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ABSTRACT
Reducing the processing time of instances at critical activ-
ities is essential for many application domains. We refer to
an activity as being critical if due to restricted resources
assigned to the activity, the arrival of a certain number
of process instances might lead to a waiting queue. So
far, queuing has been adopted for process optimization in
a merely static manner, i.e., the strategy in which order the
instances are processed from the queue is fixed. We argue
that determining the processing strategy for instance queues
at runtime (dynamic queuing) offers the potential to reduce
the processing time at critical activities. The core idea is
that instances arriving at critical activities are first clus-
tered based on similar features and are then distributed to
dynamic queues accordingly. The decision on the processing
order for the resulting queues requires a state management
for allocating the appropriate number of resources during
runtime. For this, a configurable performance index is used.
The proposed dynamic queuing approach is prototypically
implemented and evaluated based on a realistic data set.

Categories and Subject Descriptors
H.4 [Information Systems Applications]: Miscellaneous;
D.2.8 [Software Engineering]: Metrics—complexity mea-
sures, performance measures

Keywords
Process performance measurement, Process optimization,
Queuing in PAIS

1. INTRODUCTION
Supporting the efficient execution of process instances is

crucial for many application scenarios. Especially the arising
of waiting queues as a result of restricted resources assigned
to process activities (referred to as critical activities in the
following) can have massive impact on the process success,
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ranging from delays over failures even to deadlocks. Queu-
ing has been already adopted for process optimization by
different approaches, particularly combining queuing with
batching [16] which can be utilized as a strategy to deal with
delays and possible deadline violations [27]. For all these ap-
proaches, the strategy how the instances are processed from
the queue is static, i.e., fixed at runtime. Static strategies
typically range from First-In-First-Out to rule-based batch-
ing and scheduling as proposed by [16]. However, due to the
complexity of parameters possibly relevant for the queuing
processing strategy, it is quite difficult to foresee dynamic
behavior at runtime and therefore hampers the definition of
strategies at design time. It might be even more difficult
for users to take control of queuing strategies at runtime.
Hence, it would be desirable to offer strategies that enable
automatic queuing strategies defined at runtime. We refer
to such strategies as dynamic queuing.

In this paper, we present a dynamic queuing approach
based on artificial intelligence techniques to reduce the pro-
cessing time at critical activities. The core idea is that simi-
lar instances in a row can be processed faster than randomly
distributed instances making use of optimizations such as
caching or the gaining of routine by humans. This idea
has been mainly addressed as batching in combination with
queuing [16, 27] so far. In this paper, we refine batching
towards clustering into multiple queues. More precisely,
the queuing is split into two phases: first of all, clustering
techniques are applied to the instances arriving at a criti-
cal activity. For clustering different existing algorithms are
applicable. We assume clustering based on numerical at-
tributes of process instances such as print form, size, and
quantity. With OPTICS [2], for example, a clustering algo-
rithm is available that does not require any a-priori knowl-
edge on the number of clusters which provides flexibility to
react on the particular runtime setting the queuing takes
place. The resulting clusters determine a corresponding set
of queues from which the instances to be processed together
are selected. This requires a state management for allocat-
ing the appropriate number of resources during runtime. In
this paper, we base the state management on a configurable
performance index which incorporates optimization factors
time and cost. However, by extending the performance in-
dex, further factors such as satisfaction can be taken into
consideration as well. The dynamic queuing approach is im-
plemented and evaluated based on a case study on a daily
observation of print jobs within a hospital. We will show
that dynamic queuing results in a reduction of processing
times. We will also discuss the different possibilities to ap-
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ply and extend the approach presented in this paper by, for
example, taking into consideration also human resources and
semantic clustering strategies.

The paper is structured as follows: In Section 2, we present
an introduction into the application of queuing in Process-
Aware Information Systems (PAIS). Section 3 describes the
core idea of the dynamic queuing approach.

