
Enterprise Modelling and Information Systems Architectures
Vol. 8, No. 1, March 2013

4 Hans-Georg Fill and Dimitris Karagiannis

Hans-Georg Fill and Dimitris Karagiannis

On the Conceptualisation of Modelling Methods
Using the ADOxx Meta Modelling Platform

In this paper we analyse the conceptualisation of modelling methods. Thereby we understand, how the
components of a specific implementation platform support the design of modelling methods. For this
purpose we use the ADOxx meta modelling platform and investigate, how four selected functionalities of
enterprise information systems for supporting user interaction, process-based optimisation, interfaces to other
systems, and complex analyses are realised. We discuss these four functionalities by reverting to excerpts
of the visual representation of modelling methods from the areas of requirements engineering, business
process management, e-learning, and enterprise architecture management. This permits us to highlight the
interdependencies between the modelling language, the modelling procedure, mechanisms and algorithms
and the functionalities of the underlying technical platform that have to be taken into account during the
conceptualisation.

1 Introduction

In the domain of information systems a large
variety of different types of enterprise modelling
methods are today being used both in academia
and industry. These range from modelling meth-
ods on the strategic level (e.g., Ronaghi 2005), the
business process and organisational levels (List
and Korherr 2006) to modelling methods for de-
scribing and implementing IT architectures and
software systems (e.g., Aier et al. 2009). For the
successful handling of modelling methods, the
use of modelling tools is today regarded as state-
of-the-art. These tools not only support the defin-
ition of modelling languages and thus ease the
creation of machine-processable representations
of the models’ contents. They also provide facil-
ity services, e.g., for accessing, exchanging and
persistently storing meta models and models, for
applying algorithms or for querying model con-
tents (Karagiannis and Kühn 2002).

In the course of the implementation of a model-
ling method in a modelling tool, several design
decisions have to be taken. These decisions dir-
ectly correspond to the intended use of the mod-
elling method and involve tasks such as the defin-

ition of the modelling language, the specifica-
tion of the modelling procedure, i.e., how the
modelling language is used to achieve results,
as well as the specification of mechanisms and
algorithms to ensure an adequate user experi-
ence and perform the machine-processing of the
models. Thereby, it has to be taken into account,
how the components of the chosen implement-
ation platform support the design of a model-
ling method. We will denote this aspect as the
conceptualisation of a modelling method. In our
view this conceptualisation process that so far
remained more of an art than a science, needs to
take into account both aspects, i.e., a combination
of artistic and scientific concepts, to realise ap-
propriate design and processing functionalities.

Therefore we will analyse the conceptualisation
in respect to four selected functionalities that are
typically provided by so-called meta modelling
platforms that support the implementation of ar-
bitrary types of modelling methods and yield as
a result modelling tools, i.e., software applica-
tions for interacting with a modelling method.
The functionalities we will regard for the concep-
tualisation are visualisation and transformation

Enterprise Modelling and Information Systems Architectures
Vol. 8, No. 1, March 2013
On the Conceptualisation of Modelling Methods Using the ADOxx Meta Modelling Platform 5

functionalities, as well as analysis functionalities
for simulation and querying. In order to focus on
the process of the conceptualisation, we restrict
our investigation to modelling methods that are
based on the same meta meta model and that
make particular use of these functionalities. For
this purpose we revert to modelling methods that
are based on the ADOxx1 meta meta model and
that are available via the Austrian section of the
Open Models Initiative2 (Karagiannis et al. 2008;
Koch et al. 2006). The reason why we chose the
ADOxx meta modelling approach and the cor-
responding software platform is, that it has been
successfully developed, used, and tested for over
more than fifteen years in a large number of re-
search and industrial projects that included some
of the largest German and Austrian companies
as customers. It is therefore an industry-proven
approach that goes far beyond a research proto-
type in terms of functionalities, scalability, and
reliability. In this way we will be able to derive
insights into the conceptualisation of modelling
methods that are also relevant from an industry
perspective.

The remainder of the paper is structured as fol-
lows: in Sect 2 we will briefly discuss the found-
ations for our analysis. In particular we will
describe our view on the components of model-
ling methods and the meta modelling in ADOxx.
Work related to the conceptualisation of model-
ling methods will be reviewed in Sect 3. This will
then permit us to perform the analysis of the con-
ceptualisation for the visualisation, transforma-
tion, simulation and querying functionalities in
Sect 4. The paper will conclude with a discussion
of the results of the investigation in Sect 5 and
an outlook on the future work in Sect 6.

1ADOxx is a commercial product and trademark of BOC
AG.

2See http://www.openmodels.at for an over-
view of current projects, community information, and
foundations on the Austrian section of the Open Models
Initiative.

2 Foundations

In this section we will outline the foundations for
describing the components of modelling meth-
ods from a general perspective. Subsequently, we
will present the core constituents of the ADOxx
meta modelling approach including the underly-
ing meta meta model.

2.1 Components of Modelling Methods

To clarify our understanding of the terms and
elements of modelling methods and thus provide
a solid basis for the further discussion, we revert
to a framework that has originally been proposed
by Karagiannis and Kühn in 2002 – see Fig. 1. In
this framework a modelling method is composed
of a modelling technique and mechanisms and
algorithms. Thereby the modelling technique is
further divided into a modelling language and
a modelling procedure. The modelling proced-
ure consists of steps for defining the application
of the modelling language and delivers results.
For this purpose it reverts to mechanisms and
algorithms. The modelling language has a syn-
tax that defines the grammar and semantics that
defines the meaning of the elements of the syn-
tax. This is achieved by a semantic mapping that
connects the syntactical constructs with their
meaning defined in a semantic schema. The se-
mantic schema may either be formally defined
or may come in the form of (informal) textual
descriptions as it is used, e.g., in the definition of
the UML or BPMN (Object Management Group
OMG 2007, 2011a).

In contrast to other approaches such as described,
e.g., by Harel and Rumpe (2000), the notation
defines the visualisation of the modelling lan-
guage through the elements of the syntax and
by obeying the attached semantics. The nota-
tion may either be defined in a static way, e.g.,
by using pixel-based or vector images, or in a
dynamic way by splitting it in a representation
and a control part. By using the second direction,
the control part can dynamically adapt the rep-
resentation part depending on the current state

http://www.openmodels.at

Enterprise Modelling and Information Systems Architectures
Vol. 8, No. 1, March 2013

6 Hans-Georg Fill and Dimitris Karagiannis

Steps Results

Refers to

Defines grammar

Semantics

Defines meaning

Semantic
Schema

Syntax

Semantic
Mapping

connects
obeys

Notation

Defines application of language
delivers

Used in

Modelling
Procedure

Modelling
Method

Modelling
Technique

Mechanisms
& Algorithms

Modelling
Language

Generic
Mechanisms
& Algorithms

Hybrid
Mechanisms
& Algorithms

Specific
Mechanisms
& Algorithms

Steps Results Semantics

Semantic
Schema

Syntax Notation

Modelling
Procedure

Modelling
Method

Modelling
technique

Mechanisms
& Algorithms

Modelling
Language

Generic
Mechanisms
& Algorithms

Hybrid
Mechanisms
& Algorithms

Specific
Mechanisms
& Algorithms

Used for

Defines visualization

visualizes

Semantic
Mapping

Defines
meaning of

Figure 1: Components of modelling methods (Karagiannis and Kühn 2002)

of a model. Finally, mechanisms and algorithms
are used for the modelling language and in the
modelling procedure. Generic mechanisms and
algorithms can be applied to arbitrary modelling
languages, specific mechanisms and algorithms
only to particular modelling languages and such
of the hybrid type are specific ones that can be
configured for several modelling languages.

2.2 Meta Modelling in ADOxx

As there exist several different views on the term
meta model, we will also briefly describe the view
we will employ in the following. Therefore we
revert to the characterisations used by Harel and
Rumpe (2000, 2004); Sprinkle et al. (2010) who
denote a meta model as a representation of the
abstract syntax of a modelling language and a
model as the representation of its concrete syn-
tax. Also the meta model itself can be described
by using a modelling language, which is then
denoted as the meta modelling language. From
this follows that the abstract syntax of the meta
modelling language can be represented by ameta
meta model or meta2 model (M2M) for short and
the concrete syntax of the meta modelling lan-
guage defines the meta model (Kern et al. 2011).

When using a meta modelling approach to imple-
ment modelling languages, the meta2 model is
typically held fixed and thus provides the basic
elements for describing a meta model (Sprinkle
et al. 2010). This direction was also chosen for
the ADOxx approach that has evolved from the
conception of the Adonis business process man-
agement toolkit (Junginger et al. 2000). ADOxx

implemented
in

ADOxx Meta Model

User specific
Meta Model

Derived from classes of

Instance of

ADOxx
Developer

Meta
Modeller

Modeller

C++

ALL

ADL/XML

created
by

created
by

described
in

ADOxx
Meta2 Model

Model

created
by

Instance of

created
by

can be
described in

Figure 2: Roles and languages in the modelling hier-
archy of ADOxx

is today available as a commercial product. An
open use version for academic purposes is avail-
able for projects via the Austrian section of the

Enterprise Modelling and Information Systems Architectures
Vol. 8, No. 1, March 2013
On the Conceptualisation of Modelling Methods Using the ADOxx Meta Modelling Platform 7

Open Models Initiative3. In Fig. 2 the roles and
languages of the ADOxx approach are depicted.
The ADOxx meta2 model is implemented in the
C++ programming language and created by the
developers of ADOxx. From this meta2 model the
ADOxx Meta Model is instantiated that provides
a set of pre-defined constructs. As will be shown
later in this paper, these constructs are for exam-
ple necessary to realise simulation functionalities
in ADOxx. User specific meta models are derived
from classes of the ADOxx Meta Model and de-
scribed by a meta modeller using the proprietary
ADOxx Library Language (ALL). This language
provides concepts for describing meta models
by using the constructs defined in the ADOxx
meta2 model. From these user specific meta mod-
els the actual models are created as instances by
the modellers. These models can be described in
the proprietary ADOxx export format ADL or in
XML.

