strategies. Our goal is to investigate
how often the player buffer runs out under different net-
work interferences, especially packet loss and delay. As
a consequence, we want to investigate how these param-
eters influence the perceived quality of video received by
end users. An ISP may have partial influence on these char-
acteristics and therefore may be able to tune the quality of
video transfer and influence its users’ satisfaction.

83



Arkadiusz Biernacki, Florian Metzger, and Kurt Tutschku

2. Video Distribution

2.1. Protocols

Contemporary media delivery systems can be classified into
two categories: systems with and systems without feedback
control mechanism.
One of the options for multimedia delivery systems with
feedback control is an usage of the Real-Time Streaming
Protocol (RTSP). The RTSP is a stateful protocol, which
means that the server keeps track of the client’s state from
the first time the client connects to the streaming server
until the time it disconnects. The client communicates its
state to the server by sending commands such as play,
pause or disconnect. The server begins sending the me-
dia as a steady stream of small RTP (Real-time Transport
Protocol) packets. The data is sent at the media bitrate
and the client buffer is filled with just few packets before
playback begins. If the client or server discover any inter-
ferences in their communication, like increasing latency or
packet drops, they can renegotiate transmission parameters,
e.g., the server can send the same video content but with
reduced encoding rate. The transmission is usually based
on unreliable transport protocols, most commonly the UDP.
However, when using the UDP, data packets often have dif-
ficulty getting around firewalls and network address transla-
tors. Thus, sometimes the TCP is preferred when firewalls
or proxies block UDP packets, although at the expense of
potentially unnecessary reliability.
Such problems are limited when using the HTTP as a media
delivery protocol because firewalls and routers know how to
pass HTTP traffic through. It also does not require special
proxies or caches. The HTTP is a stateless protocol. Thus,
multimedia transmission based on it share this feature and
behave as a system without feedback control. Basically,
if an HTTP client requests data, the server responds by
sending the required data, but it does not remember the
client or its state which means that each HTTP request is
handled completely independently.
HTTP streaming may be implemented in several ways. In
our work we focus on an implementation which can be de-
scribed as a progressive download. The progressive down-
load is nothing more than a transfer of a video file from
a HTTP server to a client where the client may begin play-
back of the file before the download is complete. Con-
trary to the above mentioned systems with feedback control,
which rarely send more than a few seconds of video con-
tent to a client in advance, HTTP streaming (web) servers
progressively push the whole video content to a client, usu-
ally does not taking into account how much data have been
already sent in advance. Simultaneously, most players are
capable of playing the video file while its download is still
in progress. Most web-based streaming platforms, includ-
ing Vimeo, MySpace, and MSN Soapbox, are based on
HTTP and do not have a feedback control. However, some
HTTP streaming services, e.g. YouTube, implement addi-
tional application layer flow control mechanisms that limit
the transmission rate to the same magnitude as the video
bitrate [3].

Currently, it is thought that HTTP media streaming is eas-
ier and cheaper to deploy because web streaming can use
generic HTTP solutions and does not require specialized
servers at each network node. Standard HTTP caching
mechanism allow to move media content to an edge of
the network, closer to users. Nonetheless, the above tech-
nology have also shortcomings. The congestion avoidance
algorithm of the TCP produces a saw-tooth shaped trans-
mission rate. Furthermore, the reliability of TCP results in
variable transmission delays due to retransmissions of lost
packets. As a consequence, it was commonly assumed that
the TCP is not suitable for multimedia streaming, which is
to some extent loss tolerant but delay sensitive. The instan-
taneous transmission rate and transmission delay variation
of the TCP must be smoothed out by receiver-side buffer-
ing. Despite these drawbacks, currently a dominant share
of multimedia traffic is being delivered using the HTTP
and TCP [1].