2. QUEUING IN PROCESS-AWARE INFOR-
MATION SYSTEMS

Queuing has been well researched in mathematics. The
latest models can cover a variety of factors including uncer-
tainty. Most important parameters of any model are the
average arrival times and processing times, the number of
resources and the capacity. Little’s theorem [15] allows a re-
lation between the long-term average number of instances,
the arrival rate, and the average sojourn time. Optimiza-
tion of queues is basically achieved by estimating probabil-
ity distributions of incoming elements or processing times.
However, in Process Aware Information Systems, the predic-
tion of parameters like arrival times is often impossible due
to the dynamic environment the instances are executed in.
Therefore adaption of mathematical optimization to Process
Aware Information Systems is limited in ways of flexibility.
However mathematical theorems may serve a basis for dy-
namic instance queuing.

In Process Aware Information Systems, queues can be
considered as complex artifact. Normally, queues are not
scheduled to arise at design time. Modeling notations such
as BPMN do not include shapes for queuing constructs as
well. However, queues might occur during runtime, i.e. at
the instance level. They emerge, if a resource does not have
the capacity to handle all instances in time. The activity
linked to this resource is also anticipated a critical activity.
If queues arise unpredicted, they can have significant impact
on the overall process success. This makes queue handling
a very complex task for the process designer.

Process level

Meta level (Queuing schema)
Emerges during instantiation between
Build- und Runtime 

Instance level

Figure 1: Layers of abstraction within a PAIS

Figure 1 shows a schema of the relation between process
level and instance level. Queues are not designed at process
level, but arise during the instantiation. Queuing models
can therefore be considered as a meta level between process
and instance schema. Queues emerge at runtime and dis-
appear automatically, when the peak of incoming instances
is released. The processing of instances can happen in dif-
ferent ways: Most common is the First-In-First-Out logic,
which means that instances are processed in the same order
as they arrived at the queue. However, different techniques,

e.g. Last-In-First-Out, can be applied as well. The main
point is that existing approaches that apply queuing in Pro-
cess Aware Information Systems [26, 16] are merely static,
i.e., the processing strategy for process instances within the
queue is fixed. Contrary, in this paper, we introduce a dy-
namic queuing approach that leaves the processing strategy
to the runtime based on the current facts, i.e., number and
attribution of instances arriving at the critical activity.

3. DYNAMIC INSTANCE QUEUING
In this section, we will first present the general structure

of the dynamic queuing approach, followed by a more de-
tailed elaboration on the different phases of dynamic queu-
ing. Highlights of implementing the dynamic queuing ap-
proach conclude this section.

3.1 General Approach
Figure 2 shows the basic concept of dynamic instance

queuing. The core idea is that similar instances can be pro-
cessed faster in a row by making use of optimizations such as
caching or gaining of routine by human resources than ran-
domly distributed instances. A similar idea is pursued by
combining queuing with batching [26, 16]. However, first of
all, batching requires that the resources are able to process
batches, i.e., the parallel processing of a set of instances.
Secondly, batching at one critical activity often results in
batch-wise arrival of instances at preceding activities in the
process that are not designed for batch processing. Hence,
a reduction of processing time by batching at one critical
activity might cause subsequent queues and subsequently
lead to no reduction or even increase of the overall process-
ing time. Therefore, in this paper, we adopt a sequential
processing strategy rather than a batch-based one. More
precisely, even though instances are grouped together based
on similar features, they are not processed as batches but
within separated queues.

Getting back to the overall concept as displayed in Fig.
2: incoming instances at a critical activity are at first col-
lected and, when the first resource shifts to idle state due
to a lack of instances to be processed, clustered into groups
(step 1). The instance clusters are then transferred to the
buffers of the queuing system where each buffer represents
one instance cluster (step 2). The instances from one buffer
are then processed at once by the resource (step 4).

Queuing Processing

λ

Clustering State management

1 2 3 4

Figure 2: Visualization of dynamic instance queuing

The processing logic remains the same during the whole
workflow life cycle. This includes the handling of the initial
elements: When the first instance arrives, the resources are
in idle state. Hence, clustering is executed instantly. It is
not performed earlier since clustering works best with the
highest possible number of elements. The emerging clus-
ter consisting of this single instance will be transferred to
one of the resources and processed momentarily. No waiting



times arise, the throughput time and processing time are
the same. With respect to the layers of abstraction (Figure
1), no queue at the instance level arises. This is intuitively
understandable, since queuing is necessary only if more in-
stances are arriving than the resources are able to process.