For the instantiation of meta models, the ADOxx
meta2 model provides the constructs shown in
Fig. 3. Its core part comprises classes and relation-
classes that are grouped by model types. Based
on the shown cardinalities, model types must
have at least one class assigned. In addition,
model types may be further detailed by views
that can restrict which classes and relationclasses
are shown. Both classes and relationclasses have
attributes that can be detailed by facets such as
a helptext or regular expressions to further con-
strain the attribute values. A special type of
attributes are class attributes. Two types of class
attributes are defined: notebook definitions for
attribute representation definitions in the AT-
TRREP grammar, that determine which attributes
are visible in the dialogues of modelling objects
to the modeller4; and graphical representations
that define the dynamic visual representation
of classes and relationclasses in the proprietary
GRAPHREP grammar. The instance attributes

3See http://www.openmodels.at.
4The name for these definitions originates from the fact

that these dialogues are visualised in the model editors in a
way that resembles notebooks.

can be of various types including single- or multi-
value data types such as string, float and integer
as well as the special types interref and record
class. Attributes of the type interref are used to
reference other objects in the same or a different
model and other models as a whole. Attributes
of the type record class are collections of attrib-
utes of the other types which are represented in
a table-based structure. Classes can be arranged
in a hierarchy by defining sub-class relationships
between them. Thereby the attributes of a super-
class are inherited by its sub-classes. Relation-
classes always need to define exactly one class
for its source (Is From-Class) and one class for
its target (Is To-Class). Both classes and relation-
classes may either be pre-defined, i.e., to con-
stitute the ADOxx Meta Model or user-defined,
i.e., to define a user-specific meta model, which
are grouped in a user-defined class hierarchy. Re-
cently, also a formalism has been developed to
describe ADOxx meta models and models in a
mathematically exact way – we refer the inter-
ested reader to the specification of the FDMM
formalism, cf. Fill et al. (2012).

Based on the constructs defined by the meta2

model, ADOxx provides a set of functionalities
for supporting the realisation of modelling meth-
ods. These are implemented in the form of com-
ponents on top of a modelling sub-system, which
is a database-driven client-server repository –
see the architecture of ADOxx shown in Fig. 4.
The acquisition component is used to acquire ex-
ternal data, e.g., in the form of spreadsheets and
make it available as models; the modelling com-
ponent is the central component for handling
models and provides visual model editors that
are automatically generated based on the sup-
plied meta models – it is also responsible for
the visualisation of models; the analysis compon-
ent provides mechanisms for formulating and ex-
ecuting static queries; the simulation component
provides four different algorithms that are based
on principles of discrete-event simulation; the
evaluation component supports the comparison

http://www.openmodels.at

Enterprise Modelling and Information Systems Architectures
Vol. 8, No. 1, March 2013

8 Hans-Georg Fill and Dimitris Karagiannis

Class

Predefined
class

User-defined
class

.

Relationclass

Pre-defined
Relationclass

.User-defined
Relationclass

Modeltype

User-defined
Class hierarchy

ADOxx
Metamodel Metamodel

AttributeClassattribute

Instance-
attribute

Graphical
representation

Notebook-
Definition

Facet

Helptext

Regular
Expression

. . .
Is subclass-of

1..1

0..1

1..*

1..1

1..*

1..1 1..11..1

1..*1..*1..*

1..1
Is From-Class

Is To-Class

0..*

0..*

1..1

1..1

0..*
1..n

0..*

0..*

has

1..* 1..1
1..1 1..1

1..1 1..1

0..*
0..*

View 0..n
1..n

Figure 3: The ADOxx meta2 model

User
interface

Components

Repository

Acquisition Modelling

Analysis Simulation

Evaluation

External
Coupling

Document
Generation

Process cost
calculation

Transfor-
mation

Import /
Export

CORE (Modelling Sub-System
(CORE))=

Database

User interaction

Figure 4: Architecture of ADOxx showing the compon-
ents that can be used for conceptualising modelling
methods

of results acquired both from the simulation com-
ponent as well as from external real-time data
such as audit trails from workflow management
systems; the transformation component handles
the transformation of models to formats used by
CASE tools; the process cost calculation compon-
ent provides algorithms for determining the cost

of processes based on simulations; the import/ex-
port component provides generic algorithms that
work on all ADOxx based meta models to im-
port and export files in ADL and a generic XML
format; the external coupling component is used
to add mechanisms and algorithms that are not
part of any of the other components; and finally
the document generation component supports the
automatic generation of document formats such
as HTML, RTF or DOC from models and can be
configured to individual needs.

3 Related Work

Before we investigate the conceptualisation of
modelling methods on ADOxx we will briefly
review related work. A more general view on
methods and how they are being developed has
been discussed in the context of method engi-
neering (Brinkkemper et al. 1999; Harmsen and
Saeki 1996). However, although there are several
publications in method engineering that discuss
the construction of methods and often refer to
meta models as well, the design of modelling
languages or the conceptualisation of modelling
methods does not seem to be a focus of this discip-
line. As Frank states, the approaches in method

Enterprise Modelling and Information Systems Architectures
Vol. 8, No. 1, March 2013
On the Conceptualisation of Modelling Methods Using the ADOxx Meta Modelling Platform 9

engineering "mainly focus on the construction
and configuration of process models and take the
modelling language as given" (Frank 2011, p. 94).
Method engineering thus investigates how the
generic structure of development processes is co-
dified in methods (Kurpjuweit and Winter 2007;
Odell 1996), which corresponds partly to the as-
pect of a modelling procedure we discussed in
Sect 2.1.

In regard to the development of modelling lan-
guages, several authors have recently proposed
design guidelines and patterns. Thereby, it has
to be distinguished between the development of
domain specific languages (DSL) on the general
level and domain specific modelling languages
(DSML) on a more specific level. Although do-
main specific languages sometimes also revert to
graphical representations, they are often charac-
terised by a comparison to general-purpose pro-
gramming languages in the way that they offer a
better expressiveness and ease of use for a par-
ticular domain of application (Mernik et al. 2005).
Domain specific modelling languages, in the way
we consider them for the scope of this article,
however constrain the properties of DSLs. For
example, the use of a visual notation and the op-
tional use of formal semantics is - although also
valid for some DSLs - a feature that is commonly
assumed for DSMLs. Focusing on the design of
a DSML, it can again be distinguished between
guidelines that provide general suggestions on
the overall design and guidelines that focus on
specific aspects of language design.

As an example for the first direction, the nine
principles presented by Paige et al. can be con-
sulted. These state for example that a modelling
language should not contain unnecessary com-
plexity, redundant or overlapping features, be
consistent, use the same abstractions throughout
the development or ensure that concise models
are produced (Paige et al. 2000). More specific
guidelines on modelling language design are for
example given by Frank who defines six criteria
for determining whether a term is suited to be
incorporated in a language as a concept (Frank

2011). These guidelines define the general frame
for the conceptualisation of modelling methods
and are applicable in any tool environment.

For the composition of meta models based on ex-
isting meta models and model fragments, Emer-
son and Sztipanovits propose the merging and
interfacing of meta models and the refinement of
classes for composing new meta models (Emer-
son and Sztipanovits 2006). For a concrete case,
such a synthesis of two existing modelling meth-
ods is, e.g., shown by the examples of UML activ-
ity diagrams and iStar by Xu et al. (2010). Simil-
arly, Moody presents nine principles for design-
ing cognitively effective visual notations for mod-
elling languages that can guide the developer of
a modelling language (Moody 2009).

Concerning other meta modelling frameworks
and platforms several approaches are available
today, cf. Kern et al. (2011). Any of these could be
used for analysing the conceptualisation of mod-
elling methods - however, we can identify two
aspects that depend on the properties of the un-
derlying meta modelling approach and that need
to be taken account. The first aspect concerns
the functionality provided by the meta model-
ling platform and the second aspect concerns the
practical realisation of modelling tools.

To illustrate the specificities of the ADOxx ap-
proach for these aspects we can compare it to the
approach of the Eclipse Modelling Framework
(EMF, cf. McNeill 2008) and MetaEdit+ (cf. Tolva-
nen and Rossi 2003) as two prominent examples
in the field. In case of the EMF, meta models are
primarily developed in a Java environment. A
method engineer therefore has to have in-depth
knowledge of the Java programming language
to specify a modelling language and then to im-
plement a visual model editor using the Eclipse
Graphical Editing Framework (GEF). To abstract
from this technical view, the Graphical Model-
ling Framework (GMF) has been created. GMF
supports the implementation of visual model ed-
itors on top of EMF by partially automating the
construction of a number of intermediate mod-
els (Aniszczyk 2006). However, as Kolovos et al.

