
Domain-Specific Language for Event-based

Compliance Monitoring in Process-driven SOAs

Emmanuel Mulo1, Uwe Zdun2, and Schahram Dustdar1

1 Distributed Systems Group
Institute of Information Systems

Vienna University of Technology, Vienna, Austria
2 Faculty of Computer Science

University of Vienna, Vienna, Austria

Abstract. Organizations today are required to adhere to a number of
compliance concerns from laws, regulations and policies. Compliance is
achieved through defining and implementing so-called controls in the or-
ganizations’ business processes. Organizations that build their systems
based on the process-driven SOA paradigm realize business processes
through orchestration of services to handle the process’ business activ-
ities. These business activities or groups of business activities in some
cases realize the compliance controls. We propose an approach for imple-
menting event-based compliance monitoring infrastructure that observes
such business processes to verify that compliance is indeed adhered to.
Our approach is essentially a model-driven technique for realizing this
infrastructure. We implement a domain-specific language for specifica-
tion of compliance directives, and we include code generation templates
to generate compliance monitoring code, which is leveraged by complex
event processing components to monitor for compliance. We evaluate the
impact of our approach on the effort and productivity of a developer who
is specifying compliance directives.

1 Introduction

The Service-Oriented Architecture (SOA) paradigm is today very much utilized
in implementations of enterprise information systems in organizations. SOA-
based systems are designed to have different functions encapsulated as services.
A process-driven SOA [1] additionally introduces a process engine that orches-
trates these services to perform the different activities that make up a business
process. In large-scale process-driven SOA systems, multiple process instances
are executed and coordinated on multiple process engines [1, 2]. All process in-
stances are realized through invoking operations from a pool of services that are
within and sometimes beyond the boundary of an organization.

Process-driven SOA systems increasingly support organization operations
and processes and, therefore, are subject to a number of compliance concerns
required of organizations. Compliance concerns include, among other things, acts
of law from governments, or regulations drawn up by regulatory authorities,

Manuscript
Click here to download Manuscript: main.tex
Click here to view linked References

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

2

that govern the way organizations should run their affairs. Non-adherence to
these compliance concerns may result in consequences such as loss of credibility,
financial loss, and litigation of an organization [3]. These (compliance) concerns
are implemented in the SOA systems in form of IT controls; the controls may
either be preventive, i.e., prevent violations from occurring, or detective, i.e.,
detect the violations after they have occurred.

In order to ensure adherence to compliance, monitoring components can pro-
vide an audit trail of the correct execution of preventive controls. In cases where
preventive controls are hard to implement, e.g., failure of a system, service, or
human operation, monitoring components can play a more active role by ensur-
ing fast detection of compliance violations [4]; in other words, the monitoring
component itself is the compliance control. In many organizations, however,
implementation of compliance controls does not follow a generic strategy; com-
pliance is reached on a per-case basis, with ad hoc, hand-crafted solutions or
niche products used for specific compliance scenarios [3,5–7]. Additionally, these
compliance controls are scattered throughout an organization system without
a clear architectural concept; in some cases controls are duplicated. This cre-
ates difficulties when it comes to maintenance of compliance controls. Moreover,
compliance regulations change frequently, meaning the controls have to be con-
stantly updated as well. The goal of this study is to address these issues through
a model-driven approach to implementing a compliance monitoring component
within the scope of process driven SOA systems.

Our main contributions are a structured approach and tool support to
realizing a compliance monitoring component for process-driven SOAs through
model-driven development (MDD) techniques. Our approach essentially involves
iteratively identifying the controls to be monitored, capturing them (controls)
through a domain-specific language (DSL) that we have developed, and finally
generating an event-based compliance monitoring component. The resulting
component performs runtime monitoring of compliance controls that are
realized as process activities or sub-processes. Our tool enables mapping of
process workflows into patterns of events that are (re)used within our DSL.
We believe this mapping scheme is a step in the direction towards automated
management of monitoring components. Considering that business processes
and their compliance controls are constantly changing, we feel that our ap-
proach enables rapid development and evolution of a compliance monitoring
component. In previous work [8], we demonstrated the feasibility of event
based compliance monitoring; we developed a prototype of such a compliance
monitoring component and analyzed its performance and scalability by running
test scenarios realistically mimicking a large-scale process-driven SOA with
event monitoring. In this work, we use a number of scenarios from industry case
studies to evaluate the impact of our approach on effort and productivity of a
developer when coding compliance monitoring specifications.

