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ABSTRACT

Event-driven architectures can be used to enhance the flexibility of
software system integration solutions by supporting flexible run-
time changes of event processing rules, e.g., in complex event pro-
cessing (CEP) engines. However, this often leads to integration so-
lutions that are hard to maintain, complex, hard to reuse, and hard
to understand. One reason are complex dependencies of events like
high-level events mapped to low-level events or transformations of
events between integrated systems (such as event aggregation, en-
riching, or splitting) that are hard to understand only by studying
the interplay of various CEP rules. Another reason is tangled code
spread across multiple artifacts including event processing code,
event monitors, event listeners, event transformation code, existing
system components that must raise or receive events. In this paper
we propose to base integration architectures on event actors. Our
approach consists of a model-driven event transformation frame-
work that allows us to specify event actor based integration archi-
tectures as an architectural view (instead of tangled in the source
code), as well as an event actor execution engine that supports the
flexible deployment and enactment of the integration architecture.
We show that a set of transformation-related enterprise integration
patterns can be specified and flexibly enacted with our approach,
the complexity is significantly reduced compared to purely CEP-
based solutions, and a higher degree of reusability is supported.

1. INTRODUCTION

Software system integration refers to integration of independent
systems that can run on their own but coordinate with each other
in a loosely coupled way [12]. Various (distributed system) archi-
tectures have been proposed for enterprise integration (see [1, 4,
11, 12]), including messaging, service-oriented architectures, en-
terprise services buses, and many more. In all of them, enterprise
integration concerns are not treated as first-class citizens from a
software architectural perspective, but rather tangled across vari-
ous integration-related software components. Also, many solutions
require re-compilation, re-generation, and/or re-deployment to en-
act changes (see, e.g., [2,21,22,25-27]). However, rapid changes
are required in many systems, for instance because of frequently
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changing business rules or organizational changes that affect the
enterprise integration, and not well supported by this approach.

Event-Driven Architecture (EDA) is an architectural style and
approach for realizing applications and systems in which events
are transmitted between decoupled software components and ser-
vices [17]. EDA supports flexibility through decoupled interac-
tions, many-to-many communications, event-based triggering of
actions, and asynchronism [17]. This allows for supporting flexible
runtime changes of event processing rules, for instance, by using
complex event processing (CEP) engines [16, 19]. But this flexi-
bility comes at the price of reduced understandability and higher
complexity.

For example, service-oriented architecture is often used for en-
terprise integration and can be combined with EDA. Additional
components and code for supporting EDA-based integration leads
to more tangled integration code, as well as additional components
that need to be understood, such as event monitors, event trans-
formations, and event processors. In addition, the event-driven
paradigm itself introduces a further level of complexity: Compared
to message or invocation dependencies, event dependencies can be
hard to understand, e.g., by only studying the interplay of various
CEP rules, such as high-level events mapped to low-level events,
or transformations of events between integrated systems (such as
event aggregation, enriching, or splitting).

In summary, a major maintenance problems of integration archi-
tectures is addressed by introducing EDA for integration tasks (i.e.,
the missing flexibility), but other ones are worsened (higher com-
plexity, reduced reusability).

In this paper we propose to base integration architectures on
DERA, an event actors framework. Our approach encapsulates sys-
tem integration components in stateless event actors with explicit
interfaces. The approach exploits the event-based communication
style to loosen the dependencies among actors. Also, the inter-
faces are formally specified and constrained to enable support for
changing actors at runtime (e.g., replacing actors or changing their
execution order).

We further propose to augment our event actor framework with
a model-driven event transformation framework that allows us to
specify event actor based enterprise integration architectures. That
is, we provide meta-models for defining the integration architecture
based on DERA concepts, such as event actors and events. The
models derived from these meta-models can be used to generate all
necessary components and source code artifacts needed for the im-
plementation of the integration solution. This way, we can avoid the
complexity and reduced reusability caused by tangled code (e.g., of
CEP-based solutions).

