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Abstract. In recent years, the software architecture community has proposed to
use architectural design decisions (ADDs) for capturing the design rationale and
the architectural knowledge (AK). As software systems evolve both ADDs and
architectural designs need to be documented and maintained. This is a tedious
and time-consuming task because of the lack of systematic and automated sup-
port for bridging between ADDs and designs. As a result, decisions and designs
become inconsistent over time. We propose to alleviate this problem by intro-
ducing an AK transformation language supporting reusable AK transformations
from pattern-based ADDs to component-and-connector models. In addition, we
devise reusable consistency checking rules for verifying the consistency between
decisions and designs. Through the use of model-driven transformations, as well
as reusable, pattern-based decision models, we ensure the reusability of our ap-
proach. We apply our approach in an industrial case study and show that it offers
high reusability, is largely automated and scalable, and can deal with the com-
plexity of large numbers of recurring decisions.

1 Introduction

Today, software architectures are usually described in various architectural views [7,3].
The component-and-connector (C&C) model of an architecture is a view that is often
considered to contain the most significant architectural information [3]. Although C&C
models offer a natural representation of software systems to software architects and
designers, they fail to model the design rationale of the architecture and support the
sharing of this knowledge among stakeholders. In recent years, software architecture is
no longer solely regarded as the solution structure, but also as the set of architectural
design decisions (ADDs) that led to that structure [8]. The actual solution structure,
or architectural design, is merely a reflection of those design decisions. Architectural
design views [11] document the design rationale of the architecture and contribute to
the gathering of Architectural Knowledge (AK) and its sharing among different stake-
holders. For organizing and documenting AK, various tools and methods that use AK
templates [23], ontologies [13] or meta-models [25] have been proposed in the liter-
ature. To minimize the effort of documenting architectural decisions, approaches for



reusable architectural decision modeling [25] and using design patterns as a basis for
documenting reusable ADDs (as [6]) have been proposed.

Unfortunately, in practice, the ADDs frequently are neither maintained nor synchro-
nized over time with the corresponding C&C diagrams (or other design views) [11].
Thus, ADDs and design views drift apart as software systems evolve. This leads to a
potential loss of architectural knowledge, a phenomenon which is known as architec-
tural knowledge vaporization [8,6]. The main reason for the resulting inconsistency and
lack of traceability between ADDs and design views is that there is no formal mapping
between them. As a consequence, there is no automation for the translation between
ADDs and design views, and in practice keeping them synchronized is a tedious man-
ual task that depends highly on the architects’ experience and interpretation. Making
matters worse, the actual documentation of ADDs is also a tedious and time-consuming
task, especially for similar ADDs that occur repeatedly throughout a design.

Our previous work [16] has partially solved this problem by addressing the bridg-
ing between the ADDs and designs. It introduced a formal mapping model between
different ADD types, on the one hand, and elements and properties of C&C models, on
the other hand. Based on this formal mapping model, preliminary component models
and OCL-like constraints for consistency checking can be derived. Yet, so far this map-
ping model had to be manually created and modified. Therefore, the approach is not
efficient for handling large numbers of ADDs and/or complex design models. More-
over, in reality there are often several recurring ADDs which can be applied in different
contexts and for different elements or properties of the ADDs and designs. As a result,
maximizing the reusability of such recurring decisions would significantly enhance the
productivity in creating and maintaining the formal mappings between the decisions
and the designs. This has not been addressed in our previous work [16] as the formal
mapping and the derived constraints can not directly be reused because they are bound
to specific elements or properties of the ADDs and designs.

We present in this paper a novel approach aiming to address the aforementioned
challenges. In particular, our approach introduces an architectural knowledge transfor-
mation language that supports the specification of primitive and complex actions whose
enactment leads to automatic updating of design models (i.e., C&C diagrams) based
on changes in the ADD view. The transformation languages can be used to formulate
the expected outcomes of a certain decision ranging from individual actions, such as
creating new elements, grouping a number of elements, and deleting or updating exist-
ing elements in the C&C diagrams, to composite actions (e.g., for capturing reusable
pattern-based ADDs) that might contain many primitive and/or other composite ac-
tions. These actions are designed to support the reusability of specifications in our AK
transformation language, as existing actions can be efficiently reused and adapted for
different designs where similar architectural decisions are taken. Each action also trig-
gers the instantiation of corresponding constraint checking rule(s).