Enterprise Modelling and Information Systems Architectures
Vol. 8, No. 1, March 2013

10 Hans-Georg Fill and Dimitris Karagiannis

(2009, p. 1) remark, "implementing a visual ed-
itor using the built-in GMF facilities is a particu-
larly complex and error-prone task and requires
a steep learning curve."

In comparison, the ADOxx approach does not
require any knowledge of a programming lan-
guage. Instead, meta models can be specified
visually and the model editors are automatically
created either for desktop or web usage without
any compilation as required in the Eclipse case.
At the same time, ADOxx automatically provides
a multi-user environment and a repository based
on a relational database for meta models and
models. Although these functionalities may also
be added for Eclipse, they would require extens-
ive additional programming effort. Another dis-
tinguishing factor of ADOxx and EMF is that
Eclipse and EMF/GMF are provided on an open
source basis and ADOxx on an open use basis.
Therefore, if a developer wants to extend the
functionality of EMF or GMF to fit his or her
own needs this is possible. For ADOxx only the
given functionalities together with the provided
extension mechanisms and external interfaces
can be used.

MetaEdit+ shares several similarities with
ADOxx. For example, it also features the easy,
visual definition of meta models and the corres-
ponding graphical representation of models as
well as the provision of a repository. The dif-
ference to MetaEdit+ lies however in the focus
on different domains. Whereas ADOxx has been
developed for the domain of enterprise informa-
tion systems, MetaEdit+ "is intended to provide
a platform for developing CASE tools" (Kelly et
al. 2005, p. 26). Thereby, CASE stands for Com-
puter Aided Software Engineering that aims to
support software system developers in improv-
ing the quality and efficiency of the software
development process (Case 1985).

In more detail, MetaEdit+ is a "customisable CASE
environment" (Rossi et al. 2004, p. 374) that sup-
ports building and the integration of multiple
methods. This leads, in the case of MetaEdit+, to

a focus on code generation, model analyses, and
the creation of reports (Kelly et al. 2005), which
are essential features for software developers to
speed up the development of systems. ADOxx in
comparison does not specifically focus on soft-
ware development and thus does not provide spe-
cific functionalities for code generation. Rather,
ADOxx takes a broader view and provides a num-
ber of business related functionalities such as
process simulation, evaluation, or process cost
calculation.

In these latter aspects ADOxx also differs from
other modelling approaches such as GME (Le-
deczi et al. 2001) that targets the domain of elec-
trical engineering and MOFLON (Amelunxen et
al. 2007) that builds upon the meta modelling
paradigm of the Meta Object Facility (MOF). Al-
though MOF can also be used to implement meta
models, it is primarily a metadata management
framework to enable the development and inter-
operability of model and metadata driven sys-
tems (Object Management Group OMG 2011b,
p. 5).

When summarising what has been achieved so
far, it can be found that in the past there has
been a strong focus on the design of modelling
languages and their realisation in modelling tools.
What is missing is a holistic view on the concep-
tualisation of modelling methods. This concerns
for example the complex interrelationships be-
tween the tasks originating from a modelling pro-
cedure, how they are supported by using appro-
priate mechanisms and algorithms and how this
influences the design of a modelling language. At
the same time, these interrelationships depend
on the underlying meta modelling platform and
its capabilities in terms of its meta2 model and
the provided platform components.

4 Conceptualisation of Modelling
Methods on ADOxx: Selected
Functionalities

With the foundations presented above we can
now start to investigate how the conceptualisa-
tion of modelling methods is conducted. To start

Enterprise Modelling and Information Systems Architectures
Vol. 8, No. 1, March 2013
On the Conceptualisation of Modelling Methods Using the ADOxx Meta Modelling Platform 11

with, we have identified four possible strategies
for an analysis that take into account the concep-
tualisation base (CB) and the meta2 model (M2M)
of the chosen meta modelling approach.

The conceptualisation base stands for the avail-
able specifications of a modelling method and
typically comes in the form of informal, natural
language descriptions in documents or books,
semi-formal descriptions, e.g., by using any type
of existing modelling language, or formal math-
ematical descriptions. For an analysis, either a
single or multiple conceptualisation bases and/or
meta2 models can be regarded. When combin-
ing these options, the following four strategies
emerge as shown in Tab. 1.

Single M2M Multiple M2M

Single CB Variant Analysis M 2 M Influence
Analysis

Multiple CB
CB Influence

Analysis

Mutual
Influence
Analysis

Table 1: Possible analysis types based on the combin-
ation of conceptualisation bases (CB) and meta meta
models (M2M)

In case of both a single conceptualisation base
and a single meta2 model, we speak of a vari-
ant analysis. This means that different variants
of using one specific conceptualisation base and
one specific meta2 model are analysed. To illus-
trate this with a simple example, we can revert to
the well known description of entity relationship
models as a conceptualisation base (Chen 1976)
and analyse different variants by building upon
on the ADOxx meta2 model. Thereby particular
decisions during the conceptualisation process
become apparent, such as that in one variant also
according transformation algorithms for deriving
relational database schemata have been added,
whereas in another variant only a visual model-
ling editor is provided. This in turn may affect,

how the corresponding meta models are speci-
fied. Whereas for a variant that uses algorithms,
the cardinality assignments have to be expressed
in a machine processable format, e.g., using pre-
defined attribute values, for a variant that focuses
only on a visual modelling editor this informa-
tion may also be specified by free text. If there
is one conceptualisation base and multiple meta2

models, we denote this as ameta2 model influence
analysis. In this case it is analysed, how different
meta2 models influence the conceptualisation of
one specific modelling method. Following the
example from above, we can analyse a conceptu-
alisation of entity relationship models using the
ADOxx meta2 model and one using EMF. This
would permit for example to compare the effort
of using different meta2 models as well as the
properties of the resulting tools. In the third case
there is one meta2 model and multiple conceptu-
alisation bases. This is denoted as a conceptualisa-
tion base influence analysis. In this way the focus
is set on how different conceptualisation bases
are transformed into modelling methods by us-
ing one particular meta2 model. This means that
we compare for example the conceptualisation
of entity relationship models and the conceptu-
alisation of BPMN models by using the ADOxx
meta2 model in both cases. As a a result, we
can compare how the functionalities provided
by ADOxx influence the conceptualisation of dif-
ferent modelling methods. Finally, when there
are multiple conceptualisation bases and multiple
meta2 models, we denote this as mutual influence
analysis. Thereby, varieties of different concep-
tualisation bases and different meta2 models are
analysed. As an example, a conceptualisation of
BPMN models using EMF and a conceptualisa-
tion of ADONIS business process models using
ADOxx could be compared. In this way, insights
on using the resulting tools for a specific pur-
pose, e.g., business process management, may be
gained.

For our investigation we will take the approach
of the conceptualisation base influence analysis.
Therefore we will set the meta2 model to the

Enterprise Modelling and Information Systems Architectures
Vol. 8, No. 1, March 2013

12 Hans-Georg Fill and Dimitris Karagiannis

ADOxx meta2 model and refer to different con-
ceptualisation bases. With this direction, our
goal is to analyse how four functionalities that
are common to the conceptualisation of mod-
elling methods are realised using the ADOxx
approach. These are derived from common re-
quirements concerning enterprise information
systems in terms of user interaction, interfaces
to other systems for integration purposes, op-
timisation and the analysis of systems (cf. Frank
and Strecker 2009). The functionalities we thus
selected are: the visualisation of models for user
interaction aspects, the transformation of mod-
els to specific data formats for interface aspects,
the simulation of process-based structures for op-
timisation aspects, and the querying of model
content for analysis aspects. Next, we chose for
each functionality one modelling method from
the Open Models Initiative that makes particular
use of the functionality, which led to the cases
we will describe in the following.

4.1 Visualisation

The graphical representation of models is obvi-
ously an integral part when dealing with visual
modelling languages. By using the term ’visual-
isation’, we refer to the definition given in (Fill
2009)[p. 19] as "the use of graphical represent-
ations to amplify human cognition". Thereby,
the pragmatic aspect, i.e., the relation between
graphical representations and human interpret-
ers, is stressed which contributes significantly to
the effectiveness of the representations and goes
beyond the purely notational aspects (Gurr 1999).

For investigating the role of visualisation in the
conceptualisation of modelling methods, we can
distinguish between two cases. In the first case,
the conceptualisation base for the modelling
method does not provide any information about
graphical representations. It then becomes the
task of the method engineer to develop an ad-
equate visualisation for the elements of the syn-
tax of the modelling language by taking into ac-
count the assigned semantics. For this purpose
it can be reverted to a number of sources in the

literature that discuss the design of visual lan-
guages (e.g., Costagliola et al. 2002; Marriott and
Meyer 1998) and in particular the construction
of visual notations (e.g., Gabriel and Gluchowski
1998; Moody 2009; Moody et al. 2009). From a
technical perspective also existing repositories
and services of notations or notation fragments
such as provided by the OMI5 can be used (Fill
and Karagiannis 2006).