The remainder of this paper is organized as follows: In Section 2
we discuss the enterprise integration architecture required for com-
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Figure 1: Handling Complex Orders Example: Enterprise In-
tegration Architecture Sketch

plex order processing in an industrial case study as a motivating ex-
ample. Next, we explain the concept to use event actors for support-
ing enterprise integration architectures in Section 3. Section 4 con-
tains an overview of our approach, the details of the meta-models
of our architectural view for event-based integration architectures
and model-driven generation, and the integration with DERA. Sec-
tion 5 illustrates how the example from Section 2 can be realized
using our approach. Then we evaluate our approach with regard to
complexity and reuse metrics in the context of the enterprise inte-
gration patterns in Section 6. Finally, in Section 7 we compare our
work to the related work and conclude in Section 8.

2. MOTIVATING EXAMPLE

To illustrate the architectural enterprise integration challenges,
let us consider an industrial case study originally described by Hen-
trich and Zdun [11, pages 296 ff.]. In this case from the telecom
industry, complex orders by customers consist of various suborders
that concern different business units of the company. Processing
of suborders happens in parallel in different enterprise information
systems to speed up order delivery. To improve customer satis-
faction and reduce costs, issue with the order should be clarified
with the customer before the goods are delivered. The customer’s
perspective is the whole order. Hence, the customer should not be
individually contacted for each of the suborders.

As shown in Figure 1, enterprise integration must happen for
splitting the arriving order into suborders and forwarding them to
the suborder processing systems. Also, integration for aggregation
of issues and results of the suborder processing is needed. A ser-
vice, containing a bundle process agent, is used for aggregation of
issues. If issues occur, a new process for handling the issues to-
gether is started.

In a typical process-based information system that uses mes-
saging as an integration solution, usually redeployment is neces-
sary for each change in the message routing, the routing rules, or
the used integration patterns (like message enriching, aggregation,
etc.). However, such changes may be frequent, as business organi-
zation and business rules frequently change. This is problematic,
as most of the processes are long-running processes. Hence, com-
plex solutions with runtime maintainable components that support
starting and stopping of message queues for maintenance actions,
such as redeployment of changed component, must be developed.
It is the goal of our event actor based enterprise integration archi-
tecture to support changes more flexibly, e.g. by simply adding or
replacing event actors.

3. EVENT ACTORS FOR SUPPORTING
ENTERPRISE INTEGRATION ARCHI-
TECTURES

The first part of our approach is to base enterprise integration ar-
chitectures on an event actor framework. In this section, we discuss
our event actor framework, called DERA (Dynamic Event-driven
Actors), which exploits the event-based communication style to
loosen the dependencies among actors in an integration architec-
ture. The goal is to enable flexibility of integration architectures
through runtime evolution and dynamic adaptations while at the
same time minimizing the non-deterministic nature of event-based
applications.

The central notions of DERA are events, event actors, and event
channels. An event can be considered essentially as “any happen-
ing of interest that can be observed from within a computer” [19]
(or a software system). Examples of events from our motivating ex-
ample in Section 2 are: the placement of a complex order, the start
of a sub-order process, and so on. An event might contain some
attributes such as its unique identification, timing, data references,
and so forth. We define DERA events and event types as follows:

Event type and instance - An event type is a representation of
a class of events that share a common set of attributes. An event
instance of an event type is a concrete occurrence of that event type
that has a unique identifier and is instantiated with concrete values
of the event type’s attributes.

Event actors are executing elements that have interfaces de-
scribed in terms of incoming and outgoing events. The execution
of an actor will be triggered by any of its input events. At the end
of its execution, the event actor will emit al// of its output events
that, in turn, may trigger the executions of other event actors. From
an architectural point of view, the event actor can hence be defined
based on its interfaces (i.e., its externally visible properties):

Event actor interface - An interface Z, of a DERA event actor
x can be described by a 2-tuple (ex, xe), where ox is a finite set of
input events expected by x and xe is a finite set of output events to
be emitted by x (ex and xe can be empty sets).

Actors are used in our enterprise integration approach for encap-
sulating software integration components. Well-defined interfaces
for DERA event actors are important for our architectural integra-
tion approach, as they help to limit the non-deterministic nature
of event-driven architectures. In particular, the well-defined actors
interfaces enable us to derive a directed graph of the current archi-
tectural configuration comprising event actors connected via their
inputs and output events. Therefore, we are able to monitor and
analyze important properties, such as reachability (safety or dead-
lock checking), liveliness, performance, and quality of services of
DERA systems. On the other hand, well-defined interfaces also en-
able us to perform changes at runtime, for instance, substituting an
event actor by another with a compatible interface or changing the
execution order of event actors by substituting an event actor with
another.