The rest of this paper is structured as follows. Sect. 2 gives background in-
formation concerning compliance and compliance monitoring components. Also
included in this section are a number of illustrative business process compli-

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

3

ance scenarios. Next, Sect. 3 explains our proposed approach, and in Sect. 4 we
evaluate our approach based on the scenarios taken from industry case studies.
Sect. 5 compares our work to the related work, and finally Sects. 6 and 7 present
discussions and a conclusion to this work.

2 Business Process Compliance

In this section we present background information concerning business compli-
ance, and provide a scope for the kind of compliance that we deal with in this
article. We also present limitations associated with the approach to implement-
ing compliance in organizations today and how these may affect compliance
monitoring. Additionally we present some background information into com-
plex event processing, a technique upon which the construction/generation of
our compliance monitoring component is based. Finally, we present a number of
illustrative scenarios for business process compliance.

2.1 Compliance in Organizations

Typically, when business compliance is discussed, one thinks of the goal to en-
sure that the systems of an organization comply with regulatory or legislative

provisions, or similar business provisions originating from parties external to the
organization. Common examples include regulations set forth in the Basel II
Accord3, The Dutch Corporate Governance Code4, and the Sarbanes-Oxley Act
(SOX)5, to name a few. These cover issues such as auditor independence, corpo-
rate governance, and enhanced financial disclosure. Compliance provisions may
also originate internally from organization policies concerning how the internal
processes are executed. We use the term compliance concerns as an umbrella cov-
ering these internal and external provisions. Figure 1 gives a typical high-level
overview of steps an organization goes through to realize compliance. In the
diagram, rectangles with rounded edges represent activities, and arrows shows
transitions from one activity to the next. We also use dotted lines to group
activities under common themes.

Compliance concerns are related to risks an organization and its stakehold-
ers face in achieving their mission. They provide guidance regarding measures
to take to prevent occurrence of these risks, e.g., Section 404 of the SOX Act
requires public companies to annually assess and report on the design and ef-
fectiveness of internal control over financial reporting. However, the specifics of
how to implement risk-reduction measures, are not normally addressed in these
guidelines. These specifics have to be handled on a per organization basis.

Risk-reduction measures are normally implemented as so-called controls [9].
A control is any measure taken to assure a compliance concern is met. Con-
trols may be broadly classified into preventative controls and detective controls.

3 http://www.bis.org/publ/bcbs107.htm
4 http://www.commissiecorporategovernance.nl/Corporate Governance Code
5 http://www.gpo.gov/fdsys/pkg/CRPT-107hrpt610/pdf/CRPT-107hrpt610.pdf

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

4

Fig. 1. Overview of Business Compliance Assurance

Preventative controls aim to avoid risks, whereas detective controls warn of the
occurrence of risks. Both classes of controls can be realized as either manual
controls, automated controls or hybrid controls (a combination of the previous
two) [10]. For instance, a door alarm system (manual), a software system real-
izing segregation of duty requirements (automated), and management reports
on system errors/faults (hybrid) are all implementations of controls. During risk
management exercises, organizations make decisions regarding required controls
and their implementation.

Organizations need not invent all controls from scratch. A number of estab-
lished norms or standards define and describe standard controls that can be
adapted and implemented. The Control Objectives for Information and related
Technologies (COBIT) 6 framework, for example, describes control objectives
that guide an organization in making choices about which controls to imple-
ment. Such norms and standards are fairly generic and abstract, and must be
mapped to a concrete systems implementation.

In our work we focus on monitoring such compliance controls (especially the
automated and hybrid controls) in the context of process-driven SOAs, which
we discuss in the next section.

2.2 Compliance and Business Processes

Business processes comprise a collection of related, structured business activities
within or across organizations, which produce a specific service or product for a
particular customer [11]. Within a process there typically exists a combination of
manual and automated steps (activities/tasks). Business activities may be either
atomic or non-atomic [12]. Atomic activities are also known as tasks, whereas

6 www.isaca.org/cobit/

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

5

non-atomic activities are termed sub-processes. Sub-processes constitute a num-
ber of business activities executed in a specific control flow. Upon completion of
this flow, the sub-process is said to have completed execution. Whereas a busi-
ness process is primarily aimed at satisfying a particular client need, one of the
major considerations taken into account when designing processes is compliance
concerns.