2.2. Video Buffering

Most of HTTP players are able to concurrently play and
download the same file. In the simplest case the player fills
its internal buffer at the beginning of the video transmission
and starts the video playback as soon as a minimum buffer
level is achieved. While simultaneously playing and down-
loading the content, the amount of video data in the buffer
is variable and depends mainly on the download bandwidth,
video bitrate and video playing rate. When the download
bandwidth is larger than the video rate the buffer grows.
In the opposite case, the buffer will shrink and if the situ-
ation last long enough it may also run out. In such cases
the video stalls and the player waits until the buffer will be
refilled again.
Let’s assume that G(t) represents the number of data pack-
ets generated at a HTTP server by time t, Fig. 1 with
a packet transmission rate limited only by the infrastruc-
ture conditions like TCP throughput, server performance,
etc. The first packet is generated at time 0 and sent immedi-
ately to a client. Let A(t) denote the number of packets ar-
riving at the client by time t and B(t) denote the number of
packets played by the client by time t. Since the transmis-

Fig. 1. Player buffer occupancy in the time function.

84



On the Influence of Network Impairments on YouTube Video Streaming

sion rate is constrained by the generation rate at the server,
we have A(t)≤G(t). A packet arriving earlier than its play-
back time is referred to as an early packet. At time t, the
number of early packets is counted as N(t) = A(t)−B(t).
A negative value of N(t) indicates that the packet arrival is
behind the playback by −N(t) packets.
During streaming, there can be many time periods ∆ti for
which N(∆ti) has a negative value. In our work we try to
answer the question: what is the value of ∑i ∆ti and i, i.e.
the total video stall time in a relation to video clip length
and the number of stalling events for several video files
transmitted from YouTube.

2.3. Video Playing Strategies

For video streaming YouTube currently uses amongst oth-
ers device-dependent 3GP containers with RTSP dedi-
cated for mobile streaming applications and Adobe Flash
with HTML5 employing HTTP streaming of Flash Video.
Adobe Flash, henceforth referred to as Flash, is the default
container when YouTube is accessed via a PC. Users need
to install a proprietary plug-in for viewing Flash videos.
HTML5 supports videos that do not require any propri-
etary plug-ins running directly.
When streaming with the Flash Player, it basically behaves
like a simple HTTP player described above i.e. it starts
the video playback as soon as a minimum buffer level is
achieved. However, thanks to the flexibility of the Flash
authoring platform, the buffering functionality can be addi-
tionally enhanced using client-side ActionScript code. The
standard buffering process is believed to be susceptible to
bandwidth drops, as well as being unable to exploit a sud-
den increase of bandwidth. The enhancement is called
a dual-threshold buffering strategy and assures a faster start
and, at the same time, should provide better resilience to
bandwidth fluctuations, or other adverse network condi-
tions. Therefore, the playback of a video file starts when the
first threshold in the buffer is filled with a given amount
of data. But, instead of trying to keep the buffer full to
this level, the modified strategy attempts to fill the buffer
to a second, higher threshold. This additional data may be
useful later if the network connection encounters temporary
impairments like bandwidth drops or fluctuations.
In the case of HTML5 streaming, the playing strategy de-
pends on particular video player implementation. The W3C
HTML5 specification [4, Section 4.8] states, that in the case
of autoplay “the user agent [...] will automatically begin
playback of the media resource as soon as it can do so
without stopping”. To approximate this difficult to fulfil
condition every implementation differs. We investigated
Firefox’s implementation of this spec as its code is open
source and the behaviour can therefore be studied not just
by observing network traces but also by reading the sources.
The algorithm in the Firefox is summarized in algorithm in
Fig. 2 and Table 1. Rather than using static thresholds it
facilitates moving averages to estimate the development of
the transmission rate. It does not differentiate between the
initial video startup time and intermittent buffering events.

if sMA > vMA then

c← (bb = 20s∨bT = 20s)
else

c← (bb = 30s∨bT = 30s)
end if

Fig. 2. Firefox playback (re-)start decision algorithm.

This implementation requires large playback buffers due to
the chosen high video buffering amounts, but could also
result in very few stalling events.

Table 1
Variables involved in buffering decisions

Variable Explanation
sMA Moving average of the transmission speed.
vMA Moving average of the video bitrate.

c
Condition upon which to start/resume

playback.
bb Amount of video data the buffer contains.

bT

Amount of time spent in non-playing
buffering state.

The HTML5 network traffic also differs from the Flash
traffic. The works [5] and [2] identified YouTube’s block
transmission behaviour, which uses longer and client appli-
cation controlled block phases for Google Chrome and no
blocking at all for Firefox.