After the instantiation of the actions for concrete ADDs, we exploit template-based
generation rules and model-driven techniques for automatically enacting the actions and
generating consistency checking rules automatically. The linking of reusable ADDs to
reusable actions and consistency rules (templates) offers higher reusability and automa-
tion and results in less complexity and modeling effort for the software architect. The
reusability is achieved here (1) through the automatic derivation of parts of the C&C di-



agrams and consistency checking rules using model-driven templates and (2) by reusing
common abstractions shared between common design patterns (see [24]).

To demonstrate our approach, we have implemented a prototype based on two exist-
ing tools from our previous work: ADvISE1 – a tool for assisting architectural decision
making for reusable ADDs, and VbMF2 – a tool for describing architectural view mod-
els and performing model-driven code generation. Our approach presented in this paper
will act as a bridge between ADvISE and VbMF. The prototypical implementation of
our approach has been evaluated in scenarios extracted from an industrial case study to
show that it is feasible and scalable for large numbers of ADDs.

The remainder of the paper is structured as follows. First, in Section 2 we explain
the background for ADvISE and VbMF. In Section 3 we give an overview of our ap-
proach and describe the details about the reusable AK transformations and consistency
checking rules. The application of our approach in the industrial case study and the
evaluation of the reusability, complexity and modeling effort are presented in Section 4.
We compare to related work in Section 5 and summarize key contributions in Section 6.

2 Background

In this section we briefly present ADvISE and VbMF, the two tools we integrate for
demonstrating our approach.

2.1 Architectural Design Decision Support Framework

The Architectural Design Decision Support Framework (ADvISE) is an Eclipse-based
tool that supports the modeling of reusable ADDs using Questions, Options and Cri-
teria (QOC) [17] and the decision making under uncertainty. In particular, it assists
the architectural decision making process by introducing for each design issue a set of
questions along with potential options, answers and pattern-based solutions, as well as
dependencies and constraints between them.

The advantage of the reusable ADD models is that they need to be created only
once for a recurring design situation. In similar application contexts, corresponding
questionnaires can be automatically instantiated and used for making concrete deci-
sions. Based on the outcomes of the questionnaires answered by software architects
through the decision making process, ADvISE can automatically generate architectural
decision documentations. Our approach in this paper additionally introduces an archi-
tectural knowledge transformation framework (see Section 3) that supports the specifi-
cation of reusable actions and the association of these actions with the elements of the
aforementioned ADD models for automatically transforming ADDs into the underlying
design models and generating constraints for consistency checking between them.

1 http://swa.univie.ac.at/Architectural_Design_Decision_Support_

Framework_(ADvISE)
2 http://swa.univie.ac.at/View-based_Modeling_Framework
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2.2 View-based Modeling Framework

The View-based Modeling Framework (VbMF) is also an Eclipse-based tool that imple-
ments a model-driven, architectural view model. That is, it leverages the notion of view
models for describing various concerns of the software systems at different abstraction
levels and model-driven development techniques for generating code and configurations
from those view models [22]. Among other views, VbMF provides a high-level service
component view model –similar to a typical C&C model such as UML component
model– for representing essential architectural design elements such as components,
ports, connectors, and properties that are independent from the underlying platforms
and technologies. Technology- and platform-specific information will be described sep-
arately in the low-level view models that refine and enrich the high-level counterparts.

In this paper, we mainly use the high-level service component view model of VbMF
(or in short form, the VbMF C&C view) for describing the architectural design of a
software system. The advantage of using VbMF is that we can leverage the existing
view model integration and transformation mechanisms of VbMF which are based on
Eclipse technologies and therefore can be integrated well with ADvISE.

3 Reusable AK Transformations and Consistency Checking Rules

To illustrate the “big picture” of our approach we depict in Fig. 1 an overview of the
tools and artifacts along with their interconnections. The artifacts that are automatically
derived using model-driven techniques are indicated with dark-gray color.

The ADD Model Editor in ADvISE is a tool that is used to create the reusable
ADD models (i.e., the artifact Reusable ADDs in the figure). It is created only once
per application domain. From it, ADvISE can automatically generate Questionnaires
for making Actual ADDs. They are made, possibly multiple times if multiple ADDs
are derived from the same reusable ADD model, using the Questionnaire Editor tool.
For using and manipulating C&C Diagrams VbMF provides the C&C View Editor. Our
approach supports generating the first instance of the C&C Diagrams automatically
from the ADD model using Transformation Actions. It can further execute automatic
Transformation Actions on existing view models. In VbMF C&C Diagrams can be
manually manipulated. To ensure that changes in the C&C models do not violate the
ADDs, Consistency Checking Rules are generated from the Transformation Actions,
which are automatically enacted on the C&C Diagrams upon changes.