During the risk assessment exercises, an organization identifies the compli-
ance concerns that it is required to fulfill, and then makes decisions regarding
which controls to implement in order to address those concerns. Controls may
constitute or be applied to sub-processes or activities within a business process,
i.e., parts of the process may be designed and implemented such that they realize
a control that fulfills a particular regulation. Consider, for example, the case of
the well known segregation of duty control. In this control, it is mandatory for
certain activities to be executed by two distinct persons in order to avoid fraud.
The control may be implemented in such a way that when the same person at-
tempts to execute conflicting activities, the system does not allow this action to
happen, or allows it but reports this as a violation of compliance.

Using the existing norms and standards that provide guidance on which con-
trols to use, an organization can make choices on how to concretely implement
the prescribed compliance controls for their business processes. The implemen-
tation of controls usually does not follow a generic strategy and hence business
compliance is reached on a per-case basis, i.e., organizations use ad hoc, hand-
crafted solutions for specific compliance concerns [3, 5–7]. This usually means
that a separate project is started and develops an individual, custom solution
for the compliance concern to be addressed. Such solutions usually do not follow
a clear architectural concept and result in hard-coded controls spread over the
systems, possibly with dependencies to other controls. Consequently, it becomes
quite a task to ensure compliance and keep up with constant changes in regula-
tions and laws. In this article, we present our approach as a generic strategy to
realize a runtime compliance monitoring component in the context of process-
oriented SOAs. Our approach essentially follows a model-driven development
paradigm for realizing a runtime compliance monitoring component.

2.3 Compliance Monitoring through Complex Event Processing

A number of generic monitoring solutions propose an external component to
which events are sent. In some cases the component records events in audit logs
(files) and later analyzes them to detect anomalies in system behavior [2,13–15];
these are characterized as offline monitoring solutions. Other solutions propose
monitoring events in near real-time using complex event processing (CEP) tech-
niques [16–18]. This approach is characterized as online monitoring and implies
that violations in the expected behaviour of the system are ideally detected
sooner after they have occurred.

CEP is a set of tools and techniques for analyzing and controlling a complex
series of interrelated events [16]. Events are observed as they occur, and are

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

6

correlated and aggregated in order to discover and respond to certain event pat-
terns [18]. These techniques have a number of application areas, including policy
enforcement and regulatory compliance [16,18]. Events represent the occurrence
of an activity within a system. They may originate from a number of sources,
e.g., RFID tags, network traffic data, and enterprise application components,
and they may contain information, e.g., the event source, or time of occurrence.
This information enables us to analyze the events and determine how they relate
to each other.

Domain specialists are interested in events of significance in their domain. In
some cases it is not possible to directly observe such special events because they
occur as a combination of a number of other events. However, through event
pattern languages (EPLs) [16] also known as stream query languages [19], one
can configure an event processing engine to aggregate what are termed low-level
events into complex (high-level) events. Low-level events are not an abstraction of
other events, and do not have semantic significance on their own within a specific
domain, whereas complex events are an aggregated abstraction of a number
of other low-level and/or complex events [16, 20]. EPL’s are the primary tool
through which CEP-based components can be configured to filter and correlate
low-level events to yield other higher-level, more semantically significant events
[21], i.e. special events.

In previous work, we leveraged CEP techniques for the realization of a com-
pliance monitoring component for process-driven SOAs [8]. We discovered some
challenges when using CEP for compliance monitoring, especially regarding
maintainability of the compliance controls. We build on top of this work with our
model-driven approach to implementing compliance monitoring components.

2.4 Illustrative Scenarios of Business Process Compliance

In order to illustrate the relationship between compliance and business processes,
we present here a number of illustrative scenarios from industry case studies of
business process compliance. We use the BPMN standard notation [12] for the
diagrams illustrating these scenarios.

Scenario 1: Loan Application (LA) Scenario In this scenario, a customer
goes to a bank to apply for a loan. In Fig. 2 we present an excerpt of the process
model indicating steps typically followed. In this excerpt, a person with the role
Credit Broker performs a number of tasks upon receiving a loan request. Upon
completion, the loan application may be delegated to a Supervisor or to a Post
Processing Clerk, depending on the size of the loan requested by the applicant.

