
Supporting Entailment Constraints in the Context of
Collaborative Web Applications

Patrick Gaubatz and Uwe Zdun
Faculty of Computer Science

University of Vienna, Vienna, Austria
firstname.lastname@univie.ac.at

ABSTRACT
Collaborative Web applications allow several users to collabora-
tively work on the same artifact. In addition to popular use cases,
such as collaborative text editing, they can also be used for form-
based business applications that often require forms to be filled out
by different stakeholders or stakeholder roles. In this context, the
different stakeholders often need to fill in different parts of the
forms. For example, in an e-health application a nurse might fill
in the details and a doctor needs to sign them. Role-based access
control and entailment constraints provide means for defining such
restrictions. So far entailment constraint have mainly been studied
in the context of workflow-based architectures, but not for collab-
orative Web applications. We present a generic approach for the
specification and enforcement of entailment constraints in collab-
orative Web applications that supports their real-time nature and
the non-prescriptive order in which tasks can be performed. Fur-
ther, we discuss a model-driven implementation approach of our
concepts and lessons learned and limitations.

Categories and Subject Descriptors
H.4 [Information Systems Applications]: Web Applications;
D.2.2 [Software Engineering]: Design Tools and Techniques

Keywords
Collaborative Web Application, Entailment Constraint, RBAC

1. INTRODUCTION
Collaborative Web applications such as Google Docs1, Ether-

pad2, or Creately3 aim to efficiently support the joint work of differ-
ent teams members, allowing them to collaboratively work on the
same artifact at the same or a different time. As such collaborative
Web applications are getting more and more popular, it is interest-
ing to study their use for typical business applications that often

1https://docs.google.com
2http://etherpad.org
3http://creately.com

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SAC’13 March 18-22, 2013, Coimbra, Portugal.
Copyright 2013 ACM 978-1-4503-1656-9/13/03 ...$15.00.

require multiple forms to be filled out by different stakeholders or
stakeholder roles. The basic approach required for such form-based
collaborative applications has for instance been studied in Mob-
Write [8], which enables users to collaboratively fill out HTML
forms. However, the – in this context crucial – aspect of access
control has mainly been studied on a per-document level so far.

In form-based applications often situations occur in which differ-
ent stakeholders or stakeholder roles need to fill in different parts of
the forms. If restrictions on who is allowed to fill in which parts at
which time exist, then proper access control must be ensured. For
example, in an e-health application a nurse might fill in the details
and a doctor needs to sign the document. Or a doctor files a re-
port and a second doctor needs to check and sign the document (to
realize the so-called four eyes principle). Access control in such sit-
uations has been studied in the context of role-based access control
(RBAC) [9]. In RBAC, roles are used to model different job posi-
tions and scopes of duty within an information system. These roles
are equipped with the permissions to perform tasks. Human users
(subjects) are assigned to roles according to their work profile [11].
The examples given above have been generalized under the term
entailment constraints [12], i.e. constraints that place some restric-
tion on the subjects who can perform a task x given that a certain
subject has performed another task y.

So far entailment constraints have mainly been studied in the
context of workflow-based architectures (see for instance [2, 12,
14]), but not for collaborative Web applications. In this paper, we
will introduce a novel approach for specifying and automatically
enforcing entailment constraints in collaborative Web applications.
Our approach aims to support their real-time nature and the non-
prescriptive order in which tasks can be performed in collaborative
Web applications through a server-side constraint checking service.
On client side we propose non-intrusive modifications that integrate
this constraint checking service into the collaborative Web applica-
tion. A constraint model is used to integrate the client and server
side in a way that requires the Web developer only to make mi-
nor modifications, whereas all security-related aspects are specified
by a security expert. That is, our approach enables the separation
of concerns between these two roles. In our prototype implemen-
tation we use a model-driven approach to automatically generate
all required artifacts from the constraint model. That is, only the
specification of the constraint model is necessary to augment a col-
laborative Web application with entailment constraint enforcement.
Using the model-driven implementation is only an option in our ap-
proach: It is equally possible to manually hook our Web services
with a few extra steps into existing collaborative Web applications.