To achieve this in a reusable fashion, the Reusable ADDs are formally mapped to
AK Transformation Language Templates, which are edited with the AK Transforma-
tion Language Editor. This way, for Actual ADDs we can instantiate the correspond-
ing Transformation Actions and Consistency Checking Rules. Using model-driven tech-
niques they are automatically enacted on the corresponding VbMF C&C Diagram.

The binding of templates is realized using Apache Velocity Engine3. The parsing
and execution of the transformation actions are implemented using Xtend4, a statically-
typed language built on top of Java.

3 http://velocity.apache.org
4 http://www.eclipse.org/xtend

http://velocity.apache.org
http://www.eclipse.org/xtend
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Fig. 1. Approach Overview

The AK transformation language and its enactment engine play an important role
in our approach for enabling the automated and reusable transformation of ADDs into
the design models. In the subsequent parts of this section, we explain the language in
detail and its illustrative usage in realistic development circumstances.

3.1 Architectural Knowledge Transformation Language

Essentially, the goal of the AK transformation language is to express the actions that
create or update the underlying architectural models (e.g., C&C models) according to
the intentions of the software architects reflected by the design decisions. Unlike gen-
eral model transformation languages (as ATL) our domain-specific language (DSL) is
intended to provide simple and comprehensible architecture-specific transformation ac-
tions, as well as the structures for grouping, extending and inheriting these actions.
Listing 1 presents a formal definition of the AK transformation language in terms of
a EBNF like syntax developed using the Xtext DSL framework5. Please note that the
square brackets in Xtext enable cross-references to other models, in our case, to the ele-
ments of the VbMF C&C view. We also use Xtext to generate an Eclipse-based textual
editor that can support several useful features such as syntax highlighting, content assist
and auto-completion, validation and quick fixes, automated external cross-references
resolutions, and so on.

The core of the language consists of basic actions that can be used to create or alter
individual elements of the architectural models, for instance, creating a new component,
deleting an existing connector, or updating a port. In addition, we introduce special
structures, such as Group, Loop, and Compound to support the compositions and exten-
sions of the predefined actions. A Group (defined by the grammar rules in lines 41–42)
indicates the grouping of a finite set of components that are sub-components of a partic-
ular component. For efficiently handling the iteration and application of similar actions
to a finite set of elements of the design model, a Loop (see line 43–44) can be used.
A Compound (see line 45–46) represents a structure that embraces multiple actions and
even other Compounds. Through an extension, a Compound can inherit the definition

5 http://www.eclipse.org/Xtext/
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of existing Compounds and extend the inherited behavior with additional actions. The
semantics of a Compound is an atomic (i.e., all-or-nothing) sequential execution of its
inherited compounds and constituting actions.

1 Action:
2 Add | Delete | Update | Group | Loop;
3 Add:
4 AddComponent | AddConnector | AddPort | AddProperty | AddStereotype | AddPrimitive;
5 AddComponent:
6 "add component" name=STRING;
7 AddConnector:
8 "add connector" name=STRING "from" source=[component::Port|FQN] "to" target=[component::

Port|FQN];
9 AddPort:

10 "add port" name=STRING "kind=" kind=PortKind "to" component=[component::Component|FQN];
11 AddStereotype:
12 "add stereotype" "<<" text=STRING ">>" "to" target=[core::Element|FQN];
13 AddProperty:
14 "add property" name=STRING "type=" type=STRING "value=" value=STRING "to" target=[core::

Element|FQN];
15 AddPrimitive:
16 "add compound" primitive=[Compound|FQN] name=STRING "("(args+=ID|LIST)+")";
17 Delete:
18 DeleteComponent | DeleteConnector | DeletePort | DeleteProperty | DeleteStereotype;
19 DeleteComponent:
20 "delete component" component=[component::Component|FQN];
21 DeleteConnector:
22 "delete connector" conn=[component::Connector|FQN];
23 DeletePort:
24 "delete port" port=[component::Port|FQN];
25 DeleteProperty:
26 "delete property" property=[component::Property|FQN];
27 DeleteStereotype:
28 "delete stereotype" stereotype=[component::Stereotype|FQN];
29 Update:
30 UpdateComponent | UpdateConnector | UpdatePort | UpdateProperty | UpdateStereotype;
31 UpdateComponent:
32 "update component" component=[component::Component|FQN] "name=" newName=STRING;
33 UpdateConnector:
34 "update connector" conn=[component::Connector|FQN] "name=" newName=STRING;
35 UpdatePort:
36 "update port" port=[component::Port|FQN] ("name=" newName=STRING)? ("kind=" newKind=

PortKind)?;
37 UpdateProperty:
38 "update property" prop=[component::Property|FQN] ("name=" newName=STRING)? ("type=" newType