In the second case, a specific visualisation is
already defined in or directly related to the con-
ceptualisation base. Then the focus lies on the
exact representation of the visualisation by using
the given constructs of the chosen meta2 model.
The degree of freedom for adapting the visual-
isation is in this case rather limited. However,
as we will show, there are some aspects where
the visualisation has to be adapted during the
conceptualisation. This is the case particularly
for dynamic notations as described in Sect 2.1
which are used by many modelling methods but
are typically not part of discussions on notations
as in (Moody 2009).

To show in detail how visualisation functional-
ities are realised in ADOxx we will take up the
example of the iStar (i*) modelling method in
the following (Schwab et al. 2010). Very briefly
described, iStar is a framework that defines two
types of models (Yu et al. 2001): strategic depend-
ency models and strategic rationale models. With
these types of models relationships among actors
and their goals, tasks and resources as well as the
reasoning of each actor about the relationships
with other actors can be represented and ana-
lysed. For the conceptualisation of the modelling
method on ADOxx, the two types of models were
represented as views on the common model type
intentional actors and elements model: the view
strategic rationales and the view strategic depend-
encies – see Fig. 5. The view functionality of the
ADOxx modelling component thus permits to
automatically switch between two different visu-
alisations of one model type. This was possible

5See http://openmodels.at/web/omi/
services

http://openmodels.at/web/omi/services
http://openmodels.at/web/omi/services

Enterprise Modelling and Information Systems Architectures
Vol. 8, No. 1, March 2013
On the Conceptualisation of Modelling Methods Using the ADOxx Meta Modelling Platform 13

Modeltype

Class Relationclass

0..*

1..n

0..*

0..*

Is To-Class

Intentional actor

iSTAR

iStar Modelling
Method

Modelling
Technique

Modelling
Language

Intentional
actors and

elements model

View

0..*

INCL Class
0..*

Type

0..*

0..*

EXCL

0..*
INCL

0..*

0..*
EXCL

0..*

Strategic
Dependencies

Strategic
Rationales

Type: from:all

Type: from:all

_Intentional
element_

Actor

Agent

Role

Position

Goal Softgoal Task Resource Belief

Dependency Link

Association Link

Means-end Link

Decomposition Link

Contribution/
Correlation Link

Is From-Class
Is To-Class

Is From-Class

Is To-Class

Is From-Class

Is From-Class

Is From-Class

Is To-Class

Is To-Class

Is To-Class

EXCL

EXCL

EXCL

Is From-Class

Boundary

0..*

Dependency Strength

Figure 5: Excerpt of the iStar modelling method showing the intentional actors and elements model type, its classes,
relationclasses, and attributes that are relevant for the specification of the visual notation

because the classes and relationclasses that were
required for the two types of models overlap. In
more detail, the strategic dependencies view ex-
cludes the three relationclasses means-end link,
decomposition link, and contribution/correlation
link, whereas the strategic rationales view con-
tains all classes and relationclasses6.

In regard to the visual notation of the classes
and relationclasses, iStar has a very distinct set
of symbols that are common to most literature
sources. Although suggestions have been made
to alter the representation for adding semiotic

6Note: in Fig. 5 abstract classes that can only be instan-
tiated via one of its subclasses are represented by leading
and trailing underscores.

clarity (Moody et al. 2009), it is still the most
used and understandable representation. There-
fore, the GRAPHREP grammar of ADOxx was
used to match the shapes and colours of the
iStar standard symbols for classes as shown in
Fig. 6. Concerning the aspects of dynamic nota-
tion, this standard representation was extended
with control structures to take into account dif-
ferent attribute states. An example of this is
shown in Fig. 7: on the right an excerpt of the
GRAPHREP code for the dependency link rela-
tionclass is given. In this code segment an AVAL
statement retrieves the current value of the at-
tribute dependency strength and assigns it to the
variable ’s’. This variable is then used in an IF-

Enterprise Modelling and Information Systems Architectures
Vol. 8, No. 1, March 2013

14 Hans-Georg Fill and Dimitris Karagiannis

Actor Agent Role

Position Goal Task

Resource Softgoal Belief

Actor A Agent B Role C

Position D Goal 1 Task 2

Resource 3 Softgoal 4 Belief 5

Figure 6: Visual notation for iStar classes

control statement to distingish between the at-
tribute states ’committed’ and ’open’. Accord-
ingly, two different visualisations are shown on
the left, where in the case of the state ’open’ the
letter ’O’ is added at the start of the relation. The
original iStar notation is thus enhanced to im-
prove the user interaction. By using the dynamic
notation attribute states are now directly visible
and do not have to be specifically retrieved.

4.2 Transformation

The transformation of model contents to spe-
cific data formats is often needed to exchange
models between different tools, feed the inform-
ation contained in models to other systems, or
create reports about model contents via docu-
ment formats. As discussed previously, ADOxx
provides a generic, ADOxx meta2 model based
XML import and export that permits to serialise
and deserialise any model that is based on an
ADOxx meta model to a generic XML format.
This format comprises constructs such as in-
stances that correspond to instances of the meta
model classes, connectors that correspond to in-
stances of the meta model relationclasses and
attributes for the instances and connectors.

Although this generic XML format can be easily
transformed to other formats, e.g., as discussed in
the field of business process modelling (Mendling
et al. 2004), or act as a basis for the generation of

document formats such as HTML or DOCX via
XSL formatting objects7, it has to be ensured dur-
ing the conceptualisation of a modelling method
that the information required for generating a
particular format is available in the meta model.
Subsequently, either the import/export compon-
ent can be used for the generic XML and ADL
formats or, in case a specific format should be
generated directly, according customisations of
the transformation via the external coupling com-
ponent have to be implemented to establish a
mapping.

As an example for a modelling method that spe-
cifically focuses on such transformation func-
tionalities, we selected the eduWeaver modelling
method (Bajnai et al. 2005). eduWeaver is a mod-
elling method that originated from an Austrian
research project in the area of e-learning. It sup-
ports the representation of courses, modules, and
lectures in a process-oriented style that is com-
plemented with learning objects – see Fig. 10.
Learning objects stand for any type of teaching
material such as documents or multimedia ob-
jects and contain a reference to the correspond-
ing files. By using this modelling method, teach-
ers can design their courses on a conceptual level,
link them to their teaching material and export
all information in standardised e-learning con-
tent management formats. These formats can
then be imported in an e-learning platform. This
allows the re-use of the course content and struc-
ture for different platforms as well as the easy
re-arrangement of course sections.

Regarding the transformation in the context of
eduWeaver, one export format is the IMS con-
tent packaging format (IMS 2001). This format is
based on the information model shown in Fig. 8
and consists of a package interchange file in zip-
format that contains an XML manifest file and
the physical files for the actual content. For
realising this transformation for the eduWeaver
modelling method, a specific algorithm had to

7See http://www.w3.org/standards/xml/
publishing (accessed 05-11-2012) for further informa-
tion on using XSL formatting objects.

http://www.w3.org/standards/xml/publishing
http://www.w3.org/standards/xml/publishing

Enterprise Modelling and Information Systems Architectures
Vol. 8, No. 1, March 2013
On the Conceptualisation of Modelling Methods Using the ADOxx Meta Modelling Platform 15

GRAPHREP
PEN w:0.05cm color:black bold endcap:round join:round
EDGE start-trans:0.15cm end-trans:0.15cm bridge-

radius: rx:0.27cm ry:0.27cm
END
PEN w:0.08cm color:dodgerblue endcap:round join:round
FILL color:aliceblue
POLYGON 9 x1:-.9cm y1:.2cm x2:-.8cm y2:0.185cm

x3:-.75cm y3:0.155cm x4:-.7cm y4:0.125cm x5:-.65cm
y5:0cm x6:-.7cm y6:-0.125cm x7:-.75cm y7:-0.155cm
x8:-.8cm y8:-0.185cm x9:-.9cm y9:-.2cm

MIDDLE
...
PEN w:0.05cm color:black bold endcap:round join:round

...
AVAL set-default: "committed" s: "Dependency strength"

...
IF (s = "open")
FONT "Arial" bold h:12.0pt
IF (rs = "end point")
END
TEXT "O" x:-0.5cm y:-0.25cm w:c:0.2cm h:c

ELSE
START
TEXT "O" x:-0.5cm y:0.25cm w:c:0.2cm h:c

ENDIF
ENDIF

...

O

Attribute states:
• Dependency

strength:
"committed"

• ...

Attribute states:
• Dependency

strength:
"open"

• ...

Figure 7: GRAPHREP definition for iStar dependency link relationclass

Manifest

Meta-data

Organizations

(sub) Manifest

Resources

PACKAGE

Physical Files
(The actual content,
Media, Assessment,

Collaboration, and other
Files)

Package
Interchange

File

Manifest
File

Figure 8: IMS content packaging scope, source: IMS 2001

be created that accesses the information in the
eduWeaver model types and retrieves in partic-
ular the physical files from the learning object
pool. For this purpose the external coupling com-
ponent of ADOxx was used. This component
supports the use of the ADOxx specific scripting
language ADOscript that permits to access and

process information stored in models. In addi-
tion, it also features a native XML interface for
creating arbitrary XML formats and can be linked
to external programs for influencing their beha-
viour. For eduWeaver, an ADOscript procedure
for creating the IMS manifest was designed and
used in the IMS export algorithm together with
calls to an external zip packaging application for
creating the package interchange file.