This paper is structured as follows: In Section 2 we introduce
entailment constraints. We motivate our work in Section 3. Our
approach is described in Section 4. In Section 5 we discuss a pro-

totypical implementation, and Section 6 explains how it can be
used to resolve the motivating example. After discussing related
works in Section 7, and the lessons learned and limitations of our
approach in Section 8, we conclude in Section 9.

2. ENTAILMENT CONSTRAINTS
As explained before, entailment constraints are a concept in the

RBAC domain, defined as follows [12]: A task-based entailment
constraint places some restriction on the subjects who can perform
a task x given that a certain subject has performed another task y.

Different kinds of entailment constraints can be distin-
guished [12]: Mutual exclusion and binding constraints are typical
examples of entailment constraints. They can be subdivided into
static mutual exclusion (SME) and dynamic mutual exclusion
(DME) constraints. An SME constraint defines that two tasks must
never be assigned to the same role and must never be performed by
the same subject (i.e. to prevent fraud and abuse). This constraint
is global with respect to all instances in an information system. In
contrast, DME refers to individual instances and can be enforced
by defining that two tasks must never be performed by the same
subject in the same instance. In contrast to mutual exclusion
constraints, binding constraints define that two bound tasks must
be performed by the same entity. In particular, a subject-binding
constraint defines that the same individual who performed the first
task must also perform the bound task(s). Similarly, a role-binding
constraint defines that bound tasks must be performed by members
of the same role but not necessarily by the same individual.

3. MOTIVATING EXAMPLE
In the context of health care, a medical record is used to doc-

ument a patient’s medical history and care. It is maintained by
health care professionals (e.g. doctors) and includes information
such as therapy plans, various results, and reports. There is an on-
going trend towards electronic medical records. For many of these
records, a number of different health care professionals (e.g. doc-
tors, nurses, administrative persons) have to complete a form.

Today, often the health care professionals are confronted with
strict, standardized forms with precisely specified form fields,
which are “hard-coded” into a custom-made (legacy) application.
Adding new fields or changing existing ones is usually an error-
prone and cumbersome task. An alternative solution would be
workflow-based (or pageflow) applications. That is, the application
consists of workflow tasks executed in a prescribed order. Each
subset of the form fields, to be filled out by a specific person or user
role, would be realized using a single workflow task. Executing the
workflow will eventually lead to the completion of the form. The
workflow-based solution has the advantage over the hard-coded
solution that modifications of the control flow are possible without
touching the source code. However, both solutions have a major
disadvantage: Their control flows are statically prescribed at
design time. It is not possible to leave this “prescribed path”. This
is a problem because the whole process might easily get stuck.
For example, a missing signature from a doctor, who is currently
off-duty, might prevent other health care professionals to proceed
to the next group of form fields.

These problems led us to study in how far medical records can be
created by letting users complete forms using a collaborative Web
application in which ordinary HTML forms are used. In contrast to
the previously described solutions a collaborative Web application
would not exhibit the problems of a “prescribed path”. Instead,
it allows form fields to be filled out concurrently by various users
at the same time. Thus, it can easily accommodate “unforeseen”

Web
Developer

Role

Subject

Constraint

Constrainable

Models

Collaboration
Service

Constraint Checking
Service

Web Application

Server

Browser

synchronizes
state

requests
permissions

deployed to

models models

Security
Expert mapped

to

develops

constrain

Figure 1: Architectural Overview of the Approach

deviations from the originally intended workflow.
This leads to the requirement to enforce entailment constraints

in such collaborative Web applications: For some form fields it is
required to precisely specify who is allowed to enter which infor-
mation when. For example, a medical record form might contain
an input field where the doctor in charge has to enter a documenta-
tion about the prescribed therapy. Before the final discharge of the
patient, we might want the same doctor who prescribed the therapy
to sign the complete medical record again. Thus, we are effec-
tively constraining these two form fields using a subject-binding
constraint. Another example is that for quality assurance reasons
(i.e. realizing the four-eye principle) another doctor has to sign the
whole record. Here, a dynamic mutual exclusion constraint be-
tween the two signature fields would provide means to prevent the
same person to sign both fields. In this paper, we describe – to the
best of our knowledge – the first approach to specify and enforce
such entailment constraints in collaborative Web applications.