=STRING "value=" newValue=STRING)?;
39 UpdateStereotype:
40 "update stereotype" stereotype=[component::Stereotype|FQN] "text=" newText=STRING;
41 Group:
42 "group" component=[component::Component|FQN] "container" container=[component::Component|

FQN];
43 Loop:
44 "for" "(" element=ID ":" (params+=FQN)+")" (actions+=Action)+ "end";
45 Compound:
46 "compound" name=ID ("extends" (parent+=[Compound|FQN])*)? spec=Spec;
47 Spec: "("(args+=ID)+")" "{" (actions+=Action)* "}";
48 Import: "import" importedNamespace=FqnWildcard;

50 enum PortKind: provided="PROVIDED"|required="REQUIRED";
51 FQN returns ecore::EString: ID ("." ID)*;
52 FqnWildcard: FQN ".*"?;
53 LIST: ID","ID(","ID)*;

Listing 1. Grammar of the AK transformation language

The core actions of the AK transformation language presented in Listing 1 mainly
aim at expressing particular changes to individual elements of the corresponding VbMF
C&C view. Using the ADvISE tooling, we can associate the options and answers of



a certain ADD model with one or many transformation actions in template form, in
order to enable the automation of creating and/or updating of the architectural C&C
models. Once the generated questionnaires from the ADD model are answered resulting
in concrete decisions, the related actions will be bound to concrete elements of the
underlying architectural models.

For instance, suppose in a simple case that a selection of an option in an ADD
model leads to the definition of the type of a component which will be indicated by
introducing a stereotype. In the example in Listing 2 a new stereotype with the value of
the template variability TypeOfComponent as its name is created and attached to the
component denoted by the template variability A.

add stereotype <<"${TypeOfComponent}">> to ${A}

Listing 2. Example of a parametrized transformation action for adding a stereotype

The binding of the template variables during decision making will result in an exe-
cutable transformation action, such as the one in the example in Listing 3.

add stereotype <<"Remote Proxy">> to example.ServiceProxy

Listing 3. Example of a transformation action for adding a stereotype

The execution of the transformation action updates the corresponding C&C diagram
as it can be seen in Fig. 2.

Fig. 2. AK Transformation Language Editor and C&C View Editor

3.2 Recurring Pattern Primitives as Reusable AK Transformations

In the course of decision making, software architects often leverage several recurring
architectural elements and structures such as proxies, adapters, gateways, layers, and
so forth. The idea of proposing primitives as fundamental elements for describing such
recurring design patterns and architectural styles has been investigated by various stud-
ies. For example, Zdun and Avgeriou described architectural patterns through a number
of recurring architectural primitives in the component-and-connector view using UML
profiles [24]. Mehta and Medvidovic developed a framework for defining abstract prim-
itives shared by all architectural styles for composing their elements [18]. In this section,
we will describe how to define recurring architectural primitives for modeling certain
patterns or styles as action sets, as an example of how to realize reusable AK transfor-
mations with our language.



In particular, the expressiveness of our AK transformation language and the support
for compositions and extensions through the composite structures mentioned above en-
able us to define such recurring architectural primitives in a reusable and extensible
way. In our approach, we specify such recurring primitives using parameterized action
sets that are based on compounds and can be inherited and extended further. Each action
set represents one primitive abstraction that can be used to realize a number of patterns
that use this particular primitive as part of their solution (as defined in [24]). The action
sets are used via their name and appropriate parameters. In the action set specifications
we use variable access in the form ${p-name} to refer to the parameter p-name. When
actual ADDs are made, the compound parameters are replaced, which also leads to the
variable binding of their primitive actions.

In Listing 4, we present the indirection compound. Indirection happens when one or
more related “proxy” components receive a message on behalf of one or more “target”
components, forward the message to these “targets” and receive results from these “tar-
gets” also through the “proxy” components [24]. Proxies and adapters are examples of
indirection. The parameters cv, A, and B refer to the target component view, the target
component, and the client respectively. The variable n will be bounded to the name of
the compound “instance” (e.g., Proxy, Adapter, etc.).
compound indirection (cv A B) {
add component "${A}${n}"
add port "${A}${n}_I1" kind=PROVIDED to ${cv}.${A}${n}
add port "${A}${n}_I2" kind=REQUIRED to ${cv}.${A}${n}
add port "${A}_I" kind=REQUIRED to ${cv}.${A}
add port "${B}_I" kind=PROVIDED to ${cv}.${B}
add connector "${A}_I_${A}${n}_I1" from ${cv}.${A}.${A}_I to ${cv}.${A}${n}.${A}${n}_I1
add connector "${A}${n}_I2_${B}_I" from ${cv}.${A}${n}.${A}${n}_I2 to ${cv}.${B}.${B}_I
add stereotype <<"${n}">> to ${cv}.${A}${n}