In this way the model information necessary for
the IMS manifest file was retrieved. In partic-
ular this concerns the structure of the course,
modules and lectures and the attached learning
objects together with their meta data such as
the assigned keywords. Additionally, the phys-
ical files referenced in the attributes CI resources,
i.e., learning content related information, PI re-
sources, i.e., preparation related information for
exams, and AI resources, i.e., assessment related
information for self-assessments, of the learn-
ing objects were copied to the same directory as
the manifest file and then compressed using the
zip application – see Fig. 9 for an excerpt of the

Enterprise Modelling and Information Systems Architectures
Vol. 8, No. 1, March 2013

16 Hans-Georg Fill and Dimitris Karagiannis

...
write header of xml file
CC "Documentation" XML_WRITEPLAIN
"<?xml version=\"1.0\" encoding=\"iso-
8859-1\"?>\n\n"

write IMSManifest for selected course
CC "AdoScript" MSGWIN "IMS manifest is

created and files are copied. Please
wait..."

WRITE_IMSMANIFEST (kursid)
objid:(kursobjid)

close IMSManifest.xml
CC "Documentation" XML_CLOSE write

zip IMS-directory using fbzip.exe
CC "AdoScript" MSGWIN "IMS directory is

compressed. Please wait…"
SET zipcmd:("zip\\fbzip.exe -a -p -r

\""+path+"\\"+rootname+".zip\“
\""+imsroot+"\"")

SET zipcmd:(replall (zipcmd, "\\\\",
"\\"))

...

Figure 9: Excerpt of the eduWeaver IMS export al-
gorithm in ADOscript

algorithm in ADOscript.

4.3 Simulation

In the course of the optimisation of enterprise in-
formation systems, the simulation of prospective
structures for an a-priori evaluation of their per-
formance is a well recognised technique (Mielke
1999). The provision of models is thereby the first
step to successfully study not only the structural
system aspects but also the dynamic behaviour of
the systems and their interaction with the envir-
onment (Oberweis and Sander 1996). In the field
of business process management, simulation has
not only been used to analyse and enhance the
efficiency of processes but also to assess quanti-
tative requirements in terms of human and ma-
terial resources. For the simulation of business
processes by a process simulation engine, it is
necessary to supply additional data besides the
purely structural description of the processes.
This concerns descriptions of the flow semantics
of the underlying process modelling language as
well as detailed information on simulation par-
ameters such as process quantities and time and

transition probability properties. Depending on
the type of simulation even more data may have
to be added, e.g., when conducting simulations
for planning and scheduling personnel capacities
or dynamic evaluations of the workload of an or-
ganisation (Herbst et al. 1997). The acquisition of
such simulation data can thereby either be added
to existing models or the models themselves may
be acquired through workflow mining and ma-
chine learning techniques as it has been initially
described by Herbst and Karagiannis (Herbst and
Karagiannis 1998).

The simulation component of the ADOxx plat-
form contains four simulation algorithms that
range from simple path analyses of business pro-
cess models to complex process and organisa-
tional evaluations based on queuing networks
(Herbst et al. 1997; Kühn and Junginger 1999)8.
They are based on object-oriented discrete-event
simulation, whose flow semantics can be de-
scribed using labelled Petri nets (Herbst 2001).
The algorithms are specified in the form of hybrid
algorithms that can be applied to arbitrary types
of process modelling languages. The links be-
tween the algorithms and the modelling language
are established by sub-typing abstract classes of
the ADOxx Meta Model that has been discussed
in Sect 2.2. In this way the information from the
pre-defined simulation classes is made available
in the classes of the user-defined meta model.
The simulation algorithms can then retrieve this
information and execute the models.

In the past, the ADOxx simulation algorithms
have been applied to several process modelling
languages including UML activity diagrams (Kühn
and Junginger 1999) and most recently BPMN 2.0
in the Adonis CE edition9, too. Due to the re-
quirement of sub-typing specific classes of the
ADOxx Meta Model to enable the application of

8A detailed discussion of these algorithms can be found
in the user manual of ADONIS as the predecessor of AD-
Oxx (BOC GmbH 1999, pages 309ff.)

9Adonis is a commercial product and trademark of BOC
AG. The free community edition is available at http://
www.adonis-community.com/.

http://www.adonis-community.com/
http://www.adonis-community.com/

Enterprise Modelling and Information Systems Architectures
Vol. 8, No. 1, March 2013
On the Conceptualisation of Modelling Methods Using the ADOxx Meta Modelling Platform 17

Modeltype

Class Relationclass

0..*
1..n

0..*

0..*

Attribute

Level 1 - Course
Map

Level 2 -
Modules

Level 3 -
Lectures

Level 4 -
Learning
Objects

Learning object
pool

eduWeaver IMS-
Export

Mechanisms
and Algorithms

Specific
Mechanisms

and Algorithms

eduWeaver
WebCT Export

Generic
Mechanisms

and Algorithms

XML Import and
Export

Course
(eduWeaver)

Referenced
Module_WEAVERElement_

Pathfinder

Start
(eduWeaver)

Decision
(eduWeaver)

Parallelity
(eduWeaver)

Join
(eduWeaver)

End
(eduWeaver)

Module
(eduWeaver)

Referenced
Lecture

Lecture
(eduWeaver) Referenced

Learning
Objects

Subsequent_D_variable_assignment_
object_

LOV
(eduWeaver) Referenced

Learning
Object

LO
(eduWeaver)

Is To-Class

Is From-Class

CI Resources PI Resources AI Resources

Keyword 1..5

eduWeaver
Modelling

Method

Modelling
Technique

Modelling
Language

Modelling
Procedure

eduWeaver Top-down Modelling Procedure

eduWeaver Bottom-up Modelling Procedure

eduWeaver Re-use Modelling Procedure

Figure 10: Excerpt of the eduWeaver modelling method showing the model types, classes, relationclasses, and attributes
that are relevant for the IMS export algorithm

the simulation algorithms, it already has to be
decided when designing a modelling method, if
any of the algorithms should be used later.

To illustrate these aspects we have selected the
BPMS modelling method and the application of
the path analysis simulation algorithm. BPMS
is the modelling method underlying the Adonis
business process management toolkit and has a
long history of successful applications in busi-
ness and research projects (Junginger et al. 2000).
The excerpt of the modelling method that high-
lights the corresponding definitions is shown in
Fig. 11. On the right hand side the path analysis
simulation algorithm is defined as a sub-type of
hybrid mechanisms and algorithms. The result
of this type of simulation algorithm is detailed
information about the average time and cost of a
business process including the frequency of oc-

currence of the single paths. For this purpose
the algorithm requires as input a process struc-
ture based on the abstract classes shown on the
left hand side of Fig. 11. Thus, the elements of
the model type business process model ’Trigger’,
’Process start’, ’Subprocess’, ’Activity’, ’Decision’,
’Parallelity’, ’Merging’, and ’End’ are defined
as sub-classes of the abstract classes ’_Neutral
element_(Metamodel)’, ’_Process start_(Metamo-
del)’, ’_Subprocess_(Metamodel)’, ’_Activity_(Me-
tamodel)’, ’_Decision_(Metamodel)’, ’_Merg-
ing_(Metamodel)’, and ’_End_(Metamodel)’.
Through this sub-typing they are assigned the
flow semantics attached to the abstract classes.
For example, the abstract class ’_Decision_(Meta-
model)’ implies that it has to be chosen from any
outgoing flows of this element exclusively, i.e.,
in the sense of an exclusive disjunction or XOR

Enterprise Modelling and Information Systems Architectures
Vol. 8, No. 1, March 2013

18 Hans-Georg Fill and Dimitris Karagiannis

operator. Similarly, the abstract class ’_Subproc-
ess_(Metamodel)’ enables a hierarchical decom-
position of process models and the re-use of pro-
cess fragments. In the same way also attributes
that are attached to the abstract classes are made
available in their subclasses10. For example the
abstract class ’_Activity_(Metamodel)’ provides
a number of time related attributes such as ’Ex-
ecution time’, ’Waiting time’, ’Resting time’ and
’Transport time’ that are also required by the path
analysis algorithm.

To define the flow between process elements, two
more aspects need to be taken into account. The
first is the definition of transition conditions for
exclusive paths and the second is the attachment
of stochastic distributions to the variables used
in the transition conditions. For the transition
conditions, the ADOxx Meta Model provides the
relationclass ’Subsequent’ together with an ac-
cording attribute. The value of this attribute has
to conform to a particular expression grammar
that permits to reference the state of variables.
These variables are defined using subclasses of
the abstract classes ’_Variable_(Metamodel)’ and
’_Random generator_(Metamodel)’. Random gen-
erators define the stochastic distributions of the
variables and are linked to the variable classes
using the ’Sets Variable’ relationclass and to the
elements in the process flow using the ’Sets’ rela-
tionclass, which are also both part of the ADOxx
Meta Model. With all these definitions in place,
the path analysis algorithm can then successfully
retrieve the information on the process structure
and its attributes that now corresponds to the
requirements of the flow semantics11.

4.4 Querying

One important function of enterprise inform-
ation systems is their support for analyses of
business operations. These can be conducted
on any level, ranging from strategic decisions,

10Note: The attributes of the abstract classes are not
shown in Fig. 11 due to space limitations.