4. APPROACH

4.1 Approach Overview
Figure 1 gives an architectural overview of our approach. The

figure illustrates two distinct stakeholder roles, Web developers and
security experts, whose tasks can be clearly separated in our ap-
proach. At design time the security expert first models the roles
and subjects required for the Web application (see Section 4.2). In
our approach, a Web application consists of constrainable elements
(e.g. a button, a JavaScript method, or even a remote service invoca-
tion). Both the Web developer and the security expert model these
constrainable elements. The latter may then use constraint models
to make the constrainable elements subject to various entailment
constraints. The Web developer role realizes the collaborative Web
application. The collaborative aspect is typically realized using a
Publish-Subscriber architecture. That is, every state change of the
Web application is distributed to other session participants using a
collaboration service (i.e. the message broker).

From the Web developer’s point of view, the development pro-
cess, described so far, does not differ to the “standard approach”
to developing collaborative Web applications. Only the following
additional steps have to be carried out by the Web developer to
guarantee compliance to the entailment constraints (see also Sec-

Constrainable
+constrainableID: String

SMEConstraint

RBindConstraint

SBindConstraint

EntailmentConstraint

DMEConstraint

Role
+name: Str ing

Subject
+name: Str ing

ConstrainableInstance

ConstrainableContextInstance
+contextInstanceID: String

ConstrainableContext
+contextID: String

executingRole

executingSubject

2..*

*

1

*

*

**

1

1
1

1

1

*

Figure 2: The Constraint Model

tion 4.3). Firstly, he or she has to map the (abstract) constrainable
elements to concrete implementation-level artifacts (e.g. HTML el-
ements) of the Web application. Whenever one of these constrained
elements is invoked (e.g. a button is clicked), the Web application
must request the permission to do so from a constraint checking
service. This service uses a model-based constraint checking en-
gine which either allows or denies the invocation. As the engine’s
decision is based on the defined subjects, roles, constraints and con-
strainables models, these modeling artifacts have to be deployed to
the engine before. Only if the constraint service has permitted the
invocation, the Web application should actually change its internal
state (e.g. by calling the button’s onclick handler) and eventually
notify the session participants via the collaboration service of this
particular state change. Conversely, if the invocation has been de-
nied, the Web application must prevent the state change.

4.2 Constraint Model
The core element of our approach is a generic constraint model.

Figure 2 shows an UML2 class diagram of this model. The model
specifies that the Constrainables (mentioned before) can be con-
strained by an arbitrary number of EntailmentConstraints. Every
Constrainable has a unique constrainableID and belongs to a Con-
strainableContext. A ConstrainableContext has a unique contex-
tID, aggregates Constrainables, and constitutes a self-contained ex-
ecution domain or environment. More precisely, it denotes a dis-
tinct “collaboration canvas” of a Web application. For example, in
a collaborative text editor there could be a ConstrainableContext
with the ID “text document”. Depending on the type of collabora-
tive Web application, the application as a whole or just a distinct
part of it constitutes a ConstrainableContext. We use the classes
Subject and Role to model the available subjects and roles.