}

Listing 4. Indirection compound action specification

An example of using the indirection compound is presented in Listing 5.
add compound indirection "Proxy" (example Facade Service)

Listing 5. Usage example of indirection compound action

This compound action will create a proxy for invoking the component “Service”
from the component “Facade”. This will happen by replacing the variables n, cv, A and
B with “Proxy”, the C&C view name “example” and the components “Service” and
“Facade”, respectively. The transformation of the C&C view includes the creation of
a component, two connectors, the corresponding ports and a stereotype. The execution
of the compound transformation action triggers the execution of its containing actions.
In our example, the enactment of Listing 5 will trigger the execution of the primitive
actions in Listing 6.
add component "ServiceProxy"
add port "ServiceProxy_I1" kind=PROVIDED to example.ServiceProxy
add port "ServiceProxy_I2" kind=REQUIRED to example.ServiceProxy
...

Listing 6. Binding of primitive actions of indirection compound action

A compound can extend other compounds, and therefore, inherits the corresponding
action sets of these compounds, thus increasing reusability of the AK transformations.



3.3 Generation of Consistency Checking Rules

Consistency checking is an important mechanism to ensure the integrity of the design
models under consideration. For this, we developed a set of predefined parameterized
constraint templates that are related to the basic actions of the AK transformation lan-
guage shown in Listing 1. As a result, the instantiation and binding of the parameterized
constraint templates for each action are performed automatically at the same time and in
the same manner as the actions, without requiring any additional effort from the devel-
opers and architects. In addition, further constraint templates can be easily formulated
in an OCL-like syntax supported by the Eclipse Xpand model validation library 6 and
connected to the relevant actions. Again, constraint templates need to be defined only
once at the model-level and can then be reused for concrete instantiations of the ADD
model. For instance, the following parameterized transformation action of Listing 7 will
create a component with name A.

add component "${A}"

Listing 7. Example of a parametrized transformation action to add a component

The resulting C&C model can be checked for its consistency against the related
decision ADD by the predefined constraint template of Listing 8, which checks that the
added component is present in the C&C model.

context component::ComponentView ERROR "ADD ${ADD}: Component ${A} does not exist":
element.typeSelect(component::Component).exists(c|c.name == "${A}");

Listing 8. Example of a parametrized consistency checking rule

We have designed and developed respective constraint templates for each AK trans-
formation language element and each architectural primitive defined above. Similar to
the AK transformation language, the ${...} syntax in the constraint rule templates
allows to access a variable that is instantiated and bound to particular values of the
related actions and models. The outcomes of the instantiation and binding of the pa-
rameterized constraint templates are concrete constraints that can be enacted by our
model-driven tools. The combination of transformation actions with automatically gen-
erated constraints that check that the transformation’s semantics are not violated in the
C&C diagram, enables us to allow developers and architects to manually change the
C&C model. If a manual change violates an architectural decision that has triggered
transformation actions, the corresponding constraint checking will signal an error.

4 Case Study and Evaluation

4.1 Case Study

We illustrate the applicability of our approach in the context of an industrial case study
on service-based platform integration in the area of industry automation. In our case
study, three heterogeneous platforms, a Warehouse Management System—WMS (stor-
age of goods or storage bins into racks via conveyor systems), a Yard Management

6 http://www.eclipse.org/modeling/m2t/?project=xpand
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System—YMS (scheduling, coordination, loading and unloading of trucks), and an
Enterprise Resource Planning System—ERP (overall commissioning and handling of
goods on an abstract level beyond real storage places) need to provide domain-specific
services in an integrated manner. For this, an intermediate integration layer will pro-
vide services to operator applications developed on top of it. The integration layer must
handle various integration aspects including interface adaptation between the platforms,
integration of service-based and non-service-based solutions, routing, enriching, aggre-
gation, splitting, etc. of messages and events, synchronization and concurrency issues,
adaptation, and monitoring of events.

