
Derivation of Domain-specific Architectural Knowledge
Views from Governance and Security Compliance Metadata

Huy Tran, Ioanna Lytra, Uwe Zdun
Software Architecture Research Group

University of Vienna, Austria
E-Mail: firstname.lastname@univie.ac.at

ABSTRACT
In the area of software architecture, in recent years, model-
ing design decisions is becoming more and more popular as a
means to record architectural knowledge (AK) and capture
the rationale of a design. Unfortunately, decision modeling
is rather time-consuming and hence often forgotten in prac-
tice. In this paper, we propose that this problem can be
avoided by utilizing domain-specific information that con-
tains AK. We focus on domain-specific AK in the domain of
business governance and security compliance. A novel ap-
proach is presented for recording the compliance concerns
and extracting the corresponding AK. For this purpose we
introduce a compliance meta-model and propose a mapping
to the AK. Model-driven techniques are used as a supporting
tool for generating AK documentation.

Categories and Subject Descriptors
D.2.11 [Software Engineering]: Software Architectures—
domain-specific architectural knowledge, decision vaporiza-
tion, architectural view

Keywords
domain-specific; architectural knowledge; architectural de-
sign decision, view; compliance; process-driven SOA

1. INTRODUCTION
In recent years, software architecture is less and less seen

as only the components and connectors constituting a sys-
tem’s principal design, and more and more as a set of princi-
pal design decisions governing a system [14, 8]. In this con-
text, the idea to gather the Architectural Knowledge (AK)
about a software system gets into the focus of the software
architecture community. An important idea in this context
is to not only document the components and connectors,
but also the design rationale of the architecture. Hence, in

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SAC’13 March 18-22, 2013, Coimbra, Portugal.
Copyright 2013 ACM 978-1-4503-1656-9/13/03 ...$10.00.

this paper we use AK to refer to both the structural ar-
chitecture information, e.g., modeled using components and
connectors, as well as design rationale documentations.

Unfortunately, AK tends to evaporate as software systems
evolve, with grave consequences for software development
projects [9]. Consider the domain of governance and security
compliance: Many security concerns in process-driven SOAs
are implemented in many different parts of the system and
hence scattered through the process models and service and
backend source code. If the AK related to governance and
security compliance is not properly documented, it is likely
that future changes, unaware of such important design ra-
tionale, violate governance measures or security concern im-
plementations.

A number of approaches have been proposed to generically
solve this problem, for example based on text templates for
AK [20] or based on meta-models to describe the AK [21,
9]. While these approaches work well in general, in the daily
business AK capturing is considered as an afterthought or
not at all [22]. Retrospective modeling of AK is often seen as
a painful additional responsibility without many gains [22].
It is still unclear how to capture AK without introducing
efforts that outweigh the benefits [2]. Hence, how to doc-
ument, maintain, and evolve architectural knowledge in a
way that is accepted by the average developer or designer
and does get in the way of the daily work is one of the major
obstacles for the adoption of AK documentation in practice
today. The research works proposed so far manage to accu-
rately document the AK, but they fall short in meeting this
criterion. Apart from that, the tools for capturing architec-
tural decisions that have been proposed in the literature so
far ([2, 9]) are rather general and none of them focuses on
domain-specific Architectural Decisions.

At the first glance, it might seem impossible to solve this
obstacle of additional efforts, as any recording of a significant
amount of extra information means a significant amount of
extra work. In this paper we propose to circumvent this
problem by focusing on domain-specific AK that must be
recorded anyway by an organization. That is, many organi-
zations must for completely other reasons document some
information that contains AK. For example, in the domain
of governance and security compliance, many companies
have to document a lot of information for complying to
regulations, such as Basel II, IFRS, the European Directive
95/46/EC Individual Protection, or the Sarbanes-Oxley

Act, Basel II1, IFRS2, Tabaksblat3, European Directive
95/46/EC Individual Protection4, or the Sarbanes-Oxley
Act5, and in many cases design rationale has to be included
in these documentations. If we can make sure that the
architectural design rationale is accurately captured in the
compliance documentation process, it is likely that AK
evaporation can be prevented because the organizations
are legally obliged to record this information (at least no
extra costs are to be expected). This approach does surely
not solve every problem related to AK documentation of
governance and security compliance concerns. However,
our hypothesis is that our approach has the potential to
enable organizations to document a large part of their AK,
related to governance and security compliance, at a very
low extra cost. This would be a significant improvement
to the current situation, and likely lead to a much higher
adoption of AK documentation in practice.