11For the details on the working of the algorithm we refer
the interested reader again to (BOC GmbH 1999).

the design and re-engineering of business pro-
cesses and organisational structures, the alloca-
tion of resources, to the execution of workflows
and the evaluation of performance (Karagiannis
1995). To successfully support decision makers,
the data for such analyses may also need to be
aggregated for specific scenarios, e.g., as it is typ-
ically addressed by systems such as data ware-
houses or online analytical processing. With
the enormous amounts of models that are today
maintained in the repositories of some large or-
ganisations (Rosemann 2006), similar concepts
are also required for enterprise models. In partic-
ular, the combination of models that are gener-
ated automatically based on existing data, e.g., in
the area of IT infrastructure management (Moser
and Bayer 2005), and models that are manually
created for the explication of knowledge, requires
sophisticated analysis mechanisms. The basis
for such analyses are query languages that per-
mit the formulation of complex data retrieval
operations in an intuitive way, which abstracts
from the underlying technical implementation.
For this purpose the analysis component of the
ADOxx platform provides the AQL query lan-
guage that allows to formulate queries on models
in a style similar to SQL12. The AQL queries can
either be entered manually by a user or can be
pre-defined. In the first case ADOxx provides a
dialogue-based assistant for composing the quer-
ies, whereas in the latter case the method engin-
eer defines the queries together with a query-
specific user interface for entering variables. The
advantage of such pre-defined queries is that the
user who wishes to execute a pre-defined query
only has to fill in values in text fields or select
from pre-defined values and does not need to
know about the actual composition of AQL quer-
ies. During the conceptualisation of a model-
ling method that requires the use of queries, e.g.,
for certain steps in the modelling procedure, the
method engineer thus has to provide this inform-
ation.

12For the details of the AQL language including its gram-
mar we refer to (BOC GmbH 1999, pages 695ff.).

Enterprise Modelling and Information Systems Architectures
Vol. 8, No. 1, March 2013
On the Conceptualisation of Modelling Methods Using the ADOxx Meta Modelling Platform 19

Modeltype

Class Relationclass

0..*

1..n

0..*

0..*Is To-Class

Mechanisms
and Algorithms

Hybrid
Mechanisms

and Algorithms
_BP-

event_(Metamodel)

_Variable assignment
object_(Metamodel)

Subsequent_BP-
construct_(Metamodel)

Is To-Class

 BPMS
Modelling

Method

Modelling
Technique

Modelling
Language

Company Map

Business
Process Model

Working
Environment

Model

Document
Model

Control Pool

Risk Pool

Product Model

Data Model

Resource Model

Business
process

diagram (BPMN)

IT System Model

Use Case
Diagram

_Neutral
element_(Metamodel)

Trigger

_Process
start_(Metamodel)

Process start

Subprocess(Metamodel)

Activity(Metamodel)

Decision(Metamodel)

Parallelity(Metamodel)

Merging(Metamodel)

End(Metamodel)

Subprocess

Activity

Decision

Parallelity

Merging

End

Variable(Metamodel)

Variable

_Random
generator_(Metamodel)

Random
generator

Is From-Class

Sets Variable

Sets

Is From-Class

Is To-Class

Is From-Class

Is To-Class

Path Analysis
Simulation
Algorithm

Transition
Condition

Is From-Class

Figure 11: Excerpt of the BPMS modelling method showing the model types, the classes and relationclasses of the
business process model type and how they are derived from the abstract classes of the ADOxx meta model that are
targeted by the path analysis simulation algorithm

Enterprise Modelling and Information Systems Architectures
Vol. 8, No. 1, March 2013

20 Hans-Georg Fill and Dimitris Karagiannis

Strategy Organisation

Software and Data IT Infrastructure

Cross-cutting Issues

Modeltype

Class Relationclass

0..*

1..n 0..*

0..*
Is subclass of

Business
Network Model

Business
Partner

Interaction
Model

Configurator

KPI Model /
Target System

Business
Process

Landscape

Information
Model

Information
Landscape

Application Pool

Application
Landscape

Products Pool

Reusable
Software

Components
Pool

System
Software Pool

Data Model

Software
Landscape

Environment
Model

Server Model

Project
Landscape

Graphical
Analysis

Organizational
Structure Model

Type Model

Mechanisms
and Algorithms

Hybrid
Mechanisms

and Algorithms

Meta^2 based
Queries

Pre-defined
Analysis Query 1

Graphical
Analysis 1

Specific
Mechanisms

and Algorithms

Graphical
Analysis ...

Pre-defined
Analysis Query

...

Pre-defined
Analysis Query

54

Graphical
Analysis 13

BEN
Modelling

Method

Modelling
Technique

Modelling
Language

Figure 12: Excerpt of the BEN modelling method showing only the model types and the hierarchy of mechanisms and
algorithms

For illustrating these aspects we will revert in the
following to the Business Engineering Navigator
(BEN) modelling method (Aier et al. 2009). BEN
is based upon the concepts of business engineer-
ing that focuses on the model-based conceptu-
alisation, design, and implementation of trans-
formations in businesses (Winter 2001). Thereby,
BEN puts special emphasis on the domain of
enterprise architecture management (EAM) to
achieve a holistic business-to-IT transformation
approach. By using the BEN method, the rela-
tionships between a company’s strategy, organ-
isation, software and data, and its IT infrastruc-
ture can be represented and analysed. This is
also reflected by the model types used in BEN
as shown in Fig. 12. For the representation of
cross-cutting issues additional model types are
defined to enable functionalities such as specific
graphical analyses. To support the analysis of
complex business-IT relationships, BEN provides
a set of 13 specific algorithms for conducting
graphical analyses and 54 pre-defined analysis

queries. To show in detail how these queries are
specified, we will use the following query as an
example: "Show all servers that have a specific
type of system software at a specific patch level
installed". As a result we would like to retrieve
the server attributes such as its ID, name, and
description. The model types affected by this
query are the system software pool and the server
model in the context of IT infrastructure, with
the server model being the primary model type.
When accessing the pre-defined query, a user
should have the option to select the specific type
of system software in the form of a selection box
that contains all instances of a system software.
In addition, a user should be able to select from
the available patch levels. To define an according
user interface, the definitions shown in the upper
part of Fig. 13 have to be given. The attribute
value field and the edit field are thereby assigned
the references ’@R@@2@’ and ’@R@@4@’. By
referring to these references, the AQL query can
be formulated subsequently, together with the

Enterprise Modelling and Information Systems Architectures
Vol. 8, No. 1, March 2013
On the Conceptualisation of Modelling Methods Using the ADOxx Meta Modelling Platform 21

(((<"System Software Component">
[? "Name" = " @R@@2@ "]) <--
>"Physical Server"<)[?"Installed
System Software"][?"Patch-Level"
like " @R@@4@ "])
OR
...

Show all Servers that have System Software

at Patch Level

installed.

Attribute value field
Class: System Software Component
Attribute: Name
Field Length: 150

Edit field
Input type:String
Field length: 70
Default value:Q

ue
ry

 U
se

r I
nt

er
fa

ce
 D

ef
in

iti
on

AQ
L

Q
ue

ry

D
ef

in
iti

on

@R@@2@

@R@@4@

R
es

ul
t A

ttr
ib

ut
es

Server Model
Virtual Server
+ ID
+ Name
+ Synonyms
+ Description

...

Figure 13: Excerpt of the conception of a pre-defined
analysis query

required result attributes. When a user accesses
this pre-defined query, at first a server model has
to be selected. Next, a selection box for all types
of system software component elements that are
referenced by this server model are shown. After
the selection of one or more system software
components the available patch levels for these
components are shown, again as a selection box.
Finally, the result of the query is presented in a
table.

5 Discussion

For the analysis of the conceptualisation of mod-
elling methods we have presented four cases that
illustrate the use of components of the ADOxx
platform. It could be shown how user interaction

aspects are considered for the definition of visu-
alisations with a given graphical notation; how
interface aspects to other systems have to be
taken into account for designing transformation
algorithms based on model data; how the require-
ment of using process-based simulation function-
alities affects the way of designing meta model
classes and relationclasses; and finally how com-
plex querying functionalities that are required
for modelling procedures can be realised in a
user-friendly way by pre-defined queries.

With these selected examples it can already be
derived, how the interdependencies between: a.
the constructs of a modelling language, b. the
requirements of the modelling procedure, c. the
capabilities and requirements of mechanisms and
algorithms and d. the components of the under-
lying technical platform have to be taken into ac-
count simultaneously during the design of a mod-
elling method. Thereby, a particularly important
relation are the interdependencies between a.,
c., and d., i.e., when mechanisms and algorithms
are required for a modelling method. Although
for many cases it may also be sufficient to defer
the design of algorithms to a later stage during
the conceptualisation, the application of complex
processing functionalities, such as simulation al-
gorithms, can not be easily separated from the
design of the modelling language due to very
specific data requirements. This also applies in
part to the use of querying functionalities, whose
optimal configuration depends on the constructs
available in the modelling language. In regard
to the provision of specific interchange formats
for transferring the content of models to external
applications and platforms, the easiest way to in-
tegrate this functionality in a modelling method
is to build upon the generic import and export
component. By mapping and transforming the
thus retrieved generic data structures to the re-
quired formats, it can also be reacted quickly to
potential changes in the target formats. However,
when either from the side of the user interaction
or due to the complexity of the target format
this procedure is not sufficient – as it was, e.g.,

Enterprise Modelling and Information Systems Architectures
Vol. 8, No. 1, March 2013

22 Hans-Georg Fill and Dimitris Karagiannis

the case for the eduWeaver modelling method
that required also physical files to be included
in a .zip archive – a specific external coupling
needs to be established for such purposes. Al-
though the visualisation aspects concerning the
graphical representation of the classes and rela-
tionclasses could be treated independently in the
case shown for iStar, this may not be true for
other cases. For example, the graphical analysis
algorithms of the BEN modelling method even
require the definition of a distinct model type to
realise more complex visualisation requirements.
Additionally, also the optimal support of a model-
ling procedure may lead to further requirements
in terms of dynamic notations, e.g., to enable the
visual checking of constraints.