In this scenario, we consider three compliance regulations that fall under the
category of segregation of duty (SoD) requirements. This requirement essentially
states that activities that pose a risk of fraud or error should not be carried out
by the same person. In the loan application process, SoD accounts for two of
the compliance rules designed into the process. In Fig. 2, we see that a loan
application is initially processed by a Credit Broker, who performs preliminary

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

7

Fig. 2. Excerpt of Loan Application Process

checks on the customer’s application files, banking privileges and then creates a
loan file. However, the next tasks of checking the customer’s credit worthiness
and approving the loan have to be performed by a Post Processing Clerk. Addi-
tionally, if the loan exceeds a threshold, in this case defined as EUR 1 million,
the loan application has to be verified by a Supervisor. One final compliance
rule implemented in the business process (although not shown in the diagram)
states that all final approvals of loans have to be carried out by a person with
the role Manager.

Scenario 2: Travel Booking (TB) Scenario In this scenario, we consider
the business process from a travel management agency (TMA) that handles
travel arrangements for corporations. Employees of corporations that are TMA
clients are able to arrange their travel through services provided by TMA. TMA
has signed contracts with these corporations and has to monitor its applications
to ensure that employees using these services adhere to policies agreed upon.
We consider two specific policies; first, each corporation decides on preferred
suppliers for specific services in order to ease payments. Therefore, employees
arranging their travel are encouraged to use to these preferred suppliers unless
it is absolutely necessary to choose a different one. The other guideline for em-
ployees when arranging travel is to arrange their travel whenever possible two
weeks in advance of the expected date of travel. Fig. 3 shows the business process
model for this scenario.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

8

Fig. 3. Travel Booking Scenario

Scenario 3: Claims Handling (CH) Scenario In the claims handling sce-
nario, an insurance company has to monitor the process of fulfilling or denying
insurance claims from its customers. The insurance company would especially be
interested in keeping track of denied claims as these are of interest to regulatory
bodies. The process excerpt for the claims handling business process is shown in
Fig. 4.

Fig. 4. Insurance Claims Handling

In order to ensure the requirements in the scenarios are adhered to, we im-
plement business process monitors to observe the scenarios during process exe-
cution. We use these illustrative scenarios to present our approach in the next
section and in the evaluation of our approach in a later section.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

9

3 Developing Compliance Monitoring Components

3.1 Overview of Compliance Monitoring Approach

In process-driven SOAs, services are orchestrated in order to realize a business
process, each service executing a particular function. From the perspective of
business operations, however, the business process is realized by composing a
number of business activities. Our approach is a systematic method of realizing
a monitoring infrastructure for observing compliance in a process-driven SOA.
Compliance of a business process is determined by monitoring controls applied to
the process’ business activities. In our approach we refer to organizations that
already have in place controls and/or a method of defining and documenting
these controls for compliance. We illustrate an overview of our approach in Fig. 5.

Fig. 5. Conceptual Overview of Approach

Essentially, we propose an MDD approach to developing a business-process
compliance monitoring component. Our aim is to realize an event-based monitor-
ing component from these requirements. We provide a domain-specific language
(DSL) with which a developer can specify compliance monitoring directives 7.
The developer draws these directives from the documentation of controls and
discussions with compliance domain experts. The developer is able to specify
controls, activities to which they are applied, and data from a particular activ-
ity required to verify its control. Typically, each compliance monitoring directive
would comprise an event or pattern of events representing business activities,
from which compliance control data is extracted.

In addition to the DSL, we define code generation templates, which generate
the compliance monitoring component based on directives specified with the
DSL. We demonstrate our approach through an MDD framework. Within this

7 we use the terms directives and rules interchangeably

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

10

Fig. 6. Process Monitoring Domain Model

framework we implement a DSL for specifying the compliance directives, as
well as the necessary code generation templates for generating the compliance
monitoring components.

3.2 Process-Monitoring Domain

One of the first steps in developing a DSL is to analyse the domain for which
the DSL is being developed [22]. The domain model in Fig. 6 captures the main
concepts of the business process monitoring domain. The model is illustrated
with UML class diagram notation.

During execution of a business process, the activities executed as well as the
order in which they occur depends on actual data in the system.