The remainder of this paper is as follows. Section 2 intro-
duces a motivating example in the banking sector. Section 3
introduces a Compliance Metadata model based on a view-
based, model-driven approach that is used to link AK to
system models and describes the mapping of the compliance
metadata model to AK. We explain the overall tool archi-
tecture in Section 4 and revisit the motivating example in
Section 5. Next, we discuss the related work in Section 6
and finally summarize our main contributions.

2. MOTIVATING EXAMPLE
Let us consider a system for loan approval as a motivating

example. The control flow of the main loan approval process
is shown in Figure 1. This process has a number of activities
that trigger services in various internal and external back-
end systems such as the credit worthiness verification in the
banking system, the internal rating system, risk and loan
calculation system, and so on.

Consider further that the loan approval application needs
to follow certain regulations and that any impact of these
regulations on the system must be fully documented in or-
der to be able to easily show to auditors the compliance to
those regulations. For example, the“EU Directive 95/46/EC
Individual Protection”requires the prevention of the abuse of
individual-related data. To meet this criterion, we can mod-
ify the architecture to only use secure connectors, wherever
individual-related data is transmitted. Modeling the archi-
tecture with secure connectors in the component & connector
diagrams documents the architectural changes, but it does
not record why these changes have happened, that the differ-
ent changes of connectors in the architecture are caused by
the same requirement, and the consequences of the changes
such as slower transmission times. In other words important
AK is not documented.

In this example, because of the need to document the pre-
vention of the abuse of individual-related data fully to audi-

1http://www.basel-ii-risk.com
2http://www1.icaew.co.uk/library/index.cfm?AUB=
TB2I_25594
3http://www.fortis.com/governance/fortis_reference_
codes_tabaksblat.asp
4http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?
uri=CELEX:31995L0046:EN:HTML
5http://www.sec.gov/about/laws/soa2002.pdf

C
ustom

er

Customer
Identification

Receive
Loan Request

Loan
request

Load Approval Process

Credit Broker Credit Bureau

Check
credit

worthiness

Cancel
Loan Request

Check
internal
rating

Post-processing
Clerk

Calculate
Loan

Product

Print
Opening

Form

Sign
Opening Form

Open
Account

Account
Management

Notify
Load Approval

No

No Yes

Yes

Figure 1: The loan approval process

tors, any (semi-)formalized solution of recording this infor-
mation could be used as a source of AK. If this information
could be leveraged, the improvement for the AK recording
would be twofold: (1) stakeholders are motivated to record
this information as it eases their work in other circumstances
(the audit) and has hence a perceivable benefit for their
work, and (2) managers are willing to invest in this com-
pliance documentation as it would be costly not to convince
the auditors of the compliance to the regulations that apply
for a software system or even violating them.

3. COMPLIANCE METADATA MODEL
AND MAPPING TO AK

3.1 Background
In a process-driven, service-oriented architecture (SOA),

business functionality is accomplished by using a process en-
gine (or a workflow engine) to enact a business process that
comprises coordinated activities invoking various services. A
typical business process consists of various tangled concerns
such as the control flow, data processing, service and pro-
cess invocations, event handling, human interactions, trans-
actions, business compliance, and so on. The entanglement
of those concerns increases the complexity of process devel-
opment and maintenance as the number of involved services
and processes grow.

In order to deal with this complexity, we exploit the notion
of architectural views [7] to describe the various SOA con-
cerns [15] (see Figure 3). The view-based approach, which
has been realized in terms of an Eclipse integrated devel-
opment environment, namely, View-based Modeling Frame-
work (VbMF), is used as a foundation for implementing the
proposed Compliance and AK views.

VbMF provides a number of foundational (semi-)-

CoreModel

Service Process View

ViewElement
+name: String

NamedElement *

provides

requires*

*

*

*

elements

views
*

* services processes *

Figure 2: Core model – the foundation for VbMF’s
extension and name-based integration

Core
Model

FlowView
Model

Collaboration
View Model

Information
View Model

BpelCollaboration
View Model

Bpelnformation
View Model

Abstract
Layer

Low-level NewConcern
View Model

extends
(refines)

extends
(refines)

extends extends extendsextends

BpelFlow
View Model

extends
(refines)

High-level NewConcern
View Model

extends
(refines)