The flexibility of DERA relies on the concept that each event ac-
tor only concentrates on its own task, as well as its incoming and
outgoing events defined via its well-defined interfaces. There are
no tight dependencies between two particular event actors, only the
event-based communications. This is realized using the notion of
event channels. All even actors in a DERA system are connected to
the same channel and all events are published via the channel. All
events published on a channel are consumed by all actors registered
for the channel. Hence, actors are loosely coupled. This loose cou-
pling leads to the flexibility of DERA. Two DERA channels can be
connected by event bridges which are special event actors respon-
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Figure 2: Architectural Setup of an Event Channel for Event
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sible for forwarding events between two DERA event channels.

4. MODEL-DRIVEN EVENT-BASED
INTEGRATION ARCHITECTURES

In this section, we propose a framework to create event-based in-
tegration architectures. Section 4.1 describes the architectural setup
of an event channel for supporting the event transformations. Meta-
models, described in Section 4.2, which are based on the DERA
foundational concepts, defined in Section 3, facilitate the defini-
tion of architectural views for event-based enterprise integration
in terms of event transformations in a DERA system. Based on
the meta-models, we have defined model-to-code transformations
for generating a DERA enterprise integration architecture from the
models. For our implementation we used Esper' as CEP engine,
the meta-models were realized with the Eclipse Modeling Tools?,
and for the model-to-code transformation XPand® was used.

Compared to simply using event rules, e.g. enacted in a CEP en-
gine, our architectural view and model-driven transformation ap-
proach for DERA has many advantages: First of all, the architec-
tural view enables us to model system integration concerns as an
event transformation flow rather than using CEP rules. That is,
realizing integration with rules on event patterns, e.g. with com-
plex event processing (CEP) rules, happens on a rather low level
of abstraction. A lot of detailed information about the system is
needed and the integration rules have to be written manually, which
is time consuming and error prone. Secondly, only CEP rules are
not enough. For enacting the event-driven integration architecture,
in addition, multiple artifacts, such as event processing code, event
monitors, event listeners, event transformation code, existing sys-
tem components that must raise or receive events, and so on, are
needed. It is hard to understand all these elements and their inter-
play. Via the model-driven approach we can automate their gen-
eration. Finally, the event-driven actors architecture ensures the
flexible changeability of the integration architecture — without sac-
rificing architectural understandability or control (see Section 3).

4.1 Architectural Setup

To illustrate how the model-driven approach reduces develop-
ment complexity, let us consider the architectural setup of an event
channel for supporting the event transformations, as illustrated in
Figure 2. In our approach we use a CEP engine inside of an event
actor to detect event patterns. Transformations are triggered by the
detected patterns and enacted by event transformations deployed in
actors. The following parts are needed:
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Figure 3: Overview of the Meta-Models and their Relations
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Figure 4: Example Event Type Model Instance

1. The CEP engine has to be set up to listen to the appropriate event
channel, to recognize the correct event types and to load the
rules describing the patterns to listen for. A special event actor
listens to the channel and forwards events to the CEP engine.

2. The CEP patterns have to be described for each set of event
occurrences. Also, variables are used to provide access to the
events’ properties.

3. If a pattern is detected, the event transformation and emission
has to be triggered.

4. For each specified CEP pattern, the set of detected events has to
be transformed to a set of output events. The transformations use
the variables (see Part 2) to create the properties of the output
events.

5. The output events created in Part 4 have to be emitted to the
event channel. This is done using event actors for event trans-
formations.

The benefit of our model-driven approach is that this architec-
tural setup can be automatically generated via model-to-code trans-
formations.