3.2 Instance Clustering and Queuing
The clustering component classifies incoming elements into

groups of similar instances based on certain attributes the
instances possess. In the printing example, such instance at-
tributes might be print form (letter, poster, flyer), print job
size, or coloring. In the health care domain, more exactly
in a laboratory process, instances reflecting the processing
of samples on one laboratory apparatus could be clustered
based on instance attributes analysis technique or sample
size. The emerging instance classification is mapped onto
the buffers and, finally, onto the resources, i.e., there will
be a 1:1 mapping between clusters and buffers (resources).
By classifying the instances in a logic way, the algorithm
uses the fact that processing times are not independent by
means of probability theory: Their processing times decrease
when similar instances are handled sequentially. Saving po-
tentials arise both from lower processing times by humans
when working on similar instances and from computer tech-
nologies such as caching.

The classification is based on a clustering mechanism.
Rule based systems are not applicable since they require
specifications during design time. Decision learning trees
or theorems like support vector machines require a training
set. Only clustering algorithms meet the flexible character
of dynamic instance queuing. However, there is a variety
of clustering approaches that can be considered for the im-
plementation. Basically, there are two kinds of clustering
algorithms: In centroid clustering methods, groups are rep-
resented by a central vector. They base on a given order
of objects and thus a fixed number of clusters. Using a re-
placement algorithm, the individual elements are exchanged
until a certain target criteria is met. Density based cluster-
ing methods separate a set into areas of higher and lower
density. Some objects are considered to be more related to
nearby objects than to objects farther away.

We propose the use of a density based clustering method
since a previous specification of the numbers of clusters is
not needed. One of the modern clustering methods is the
OPTICS algorithm (Ordering Points To Identify the Clus-
tering Structure) [2]. It is based on the DBSCAN approach
[13], but can also identify clusters of different densities. The
number of clusters must not be known a-priori. This consti-
tutes another tribute to the dynamic character of the pro-
posed approach since fixing a number of clusters would have
be done at design time or by the user during runtime. Both
options are less favorable than the automatic detection by
the OPTICS algorithm. Further, having a complexity of
O(n2) where n corresponds to the number of objects / in-
stances to be clustered, the OPTICS algorithms performs
efficiently. However, since the overall approach is config-
urable, other clustering techniques can be chosen.

Algorithm 1 summarizes steps 1 and 2 of the overall ap-
proach as depicted in Figure 2, i.e., the clustering of arriving
instances at a critical activity and the subsequent distribu-
tion onto buffers. Buffers serve as data structures to store
the instances between clustering and processing. The num-
ber of buffers is determined by the number of clusters of the

previous step, hence the number of buffers may vary over
time. We impose neither a lower nor an upper bound to the
number of clusters in order to achieve the best performance
of the dynamic clustering approach. The order in which the
instances are queued within the buffers is not relevant for
dynamic clustering. Nonetheless, one could envisage a cer-
tain priority order on the buffers to work well with the later
processing behavior of the resources.

Algorithm 1 Clustering and Queueing

1: while Process instances are active do
2: while Buffers are not empty do
3: gather arriving instances in dataset d;
4: end while
5: C := Cluster(d) . In our approach Cluster(d)

invokes the OPTICS algorithm;
6: for cluster c ∈ C do
7: select free buffer b;
8: move instances from cluster c to buffer b;
9: end for

10: end while

3.3 State Management
The dynamic state management system is responsible for

the allocation of the proper number of resources during run-
time, i.e., we determine the optimal number of resources to
be assigned from the overall number of available resources.
The decision on the number of resources is a trade-off be-
tween time, costs, flexibility and quality of service. Espe-
cially time and costs appear to be at conflict. Therefore,
a decision function is needed. We base the selection on a
scalable performance index (formula 1) respecting the indi-
viduality of application domains.

pi(o) = (α · E(B) · ni) · (β · Co,t · o · E(B)) (1)

In formula 1, the performance index pi in respect of the
number of resources o is shown. The decision function rep-
resents the trade-off between time and costs, where E(B) is
the estimated average processing time and Co,t are the costs
per resource and time unit. The equation is intuitively rea-
sonable: The estimated processing time per instance E(B)
multiplies with the number of instances from one iteration.
On the other hand, the costs Co,t per resource and time unit
multiplies with the number of resources o and the actual pro-
cessing time E(B). α represents an individual factor for the
importance of the time, β for the costs. Remember that
α + β = 1 and α, β ≥ 0 must be fulfilled. In this decision
function, lower values represent a better performance.