These model elements are usually defined at design time and in-
stantiated at runtime using the two classes ConstrainableContextIn-
stances and ConstrainableInstance. A ConstrainableContext can
have an arbitrary number of ConstrainableContextInstances. For
example, considering the previously mentioned “text document”
example, a group of users may collaboratively work on a single
ConstrainableContextInstance with a contextInstanceID “text doc-
ument instance xyz”. Whenever a ConstrainableContextInstance is
created, a ConstrainableInstance has to be created for every aggre-
gated Constrainable of the respective ConstrainableContext. That

Method Parameters Return

contextInstance contextID, contextInstanceID –

invoke contextID, contextInstanceID, constrain-
ableID, subject, role

Boolean

Table 1: Interface Excerpt of the Constraint Checking Service

is, a ConstrainableInstance is an instance of exactly one Constrain-
able and is part of exactly one ConstrainableContextInstance.

When a ConstrainableInstance is invoked, the executingRole
and executingSubject associations are used to establish relations
to the respective Role and Subject objects actually invoking the
ConstrainableInstance.

4.3 Runtime Enforcement and Architecture
In the previous section we have presented a generic model for

defining abstract constrainable elements and making them subject
to different types of entailment constraints. This section discusses
the runtime architecture needed to actually enforce the compliance
of the Web application with regard to the defined constraints. In
essence, our approach requires both, a dedicated server-side com-
ponent and modifications to the client-side application logic.

4.3.1 Server-side Constraint Checking Service
On server side, a generic and self-contained service realizes the

Policy Decision Point (PDP) [7], the entity that actually decides if
an invocation is to be allowed or not according to defined entail-
ment constraints. Generally, a PDP needs to know about existing
subjects, roles, and policies to be able to actually make decisions.
Hence, the service needs to have access to the full set of modeling
artifacts created by the security expert at design time.

Table 1 lists two essential methods that the constraint checking
service has to provide to the Web application. Firstly, the Web
application must call the contextInstance method, before any
constraint checking can be done at all. It also has to provide both,
a contextID (e.g. “text document”) of an existing Constrainable-
Context and a unique contextInstanceID (e.g. “text document
xyz”). The service is then able to instantiate and initialize the
classes ConstrainableContextInstance and ConstrainableInstance.

After contextInstance has been called, the service is
initialized. The second mandatory method, invoke, must be
called (by the Web application) before a constrainable element is
invoked. Note that this method requires numerous parameters to
be supplied: The service needs to know which subject (subject),
using which role (role) is going to invoke a specific constrainable
element (constrainableID). Furthermore, a context instance
(contextInstanceID) and a context (contextID) need to be
specified. If the invocation is allowed (i.e. no entailment constraints
are violated), the service will then respond with the Boolean value
true, and the Web application may finally perform the actual
invocation of the constrainable element. Otherwise false is
returned, and the invocation must be prevented. Whenever an
invocation is allowed, the service will assign the executingSubject
and executingRole relations of the corresponding Constrainable-
Instance object, according to the provided subject and role

parameters which is required by the underlying constraint checking
algorithms (see [12] for details on the algorithms).

4.3.2 Client-side Modifications
In addition to the server-side constraint checking service, our

approach also requires making modifications of the client-side ap-
plication logic. These modifications would typically be performed

<body onload=”init()”>
<button onclick=”click()”>
...
<script>

...

function click() {
 if(invoke(“btn1Click”, subject, role)) {
 alert(“click”);
 sendChange();
 }
}

c1:Constrainable

constrainableID = btn1Click

function click() {
 alert(“click”);
 sendChange();
}

(3) map
IDs

(1) inject
initialization code

function init() {
 initCollaboration();
}

function init() {
 initCollaboration();
 contextInstance(“Document”, “doc xyz”);
}

ctx1:ConstrainableContext

contextID = Document

(2) inject
enforcement code

Figure 3: Required Mappings and Modifications

automatically using a model-driven code generator (see Section 5
for a discussion of our prototype). However, it is also possible to
perform the modifications manually. This way it is possible to hook
our Web services into existing collaborative Web applications using
the few additional steps described in this section.