A process monitor is typically configured to observe occurrence of certain
conditions within a specific subset of the entire process execution. We capture
this idea of a subset of the process in form of a Process Instance Fragment

class. Comprising each Process Instance Fragment are a number of Activity

Instance’s. Each Activity Instance represents the occurrence of either an Atomic

Activity Instance, i.e., a single activity, or a group of activities (Activity Group

Instance). Moreover each Activity Instance is associated with specific data el-
ements, e.g., activity name, whose actual values may differ depending on the
process instance at execution time.

Activity Instance’s are also related to an Activity Execution Order that
specifies the order in which a group of activities occurs. For our domain model,
we currently define three possible Activity Execution Order options, i.e, a se-
quential order (SEQUENCE) – activities occur one after the other in a fixed order, a
parallel execution order (PARALLEL) – activities occur simultaneously, i.e., all ac-
tivities occur but do not have a fixed order, an option execution order (OPTION)
– activities occur in a mutually exclusive manner, i.e., strictly one of the ac-
tivities shall occur. We have chosen these three options as they can express the

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

11

most common workflow patterns that occur in business processes. In Table 1, we
show the five elementary control flow concepts from the Workflow Management
Coalition [23, 24], that are found in most business processes. We illustrate how
these patterns are represented using the activity execution order options.

Besides Activity Instance’s, a Process Instance Fragment is associated with
a number of Boolean Condition’s, which specify constraints on data elements
(from Activity Instance’s) that are considered for monitoring. They (Boolean
Condition’s) are grouped into two kinds, Filter’s and Assertion’s. Filter’s spec-
ify data categories or conditions that should be ignored or considered in a moni-
tored process fragment. Assertion’s on the other hand represent conditions that
are expected to be true in the monitored (Activity Instance) data.

3.3 Compliance Monitoring Domain-Specific Language (DSL)

Based on this domain model for the process monitoring domain, we derive the
concrete syntax of our DSL for specifying compliance monitoring directives for
business processes. We implemented a prototype model-driven process monitor-
ing framework to demonstrate our DSL. The prototype is built on top of an
MDD framework (Frag [25]). Note that the concrete syntax takes most of its
form from the domain model in the previous section.

To explain our DSL sytax, we use the sample shown in Fig. 7; this is a spec-
ification of the segregation of duty process monitor described in Section 2.4.
As can be seen in the diagram, the DSL typically has two distinguishable sec-
tions. The first section is a definitions section (can be thought of as declara-
tions), in which activities to be monitored are defined. Here one can define both
AtomicActivityInstance’s or ActivityGroupInstance’s. AtomicActivityInstance’s
define single activities, whereas ActivityGroupInstance’s define a group of activ-
ities, that may not necessarily be adjacent to each other in the business process
definition. The ActivityGroupInstance also specifies order of occurrence of ac-
tivities, which may be sequential, optional or parallel. In Fig. 7, for instance,
the SEQUENCE order means the four activities listed are expected to execute in a
sequential order.

The second distinguishable section contains process monitoring directives.
Here we specify the process subset that we are interested in monitoring. A process
monitoring directive begins with the ProcessInstanceFragment keyword. Each
directive then has up to three subsections to be defined, activities, filters and
assertions. Under activities we use the activity definitions from the declarations
section. We may also define activities directly under this subsection, however,
this limits the possibility to reuse such definitions in multiple compliance rules.

Under the filters subsection, we specify a number of conditions for limiting the
type (and consequently amount) of activity instances considered for a particular
monitoring directive. For instance, data may only be of interest below a certain
threshold value and so compliance monitoring components would only observe
these data values and ignore the rest. In Fig. 7, the process monitoring directive
considers only those CheckCreditWorthiness activities with a loanAmount less than
EUR 1 million and ignores the rest.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

12

Table 1. Mapping Business Process Patterns to Activity Execution Order

BPMN Activity Execution Order

Single Activity – these have a one-to-one mapping with events

SEQUENCE{A}

Sequence Flow – depicts a very simple event pattern with one business activity
following another

SEQUENCE{A,B}

Parallel Split – indicates that a business activity splits from a single thread of
control to multiple threads of control that execute simultaneously. In such a
flow, the originating event A occurs and is followed by events B1 and B2. The
two following events must occur but do not have a specific order

SEQUENCE{A, PARALLEL {B1,B2}}

Synchronization – indicates a point in the control flow where two parallel
threads of control merge into a single thread. In this case two events B1 and
B2 must occur first, although in no particular order, and then followed by the
event C