The performance index can be considered a scalable de-
cision function for the estimation of the proper number of
resources during runtime. It is applicable on most of the
application scenarios. However, different decision functions
can be designed, if necessary.

In the overall concept, dynamic state management is sit-
uated as follows: After clustering and queuing instances
within the buffers, the dynamic resource allocation algo-
rithm decides on the number of resources assigned for pro-
cessing the instances within the current iteration. It selects
between three possible alternatives based on the output of
the performance index pi(o), i.e., keeping the same number



of resources as in the previous iteration, decreasing, or in-
creasing the number. In the latter two cases, the number of
resources is decreased (increased) as long as a performance
gain is achieved (as shown in lines 5-14 of algorithm 2).
Based on the monotony properties of the performance index,
decreasing / increasing will always lead to an optimum, i.e.,
no local minimum / maximum will be reached. Further ex-
actly one of the loops will be executed per iteration. Having
successfully processed Algorithm 2, variable o represents the
appropriate number of resources to be allocated. The vari-
ables for the performance index (formula 1) are derived from
the iteration before which enables an immediate response on
changing process environment parameters.

Algorithm 2 Dynamic resource allocation

Require: int o; double li0, li-, li+;
1: li0 = pi(o);
2: li- = pi(o-1);
3: li+ = pi(o+1);
4:
5: while li- ≤ li0 do . Decreasing the number of resources
6: li0 ←− li-;
7: o ←− o - 1;
8: li- = pi(o - 1);
9: end while

10:
11: while li+ ≤ li0 do . Increasing the number of

resources
12: li0 ←− li+;
13: o ←− o + 1;
14: li+ = pi(o + 1);
15: end while

3.4 Temporal Concurrency Approach
In Figure 2, one iteration of the dynamic instance queuing

approach was shown. One iteration contains the collecting
of arriving instances as long as all resources are busy, fol-
lowed by the clustering step and finally the processing of the
instances. However, during runtime, iterations overlap since
new instances are arriving steadily.

time

Bu�ering

Processing

Collecting

Bu�ering

Processing

Collecting Collecting

Clustering Clustering Clustering

Figure 3: Visualization of dynamic instance queuing

Figure 3 shows the concurrency concept of our dynamic in-
stance queuing approach. At first, arriving instances need to
be collected for a certain time. The classification of instances
represents a point in the timeline, visualized as the dark
dot. From then on, the classified instances are buffered and,
concurrently, the processing of the first instances from the
buffers begins. The process of buffering is finished, when all
its containing instances are moved to a resource and hence,
all buffers are empty. For that reason, the processing step

always takes longer that the process of buffering. One it-
eration is finished, when the processing of all instances is
finished.

Note that iteration 2 begins right at the time point of clus-
tering from the iteration before, since instances are arriving
concurrently. As the point of clustering is dependent from
the capacity utilization of the resources, at most two itera-
tions are running concurrently at any point during runtime.
Dynamic instance queuing ends when the overall process is
finished.

4. SIMULATION AND EVALUATION
In this section, the application of dynamic queuing in a

real-world scenario is described. For this, we focus on a
specific task referring to a print job. This task is embedded
in a complex Process Aware Information System (PAIS).
Due to restrictions in scope, we focus on the subprocess
which will serve as the scenario for the implementation of
our dynamic instance queuing approach.

4.1 Application scenario
The application of dynamic instance queuing has been

simulated in a real-world scenario from the health care do-
main. The simulation setup covers the printing management
in a hospital. In this hospital, a department of 15 to 40 em-
ployees shares two common network printers. Each print job
is sent to one of the two printers, depending on the circum-
stances of the load. Print jobs though differ in a bunch of
characteristics: The number of pages, e.g., the color mode,
the sheet size, or a special configuration for slide-printing.