3. Previous Works

A major research area related to our work is concerned with
the analysis and characterization of streaming services in
the Internet. Early works in this area go back to the twen-
tieth century and focused amongst others on the character-
ization of videos on the Web [6], video access statistics of
users [7], developing UDP-based streaming protocols and
providing mechanisms for TCP-friendliness and loss recov-
ery, e.g. [8], [9].
When to concentrate on the HTTP video, several YouTube
measurement studies have been reported in literature in
the last few years. These works focused on characteriz-
ing various aspects of YouTube videos, as well as its us-
age patterns. On the one hand, we have work based on
user traffic trace analysis including deep packet inspection,
e.g. [2], [10]–[12]. Their authors operated on real world
measurements obtained from, e.g., ISPs’ networks and they
characterized video popularity, durations, size and playback
bitrate, as well as usage pattern statistics such as day ver-
sus night patterns or traffic volume. Additionally, in [10]
the investigation of YouTube user sessions statistics was
presented. In [2] the authors presented a traffic charac-
terization of Netflix and YouTube, and identified different
streaming strategies deriving also a model for the aggre-
gate traffic generated by these services. Plissonneau et al.

85



Arkadiusz Biernacki, Florian Metzger, and Kurt Tutschku

in [12] described the impact of YouTube traffic on a French
regional ADSL point of presence revealing that YouTube
video transfers are faster and larger than other large Web
transfers.
On the other hand, there are publications based on crawling
the YouTube site for an extended period of time [13]–[15].
These works examined video popularity and user behaviour
and found that statistics such as length, access patterns,
growth trend, and active life span were quite different com-
pared to traditional video streaming applications. Further-
more, in [13] information directly available from YouTube
servers was used to analyse the characteristics of videos
served by YouTube while [14] investigated social network-
ing in YouTube videos. Also Abhari and Soraya in [15] in-
vestigated YouTube popularity distribution and access pat-
terns through the analysis of a vast amount of data col-
lected by crawling the YouTube API. On the basis of the
observations, the authors presented essential elements of
the workload generator that can be used for benchmarking
caching mechanisms.
A global study of user experience for YouTube videos us-
ing PlanetLab nodes from all over the world is performed
in [16]. Results from this analysis show that on average
there are about 2.5 pauses per video, and on average 25%
of the videos with pauses have total pause time greater than
15 seconds.
The closest work to ours is [17] where the authors evalu-
ated the responsiveness of adaptive HTTP algorithms (tak-
ing into account YouTube amongst others) under variable
network conditions. The authors claimed that the perfor-
mance of the streaming algorithm increases with the de-
crease of network delay and by providing information to
the client, particularly about the achievable throughput. It
compensates for the structural noisiness of measurements
and improves the ability of the client to accurately estimate
the throughput.

4. Experiments

In order to observe the behaviour of YouTube, and, for
that matter, any other, streaming under varying network
conditions, we created a controlled, isolated environment
for our tests, depicted in Fig. 3. Analyses are conducted
in two phases. In phase one, Python scripts on a client
computer simulate a streaming application by issuing HTTP
GET requests to videos at a YouTube cache. Any video data
is stored and analysed for its frame characteristics, such as
the size, type and relative playback time. Furthermore,
the client captures the packet trace using tcpdump/libpcap,
allowing offline analysis of the packets to and from the
HTTP server.
The transmission is done through a network emulation node
using the built-in Linux Kernel netem module capable of
altering the network QoS parameters, such as packet delay
distribution, packet loss rate, or transmission throughput.
Random packet losses are limited due to access network
link layer and transport protocol retransmissions. However,
through this mechanisms, loss acts as another source of

Fig. 3. Two-pass measurement environment used to capture net-
work traces independently of playback strategies.

delay and jitter. We focus on asymmetric access networks,
such as ADSL phone lines, which are assumed to form the
bottleneck links.
In the second phase, the video file with the frame dataset
are re-assembled. Then they are used to feed models in
a media playback emulation process, which combines the
transmission and video frame traces to calculate the play-
back buffer fill level for every point in time during the play-
back. Each frame has its own playing time which specifies
the time at which the frame should be played in relation
to the initial frame. From this analysis, we can determine
how much data is required to play each frame of the video
without any delay to allow for an uninterrupted playback.
On this basis, we generate statistics about user-perceivable
artifacts such as re-buffering events that would occur dur-
ing the playback. These statistics can then be compared to
the results of other models and network QoS.
For our experiment we used a 92 s video file encoded at
850 Kbit/ps.