ADD Options AK Transformation Actions

Type of Integrating
Component

– None
– Same Interface
– Different Interface

add port "${PS}_p1" kind=PROVIDED to ${cv}.${PS}
add port "${IC}_p1" kind=REQUIRED to ${cv}.${IC}

#if(${TypeOfComponent} == "None")
add connector "${IC}_${PS}" from ${cv}.${IC}.${IC}_p1 to ${cv}.${PS

}.${PS}_p1
add stereotype <<"Direct call">> to ${cv}.${IC}_${PS}

#elseif(${TypeOfComponent} == "Same Interface")
add compound indirection "Proxy" (${PS} ${IC})

#elseif(${TypeOfComponent} == "Different Interface")
add compound indirection "Adapter" (${PS} ${IC})

#end

Type of Proxy

– Local
– Remote

add stereotype <<"${TypeOfProxy} Proxy">> to ${cv}.${PS}Proxy

Type of Adapter

– Local
– Remote

add stereotype <<"${TypeOfAdapter} Adapter">> to ${cv}.${PS}Adapter

Heterogeneous systems

– No
– Yes

#if(${HeterogeneousSystems} == "Yes")
add compound integrationAdapter "Integration Adapter" (${PS} ${IC})

#end

Interchangeability

– No
– Yes

add property "${PS}Adapter_Interchangeability" type="
Interchangeability" value="${Interchangeability}" to ${cv}.${PS}
Adapter

Adaptation Parameters
(String)

add property "${PS}Adapter_params" type="Parameters" value="${
Parameters}" to ${cv}.${PS}Adapter

Table 1. An excerpt of the service-based platform integration ADD model and its corresponding
AK transformation actions

To handle these integration aspects in the platform integration domain, in our previ-
ous work, we have introduced an ADD model for resolving architectural design issues
related to integration and adaptation, interface design, communication style, and com-
munication flow [15]. We present in Table 1 an excerpt of the ADD model of the plat-
form integration scenario consisting of questions and different alternative options (or
answers). This would be normally modeled using ADvISE. Note that the dependencies
and constraints between the questions, decisions and options are not present in Table 1
for simplicity reasons. This example assists the decision making on the type of integrat-



ing component between a platform service PS of one of the three platforms in our case
study (WMS, YMS and ERP) and a component of the integration layer IC (cv refers
to the target C&C view). Along with the ADD model excerpt we present its associated
primitive actions and compound actions based on pattern primitives in pattern form, as
defined in Section 3. It consists of 6 questions, uses 8 primitive actions and 2 compound
actions (integrationAdapter once and indirection twice) and is related to 3 pat-
terns: Proxy (local or remote), Adapter (local or remote) and Integration Adapter. We
defined in total 6 basic compounds (indirection, shield, grouping, callback, transformer
and router) that are used to describe 21 design patterns in our decision model [15]. The
definitions of the compounds are omitted because of the space limitation.

The integration of the Velocity template language with our AK transformation lan-
guage allows us not only to use placeholders (${...}) but also statements (if, foreach,
etc.) which begin with the # character and are parsed by the template engine, but ignored
by the AK transformation language editor.

To give an example of the binding of the transformation actions, suppose that the
architect opts for a remote proxy as an integrating component between the YMS service
TruckMgmnt and the integration layer component OperatorFacade. The actual ADDs
will be reflected in the corresponding C&C view by executing the transformation ac-
tions of Listing 9.

add port "TruckMgmnt_p1" kind=PROVIDED to example.TruckMgmnt
add port "OperatorFacade_p1" kind=REQUIRED to example.OperatorFacade
add compound indirection "Proxy" (TruckMgmnt OperatorFacade)
add stereotype <<"Remote Proxy">> to example.TruckMgmntProxy

Listing 9. Transformation actions example from case study

4.2 Generalizability

Our approach is generic to a large extent. The transformation actions and constraint
templates constitute reusable AK assets that can be customized and re-used in various
reusable decisions. These templates can be applied for any existing ADD model or
ADD documentation because the essential concepts and elements of these models and
those in the ADvISE ADD model are almost equivalent. In most cases, the binding
between the template variables and the elements of ADD models might need human
intervention. That is, in order to properly associate a reusable parameterized action
template containing some input parameters with a certain ADD, we need to align the
parameters with the corresponding values in the ADD.

The C&C view that is created or updated by enacting the transformation actions
contains all the information captured by the corresponding ADDs derived from the
ADD meta-model. Nevertheless, the AK transformation language is generic and can be
applied to similar C&C models or architectural views on different scenarios as well.
Please note that the VbMF C&C view contains very similar elements as other typical
C&C views. Therefore, our approach is also applicable for most of existing component
models such as UML component diagram with marginal effort for adapting the actions
to accommodate new elements. This effort will be added to the effort for editing the AK
transformation language templates and constraint templates.



4.3 Reusability

Regardless of the initial efforts for creating the reusable AK transformations, architects
will benefit from reduced total efforts in case of recurring ADDs and AK transforma-
tions. In our approach, reusability is achieved at various levels. First of all, the AK
transformations are edited only once for each ADD model and are afterwards instanti-
ated when actual ADDs are made. This kind of reuse is possible by taking advantage
of the benefits of model-driven techniques and template engines. In addition, the use
of compound actions that can be extended and inherited increases reusability. Finally,
the use of the AK transformation language hides the complex model actions which are
embedded in its enactment engine.