A change in one of the modes as well as a change in the
sheet size implies changeover times that need to pass until
printing can begin. The so called preparation time is there-
fore based on different variables. Waiting times in the queue
and the actual printing time affect the sojourn time as well.
Since in some extent, more jobs are triggered than the print-
ers can handle, queues emerge. In this scenario, print jobs
represent instances and printers are resources.

Until now, the hospital uses a First-In-First-Out logic to
process the print jobs. That means that the jobs are printed
in the same order as they arrived in the queue. Dynamic in-
stance queuing is simulated based on a dataset that contains
any information (trigger times of print jobs, arrival times at
the printer, preparation times, configuration of the print job)
about the Is-process. That way, a thoroughly reproducibil-
ity is given. Based on this dataset, the same scenario is
simulated using the dynamic instance clustering approach.

4.2 Scenario analysis
The given dataset includes any information needed on the

application scenario. We consider one working day as a char-
acteristic model for the overall printing management in the
hospital. That day, the first print job is triggered at 6:13:27
a.m. and the latest one is given at 21:48:27 p.m. Through-
out the day, 273 print jobs with a total of 4717 pages were
printed.

Figure 4 shows the average time line of one instance pass-
ing the printing process. The average sojourn time is 149,9
seconds. 46,1 seconds are allotted to waiting time, i.e. the
interval between triggering a print job and the arrival at
the printer. Preparation times such as changeover proce-
dures between color or slide modes take an estimated time
of 5,0 seconds. The rest of the sojourn time is considered to
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Figure 4: Average subtimes

be the “actual” printing time. Note that waiting times and
changeover times might be decreased by optimization, while
the printing time is static and can’t be altered.

An estimated sojourn time of 149,9 seconds theoretically
would be enough to handle all print jobs without any waiting
times. This would require an equal distribution of incom-
ing print jobs. In fact, the arrival time of print jobs is not
equally distributed, as an analysis of the arrival times shows:
Throughout the working day, there are two peaks of incom-
ing instances in the morning and in the afternoon. Between
9.00 a.m. and 9.30 a.m., for example, 35 new print jobs ar-
rive. This exceeds the capacity of the two existing resources
and therefore, waiting times emerge. A queue arises, if more
than two instances are in the system.
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Figure 5: Number of instances in the system

The number of instances in the system at any time within
the period under consideration is shown in figure 5. The
print jobs that are currently processed are included in the
number of instances. It appears that exceeding a criti-
cal number of arriving instances implies heavily increasing
queues. Waiting times increase considerably. On the other
hand, dynamic instance queuing offers potentials to reduce
changeover times by grouping similar instances. A decrease
in changeover times therefore implies multiple positive ef-
fects on the waiting time.

4.3 Implementation and simulation results
Dynamic instance queuing was simulated under the exact

same parameters. That way, full comparability is ensured.
The algorithm was implemented in Java using high level
concurrency techniques (as shown in figure 3). The center-
piece of the dynamic instance queuing implementation is a
QueuingSystem class that is responsible for the initializa-
tion and coordination of all components. The threads for
existing resources are managed by a ResourceManager class
which offers functions to assign the buffers to the resources
and to adapt the number of active resources as calculated

by the decision function from the state management sys-
tem. Buffers are similarly managed by a BufferManager.
Since it is a real time simulation, the runtime environment
does not have impact on the performance of the simulation.
As proposed before, the OPTICS algorithm was chosen for
clustering. The state management component is based on a
decision function similar to the one explained in section 3.3.

From a temporal point of view, the results are positive:
The average changeover time declines by 14%. In total, this
means a decrease from 1347 to 1186 seconds (figure 6). It
is apparent that most of the time savings emerge during
the peaks in the morning and the afternoon. As supposed,
the decrease in changeover times has also massive impact
on the waiting times: Between 9.00 a.m. and 11.30 a.m.,
dynamic instance queuing achieves a saving from around
nine minutes, based on the time the printers are active.
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Figure 6: Cumulative changeover times

The results from the dynamic state management are pos-
itive as well. Since two printers are available, the decision
function (formula 1) allocates the estimated number of re-
sources and switches between three states (no printer active,
one printer active, parallel activation of both printers). The
decision function is stable against deviations: In fact, the
state is changed only five times throughout the period under
consideration. Peaks were determined quite exactly. Com-
pared to the existing approach which is based on an auto-
matic stand-by service with fixed idle times, dynamic state
management offers savings from around 7%. This means
lower costs (energy, supplies) and less attrition.