Technology-
specific
Layer

Figure 3: Overview of the View-based Modeling
Framework [15]

formalizations for representing essential concerns of
business processes such as the execution flow, service
invocations, and data processing [15] along with view
extension, integration, and code generation mechanisms.
Thus, VbMF can be extended to capture other concerns,
for instance, human interaction [6], transactions, fault
handling [15], traceability [19], and so forth. The view
extension mechanism shall be used in the subsequent section
for devising the Compliance Metadata model. By using the
view extension mechanism, a new concern can be integrated
into our approach by using a corresponding New-Concern-
View model that extends the basic concepts of the Core
model and defines additional concepts of that concern. As
a result, the Core model (see Figure 2) plays an important
role in VbMF because it provides the basis for extending
and integrating view models as well as establishing and
maintaining the dependencies between view models [15, 16,
19, 18, 17].

3.2 Compliance Metadata model
We introduce a Compliance Metadata model to record the

business compliance information as shown in Figure 4. The
elements of this model that extend the NamedElement of the
VbMF Core model, are used to describe compliance-specific
concepts such as controls, risks, compliance documents, and
compliance requirements, and so forth. The concepts of the
Compliance Metadata model are independent from any ap-
plication domains. In the context of our work, the Com-
pliance Metadata model shall provide domain-specific AK

for the domain of process-driven SOAs for business compli-
ance: It describes which parts of the SOA, i.e. which services,
processes, and activities have which roles in the compliance
architecture and to which compliance requirements they are
linked. This knowledge describes important architectural
decisions, for instance, why certain services and processes
are assembled in certain architectural configurations. Hence,
they are not directly usable for recording AK, but as they
are linked (in this model via the NamedElement from the
Core model) to the architectural elements that compliance
addresses, they could be utilized for AK recording. Based
on the AK recorded in this model, we develop various trans-
formation templates for generating architecture documenta-
tions and configurations.

description: String
impact: EnumRiskCategory
likelihood: EnumRiskCategory

Risk

*

*

*

* *

*

subControls

members
*

title: String
abstract: String
authors: String[]
editors: String[]
journal: String
volume: int
number: int
booktitle: String
publisher: String
pages: int[]
isbn: String
issn: String
uri: String
date: Date
location: String

Compliance
Document

Standard

*
*

NamedElement
[core]

*

section: String
resolutionPriority: int

ComplianceRequirement

RegulatoryDocument

ControlAttribute
Group

follows

implements

has

maps to

type: String
value: String
description: String

ControlAttribute

isPreventiveDirective: boolean
isAutomatedManual: boolean
isStandardKey: boolean
isEventbasedPeriodic: boolean
reuccurenceInterval: int
reuccurenceIntervalUnit: Date
controlCriteria: String
controlCriteriaToleranceLevel: String

ControlStandardAttributes

description: String
objective: String

Control

** fulfills

*

attributes

attributeGroup*

Figure 4: The Compliance Metadata model

Compliance Metamodel Section AK Text Template
Section

ComplianceRequirement,
ComplianceDocument

Issue

Status is not present, but a default
can be selected.

Status

ComplianceDocument Assumptions,
constraints

Control, Attributes Positions
Control, Attributes Decision
Risks Argument
Risks Implications
Links via name-based matching Related decisions

Table 1: Mapping concepts of the Compliance Meta-
data model to AK

3.3 Mapping Compliance Metadata to AK
In order to capture the AK implied and contained by the

compliance regulations, we use the architecture decision
description template proposed by Tyree and Akerman [20].
Therefore, the completion is automated through the map-
ping between the elements of our Compliance Metadata
model and the fields of the template. In Table 1, we can
see that the elements roughly correspond to each other,
hence our approach is feasible. Through this approach we
are able to extract compliance documents as well as capture
the architectural knowledge related to them, and therefore,
avoiding the double effort or potential disagreements.