4.4 Modeling Effort and Scalability

We present in this section a quantitative evaluation on the modeling effort of using our
approach. In particular, we document the number of actions (primitive and compound),
primitive actions and model actions that are needed per number of recurring ADDs
and for four different ADDs that have been already documented in Section 4.1. For the
definition of the action templates 4, 4, 6 and 5 actions had to be edited manually for the
reusable decisions Direct Calls, Proxy, Adapter and Integration Adapter respectively.
With the use of compound actions we reduced the number of required actions in the
last three cases, where 7, 6 and 12 actions were contained in the compound actions add
compound indirection and add compound integrationAdapter (extends indirection). The
number of the actions that are directly applied on the C&C model are 13, 35, 32 and
42 respectively for the four ADDs, which means that without the use of the Action
Transformation Language the modeling effort would increase significantly.

This benefit is dramatically increased in case ADDs can be reused. For example, in
our case study, the integration of the WMS system currently requires some 35 proxies
and adapters, meaning that very similar decisions need to be taken over and over again
and, as a consequence, they need to be modeled in C&C diagrams over and over again.
Table 2 shows this dramatic increase for the aforementioned decisions, in case of a spe-
cific decision outcome being selected 1, 5, 10, 20, 50, and 100 times. Clearly, primitive
actions already scale much better in terms of modeling effort than manual change ac-
tions in models; reusable actions with compounds offer an additional level of support.
In particular, in the cases we study, the modeling effort would increase up to 240% if
the compound actions would be replaced by primitive actions and up to 740% if instead
of the AK Transformation Language single model actions would be used.

We estimated the scalability of our approach by measuring the performance for
binding the action templates variables and transforming the actions into C&C views. We
opted to conduct our measurements on a normal desktop machine, as our approach will
usually need to run on the local machines of the software architects and designers. The
machine for testing had an Intel Quad Core i5 2.53GHz with 8GB of memory running
Java VM 1.6 and Eclipse Indigo on Debian Linux. Each measurement is performed 100
times and the resulting time, in milliseconds, is calculated on average. We report only
the average, as the deviations calculated were small. Table 3 presents the time needed
for the binding of the action template variables and for the transformation of the actions
into the C&C views per number of actions, respectively.



Table 2. Modeling Effort for Reusable ADDs

Reusability of ADDs
−−−−−−−−−−−−−→ Average increase

of modeling effort1 5 10 20 50 100

Direct Calls
Actions (with compounds) 4 20 40 80 200 400 -
Primitive Actions 4 20 40 80 200 400 0%
Model Actions 13 65 130 260 650 1300 225%

Proxy
Actions (with compounds) 4 20 40 80 200 400 -
Primitive Actions 11 55 110 220 550 1100 175%
Model Actions 35 175 350 700 1750 3500 775%

Adapter
Actions (with compounds) 6 30 60 120 300 600 -
Primitive Actions 13 65 130 260 650 1300 117%
Model Actions 32 160 320 640 1600 3200 433%

Integration
Adapter

Actions (with compounds) 5 25 50 100 250 500 -
Primitive Actions 17 85 170 340 850 1700 240%
Model Actions 42 210 420 840 2100 4200 740%

Table 3. Performance Measurement

Primitive Actions 5 10 20 50 100 200 500 1000 5000
Binding Time (in msec) 2 3 4 5 6 8 13 21 77
Transformation Time (in msec) 96 102 111 125 147 210 331 671 2748

We can see that the binding and the transformation time increase in a linear man-
ner with respect to the number of actions and remain considerably low even for a big
number of actions. In particular, the binding and transformation for 100 actions are ac-
complished in roughly 6 and 150 ms, for 1000 actions in approximately 20 and 670
ms, and for 5000 actions in about 80 and 2700 ms, respectively. Thus, our approach
scales well enough for being integrated in the typical development flow of developers
and architects on a typical work station, even for ADDs that create or update large C&C
models.

5 Related Work

The documentation of the design rationale, as well as the gathering of Architectural
Knowledge (AK) have promoted ADDs to first class citizens in software architecture.
For this, many approaches based on decision-capturing templates [23], on ontologies for
architectural decisions [13] and decision meta-models [25] have been proposed in the
literature. Also, a considerable amount of tools have been developed to ease capturing,
managing and sharing of ADDs [21]. These approaches mainly target reasoning on
software architectures, capturing and reusing of AK and do not tackle the maintenance
and consistency of ADDs with architectural views.