4.2 Meta-Models

To express event-based integration we developed the meta-
models briefly described in this section. They mainly concern
the event transformations that need to be defined to use DERA
for event-based enterprise integration. The meta-models address
four concerns: a) expressing event types, b) describing patterns of
event-occurrence, ¢) mapping source patterns to target patterns,
and d) expressing constraints for the mapping. The relation
between these meta-models is depicted in Figure 3.

a) The first meta-model defines the DERA events and their event
types. An instance of this model describes the set of available event
types, which can be used by the actors of the DERA framework de-
scribed in Section 3. An event can be modeled as a subtype of
an event, and contains a set of properties. A property is defined
by a name and a type. Figure 4 shows a sample event type model
instance: the SimpleOrderEvent is a subtype of BaseEvent, con-
taining the properties order and eventID.

b) The second meta-model specifies patterns of event occur-
rence. Whenever the emitted events on the event channel match
the defined occurrence pattern, the event transformation of these
source events will be triggered. To describe the occurrence patterns
event containers are used to group a set of events. A container
may reference a single event, express set operations (e.g., and, or)
or a sequence, and contain further containers. Figure 5 shows an
example for nested event containers, expressing the occurrence of
either an event of the type E3, or two events of the type E1 and



E2. Also, additional constraints can be defined for a set of events,
which is described in more detail below.

:OrContainer

E3:EventContainer :AndContainer

event = E3:Event

E1:EventContainer E2:EventContainer

event = E1:Event event = E2:Event

Figure 5: Nested Event Container Example:E3 or (E1 and E2)

¢) The third meta-model specifies the mapping of source events
to target events. It is used to describe the transformation of events
matching occurrence patterns into a set of target events during
runtime. For every expected target event, it is described which
source events and which properties of the source events have to be
transformed into the target event. Variables and code injectors are
used to provide additional data which is not provided by the source
events. In Figure 7, the :ResultEventMapping provides a mapping
from a ComplexOrderEvent to a SimpleOrderEvent.

d) Finally, the fourth meta-model allows us to define event trans-
formations using constraints for events in occurrence patterns. For
example, a constraint can describe that a transformation only has to
be performed, if a specific property of an event has a well-defined
value. For instance, the following constraint will restrict the match-
ing of an occurrence pattern to only the event E1 when its property
p1l has the value ”1” or ”’2”: E1.pl == ’1’ OR El.pl ==
r 2 ’

Instances of the meta-models are used to generate artifacts to en-
act event transformations using model to code transformations. The
generated artifacts are Java code fragments representing DERA
concepts such as events and actors, as well as configurations and
rules for the CEP engine Esper. Our transformation generates the
following artifacts to enact the modeled event transformation:
Event Types: Instances of the Event meta-model are transformed
to Java classes implementing a DERA Event as described in Sec-
tion 3.

Esper Rules: Esper Statements represent the patterns of occur-
rence in a textual form, created from Container and Constraint in-
stances of the Event Transformation meta-model.

Pattern Detection Listener: For every Esper rule, a listener is gen-
erated. It is notified if Esper notices the occurrence of an event pat-
tern in the event channel. A listener is responsible for triggering
the event transformation and the target event emission.
Transformation: Based on instances of ResultEventMapping, the
code for event transformation is created. Our framework provides
support for type conversion for primitive types (e.g., integer to
float) and also complex types (e.g., string to integer).

Esper Setup: A configuration for setting up the Esper engine is
generated using information from instances of the Event and Event
Transformation meta-models. This configuration is responsible for
registering the event types to be detected by the Esper engine and
to register the Esper rules and its Pattern Detection Listeners.

5. MOTIVATING EXAMPLE RESOLVED

To implement the motivating example described in Section 2,
we designed a DERA application with two channels, depicted
in Figure 6. The source channel consists of two DERA actors
SendComplexOrderActor and ResultHandlingActor, where the
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’ SimpleOrderEvent : Event ‘ l : SourceSimpleEvent H ComplexOrderEvent : Event ‘

Figure 7: Schematic Transformation Model Instance of the
Splitter

first is responsible for emitting an event containing a set of
orders, and the latter waits for the results of each atomic order
processing. The SendComplexOrderActor actor is able to emit
an event of type ComplexOrderEvent, which consists a set of
orders. The ResultHandlingActor is listening for an event of type
HandleResultsEvent, which contains all information about the
processed orders. The target channel consists of two actors, a Sub-
OrderProcessor and an IssueProcessor. The SubOrderProcessor
is triggered by an instance of a SimpleOrderEvent event. When
it finished processing the order, it sends out two events of the
types OrderResultEvent and OrderlssueEvent. The first contains
information of a successful proceeded order, the latter contains an
error report (if an error occurred). The IssueProcessor is triggered
by events of type HandlelssueEvent.