Figure 3 illustrates the required modifications. In general, the
Web developer has to (1) call the contextInstance method and
(2) use the invoke method of the constraint checking service and
enforce its decision whenever a constrainable element is invoked.

Figure 3 illustrates a collaborative document editor application,
in which our constraint model contains a ConstrainableContext
with a contextID “Document” and an (examplary) constrainable
element with a constrainableID “btn1Click”. The figure shows an
excerpt of the application’s main HTML file. We can see that the
browser will execute the init() method as soon as the <body>

element has been parsed. The embodied initCollaboration()

method initializes the Web application’s collaboration functional-
ity. Furthermore, there is a <button>. When it is clicked, an alert
box is shown and this state change is propagated to other session
participants using sendChange().

The first required modification is the injection of the initializa-
tion code in which we have to call the contextInstance method
of the constraint checking service. In the example, we specify
that the constaint service should create an instance of the “Doc-
ument” ConstrainableContext from our defined model and give the
instance an ID of “doc xyz”. Next, we have to inject the actual en-
forcement code, which is done by inserting a call to the constraint
service’s invoke method into the click() method. The result of
this modification is that the original method body will only be exe-
cuted, if the constraint service allows it.

5. THE COCOFORM IMPLEMENTATION
This section discusses a concrete implementation of the previ-

ously described approach. The developed prototype is called Con-
strainable Collaborative Forms (CoCoForm)4 and can be used to
realize the e-health record case from Section 3. The basic idea is
that an ordinary HTML form (e.g. an electronic health record form)
4A (proof-of-concept) CoCoForm demo application is available at
http://demo.swa.univie.ac.at/cocoform

TextInput
+multi l ine: Boolean

FormComponent
+label: String

Button
+text: Str ing

Form

Constrainable
+constrainableID: String

ConstraintModel

ConstrainableContext
+contextID: String

...

Figure 4: The WebForm Model

can be filled out collaboratively by different users at the same time.
Parts of this form are subject to entailment constraints.

We decided to use a model-driven development approach for the
implementation. Hence, we extended the Constraint model (see
Figure 2), as can be seen in Figure 4. Every instance of Form con-
stitutes a self-contained ConstrainableContext. A Form aggregates
FormComponents. More precisely, a FormComponent can be a But-
ton, a TextInput, and so on. As these components are subtypes of
Constrainable, they can be constrained by entailment constraints.

Both models, the Constraint and the WebForm model, have been
implemented in Frag [15], a Java-based, interpreted, tailorable lan-
guage, specifically designed for the task of model-driven develop-
ment. Frag supports both model-driven generation and interpreta-
tion of models at runtime. Hence, we have also implemented the
model-based, runtime constraint checking engine in Frag. The next
step was the development of the constraint checking service. We
chose a RESTful service interface design, implemented in Java,
using the JAX-RS API5 and Jetty6 as our servlet container. The
service returns JSON data and is merely a HTTP-based connector
between the Web application and the constraint checking engine.

The actual Web application consists of a single HTML5 docu-
ment and a generic JavaScript library. We use the Open Coopera-
tive Web Framework [13] for all collaborative aspects of our Web
application. It consists of a JavaScript library, a Java servlet (i.e.
the Collaboration Service component depicted in Figure 1), and
realizes a Publish-Subscriber architecture.

For the mapping of the constrainable elements to concrete
implementation-level artifact (see Section 4.3.2), the CoCoForm
implementation leverages a model-driven code generator. It is
used to automatically generate an instantly deployable HTML5
skeleton document from a WebForm model instance. The actual
mapping information of each FormComponent (i.e. the constrain-
able element) and each Form (i.e. the constrainable context) is
attached to the corresponding HTML5 tags. More specifically, we
annotate the tags using custom (HTML5) data-* attributes. For
example, an instance of Form with a contextID “f1” will result in a
<form data-context-id="f1"> tag. Analogously, an instance
of Button with a constrainableID “b1” will be transformed to
<button data-constrainable-id="b1">.