SEQUENCE{PARALLEL{B1,B2}, C}

Exclusive Choice – represents a point at the control flow where, depending
on a certain condition, only one of the available paths in the control flow is
chosen. In our mapping, an event A could be followed by at most one of the
choices B, C or D. The other events must not occur

SEQUENCE{A,OPTION{B,C,D}}

Simple Merge – at most one of the events B, C or D occurs (and should not
be followed by the other two) and is followed by event E

SEQUENCE{OPTION{B,C,D},E}

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

13

The last subsection, assertions, is used to specify expected values in mon-
itored data. Should these expectations not be fulfilled in actual runtime data,
a compliance control has been violated. For instance, in our sample when the
loanAmount value is less than EUR 1 million, it is expected (assertions) that a
person with the role Creditor executes the first three activities and then another
person with the role PostProcessingClerk executes the last activity. If persons
with different roles than what is expected execute any of these activities, this is
reported as a compliance violation.

Fig. 7. DSL Specification of SoD Compliance Monitor

The DSL thus enables a developer to specify compliance monitoring directives
for (subsets of) a process instance to which controls have been applied.

3.4 Compliance Code Transformation and Generation

In addition to the DSL, the prototype comprises transformation templates for
converting the DSL directives into code for a compliance monitoring component.
In this particular implementation, our target platform was an event-based mon-
itoring component – the Esper event processing engine [26]. Therefore, our code
transformation-and-generation templates transform DSL compliance monitoring
statements into corresponding Event Processing Language (EPL) (cf. Sect. 2.3)
queries for the Esper engine.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

14

Such code generation templates are specific to the type of event processing
engine or technology that one may be using. They need to be implemented
initially and once done the technology specific code can be quickly and repeatedly
generated. In Fig. 8, we illustrate a sample code generation template as well as
the resulting code that is generated when this template is applied to the SoD
compliance rule from Fig. 7.

Fig. 8. EPL Code Generation Template

The PATTERN section of the template is where the activity execution order is
specified. We map the activity execution order to event patterns using a mapping
scheme that we present in Tab. 2.

The resulting compliance monitoring code provides configuration information
to the event processing engine during its initialization; as business processes
are executed, the event processing engine observes business activity events to
determine compliance of the executing processes.

Note that the EPL is also a DSL specialized for the purpose of defining queries
over event-streams, and is therefore capable of specifying compliance monitor-
ing rules as well. One may wonder why we need the compliance monitoring
DSL at all. The compliance monitoring DSL is used to express compliance con-
trol monitoring directives in terms that are in the process-driven SOA domain.
This design serves three purposes; first, the developer works with process-driven
SOA domain concepts and therefore is not continuously translating SOA domain

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

15

Table 2. Transforming Activity Execution Order to Event Patterns

Activity Execution Order Event Detection Patterns

Single Activity
SEQUENCE{A} (every A)

Sequence Flow
SEQUENCE{A,B} (every A) → B

Parallel Split
SEQUENCE{A, PARALLEL {B1,B2}} (every A) → (B1 and B2)

Synchronization
SEQUENCE{PARALLEL{B1,B2}, C} (every (B1 and B2)) → C

Exclusive Choice
SEQUENCE{A,OPTION{B,C,D}} (every A) → (B or C or D)

Simple Merge
SEQUENCE{OPTION{B,C,D},E} (every (B or C or D)) → E

concepts into EPL statements. Secondly, the code specified under the DSL can
be reused for different technology implementations. Incase there was a different
CEP engine to be used, the same compliance code could be used with only the
code generation templates requiring changing. And lastly, the developer is better
able to communicate and share implementation source code with the (business
process or compliance control) domain experts, bringing them closer to the im-
plementation. Of course this implies that a system developer using the DSL is
familiar with the basic concepts of process-driven SOAs and perhaps has some
experience implementing them.

In the next section we present an evaluation of our approach.