4.4 Interpretation
The theoretical and practical application of dynamic in-

stance queuing allows a further performance assessment. [22]
evaluate the overall performance of a process by means of
four criteria: Time, costs, flexibility and quality of service.
Our concept allows a reduction of throughput times in a con-
siderable extent. The decrease is based on the classification
of elements to groups of similar instances which offers po-
tentials to reduce the processing times. Since the worst case
of the clustering is a random distribution, dynamic instance
queuing never achieves a lower performance than queues us-
ing a First-In-First-Out logic. The state management is a
dynamic scheduling mechanism that offers potentials to re-
duce costs. Based on a decision function, the algorithm allo-
cates the proper number of active resources during runtime.
In most cases, dynamic state management achieves better
results than static rules which have to be defined at design



time and cannot adapt on the events during runtime.
Flexibility is an asset of dynamic instance queuing. Spec-

ifications are not needed to be made a-priori. For that rea-
son, our concept can be easily introduced in a wide field of
application scenarios. Since the algorithm does not require
adaptions in other parts of the process, universal applicabil-
ity is given.

The actual performance difference between dynamic in-
stance queuing and static queuing approaches is based on
the instances of the specific application scenario. In general,
a high number of instances is always an asset. The quality of
classification is dependent from the underlying clustering al-
gorithm, which supports instances with numerical attributes
best. Dynamic instance queuing works best in scenarios with
an improper ratio between number of instances and resource
capacity. The more instances are waiting, the better re-
sults can be obtained. For that matter, dynamic instance
queuing should be considered in application scenarios where
the process environment is dynamically changing, important
process specifications, i.e. arrival distributions and capacity
development, can’t be estimated in an adequate quality, and
economic or temporal realities don’t allow to develop, test
and implement complex static rule systems.

In these scenarios, dynamic instance queuing with its ca-
pability to adapt dynamically to the process environment
offers potentials to reduce time and costs. Furthermore, it
achieves higher flexibility and a better quality of service.

5. DISCUSSION
Our approach for dynamic instance queuing meets several

requirements. It is applicable to any Process-Aware Infor-
mation System since it is a self-contained component that
does not imply the need for adaptations in other parts of
the process. The optimization takes place during runtime,
so no previous specifications have to be made. In fact, every
process is different and has unique characteristics. Dynamic
instance queuing therefore represents a framework that can
be adapted on the specific circumstances of the application
scenario: Individual decision functions might be defined that
support the trade-off between the particular variables of the
workflow comprehensively. Moreover, other clustering ap-
proaches than OPTICS algorithm might be chosen in order
to cope the instance attributes from the process best. That
way, universal applicability is guaranteed without neglecting
the individuality of each workflow scenario.

The following assumptions have been made for this pa-
per (a) clustering based on numerical process instance at-
tributes, (b) optimization of process times, (c) resource be-
havior is fixed.

The case study and its results described in Sect. 4 refer to
an ideal scenario with respect to the above assumptions, i.e.,
the resource is a printer for which the behavior is fixed, the
processing times of the instances are reduced, and the in-
stances can be clustered based on numerical attributes such
as form or job size. As we know from other case studies,
this kind of scenario can often be found in practice, e.g.,
processing samples on a laboratory apparatus with proba-
bly high changeover times. However, the assumptions still
leave room for further investigations. Promising directions
are shortly discussed below.

1. Extension of Process Application Settings: Our con-
cept is also applicable on multi queue and multi server

scenarios. At the moment, we are working on a simu-
lation in the industry sector. The scenario is about a
number of variants n of a product that is being manu-
factured on several production plants. This is typically
considered a mathematical problem. In fact, Dynamic
Instance Queuing can be implemented supplementary
to Operations Research algorithms: While Operations
Research approaches strive to determine the ideal al-
location at designtime, our dynamic instance queuing
approach is able to optimize during runtime within the
specifications of the Operations Research algorithm.