At runtime, the generic JavaScript library then uses these
attributes to automatically register onclick (for buttons) and
onchange (for text input fields) handlers for the corresponding
elements. Whenever these callback functions are executed (e.g.
a button has been clicked), the application calls the constraint

5JAX-RS, http://jax-rs-spec.java.net
6Jetty, http://eclipse.org/jetty

Figure 5: Subject-Binding with CoCoForm

service’s invoke method and enforces the returned decision. If the
invocation is allowed, the application disables the corresponding
FormComponent to prevent further editing (i.e. components can
only be invoked once). Secondly, the state of the component (e.g.
the actual value of the input field, as well as the disabled flag)
is distributed to the other session participants.

6. MOTIVATING EXAMPLE RESOLVED
Let us revisit the motivating example from Section 3. We will

discuss the CoCoForm implementation of the subject-binding ex-
ample from Section 3. Figure 5 shows a few screenshot excerpts
of an example form. There are two form components: a text input
field, which is used to document a patient’s therapy, and a button,
which is used to sign the documentation. For these two compo-
nents a subject-binding constraint has been defined. In the first
screenshot we can see the empty form. Next, Peter, a Doctor, fills
out the therapy text input field. At the same time, Fritz joins the
session and sees that the input field has already been filled out by
Peter. Additionally, he tries to sign this form. However, he receives
an error message, saying that he is not allowed to sign. This is due
to the subject-binding constraint, which eventually requires Peter
to sign. In a similar way, CoCoForm supports the definition of all
entailment constraints required in the e-health case.

7. RELATED WORK
There are already some frameworks and libraries that facilitate

the development of collaborative Web applications. For instance,
the Open Cooperative Web Framework [13] consists of a set of
JavaScript libraries and a generic Java servlet. The beWeeVee
SDK [3] is a .NET-based framework and requires the Microsoft
Silverlight browser plugin to be installed. MobWrite [8] is another
approach for enabling real-time collaboration. However, it is
restricted to synchronizing HTML forms, and the reusability and
applicability is thus somewhat limited. Heinricht et al. [4] present a
generic collaboration infrastructure aimed at transforming existing
single-user Web applications into collaborative multi-user Web
applications. In principle, our approach embraces the usage of

already existing libraries and approaches. In fact, we used the
Open Cooperative Web Framework to implement the collaboration
aspects of CoCoForm (see Section 5). However, there is one re-
quirement: The synchronization process of the library/framework
must be interceptable. More precisely, we must prevent state
changes, which have not been permitted by the constraint checking
service, to be synchronized. Thus, these service invocations have
to be conducted before any synchronization takes place.

The concept of task-based entailment constraints originally
originates the domain of business processes and workflows.
Bertino et al. [2] introduce the notion of assigning roles or subjects
to tasks in a workflow and making them subject to separation of
duty constraints. Wainer et al. [14] propose a system architecture
that clearly separates the permission service from the workflow
engine. Furthermore, they also present a modeling solution for
specifying binding of duty constraints. Strembeck et al. [12]
present a set of generic algorithms that ensure the consistency of
entailment constraints. We used these algorithms to implement
our constraint checking engine (see Section 5). In general, the
existing literature – almost exclusively – examines entailment
constraints in a workflow and business process context. As a
result, the presented solutions are aligned with concepts that are
specific for these contexts. However, in the context of collaborative
Web applications, we can not resort to concepts like task, process
instance, and so on. Hence, we generalized the already existing
works and proposed a generic model (see Section 4.2). Instead of
constraining tasks in a process, in our approach we are constrain-
ing abstract constrainable elements, which have to be mapped to
concrete implementation-level artifacts.