The ComplexOrderEvent contains a collection of orders specifi-
cations, whereas a SimpleOrderEvent only contains a single order
specification. We modeled two event transformations: one splitting
the ComplexOrderEvent into SimpleOrderEvents for each contain-
ing order, and one aggregating the OrderlssueEvents.

Figure 7 shows the schematic transformation model instance
to split up ComplexOrderEvents into SimpleOrderEvents. The
EventTransformation consists of an EventContainer and a Resul-
tEventMapping. The EventContainer listens to every event of the
type ComplexOrderEvent. The ResultEventMapping emits events
of the type SimpleOrderEvent that have to be created from values
of the ComplexOrderEvents defined by the SourceSimpleEvent
element. This model instance contains all information which are
necessary to automatically create the artifacts described in Section
4 and 4.2. First, an Esper rule is created, representing the pattern of
the EventContainer. In the example, a simple Esper rule is created:
every ( ComplexOrderEvent=ComplexOrderEvent ).
This means, that the transformation has to be triggered on every
occurrence of event of the type ComplexOrderEvent. Also, the
event is named by its type name, so the event is accessible through
the Esper engine during runtime. Second, a pattern detection
listener is generated. This listener is triggered, when the Esper
rule is detected on the source channel. Also, the listener is able to
execute the transformation from the source event into the target
event. In our example, for every order in the ComplexOrderEvent
a SimpleOrderEvent is created and emitted on the target channel.
Third, an Esper setup is created which contains the configuration
of the Esper engine. For instance, the Esper rule is registered at the
Esper engine and connected to the pattern detection listener. Also,
the event types to be listened to are registered at the Esper engine.

The presented example illustrates that our model-based defini-
tion of an architectural view for enterprise integration reduces the
complexity compared to purely CEP-based solutions. Only one
clear model instance, which is easy to understand, is needed to gen-
erate all necessary artifacts. Therefore, there is no need to manually
manage tangled code spread across several artifacts.

6. EVALUATION
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Figure 6: Overview of the DERA Solution for the Motivating Example

We show that our approach significantly reduces complexity
compared to purely CEP-based solutions and a higher degree of
reusability is supported. The feasibility of our approach is shown
by implementing a sub-set of the Enterprise Integration Patterns
by Hohpe and Woolf [12]. In particular, as our approach is mainly
focused on event transformation, we studied the whole pattern
language by Hohpe and Woolf and selected all those patterns that
have a clear (message) transformation focus.

We used a metrics-based quantitative analysis to show that our
approach decreases the complexity in system integration scenarios
corresponding to the selected integration patterns. A frequent used
metric for quantifying complexity of software still is Lines of Code
(LOC) [10], where the lines of a source code except blank lines and
comments are counted. As models are not organized in sequences
of characters, the LOC metric is not suitable for comparing mod-
els. Lange [15] suggests to use the number of model elements to
express the absolute size of a model. To compare the complexity of
our models with the CEP-based solution implemented in Java and
Esper, we converted the Java/Esper textual code into correspond-
ing models. To analyze Java artifacts, we used the Eclipse Java
Development Tools (JDT) implementation of the Java model. We
counted elements of the following types: Statement, BodyDeclara-
tion, ImportDeclaration, PackageDeclaration, VariableDeclaration,
and TypeDeclaration. All other types (e.g., Comment or Annota-
tion) were ignored. The Esper rules were expressed using the Esper
Statement Object Model.

The result of the comparison between the model elements and
the source code elements is shown in Table 1. The first column
shows the name of the integration pattern modeled in the scenario.
The second column shows the number of the model elements E,,,
needed to express a pattern. The next three columns show the num-
ber of elements Es counted in the Java and Esper models of the
CEP-based solution, as well as the sum of them. By using the
Java/Esper code generated from our models for the comparison we
made sure that we compared exactly the same scenarios. The last
column shows the complexity ratio C'R between the model ele-
ments and the sum of source code elements, where CR = E,,, /Fs.
Note that the comparison of the model elements are on a statement
granularity. Because of an Esper Pattern is a part of an Esper State-
ment, even very complex Esper Patterns are expressed by only 1
Esper Statement.