4. TOOL ARCHITECTURE
In Figure 5, we show a rough sketch of the proposed tool

architecture and the interplay of the different parts. In this
architecture, domain-specific languages (DSLs) are used to
record this knowledge in a syntax understandable by the
stakeholders who record the knowledge. Different textual
and graphical syntaxes for the different architectural views
are provided and supported via a tool suite. Model-driven
development (MDD) techniques are used to generate (most
of) the AK documentation as well as an AK View for the
software system. The AK View can be derived from the
domain-specific knowledge sources using the mapping illus-
trated in the previous section and can be realized by exploit-
ing the model-driven transformation and reverse engineering
techniques provided in VbMF [15, 16, 17]. Both kinds of AK
can be stored in a central AK Repository. System parts that
are generated via MDD solutions can be referenced from the
AK views using view integration mechanisms [15, 18].
Architectural Decision for CrmSystem service connection

Issue Compliance of CrmSystem Service to the
EU Directive 95/46/EC Individual
Protection

Status Accepted (default)
Assumptions,
constraints

EU Directive 95/46/EC Individual
Protection

Positions Secure transmission of individual-related
data through secure protocol connectors
... [to be extracted from other model
instances]

Decision Secure transmission of individual-related
data through secure protocol connectors

Argument High impact - low likelihood for abuse of
individual-related data

Implications High impact - low likelihood for abuse of
individual-related data

Related decisions -

Table 2: An excerpt of AK extracted from the loan
approval process model’s instance

5. MOTIVATING EXAMPLE RESOLVED
To illustrate our approach, let us revisit the motivating

example - the loan approval application presented in Sec-
tion 2. As the essential concerns of the loan approval ap-
plication such as the control flow, data handling, service in-
vocations, and so on, are modeled by using VbMF views
as mentioned in Section 3 and in [15], we will concentrate
mainly on the compliance concern. Figure 6 depicts an in-
stance of the Compliance Metadata model, which models the

edit
meta-models
and AK View

Software Architect
and Developers

use

AK Repository

stored
in

Domain-Specific
Languages Editor

Suite

Other
Stakeholders

use

stored in

Code Generator

models
& views

are
linked to

input

input

generate generate

mapped
to

Domain-
Specific AK

Sources

Architecture
Documen-

tation

Domain-
Specific AK

Sources

System
Models

Domain-
Specific AK

Sources

Domain-
Specific AK

Sources

Domain-
Specific AK

Sources

System Code

Domain-
Specific AK

Sources

AK View

Figure 5: Tool architecture

regulation explained above for the loan approval application.
This model instance records compliance metadata including
a directive from the European Union on the protection of
individuals with regard to the processing of personal data.
In particular, the compliance control is implemented by the
services of the loan approval application.

The C1 compliance control indicating secure transmissions
of personal data annotates a number of SOA elements such
as CreditBureau, AccountManagement, and CrmSystem via
the name-based matching mechanism [18]. The requirement
CR1 follows the legislative document and is associated with
an AbuseRisk. The compliance control C1 associates vari-
ous NamedElements to the corresponding services modeled
previously in VbMF.

Table 2 shows the AK documentation derived from this

description = “Abuse of
individual-related data“
impact = HIGH
likelihood = LOW

AbuseRisk : Risk

title = “EU Directive 95/46/EC Individual
Protection“
authors = “European Parliament,
Council“
uri = “http://eur-lex.europa.eu/
LexUriServ/
LexUriServ.do?uri=CELEX:31995L0046:
EN:NOT“
date = 1995-10-24

EU_Directive_95_46_EC : Legislation

CR1: ComplianceRequirement

fulfills

followshas

name=CrmSystem

CrmSystemNE :
NamedElement

implements implements

name=CreditBureau

CreditBureau :
Service

name=AccountManagement

AccountManagement :
Service

description = “Secure transmission
of individual-related data through
secure protocol connectors“

C1 : Control

name=CreditBureau

CreditBureauNE :
NamedElement

name=AccountManagement

AccountManagementNE :
NamedElement

name=CrmSystem

CrmSystem :
Service

Name-
based
Matching

Name-
based
Matching

Name-
based
Matching

implements

Figure 6: An excerpt of the loan approval process
model’s instance

model. It mainly extracts then information from Figure 6
straightforwardly. Some information, however, also requires
a broader focus of many different compliance metamodel in-
stances. For example, from the information in Figure 6 we
could only derive a single Position entry. If our tool is used
for many decisions for the same compliance requirement, we
can also extract alternative positions, as they are chosen in
other metadata model instances that use these alternative
solutions as controls.

As this information is crucial for the project in terms of
compliance documentation that is required for auditing pur-
poses, it is likely maintained and kept up-to-date by the
developers and users of the system. On the other hand, in
this model important AK is also maintained: In particular
the requirements for the process and the services that imple-
ment the control are recorded. That is, this information can
be used to explain the architectural configuration of the pro-
cess and the services connected via a secure protocols con-
nector. In other words, it provides the compliance-related
rationale for the design of this configuration. Moreover, in
this particular case this documented AK is likely to be kept
consistent with implemented system and the rationale of the
architectural decision to use secure protocol connectors does
not evaporate.