2. Extension of resource behaviour: Our concept doesn’t
address different resource behaviour in performing cer-
tain work items so far. Different resources may have
different specializations which may render them more
or less suitable to performing certain activities. At the
moment, all resources are considered the same. As-
suming that clusters represent collections of similar
process instances, one need to find a proper mapping
between resources and clusters. Keeping the dynamic
character of our instance queuing approach alive, this
mapping might be implemented using a decision tree
learning algorithm. We will enhance our concept in
this area.

3. Semantic clustering: It cannot always be assumed that
process instances are distinguishable based on numeri-
cal attributes such that “good” input for clustering al-
gorithms such as OPTICS is provided. This becomes
particularly true if the process instances to be clustered
and queued reflect subjects such as patients or cus-
tomers rather than objects such as print jobs or sam-
ples. Whereas similarity between process instances can
be determined for objects, e.g., the same print job, the
same kind of sample, this can become much more dif-
ficult for subjects. Hence, in order to be able to apply
similar techniques to the one proposed in this paper,
we have to come from a clustering purely based on nu-
merical attributes towards a semantic clustering with
respect to the process instances. Current proposals
on semantic clustering algorithms [14] are promising
and we will investigate them together with similarity
measures for processes [3] from the BPM community.

4. Integration of further optimization factors: Aside time
(and costs), related work (cf. Sect. 6) mentions fur-
ther optimization factors such as quality, flexibility, or
customer satisfaction [22]. Clearly, it is natural that
a queuing approach first tackles processing times by
reducing waiting times. However, the optimization of
other factors could be considered by adjusting the per-
formance index (formula 1).

5. Integration of human resources: Finally, and with re-
spect to the current trend towards human-oriented PAIS
[7], the behavior of human resources might be very in-
teresting in connection with optimization techniques
such as queuing. In other words, in addition to con-
sidering humans being reflected by process instances,
also human resources might open new perspectives,
and both aspects are most likely to be treated in com-
bination. Think for examples of full waiting room of
a pediatrician clinics. First of all, it would be inter-
esting to see whether dynamic queuing might lead to



reduction of the overall waiting time of all patients.
Secondly, the satisfaction of single patients as well as
of the pediatrician have to be analyzed as well. Here,
research on the psychology of waiting lines [17] consti-
tutes a valuable input for our further research.

6. RELATED WORK
Queuing in Process-Aware Information System: Queu-

ing is part of basically any PAIS, mostly implicitly, some-
times explicitly. Existing approaches, as described in [26],
cover arising queues as result of an imbalanced ratio between
available resources and the number of process instances to
be handled by the PAIS. Explicit queuing is addressed by
Liu and Hu [16], who apply dynamic batch processing to
Workflow Management Systems. [27], however, understands
queues as a mean to handle escalations in PAIS.

Dynamic Queuing in Other Areas: Having its foundation
in mathematics, queuing has been adopted to numerous ar-
eas in information technology. The most common applica-
tion scenario is the computer processor’s operation of pro-
cessing batch tasks. The operating system provides a logic to
handle a sequence of tasks to be processed. In this area, op-
timizations are achieved by improving the classification sys-
tem to compute the ideal temporal order of pending tasks.

Queuing in messaging systems and middleware: Kumar
et al. [8] describe a novel self-adaptation algorithm that has
been designed to scale efficiently for thousands of streams
and aims to maximize the overall business utility attained
from running middleware-based applications. In a subse-
quent work, Kumar [9] enhances his approach by a dynamic
element to react on the resources available (”resource aware-
ness”). The approaches culminate in a distributed stream
processing middleware that provides sharing-aware compo-
nent composition [23]. In this approach, optimizations are
achieved a-posteriori by implicitly evaluating each iteration.
Our approach, however, strives to achieve optimizations dur-
ing runtime. Regarding middleware systems, load balancing
is a major topic. As load is represented by a queue of tasks,
dynamic processing strategies are a possibility for optimiza-
tion. An exemplary approach is presented by Drougas [4] as
well as by [25]. Amini et al. [1] describe an algorithm that
is designed to meet the challenges of extreme-scale stream
processing systems, where over-provisioning is not an option,
by making the best use of resources even when the proffered
load is greater than available resources. This scenario is sim-
ilar to the approach presented in this paper in the way that
the need for dynamic instance queuing also arises when a
resource does not have the capacity to handle all instances
in time. However, dynamic instance queuing is a process
oriented approach, while load balancing has kind of a static
character by definition as it is a methodology that applies
typically in multilayer architectures.