A lot of work has been conducted in the area of RBAC in the
context of Web applications and services. Ahn et al. [1] present an
approach for injecting RBAC into an already existing Web-based
workflow system. They propose a special reverse proxy that is able
to enforce RBAC rules transparently to the actual Web application
behind. Sohr et al. [10] and Hummer et al. [5] propose a similar ap-
proach in the context of Web Services. More precisely, they present
generic interceptors that can be plugged into (Java-based) Web ser-
vice stacks. These interceptors intercept service invocations and are
then able to prevent the actual invocation in case of a policy vio-
lation. Again, this happens transparently to the underlying service
implementation. In contrast, our approach requires modifications
of the original client-side application logic to be made. This draw-
back is due to the way modern HTML5/JavaScript-based Web ap-
plications work. However, the usage of Aspect-oriented program-
ming could help mitigating this problem (see Section 8).

8. LESSONS LEARNED
Using the CoCoForm prototype (see Section 5) we have been

able to demonstrate the feasibility of our approach (see Section 1).
More precisely, we showed that the concept of task-based entail-
ment constraints can be adapted to fit into the context of collabo-
rative Web applications. In the following paragraphs we want to
discuss our lessons learned and the limitations of our approach.

The genericity of the proposed constraint model (see Section 4.2)
and the constraint checking service (see Section 4.3) allow our ap-
proach to be applied to many different types of collaborative Web
applications. Moreover, a single instance of the constraint checking
service can potentially handle an arbitrary number of Web applica-
tion instances. Thus, it is sufficient for an organization to maintain
one instance of the service (maybe in replicated form).

Another positive aspect of our approach is that it follows the
principle of separation of concerns. That is, the definition of roles,
subjects, and constraints is completely decoupled from the actual

application. Thus, a security expert does not need to care about any
implementation-level artifacts at all, whereas the Web developer
does not need to care about anything related to RBAC.

We have implemented our approach with model-driven tech-
niques to automate the generation of all additional constraint
checking code. It is also possible to use the approach using manual
modifications of the Web application. That is, existing code can
also be instrumented this way and used with our approach by
manually following the steps illustrated in Figure 3.

There are also some limitations. Firstly, our approach induces
a slight performance penalty due to the required extra call of the
constraint checking service. However, in the context of collabora-
tive Web applications, which are innately prone to requiring lots of
service calls, the effect of this extra call is more or less negligible.

Another limitation are the needed adaptations of the client-side
application (see Section 4.3.2). The code, needed to enforce the
constraint checking service’s decision, has to be embedded directly
into the application logic. This results in scattered and tangled
code which is hard to maintain. As we have already pointed out,
a model-driven code generator can avoid this issue. Besides that,
aspect-oriented programming (see, e.g. [6]) can be used to decou-
ple the enforcement-related code from the actual application code.

In our approach, the client application handles enforcement.
From a security perspective, however, we often cannot trust code
that is executed on the client (i.e. in a Web browser). The reason
is that we cannot prevent a potential attacker from modifying
the code to be executed. For instance, let us assume that there
is a JavaScript method that calls the constraint checking service.
An attacker might effectively undermine the enforcement just by
overwriting this method and preventing the service from getting
called. The effects of such client-side code injections can be
contained by preventing any unauthorized state change from being
distributed to other session participants. This can be achieved by
using public-key cryptography. That is, the constraint checking
service returns digitally signed permission documents in which
the signature covers both, the actual decision and all parameters.
Whenever the Web application wants to send a synchronization
event to the collaboration service, it has to attach the signed
permission to the request. The latter is then routed through an
enforcement proxy. This proxy will only forward the request to
the service, if the signature is valid (i.e. the permission document
has not been tampered with) and the invocation has been permitted
by the constraint checking service. In general, all (server-side)
services belonging to the Web application must be tunnelled
through the enforcement proxy. With these modifications we
can guarantee that client-side code injections do not lead to a
server-side state change or an impact on session participants.