4.1. Quality Measures

From the user’s perspective, the key performance character-
istic of a network is the QoS of received multimedia con-
tent. However, in the case of HTTP video the transmission
is reliable, so there is no packet loss induced video degra-
dation. Nevertheless, packet losses introduce additional de-
lay caused by TCP retransmissions which consequently can
lead to re-buffering events resulting in jerky playback. The
packet delay and loss reduce also TCP throughput. When
the throughput is lower than the playback rate and the buffer
has drained, the video playback will pause and wait for new
video data. A user expects that delays resulting from con-
tent buffering will be minimized and do not occur during
normal video play.
Thus, to characterize the relationship between the network
QoS and application QoS, for our purpose, we use two

86



On the Influence of Network Impairments on YouTube Video Streaming

measures for HTTP videos. The first measure of the ap-
plication QoS takes into account relative total stalling time
experienced by a user and is defined as:

SR = ∑
i

∆ti/T, (1)

where ti are times for which N(∆ti) has negative value and
T denotes a total duration of the video file when played
without interruptions. As the above measure is the ratio of
total stalling time to the the video duration, it is desirable
to minimize its value by an ISP.
The application QoS defined in (1) did not differentiate be-
tween the cases in which a user can experience one long
stalling period ∆t

l or several shorter stalling periods ∆t
s

where ∆t
l = ∑i ∆t

s

i
. Thus, in our analysis we also use a

second, complementary measure which value is the num-
ber of re-buffering events i associated with every stalling
period.
In our experiment every video playing scenario has at least
one re-buffering events which is a result of an initial buffer-
ing. The initial buffering is used to accommodate initial
throughput variability or inter-packet jitters. Some stream-
ing strategies may achieve smoother streaming with larger
initial buffering, nonetheless it increases the startup latency
of received video content. The re-bufferings, which take
place in the middle of video playback, are usually a conse-
quence of the congestion avoidance algorithm of the TCP.
In our analysis we compared the SR (1) and stalling
frequency for the earlier mentioned buffering algorithms:
Flash, HTML5 and simple buffering strategy (Simple). The
last strategy assumes that the algorithm always starts play-
back as soon as any data is available in the buffer. This
means that, if the player is currently stalling and a com-
plete frame becomes available in the buffer, playback will
immediately restart and the frame will be shown even if this
means stopping playback after that frame again. This re-
sults in the lowest required buffer space. Moreover, playing
the video as soon as possible, gives the fastest end. Con-
sequently, the Simple strategy give the lowest SR and an
upper limit for the number of stalls occurring. Conversely,
the best way to minimize the number of stalls is to wait for
the entire file to be downloaded.

5. Results
5.1. Delays

The delay in an experienced by video content consists of
two components: delay introduced by network, which is the
time it takes a data packet to travel from sender to receiver
and TCP-level delay, which is a consequence how the TCP
reacts to fluctuations in the effective network throughput.
While throughput fluctuations can occur due to application-
level flow control, they are primarily the result of network
congestion.
As results of our experiments we obtained statistics of
buffer occupancy as a function of time for the three exam-
ined playing strategies. An exemplary trace of the buffer
occupancy for the Simple strategy is presented in Fig. 4.

Fig. 4. Player buffer occupancy as a function of time.

We may notice that with increasing latency the buffer occu-
pancy, measured as video playback time, is decreasing and
re-buffering events happen more often. When the packet
delay is 50 ms, there is only one stalling event on the begin-
ning of the video transmission. According to the formula
throughput∼ 1/delay describing theoretical TCP through-
put, in this case the delay is the lowest, thus the theoretical
connection throughput is the highest. Therefore, the down-
load of the whole video finishes after about 80 s of the
experiment. From this moment the buffer is no longer sup-
plied. It decreases at a constant rate as the video player
pulls the remaining video data and presents it to its user.

Fig. 5. The influence of packet delay: (a) stalling ratio; (b) re-
buffering events.