6 Conclusion and Outlook

The chosen type of the conceptualisation base
influence analysis proved to be a suitable way
for gaining insights into the conceptualisation of
modelling methods. Based on the components of
the ADOxx meta modelling platform it was pos-
sible to investigate how visualisation, transform-
ation, simulation, and querying functionalities
are realised and how they impact the design of
a modelling method. For the future it is planned
to extend this investigation to more function-
alities, e.g., specific mechanisms for supporting
modelling procedures, constraint checking facil-
ities, the integration of web-based and semantic
technologies or the bi-directional communication
with external systems. Furthermore, a future task
will be to support the conceptualisation of mod-
elling methods in a way that it can be handled
also by domain experts with no or little tech-
nical knowledge. This concerns in particular the
composition of fragments of existing modelling
methods in the sense of hybrid modelling (Karagi-
annis 2012) and method integration (Kühn 2004).
Thereby, for example, a part of a meta model and
an algorithm from a method A shall be combined
with another meta model and algorithms from
a method B. Although these compositions can
be fully realised from a technical point of view,

it still requires in-depth technical knowledge to
conduct these alignments. Therefore, further re-
search is needed to abstract from the technical
details while as the same time enabling the full
functionality for composing modelling methods.
Additionally, also the specification of visualisa-
tions for modelling methods can be further sim-
plified. Possible approaches in this direction are
the re-use of existing visualisation patterns, e.g.,
as proposed in the context of semantic visualisa-
tion (Fill 2009), or the use of notation repositories
as had been discussed in Sect 4.1.

Acknowledgement

The authors would like to thank Harald Kühn for
his valuable feedback during the preparation of
this article.

References

Aier S., Kurpjuweit S., Saat J., Winter R. (2009)
Business Engineering Navigator – A Business
to IT Approach to Enterprise Architecture
Management In: Coherency Management –
Architecting the Enterprise for Alignment,
Agility, and Assurance Bernard S., Doucet G.,
Gotze J., Saha P. (eds.) Bloomington, pp. 77–
98

Amelunxen C., Koenigs A., Roetschke T.,
Schuerr A. (2007) Metamodeling with MO-
FLON. In: AGTIVE 2007. Springer

Aniszczyk C. (2006) Learn Eclipse GMF in 15
minutes - Get started with model-driven
development the Eclipse way. Last Access:
http : / / www. ibm . com / developerworks /
opensource/library/os-ecl-gmf/ accessed 07-
11-2012

BOC GmbH (1999) ADONIS Version 3.0 Band II
- Benutzerhandbuch (English: ADONIS Ver-
sion 3.0 Volume II - User Handbook). BOC
GmbH

Bajnai J., Karagiannis D., Steinberger C. (2005)
eduWeaver – the Courseware Modeling Tool.
In: Akoka, J. et al. (ed.) Perspectives in
Conceptual Modeling, ER 2005 Workshops.
Springer

http://www.ibm.com/developerworks/opensource/library/os-ecl-gmf/
http://www.ibm.com/developerworks/opensource/library/os-ecl-gmf/

Enterprise Modelling and Information Systems Architectures
Vol. 8, No. 1, March 2013
On the Conceptualisation of Modelling Methods Using the ADOxx Meta Modelling Platform 23

Brinkkemper S., Saeki M., Harmsen F. (1999)
Meta-modelling based assembly techniques
for situational method engineering. In: In-
formation Systems 24(3), pp. 209–228

Case A. (1985) Computer-aided software engi-
neering (CASE): Technology for improving
software development productivity. In: Data
Base (Fall 1985), pp. 35–43

Chen P. P.-S. (1976) The Entity-Relationship
Model-Toward a Unified View of Data. In:
ACM Transactions on Database Systems 1(1),
pp. 9–36

Costagliola G., Delucia A., Orefice S., Polese G.
(2002) A Classification Framework to Support
the Design of Visual Languages. In: Journal of
Visual Languages and Computing 13, pp. 573–
600

Emerson M., Sztipanovits J. (2006) Techniques
for Metamodel Composition. In: OOPSLA –
6th Workshop on Domain Specific Modeling,
pp. 123–139

Fill H.-G. (2009) Visualisation for Semantic In-
formation Systems. Gabler

Fill H.-G., Karagiannis D. (2006) Semantic Visu-
alization for Business Process Models In:
Twelth International Conference on Distrib-
uted Multimedia Systems – International
Workshop on Visual Languages and Comput-
ing 2006 Knowledge Systems Institute, Grand
Canyon, USA, pp. 168–173

Fill H.-G., Redmond T., Karagiannis D. (2012)
FDMM: A Formalism for Describing ADOxx
Meta Models and Models In: Proceedings of
ICEIS 2012 - 14th International Conference
on Enterprise Information Systems, Wroclaw,
Poland Maciaszek L., Cuzzocrea A., Cordeiro
J. (eds.)

Frank U. (2011) Some Guidelines for the Con-
ception of Domain-Specific Modelling Lan-
guages. In: Nüttgens M., Thomas O., Weber B.
(eds.) EMISA 2011 Vol. P-190. GI, pp. 93–106

Frank U., Strecker S. (2009) Beyond ERP Sys-
tems:An Outline of Self-Referential Enter-
prise Systems. In: ICB-Research Report – Uni-
versität Duisburg Essen 31

Gabriel R., Gluchowski P. (1998) Grafische Nota-

tionen für die semantische Modellierung
multidimensionaler Datenstrukturen in Man-
agement Support Systemen (German). In:
Wirtschaftsinformatik 40(6), pp. 493–502

Gurr C. (1999) Effective Diagrammatic Commu-
nication: Syntactic, Semantic and Pragmatic
Issues. In: Journal of Visual Languages and
Computing 10, pp. 317–342

Harel D., Rumpe B. (2000) Modeling Languages:
Syntax, Semantics and All That Stuff – Part
I: The Basic Stuff. MCS00-16. The Weizmann
Institute of Science

Harel D., Rumpe B. (2004) Meaningful Modeling:
What’s the Semantics of Semantics? In: IEEE
Computer October 2004, pp. 64–72

Harmsen F., Saeki M. (1996) Comparison of four
Method Engineering languages In: Method
Engineering: Principles of method construc-
tion and tool support Brinkkemper S., Lyyt-
inen K., Welke R. (eds.) Chapman and Hall,
pp. 209–231

Herbst J. (2001) Ein induktiver Ansatz zur
Akquisition und Adaption von Workflow-
Modellen (German). PhD thesis

Herbst J., Karagiannis D. (1998) Integrating Ma-
chine Learning and Workflow Management
to Support Acquisition and Adaptation of
Workflow Models. In: Proceedings of the 9th
International Workshop on Database and Ex-
pert Systems Applications. IEEE, pp. 745–752

Herbst J., Junginger S., Kühn H. (1997) Simula-
tion in Financial Services with the Business
Process Management System ADONIS In:
9th European Simulation Symposium (ESS97)
Society for Computer Simulation

IMS G. (2001) IMS Content Packaging Informa-
tion Model – Version 1.1.2 Final Specifica-
tion. Last Access: http : / /www. imsglobal .
org/content/packaging/cpv1p1p2/ imscp_
infov1p1p2.html, 27-05-2012

Junginger S., Kühn H., Strobl R., Karagiannis D.
(2000) Ein Geschäftsprozessmanagement-
Werkzeug der nächsten Generation –
ADONIS: Konzeption und Anwendungen
(German). In: Wirtschaftsinformatik 42(5),
pp. 392–401

http://www.imsglobal.org/content/packaging/cpv1p1p2/imscp_infov1p1p2.html
http://www.imsglobal.org/content/packaging/cpv1p1p2/imscp_infov1p1p2.html
http://www.imsglobal.org/content/packaging/cpv1p1p2/imscp_infov1p1p2.html

Enterprise Modelling and Information Systems Architectures
Vol. 8, No. 1, March 2013

24 Hans-Georg Fill and Dimitris Karagiannis

Karagiannis D. (1995) BPMS: Business Process
Management Systems. In: SIGOIS Bulletin
16(1), pp. 10–13

Karagiannis D. (2012) Modelling Aspects for
Next-Generation Enterprise Systems. FInES
Workshop at Aalborg - May 9, 2012. Last Ac-
cess: http://de.slideshare.net/FInESCluster/
p3-2dimitris-karagiannisv2 accessed 12-11-
2012

Karagiannis D., Kühn H. (2002) Metamodeling
Platforms In: 3rd International Conference
EC-Web 2002 – Dexa 2002 Bauknecht K.,
Min Tjoa A., Quirchmayr G. (eds.) LNCS2455
Springer, Aix-en-Provence, France, p. 182