9. CONCLUSIONS
Our approach demonstrates that the concept of task-based entail-

ment constraints can be adapted to fit into the context of collabora-
tive Web applications. That is, we can support collaborative editing
of form-based applications with no prescribed order, and precisely
specify constraints on who can perform which tasks when. We
presented a generic approach that can be applied to many differ-
ent collaborative Web applications. It requires some modifications
to existing Web applications, but these – as well as the generation
of all other required artifacts – can optionally be automated with
model-driven development techniques. Our approach introduces
some security concerns in untrusted environments, but these can be
mitigated using public-key cryptography (see Section 8).

As future work, we will address these limitations and try to ex-
plore and establish the concept of RBAC in the context of collab-

orative Web application further. Furthermore, we will apply our
approach to other types of collaborative processes. In particular
with regard to dynamic processes (e.g. text editing or modeling)
we will have to deal with completely dynamic document and con-
straint models (i.e. models that change at runtime).

10. REFERENCES
[1] G.-J. Ahn, R. Sandhu, M. Kang, and J. Park. Injecting rbac to

secure a web-based workflow system. In Proceedings of the
fifth ACM workshop on Role-based access control, RBAC
’00, pages 1–10, New York, NY, USA, 2000. ACM.

[2] E. Bertino, E. Ferraria, and V. Atluri. The specification and
enforcement of authorization constraints in workflow
management systems. ACM Transactions on Information and
System Security, 2(1):65–104, 1999.

[3] BeWeeVee. BeWeeVee – Life collaboration framework.
http://www.beweevee.com/.

[4] M. Heinrich, F. Lehmann, T. Springer, and M. Gaedke.
Exploiting single-user web applications for shared editing: a
generic transformation approach. In Proceedings of the 21st
international conference on World Wide Web, WWW ’12,
pages 1057–1066, New York, NY, USA, 2012. ACM.

[5] W. Hummer, P. Gaubatz, M. Strembeck, U. Zdun, and
S. Dustdar. An integrated approach for identity and access
management in a soa context. In 16th ACM Symposium on
Access Control Models and Technologies, 2011.

[6] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda,
C. Lopes, J.-M. Loingtier, and J. Irwin. Aspect-oriented
programming. In M. Aksit and S. Matsuoka, editors,
ECOOP’97 Object-Oriented Programming, volume 1241 of
Lecture Notes in Computer Science, pages 220–242.
Springer Berlin / Heidelberg, 1997. 10.1007/BFb0053381.

[7] S. Kunz, S. Evdokimov, B. Fabian, B. Stieger, and
M. Strembeck. Role-based access control for information
federations in the industrial service sector. In ECIS, 2010.

[8] MobWrite. MobWrite - Real-time Synchronization and
Collaboration Service.
http://code.google.com/p/google-mobwrite/.

[9] R. Sandhu, E. Coyne, H. Feinstein, and C. Youman. Role-
based access control models. Computer, 29(2):38 –47, 1996.

[10] K. Sohr, T. Mustafa, X. Bao, and G.-J. Ahn. Enforcing
role-based access control policies in web services with uml
and ocl. In Proceedings of the 2008 Annual Computer
Security Applications Conference, ACSAC ’08, pages
257–266, Washington, DC, 2008. IEEE Computer Society.

[11] M. Strembeck. Scenario-driven Role Engineering. IEEE
Security & Privacy, 8(1), January/February 2010.

[12] M. Strembeck and J. Mendling. Generic algorithms for
consistency checking of mutual-exclusion and binding
constraints in a business process context. In Proceedings of
the 2010 international conference on On the move to
meaningful internet systems - Volume Part I, OTM’10, pages
204–221, Berlin, Heidelberg, 2010. Springer-Verlag.

[13] The Dojo Foundation. Open Cooperative Web Framework.
http://opencoweb.org/.

[14] J. Wainer, P. Barthelmes, and A. Kumar. W-RBAC - A
Workflow Security Model Incorporating Controlled
Overriding of Constraints. International Journal of
Cooperative Information Systems (IJCIS), 12(4), Dec 2003.

[15] U. Zdun. Frag. http://frag.sf.net/.