87



Arkadiusz Biernacki, Florian Metzger, and Kurt Tutschku

However, when the delay rose to 100 ms or 200 ms, watch-
ing the video is quite inconvenient due to the frequent buffer
under-runs. In these situations more re-buffering events oc-
cur, the total playing time exceeds the original video length
and the file downloading completes after about 92 s.
Generally, we were interested not in a transient buffer analy-
sis but in its examination in the context of application QoS
for which measures were defined in the Subsection 4.1.
Thus, in the further experiments, except for the packet de-
lay, we obtained statistics of the buffering behavior in sce-
narios with additional packet loss and network throughput
limitation.
As it is shown in Fig. 5(a), packet delay has a certain in-
fluence on application QoS which is defined as the SR
in Eq. (1). Increasing gradually the packet delay up to
1000 ms caused the successive rise of the SR from less
than 1% to about 100% in average. From the three exam-
ined playback strategies, the Simple strategy experienced
the lowest SR while the highest SR was obtained by Fire-
fox HTML5 strategy. Nonetheless, with increasing delay,
the differences between the playing algorithms diminished.
When it comes to measuring the number of stalls, the sit-
uation looks quite different. When increasing latency up
to 300 ms, a user using the Flash or HTML5 strategies
usually experienced only a single re-buffering event which
occurred at the beginning of the playback. When the delay
exceed 500 ms the HTML5 strategy has the lowest number
of stalls from all the three examined strategies. The Simple
strategy was not able to successfully mitigate the network
impairments which resulted in several re-buffering events
during the playback, Fig. 5(b).

5.2. Packet Loss

Packet loss can be caused by a number of factors includ-
ing signal degradation over the network medium due to
multi-path fading, packet drop because of channel conges-
tion, corrupted packets rejected in-transit, faulty networking
hardware, faulty network drivers or normal routing routines.
When transmitting HTTP video, in the event of packet loss,
the receiver asks for retransmission or the sender automat-
ically resends any segments that have not been acknowl-
edged. Nevertheless, retransmitting missing packets causes
the throughput of the connection to decrease due to the
sliding window mechanism used for acknowledgement of
received packets, implemented in the TCP.
For the packet loss up to 2% the SR graph resembles
S shape, Fig. 6(a). For packet loss below 0.8% the SR
has value 1 for the Flash and HTML5 strategies, and about
0.2 for the Simple strategy. Such values of the SR can be
considered relatively low and should not have much impact
on the received video quality. However, for the packet loss
between 1% and 1.2% the SR rises rapidly achieving val-
ues of several tens. The further increase of the packet loss
rate results in a relatively small rise of the SR. Generally,
the Simple strategy has the lowest value of the SR. We can
also notice that for 1% packet loss there is a significant

difference between the Flash and HTML5 strategies which
diminishes for the other packet loss values.

Fig. 6. The influence of packet loss: (a) stalling ratio; (b) re-
buffering events.

When to measure the video streaming resilience against
the packet loss as number of stalls, Fig. 6(b), the shape of
the chart is similar to the shape of the SR presented in the
Fig. 6(a). We can also observe here the steady rise of the
stalls number when the packet loss is lower than 0.8% and
higher than 1.2%. For the packet loss value between 0.8%
and 1.2% the stalls number grow quite fast. Contrary to
the results presented in the Fig. 6(b), this time the Simple
strategy has the worst performance. The HTML5 strategy
is little better than the Flash strategy for the packet loss
higher than 1%.

5.3. Throughput

In this section we investigate how the download through-
put limitation influence the YouTube video streaming. The
upload throughput in the experiments was fixed and set to
10 Mbit/s. Figure 7(a) shows the dependency between the
SR and download throughput ranging from 256 Kbit/s up
to 10 Mbit/s. We can observe that the 1 Mbit/s down-
load throughput is sufficient for our streamed video in-
dependently of the playing strategy used. Increasing the
throughput beyond 1 Mbit/s does not significantly improve
the SR. From the other side, even a small throttle of
the network throughput results in a dramatic rise of the

88



On the Influence of Network Impairments on YouTube Video Streaming

SR value. Taking into account that the video encoding rate
is 850 Kbit/s, such streaming behavior is common sense
and the network throughput below this threshold value
should be insufficient. Furthermore, the mentioned thresh-
old will be additionally increased by network protocols
overhead.
The similar situation is when we used the stalls number
measure, Fig. 7(b). For the 1 Mbit/s network throughput
and and above the number of stalls is 1 for the Flash and
HTML5 strategies. The Simple playing strategy experi-
ences two re-buffering events.