Karagiannis D., Grossmann W., Höfferer P.
(2008) Open Model Initiative – A Feasib-
ility Study. Last Access: http : / / cms . dke .
univie.ac.at/uploads/media/Open_Models_
Feasibility_Study_SEPT_2008.pdf

Kelly S., Rossi M., Tolvanen J.-P. (2005) What is
Needed in a MetaCASE Environment? In: En-
terprise Modelling and Information Systems
Architecture 1(1), pp. 25–35

Kern H., Hummel A., Kuehne S. (2011) Towards
a Comparative Analysis of Meta-Metamodels.
In: The 11th Workshop on Domain-Specific
Modeling. http://www.dsmforum.org/events/
DSM11/Papers/kern.pdf 05-01-2012

Koch S., Strecker S., Frank U. (2006) Concep-
tual Modelling as a New Entry in the Bazaar:
The Open Model Approach In: Open Source
Systems Vol. 203/2006 IFIP International Fed-
eration for Information Processing, pp. 9–20

Kolovos D. S., Rose L. M., Paige R., Polack F.
(2009) Raising the Level of Abstraction in the
Development of GMF-based Graphical Model
Editors. In: MiSE’09. IEEE, pp. 13–19

Kühn H., Junginger S. (1999) An Approach to
use UML for Business Process Modeling and
Simulation in ADONIS In: 13th European
Simulation Multiconference – Modeling and
Simulation: A Tool for the Next Millenium
Szczerbicka H. (ed.) Warsaw, Poland, pp. 634–
639

Kurpjuweit S., Winter R. (2007) Viewpoint-
based Meta Model Engineering. In: Reich-

ert M., Strecker S., Turowski K. (eds.) 2nd
International Workshop on Enterprise Mod-
elling and Information Systems Architectures.
Gesellschaft für Informatik

Kühn H. (2004) Methodenintegration im Busi-
ness Engineering (English: Method Integra-
tion in Business Engineering). PhD thesis

Ledeczi A., Maroti M., Bakay A., Karsai G., Gar-
rett J., Thomason C., Nordstrom G., Sprinkle
J., Volgyesi P. (2001) The Generic Modeling
Environment. In: WISP’2001. IEEE

List B., Korherr B. (2006) An Evaluation of
Conceptual Business Process Modelling Lan-
guages. In: SAC’06. ACM

Marriott K., Meyer B. (1998) Visual language
theory. Springer, New York

McNeill K. (2008) Metamodeling with EMF:
Generating concrete, reusable Java snip-
pets. Last Access: http : / / www . ibm .
com / developerworks / library / os - eclipse -
emfmetamodel / index . html ? S _ TACT =
105AGX44&S_CMP=EDU

Mendling J., Neumann G., Nüttgens M. (2004) A
Comparison of XML Interchange Formats for
Business Process Modelling. In: EMISA 2004.
German Informatics Society, pp. 129–140

Mernik M., Heering J., Sloane A. (2005) When
and how to develop domain-specific lan-
guages. In: ACM Computing Surveys 37(4),
pp. 316–344

Mielke R. (1999) Applications for Enterprise Sim-
ulation. In: Farrington P., Nembhard H., Stur-
rock D., Evans G. (eds.) Winter Simulation
Conference. IEEE

Moody D. (2009) The "Physics" of Notations:
Toward a Scientific Basis for Constructing
Visual Notations in Software Engineering. In:
IEEE Transactions on Software Engineering
35(6), pp. 765ff

Moody D., Heymans P., Matulevicius R. (2009)
Improving the Effectiveness of Visual Rep-
resentations in Requirements Engineering:
An Evaluation of i* Visual Syntax. In: 17th
IEEE International Requirements Engineer-
ing Conference. IEEE, pp. 171–180

Moser C., Bayer F. (2005) IT Architecture Man-

http://de.slideshare.net/FInESCluster/p3-2dimitris-karagiannisv2
http://de.slideshare.net/FInESCluster/p3-2dimitris-karagiannisv2
http://cms.dke.univie.ac.at/uploads/media/Open_Models_Feasibility_Study_SEPT_2008.pdf
http://cms.dke.univie.ac.at/uploads/media/Open_Models_Feasibility_Study_SEPT_2008.pdf
http://cms.dke.univie.ac.at/uploads/media/Open_Models_Feasibility_Study_SEPT_2008.pdf
http://www.dsmforum.org/events/DSM11/Papers/kern.pdf
http://www.dsmforum.org/events/DSM11/Papers/kern.pdf
http://www.ibm.com/developerworks/library/os-eclipse-emfmetamodel/index.html?S_TACT=105AGX44&S_CMP=EDU
http://www.ibm.com/developerworks/library/os-eclipse-emfmetamodel/index.html?S_TACT=105AGX44&S_CMP=EDU
http://www.ibm.com/developerworks/library/os-eclipse-emfmetamodel/index.html?S_TACT=105AGX44&S_CMP=EDU
http://www.ibm.com/developerworks/library/os-eclipse-emfmetamodel/index.html?S_TACT=105AGX44&S_CMP=EDU

Enterprise Modelling and Information Systems Architectures
Vol. 8, No. 1, March 2013
On the Conceptualisation of Modelling Methods Using the ADOxx Meta Modelling Platform 25

agement: A Framework for IT Services In:
Proceedings of the Workshop on Enterprise
Modelling and Information Systems Architec-
tures Desel J., Frank U. (eds.) Lecture Notes
in Informatics – Gesellschaft für Informatik
(GI), Klagenfurt, Austria

Oberweis A., Sander P. (1996) Information sys-
tem behavior specification by high level Petri
nets. In: ACM Transactions on Information
Systems 14(4), pp. 380–420

Object Management Group OMG (2007) OMG
Unified Modeling Language (OMG UML), In-
frastructure, V2.1.2. Last Access: http://www.
omg.org/spec/UML/2.1.2/Infrastructure/
PDF/ 01-03-2011

Object Management Group OMG (2011a) Busi-
ness Process Model and Notation (BPMN)
Version 2.0. Last Access: http://www.omg.
org/spec/BPMN/2.0/PDF/ 01-03-2011

Object Management Group OMG (2011b)
OMG Meta Object Facility (MOF) Core
Specification Version 2.4.1. Last Access:
http://www.omg.org/spec/MOF/2.4.1/PDF/

Odell J. (1996) A Primer to Method Engineer-
ing In: Method Engineering – Principles of
method construction and support Brinkkem-
per S., Lyytinen K., Welke R. (eds.) Chapman
and Hall, pp. 1–28

Paige R., Ostroff J., Brooke P. (2000) Principles
for Modeling Language Design. In: Informa-
tion and Software Technology 42(10), pp. 665–
675

Ronaghi F. (2005) A Modeling Method for In-
tegrated Performance Management. In: 16th
International Workshop on Database and Ex-
pert Systems Applications (DEXA’05). IEEE,
pp. 972–976

Rosemann M. (2006) Potential pitfalls of pro-
cess modeling: part B. In: Business Process
Management Journal 12(3), pp. 377–384

Rossi M., Ramesh B., Lyytinen K., Tolvanen J.-P.
(2004) Managing Evolutionary Method Engi-
neering by Method Rationale. In: Journal of
the AIS 5(9), pp. 356–391

Schwab M., Karagiannis D., Bergmayr A. (2010)
i* on ADOxx(R): A Case Study. In: Proceed-

ings of the 4th International i* Workshop
– iStar10 – CAiSE Workshop Proceedings.
Springer, pp. 92–97

Sprinkle J., Rumpe B., Vangheluwe H., Karsai G.
(2010) Metamodelling – State of the Art and
Research Challenges In: MBEERTS Giese, H.
et al. (ed.) Vol. LNCS 6100 Springer, pp. 57–76

Tolvanen J.-P., Rossi M. (2003) MetaEdit+: defin-
ing and using domain-specific modeling lan-
guages and code generators. In: OOPSLA’03
Companion of the 18th annual ACM SIG-
PLAN conference. ACM, pp. 92–93

Winter R. (2001) Working for e-Business – The
Business Engineering Approach. In: Inter-
national Journal of Business Studies 9(1),
pp. 101–117

Xu T., Ma W., Liu L., Karagiannis D. (2010) Hy-
brid Modeling: Synthesizing Strategic Model
and Business Processes in Active i*. In: Inter-
national Enterprise Distributed Object Com-
puting Conference Workshops. IEEE, pp. 345–
354

Yu E., Liu L., Li Y. (2001) Modelling Strategic
Actor Relationships to Support Intellectual
Property Management. In: Conceptual Mod-
eling – ER 2001. Springer

Hans-Georg Fill, Dimitris Karagiannis

University of Vienna,
Research Group Knowledge Engineering,
Währinger Strasse 29
1090 Vienna
Austria
{hgf | dk}@dke.univie.ac.at

http://www.omg.org/spec/UML/2.1.2/Infrastructure/PDF/
http://www.omg.org/spec/UML/2.1.2/Infrastructure/PDF/
http://www.omg.org/spec/UML/2.1.2/Infrastructure/PDF/
http://www.omg.org/spec/BPMN/2.0/PDF/
http://www.omg.org/spec/BPMN/2.0/PDF/