The complexity ratio shows that the effort to model an integra-
tion pattern scenario is in average about 7.45 percent lower com-
pared to the code needed for creating the artifacts manually using
the CEP-based solution. That is, there are about 13.4 times (= 1
/ 7.45 %) less model elements needed in average in our solution
than in the CEP-based solution to express an integration pattern

Table 1: Comparison of Complexity of Integration Pattern Sce-
narios

E, CR
Pattern Name En Tava Tsper sum (%)
Aggregator 37 377 1 378 9.79
ContentBasedRouter 33 281 1 282 11.70
ContentEnricher 15 285 1 286 5.24
ContentFilter 29 346 1 346 8.38
MessageRouter 14 302 2 305 4.59
MessageTranslator 15 274 1 275 5.45
Normalizer 29 412 2 414 7.00
Splitter 21 350 1 351 5.98
WireTap 11 123 1 123 8.94
Average 7.45

scenario. In addition, the numbers show that the CEP-solution re-
quires substantial Java coding. Hence, from an architectural point
of view, we can assess that the CEP-based solution is substantially
more low-level than our approach.

Note also that we only analyzed the artifacts directly derived
from the models, which are based on a framework with 6470 Java
model elements. The number of elements will increase consider-
ably if the Java implementation for only one pattern will be done
from scratch without this framework.

We also analyzed the reusability of our model elements. The
IEEE Standard Glossary of Software Engineering Terminol-
ogy [13] defines reusability as: “The degree to which a software
module or other work product can be used in more than one com-
puter program or software system”. In the context of model-driven
development (MDD), Tran [25] refines this definition as: “the
degree to which a model can be used in more than one software
or system. As such, the reusability of a model can be measured by
the amount of reusable model elements and the model itself which
can be used in more than one software or system without any
changes or with small adaptations”. We express the reusability
by expressing the ratio of the model elements for describing
an integration patter to the elements occurring in the generated
artifacts. Table 2 shows the reusability of our model elements
expressed by reuse coefficient R., which is defined as follows: R,
= R / E,,. The available amount of model elements is expressed
by Ey,. The amount of occurrence of these model elements within
the source code artifacts (Java code and Esper rules) is expressed
by Rs. The results show that every model element is reused 3.73
times in average.

The results of our evaluation show that our approach to model



Table 2: Reusability of Model Elements in Integration Pattern
Scenarios

Pattern Name E, R R.
Aggregator 37 109 295
ContentBasedRouter 33 74 2.24
ContentEnricher 15 77 5.13
ContentFilter 29 89  3.07
MessageRouter 14 71 5.07
MessageTranslator 15 72 480
Normalizer 29 113 3.90
Splitter 21 97 4.62
WireTap 11 20 1.81
Average 3.73

the architectural view on event transformation decreases the com-
plexity of dependencies considerably compared to the tangled code
of pure CEP-based solutions. Also, the high degree of reusability
of our models in typical enterprise integration scenarios is shown
in our evaluation.

7. RELATED WORK

Hohpe and Woolf propose the Enterprise Application Integration
(EAI) patterns [12] as solutions to recurring integration problems,
especially focusing on a perspective driven by messaging technolo-
gies. We selected transformation-related EAI patterns to show that
those patterns can be realized, flexibly enacted, and reused with our
approach. Scheibler et al. introduce executable parametrized EAI
patterns [21] to support architects in the reuse of EAI patterns in
software solutions and to parametrize the solution to fit to specific
integration problems. Scheibler et al. use a model-driven approach
to generate a workflow and service based implementation. They
further propose to offer the executable parametrized EAI patterns
as a service [22]. Like our approach, the approach by Scheibler
et al. provides reusability of elements of integration architectures.
However, in contrast to our event actor based approach, the ap-
proach by Scheibler et al. requires model-driven re-generation for
enacting changes, as it uses workflows for the control flow of the
EAI pattern composition.

Mendling et al. [18] present a view integration approach inspired
by the idea of schema integration in database design, based on
Event-Driven Process Chains (EPCs). The predefined semantic re-
lationships between model elements of EPCs, — such as equiva-
lent, sequence, and merge operations — were also investigated by
Davis [7] and Kindler [14], who performed these operations to
integrate two distinct views. Since it is hard to apply semantic-
based merging in order to integrate two different types of models
(e.g., merging a control flow model with a data model), the au-
thors mainly focus on merging control flows. In contrast to those
approaches, our approach rather aims at providing a flexible so-
lution for software system integration than on merging processes.
We used architectural views mainly for the purpose of reducing
complexity and enhancing reusability of integration architectures,
whereas the process view integration approaches use views mainly
to integrate different process designs into a coherent process de-
sign.