Fig. 7. The influence of throughput limitation: (a) stalling ratio;
(b) re-buffering events.

Generally, we can conclude that the all three playing strate-
gies cannot satisfactorily cope with even small limitation
in the network throughput, and the initial buffering imple-
mented by the Flash and HTML5 strategies fails in this
situation.

6. Conclusions

In the paper we tried to answer how network defects, man-
ifested as latency, packet loss and throughput limitations
impacts the quality of HTTP based video playback. For
this purpose, we conducted an experimental evaluation of
YouTube video transmission examining the quality of ex-
perience of end user applications expressed as a function
of playback buffer occupancy. Through this analysis we in-

vestigated how long the video playback is stalled and how
often re-buffering events take place.
Generally, in order to watch the 850 Kbit/s video without
interruptions and extensive buffering time, the packet delay
introduced by the network should not exceed 200 ms. The
packet loss higher than the 0.8% makes the viewing of
online video very inconvenient. For smooth transmission
of the video, network connection throughput should be at
least 1 Mbit/s.
Our analysis revealed that there exists some small differ-
ences between the Flash and HTML5 strategies, however, in
the most cases they will remain unnoticed by the end user.
The buffering algorithm used in an HTML5 player showed
the highest resilience against the packet delay and loss when
taking into account the number of re-buffering events expe-
rienced during the video play. However, when comparing
these both strategies with the Simple strategy, it is obvi-
ous that starting the video playback as soon as a minimum
buffer level is achieved is insufficient. Although the Simple
strategy has lower stalling time compared to the other two
strategies, nonetheless, the number of re-buffering events
which occur during the video streaming in unacceptable
for an end user. All the three playing strategies cannot sat-
isfactorily cope with even small limitation in the network
throughput. The initial buffering mechanism implemented
by the Flash and HTML5 strategies fails in that situation.

Acknowledgment

The research was partially supported by the National Sci-
ence Centre (Poland) under grant DEC-2011/01/D/ST6/
06995.

References

[1] “Global mobile data traffic forecast update, 2010002015”, Cisco Vi-

sual Networking Index. White Paper, Cisco, 2011.

[2] A. Rao, Y. S. Lim, C. Barakat, A. Legout, D. Towsley, and W. Dab-
bous, “Network characteristics of video streaming traffic”, in Proc.

7th Int. Conf. Emerg. Netw. Exper. Technol. CoNEXT 2011, Tokyo,
Japan, 2011.

[3] S. Alcock and R. Nelson, “Application flow control in YouTube video
streams”. ACM SIGCOMM Comp. Commun. Rev., vol. 41, no. 2,
pp. 24–30, 2011.

[4] I. Hickson, “HTML5: a vocabulary and associated APIs for HTML
and XHTML”, April 2010 [Online]. Available:
http://www. w3.org/TR/html5/

[5] A. Finamore, M. Mellia, M. Munafo, R. Torres, and S. R. Rao,
“YouTube everywhere: impact of device and infrastructure synergies
on user experience”, Tech. Rep. 418, Purdue University, May 2011.

[6] S. Acharya and B. C Smith, “Experiment to characterize videos
stored on the web”, in Proc. ACM/SPIE Multimedia Comput. Netw.

MMCN 1997, vol. 3310, pp. 166–178, 1997.

[7] S. Acharya, B. Smith, and P. Parns,“Characterizing user access to
video on the world wide web”, in Proc. ACM/SPIE Multimedia Com-

put. Netw. MMCN 2000, vol. 3969, pp. 130–141, 2000.

[8] R. Rejaie, M. Handley, and D. Estrin, “Quality adaptation for con-
gestion controlled video playback over the internet”, SIGCOMM
Comput. Commun. Rev., vol. 29, no. 4, pp. 189–200, 1999.

[9] S. Floyd, M. Handley, J. Padhye, and JÃ¶rg Widmer, “Equation-
based congestion control for unicast applications”, SIGCOMM Com-

put. Commun. Rev., vol. 30, no. 4, pp. 43–56, 2000.