6. RELATED WORK
Much work on better support for codifying the AK has

been done in the area of architectural decision modeling.
Jansen and Bosch see software architecture as being com-
posed of a set of design decisions [8]. They introduce a
generic meta-model to capture decisions, including elements
such as problems, solutions, and attributes of the AK. An-
other generic meta-model that is more detailed has been pro-
posed by Zimmermann et al. [21, 22]. Tyree and Akermann
proposed a highly detailed, generic template for architec-
tural decision capturing [20]. A couple of other approaches
are summarized in [1]. All these approaches share the prob-
lem of a significant extra effort necessary to record AK. Our
approach addresses this problem by utilizing domain-specific
AK that needs to be recorded for other reasons anyway.

Question, Options, and Criteria (QOC) diagrams [13] raise
a design question, which points to the available solution op-
tions, and decision criteria are associated with the options.
This way decisions can be modeled as such. Kruchten et al.
extend this research by defining an ontology that describes
the information needed for a decision, the types of decisions
to be made, how decisions are being made, and their de-
pendencies [12]. Falessi et al. present the Decision, Goal,
and Alternatives framework to capture design decisions [3].
These approaches make decision modeling more formal and
precise. However, being more formal and precise than for ex-
ample the decision templates by [20] also means that these
approaches require even more extra work to document the
AK completely. Our approach attempts to provide a com-
promise solution.

Recently, Kruchten et al. extended these ideas with the
notion of an explicit decision view [11]. A decision view pro-
vides an addition and complement to more traditional sets
of architectural views and viewpoints: it gives an explana-
tory perspective that illuminates the reasoning process itself
and not solely its results. Our approach follows this idea to
combine the concepts of architectural views and AK to their
mutual benefit. But our approach goes significantly beyond
the approach by Kruchten et al. by defining not only the
high-level views of the 4+1 view model [10], but also detailed
technical views to allow for the model-driven generation of
the software system.

A number of authors have so far investigated the relation-
ships between patterns (or other reusable AK) and architec-
tural decisions, which our approach makes explicit. Harri-
son et al. discuss the importance of this relation following
qualitative empirical results [5]. Zimmermann et al. [21,
22] propose to integrate patterns in their reusable decision
model. Harrison and Avgeriou present a study how patterns,
tactics, and decisions interact [4]. These approaches use –
like our approach– other AK sources as the basis for AK
gathering, but in contrast to our approach generic, reusable
knowledge is used. Our approach in contrast uses domain-
specific compliance documentations.

The approach presented in this paper facilitates tech-
niques and methods of the view-based modeling framework
(VbMF) [15, 16, 17, 19, 18]. In particular, VbMF Core
model is derived and extended, on the one hand, to describe
concepts in the domain of business compliance. On the
other hand, name-based matching view integration [15, 18]
is used to link the aforementioned compliance-specific con-

cepts to the system models. The model transformation and
the model-driven reverse engineering techniques provided
in VbMF are leveraged for extracting and transforming
compliance knowledge into corresponding architectural
knowledge [15, 16, 17].

7. CONCLUSION AND FUTURE WORK
This paper presented a novel approach for capturing AK

related to governance and security compliance using DSLs.
We introduced a compliance meta-model to record business
compliance information and we suggested a mapping to the
corresponding AK as well as a tool architecture for record-
ing this knowledge, generating AK documentation and AK
Views, storing AK in a central AK repository and referencing
system parts generated via MDD solutions from AK views.
Future work includes the development of supporting tools to
facilitate the experimentation with more complicated com-
pliance rules and to evaluate our approach on a broader scale.
Furthermore, the AK tool could be extended to support the
capturing of other domain-specific architectural decisions.

Acknowledgment
We thank the anonymous reviewers for their insight-
ful and constructive comments for improving this pa-
per. This work was partially supported by the EU’s
Seventh Framework Programme Project INDENICA
(http://www.indenica.eu), Grant No. 257483.

8. REFERENCES
[1] M. A. Babar and P. Lago. Editorial: Design decisions

and design rationale in software architecture. J. Syst.
Softw., 82:1195–1197, August 2009.

[2] R. Capilla, F. Nava, and C. Carrillo. Effort estimation
in capturing architectural knowledge, 2008.