Axenath et al. [2] propose a meta-model for formalizing different
aspects of business processes called AMFIBIA. They provide an
open framework to integrate various formalisms through a central
notion of interface. The models in AMFIBIA roughly correspond
to process-centric views. An approach focusing different levels
of abstraction for business processes, for instance, abstract and

technology-specific layers, is the View-based Modeling Framework
(VbMF) presented by Tran et al. [25-27]. VbMF exploits the no-
tion of views to separate the various process concerns of a business
process to reduce the complexity of process-driven SOA develop-
ment and enhance the flexibility and extensibility of the framework.
In contrast to our event actors based approach, these approaches do
not provide additional flexibility for integration solution. Rather
they require model-driven re-generation of the source code to sup-
port changes in software integration solutions.

Our proposed solution is based on meta-models for describing
event transformations. Therefore, one part of the meta-models have
to describe the structure of events. Early event models only pro-
vided parametrized primitive events [3, 5, 6], which mainly lack
in expressing event types. Type-based events were introduced by
Eugster [8, 9] with the goal to make events first-class citizens in
object-oriented programming languages.

Based on this concept, Event Stream Processing (ESP) and Com-
plex Event Processing (CEP) systems [16, 19] drove the develop-
ment of event models. Rozsnyai et al. [20] discuss existing event
models and based on this research they propose an event model
of an event-based system called SARI, focusing on representing,
structuring and typing event data. They discuss concepts of exist-
ing event-based solutions and introduce basic typing concepts for
structuring event data as well as more advanced typing concepts
such as inheritance, exheritance, and dynamic type inferencing.
In our work, we have used these approaches as a foundation, but
tried to keep our event meta-model as simple as possible to reduce
the complexity of our proposed event transformation meta-model,
which is part of our main contribution.

Taher et al. [23, 24] proposed a framework to create CEP-based
adaptors to connect Web Services, based on a set of five prede-
fined operators to describe mappings between messages. From of
these mappings, adapters can be generated capable of intercepting
services and to modify structure, type, and number of incoming
messages to output messages. This approach provides a solution
for incompatibilities between signatures (interfaces) or protocols,
but does not focus on incompatibilities between patterns of events
which are essential for integrating event driven architectures.

8.  CONCLUSIONS

In this paper we have proposed a novel approach for modelling
and enacting enterprise integration architectures that combines con-
cepts from event-driven architectures, model-driven development,
and architectural views. We were able to combine the flexibility of
event actor based architectures with an explicit architectural view
for defining the integration architecture. This way we avoid the tan-
gled code in various systems components, e.g. known from similar
approaches such as integration architectures based on pure CEP-
based solutions. In our evaluation we were able to show that we
can realize the set of transformation-related EAI patterns using our
approach, and that our approach has a positive impact on enhancing
the reusability and reducing the complexity of integration architec-
tures compared to pure CEP-based solutions.

The major limitation of our approach so far is that we mainly
concentrated on transformation-related EAI patterns (explained
in Section 6). As discussed in Section 7 many other kinds of
integration-related patterns exist that can potentially be expressed
using our approach. We plan to address this by extending our cat-
alogue of reusable integration solutions with those other patterns
in our future work and develop a repository of reusable integration
fragments.

Another limitation of our study reported in this paper is that the
evaluation is based on two metrics for measuring complexity and



reuse. While these metrics are congruent with our intuition regard-
ing those properties, metrics are always limited in their validity.
For example, the two metrics do not address all aspects of com-
plexity and reuse, and our interpretation and comparison might be
biased. Finally, so far our architectural view approach has not been
integrated with other architectural view models. We do not see
this as a big limitation, though, as the view models in our approach
have been developed in close correspondence to other model-driven
view models, such as VbMF [25-27] and we are hence confident
that view-model integration is possible.

As also discussed in Section 7 will enable us to support semi-
automatic or automatic optimization and adaptation of event-based
integration architectures, for instance to optimize performance. We
plan to address optimization and adaptation of event-based integra-
tion architectures in our future work.
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