The generation of architectural design views from specifications or other architec-
tural views has been studied extensively in the literature. Pérez-Martı́nez and Sierra-
Alonso [20] use model-to-model transformations to generate component-and-connector
architecture models from classes and packages analysis models by using OCL map-
ping rules. In a different approach [14] variability elements from the problem space
are connected to architecture elements in the solution space using a Variability Mod-
eling Language (VML) that provides primitives for referencing and invoking decisions
which result in fine-grained or coarse-grained compositions of variable and common



core architectural elements. This approach supports rather the composition than the
generation of software architectures as it requires that all architectural elements are
predefined. Consistency checking between the different models or the documentation
of design rationale are not considered in any of the approaches.

A considerable amount of research has been conducted in relating requirements with
software architectures. For example, Kaindl et al. [9] suggest that with the use of model-
driven approaches we can map requirements to architectural design and Grunbacher
et al. [5] introduce the mapping from requirements to intermediate models that are
closer to software architecture. A different approach by van Lamsweerde et al. [12]
derives software architectures from the formal specifications of a system goal model
(KAOS) using transformation rules and refines the architectures incrementally using
patterns that satisfy quality of service goals like availability and fault tolerance. In the
aforementioned approaches, although the transformations are done automatically, the
mapping has to be done manually and is not reusable. Another disadvantage compared
to our approach is that the rationale that led from the requirements to the architectural
views is not documented. In our work we assume that architectural decision making
follows the collection of requirements and precedes the design of software architectures
and set our focus on the linking of reusable ADDs to C&C models.

Our approach is not the first one to relate ADDs to software architectures. The
problem of inconsistencies between ADDs and software architectures that cause design
knowledge vaporization has been discussed before by Choi et al. [2]. For this, they pro-
pose to make ADDs more explicit by introducing a meta-model for relating decisions
with architectural elements and a decision constraint graph for representing decision re-
lationships and studying decision change impact analysis. Compared to our approach,
this approach demands that most of the work is done manually: decision making, archi-
tectural design and change propagation during software evolution. STREAM-ADD [4]
also relates architectural decisions documented in decision templates with requirements
and architectural models generated from these requirements. This approach focusses
rather on the integration of systematic documentation of structural and technological
decisions with requirements and architectural models than on the consistency checking
between decisions and designs.

Traceability links between decision models and architecture models have been used
extensively in the literature. Capilla et al. [1] introduce fine-grained traceability links
between design decisions and other software artifacts. Knemann and Zimmermann [10]
establish links between design decisions and design models in model-based software
development in order to support architectural knowledge documentation and reuse, as
well as to check consistency. Mirakhorli and Cleland-Huang [19] introduce the TTIM
approach that provides a reusable infrastructure for tracing architecture tactics to de-
signs used to trace from tactic-related design decisions to architecture components in
which a decision is realized. Also, most of the approaches require significant amount
of manual work for the establishment of the traceability links, which can be in our ap-
proach automated for recurring ADDs from the mapping of the ADDs to transformation
actions and to constraints at template level. Apart from that, none of these approaches
target the reusability of these links between ADDs and architectural views, nor do they
tackle the complexity of big numbers of reusable ADDs.



6 Conclusions

We present a novel approach that provides reusable and extensible transformation ac-
tions and consistency checking rules for (semi-)automatically mapping of the design ra-
tionale and knowledge reflected by ADDs onto architectural component models. In par-
ticular, our approach introduces an AK transformation language for specifying reusable
actions that need to be enacted to automatically create or update the underlying archi-
tectural models with respect to particular ADDs. The transformation language provides
basic actions for updating individual model elements, as well as expressive composite
structures for describing actions applied in a set of elements such as compounds and
loops. This enables us, for instance, to define recurring architectural primitives, e.g., to
realize reusable specifications for architectural patterns or styles in the transformation
language. In addition, our approach supports the specification and automatic generation
of consistency checking rules to make sure no manual changes of the component mod-
els violate the ADDs. The application of our approach in an industrial case study shows
that our approach is applicable in a realistic scenario. Our evaluation illustrates the
benefits of our approach in terms of potential modeling effort reduction, as well as its
scalability in a typical work environment, even for large model sizes. As discussed, the
use of a template engine and model-driven techniques, as well as the support for inheri-
tance and extension in the transformation language significantly enhance its reusability
and extensibility. In our future work, we plan to study repair actions for resolving in-
consistencies between reusable ADDs and component views, as well as the possibility
for bidirectional transformations, i.e., also from component views onto decisions.
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