[3] D. Falessi, M. Becker, and G. Cantone. Design
decicion rationale: Experiences and steps towards a
more systematic approach. SIG-SOFT Soft. Eng.
Notes 31 – Workshop on Sharing and Reusing
Architectural Knowledge, 31(5), 2006.

[4] N. B. Harrison and P. Avgeriou. How do architecture
patterns and tactics interact? a model and annotation.
J. Syst. Softw., 83:1735–1758, October 2010.

[5] N. B. Harrison, P. Avgeriou, and U. Zdun. Using
patterns to capture architectural decisions. IEEE
Softw., July 2007.

[6] T. Holmes, H. Tran, U. Zdun, and S. Dustdar.
Modeling Human Aspects of Business Processes - A
View-Based, Model-Driven Approach. In European
Conf. Model Driven Architecture - Foundations and
Applications (ECMDA-FA), pages 246–261, Berlin,
Germany, 2008. Springer-Verlag.

[7] IEEE. IEEE Std 1471-2000: Recommended Practice
for Architectural Description of Software-Intensive
Systems, 2000.

[8] A. Jansen and J. Bosch. Software architecture as a set
of architectural design decisions. In WICSA ’05: 5th
IEEE/IFIP Conf. on Software Architecture, pages
109–120. IEEE Computer Society, 2005.

[9] A. Jansen, J. van der Ven, P. Avgeriou, and
D. Hammer. Tool support for architectural decisions.

In Proceedings of the Sixth Working IEEE/IFIP
Conference on Software Architecture, Washington, DC,
USA, 2007. IEEE Computer Society.

[10] P. Kruchten. The 4+1 View Model of Architecture.
IEEE Softw., 12(6):42–50, 1995.

[11] P. Kruchten, R. Capilla, and J. C. Duenas. The
decision view’s role in software architecture practice.
IEEE Softw., 26:36–42, 2009.

[12] P. Kruchten, P. Lago, and H. Vliet. Building up and
reasoning about architectural knowledge. In
C. Hofmeister, editor, QoSA 2006 (Vol. LNCS 4214),
pages 43–58, 2006.

[13] A. MacLean, R. M. Young, V. Bellotti, and T. Moran.
Questions, options, and criteria: Elements of design
space analysis. Human-Computer Interaction,
6(3–4):201–250, 1991.

[14] R. N. Taylor and A. van der Hoek. Software design
and architecture the once and future focus of software
engineering. In 2007 Future of Software Engineering,
FOSE ’07, pages 226–243, Washington, DC, USA,
2007. IEEE Computer Society.

[15] H. Tran, U. Zdun, and S. Dustdar. View-based and
Model-driven Approach for Reducing the Development
Complexity in Process-Driven SOA. In Int’l Conf.
Business Process and Services Computing (BPSC),
pages 105–124. Lecture Notes in Informatics (LNI),
2007.

[16] H. Tran, U. Zdun, and S. Dustdar. View-based
Integration of Process-driven SOA Models At Various
Abstraction Levels. In Int’l Workshop on Model-Based
Software and Data Integration (MBSDI), pages 55–66,
Berlin, Germany, 2008. Springer CCIS.

[17] H. Tran, U. Zdun, and S. Dustdar. View-Based
Reverse Engineering Approach for Enhancing Model
Interoperability and Reusability in Process-Driven
SOAs. In Int’l Conf. Software Reuse (ICSR), pages
233–244. Springer, 2008.

[18] H. Tran, U. Zdun, and S. Dustdar. Name-based view
integration for enhancing the reusability in
process-driven SOAs. Int’l Journal of Business Process
Integration and Management, 5(3):229—-239, 2011.

[19] H. Tran, U. Zdun, and S. Dustdar. VbTrace: using
view-based and model-driven development to support
traceability in process-driven SOAs. J. Softw. & Syst.
Model., 10(1):5–29, Nov. 2011.

[20] J. Tyree and A. Akerman. Architecture decisions:
Demystifying architecture. IEEE Softw., 22(19–27),
2005.

[21] O. Zimmermann, T. Gschwind, J. Kuester,
F. Leymann, and N. Schuster. Reusable architectural
decision models for enterprise application
development. In Quality of Software Architecture
(QoSA) 2007. Springer-Verlag, July 2007.

[22] O. Zimmermann, U. Zdun, T. Gschwind, and
F. Leymann. Combining pattern languages and
reusable architectural decision models into a
comprehensive and comprehensible design method.
IEEE/IFIP Conf. on Software Architecture, pages
157–166, 2008.