89



Arkadiusz Biernacki, Florian Metzger, and Kurt Tutschku

[10] P. Gill, M. Arlitt, Z. Li, and A. Mahanti, “Youtube traffic character-
ization: a view from the edge”. in Proc. 7th ACM SIGCOMM Conf.

Internet Measur. IMC 2007, San Diego, CA, USA, 2007, pp. 15–28.

[11] M. Zink, K. Suh, Y. Gu, and J. Kurose, “Characteristics of YouTube
network traffic at a campus network-measurements, models, and im-
plications”, Computer Netw., vol. 53, no. 4, pp. 501–514, 2009.

[12] L. Plissonneau, T. En-Najjary, and G. Urvoy-Keller, “Revisiting web
traffic from a DSL provider perspective: the case of YouTube”, in
Proc. ITC Spec. Seminar Netw. Usage Traffic, Berlin, Germany, 2008.

[13] M. Cha, H. Kwak, P. Rodriguez, Y. Y Ahn, and S. Moon, “I tube,
you tube, everybody tubes: analyzing the world’s largest user gen-
erated content video system”, in Proc. 7th ACM SIGCOMM Conf.

Internet Measur. IMC 2007, San Diego, CA, USA, 2007, pp. 1–14,
2007.

[14] X. Cheng, C. Dale, and J. Liu, “Statistics and social network of
YouTube videos”, in Proc. 16th Int. Worksh. Quality of Service

IWQoS 2008, Enschede, The Netherlands, 2008, pp. 229–238.

[15] A. Abhari and M. Soraya, “Workload generation for YouTube”, Mul-

timedia Tools and Appl., vol. 46, no. 1, pp. 91–118, 2010.

[16] D. K. Krishnappa, S. Khemmarat, and M. Zink, “Planet YouTube:
global, measurement-based performance analysis of viewer;’s expe-
rience watching user generated videos”, in Proc. IEEE 36th Conf.

Local Comp. Netw. LCN 2011, Bonn, Germany, 2011, pp. 948–956.

[17] S. Benno, J. O. Esteban, and I. Rimac, “Adaptive streaming: the net-
work HAS to help”, Bell Labs Tech. J., vol. 16, no. 2, pp. 101–114,
2011.

Arkadiusz Biernacki received
the M.Sc. and Ph.D. degree
in Computer Science from the
Silesian University of Technol-
ogy, Poland, in 2002 and 2007,
respectively. From 2007 he is
an Assistant Professor at the
Silesian University of Technol-
ogy. From 2010 he has been
collaborating with Chair of “Fu-
ture Communication” (endowed

by Telekom Austria) at the University of Vienna. His re-
search interests focus on network traffic modeling and com-
puter system simulations.
E-mail: arkadiusz.biernacki@polsl.pl
Institute of Computer Science
Silesian University of Technology
Akademicka 16
44-100 Gliwice, Poland

Florian Metzger is a research
assistant at the the Chair of “Fu-
ture Communication” (endowed
by Telekom Austria) at the Uni-
versity of Vienna. He received
his diploma thesis at the Uni-
versity of Wuerzburg, Germany,
in 2009. His research interests
cover signaling load in mobile
networks as well as modern
video streaming approaches.

E-mail: florian.metzger@univie.ac.at
Chair of Future Communication
University of Vienna
Währinger Str. 29/5.46
1090 Vienna, Austria

Kurt Tutschku holds the Chair
of “Future Communication”
(endowed by Telekom Austria)
at the University of Vienna.
Before that, he was an Assistant
Professor at the Department of
Distributed Systems, University
of Wuerzburg. He led the
department’s group on Future
Network Architectures and Net-
work Management until De-

cember 2007. From February 2008 to July 2008, he worked
as an Expert Researcher at the NICT (National Institute
for Information and Communication Technology, Japan).
He has received a doctoral degree in Computer Science
from University of Wuerzburg in 1999 and completed
his habilitation at the University of Wuerzburg in 2008.
His main research interest include future generation
communication networks, Quality-of-Experience, and the
modeling and performance evaluation of future network
control mechanisms and P2P overlay networks.
E-mail: kurt.tuschku@univie.ac.at
Chair of Future Communication
University of Vienna
Währinger Str. 29/5.38
1090 Vienna, Austria

90