Process Instance Queuing in (Commercial) PAIS: The tech-
nical prerequisite for queuing process instances is the system-
based provision of synchronization between multiple process
instances. Different patterns for synchronizing multiple in-
stances of one activity in PAIS (12 - 15, 34 - 36) have been
described by the workflowpatterns.com initiative. Synchro-
nizing multiple process instances at runtime can be concep-
tually put down on Pattern 36 (Dynamic Partial Join for
Multiple Instances). According to the evaluation provided
on workflowpatterns.com, there are no commercial or aca-
demic tools that support any implementation of Pattern 36.

The only process engine that provides direct support in-
stance synchronization is the CPEE (http://cpee.org/) [18].
Here we aim at an integration with the queuing approach
presented in this paper.

Time aspects in PAIS: Since time aspects constitute a
major challenge for modeling and execution of business pro-
cesses different approaches address this issue [5, 6, 11, 12, 20,
24, 21]. It has been investigated, for example, how to cap-
ture time aspects at design time, in particular, to cover un-
certainty of processing times and to determine critical paths.
At runtime, adherence of the process instances to imposed
time restrictions such as deadlines is monitored. Escalation
strategies [27] provide means to deal with violations of time
restrictions and deadlines. All these questions become more
challenging when considered for process choreographies [6].
An analysis of existing approaches based on time patterns
can be found in [10]. The work presented in this paper does
not directly relate to the above mentioned approaches. Since
the presented approach reduces the processing time for all
process instances within a certain time frame, it might be
even counterproductive for handling possible deadline vio-
lations of single process instances, but is more suited for
optimizing the processing time of a set of process instances
being executed within the same time frame.

Process analysis and optimization: Techniques for ana-
lyzing and optimizing business processes are of particular
interest for business process re-engineering. The core chal-
lenge when optimizing business process is to find the re-
design strategies. As described in [19], in practice, they are
often engineered within an expert workshop. For different
reasons it would be more beneficiary to provide strategies
that can be applied in certain situations in order to sup-
port the user. In [22], an overview of existing approaches
on best practices or heuristics for business process redesign
is provided that address different optimization factors such
as time, costs, quality, or flexibility. This paper narrows the
optimization factors down to time (and as a side-effect prob-
ably costs). As discussed in Sect. 5, however, more factors
can be included into the considerations. However, the main
difference is that this approach enables an automatic opti-
mization of throughput times at runtime that do not require
any redesign measures.

7. SUMMARY & OUTLOOK
In this paper we proposed an approach for dynamic in-

stance queuing in Process Aware Information Systems that
leverages on reducing execution time at critical activities by
processing arriving instances together in groups that possess
similar attributes, e.g., print jobs. The novel contribution
is to automatically determine and distribute the instance
clusters to resources at runtime. The dynamic queuing al-
gorithm utilizes clustering algorithms and a state manage-
ment strategy for instance distribution to resources that is
based on a configurable performance index. The algorithm
was evaluated based on a realistic printer data set observed
during one day in a hospital. We simulated the print job pro-
cessing when applying dynamic queuing and compared the
results with the actual data. Overall, a reduction of 14% of
the cumulated processing time could be achieved. Several
extensions of the presented approach have been discussed
including the incorporation of human resources, semantic
clustering algorithms, and further optimization factors such
as satisfaction or flexibility.



In future work, we will analyze these different extensions
in detail. Specifically, we are interested in the semantic
clustering of process instances and the integration of hu-
man resources. The latter constitutes a promising bridge
to projects on human-centered Process Aware Information
Systems. Further on, we will integrate the dynamic clus-
tering algorithm with our process execution engine CPEE
(http://cpee.org/), in particular utilizing the synchroniza-
tion component at critical activities.

Furthermore, runtime optimization based on our dynamic
instance queuing approach is considered in the ADENTURE
EU project (fp7-adventure.eu) aiming to run processes more
efficiently in virtual factories.
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