4 Evaluation of Compliance Monitoring Approach

One of the challenges with respect to monitoring of compliance is the ad hoc
implementation of compliance controls, in most cases using niche products to
implement a particular compliance requirement. CEP can today be considered
as one such niche product in compliance monitoring for business processes (a
technique known as business activity monitoring (BAM) [16]). In this section
we evaluate our approach based on the illustrative scenarios presented in Sec-
tion 2.4. We present a quantitative comparison of the DSL presented in Section 3
alongside an EPL for realizing CEP based monitoring; this comparison serves
to highlight the differences between our DSL and the EPL, and to initiate a
discussion concerning the pros and cons of our proposed approach.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

16

4.1 Evaluation Method

We applied the goal–question–metric technique [27] to define appropriate metrics
for comparison of our DSLs. We selected two main issues to compare in the
DSLs; effort – how much of the developer’s resources (e.g. time) are required
to maintain compliance specifications, and productivity – how productive is a
developer who is using the DSLs for compliance specifications.

To measure these qualities, we chose two size metrics to compare programs
specified by both DSLs. The size metrics we utilize are, number of variables (NV),
and number of operations (NO). Variables refers to identifiers that indicate data
to be monitored for a particular compliance rule; Operations are considered in
the traditional sense, i.e., an action or procedure involving operands/variables.
Size metrics are considered as relatively good predictors of maintenance effort
even though they are not the sole predictor [28]. Considered from this angle,
NV and NO both provide indicators of effort and productivity of programmers
using our compliance specification DSLs. Once we decided on the metrics, we
applied them to the compliance rules from our illustrative scenarios. We applied
the metrics to both the EPL and DSL rules.

4.2 Evaluation Results

In Table 3, we present the results from applying the NV and NO metrics to our
set of compliance rules based on the scenarios from Sect. 2.4. Note that in the
NV–column we have a value NVu in brackets. The NVu count represents the
number of unique variables in a rule. We perform this count as well to provide
further analysis and/or comparisons.

Table 3. Comparison of compliance program sizes for EPL vs DSL

EPL DSL
NV (NVu) NO NV (NVu) NO

LA Rule 1 23 (16) 18 10 (4) 3
LA Rule 2 17 (11) 9 6 (6) 2
LA Rule 3 19 (13) 10 6 (5) 1
LA Reused – – 6 (6) 0

TB Rule 1 21 (14) 16 10 (10) 3
TB Reused – – 5 (5) 0

CH Rule 1 13 (12) 10 7 (6) 1

Totals 93 (66) 63 50 (42) 10

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

17

From the results presented in the table we observe a number of things; when
we compare the NV for the EPL and the DSL, the EPL in most cases has
double the value of NV as compared to the DSL. The EPL is a verbose language
and does not provide possibilities for reusing code. The DSL on the other hand
enables extraction of some common business process patterns, and possibility
to reuse them in multiple rules. We include a count of NV from reused rules
in the bottom row of the table (EPL does not have reuse features). This reuse
drastically reduces the number of variables that are needed by the DSL for each
rule.

The difference in the NO count between EPL and DSL is even greater, with
the EPL count almost six times that of the DSL on average. The EPL is a more
generic language and therefore uses a greater number of operators / operations
to realize certain monitoring requirements. We can see examples of this in Fig. 8,
where the EPL incorporates boolean operations (or), equality operators (=,

!=), and timing operators (->). Since our DSL is more specialized, a lot of
operations are implicitly captured in a declarative textual language form that is
closely related to the domain. Moreover lots of default values are assumed during
code generation, which is not the case with the EPL. As an example (see Fig. 7),
instead of using multiple followed by (->) operators, we express this with the
declarative command SEQUENCE, to indicate that all activities listed occur in a
sequence, following the order in which they are listed.

Overall, we would like to argue that the characteristics of our DSL syntax are
in tune with the mental working style or approach of a programmer, i.e., through
referencing short term memory for tasks at hand and long term memory to make
broader connections [29]. With fewer variables and operations to consider, the
programmer is better able to quickly understand and maintain the source code.
The reuse feature also fits within this model, described in Henderson-Sellers [30]
as chunking and tracing, i.e., the programmer typically chunks together related
pieces of information and mentally refers to it from one point of view. This is
very much what the DSL provides with the reuse feature.

4.3 Limitations and Threats to Validity

There are a number of issues that we consider to be possible limitations and/or
threats to the validity of the results that we obtained during our experiments.
We consider these from two angles, i.e., threats related to the data that we used
in the experiment, and threats related to the method we followed to carry out
the experiment.

When we refer to data, we consider the compliance rules as well as their im-
plementation. We have a number of compliance rules in our experiment, however,
it is always a question whether there is enough of them to make more general
conclusions. The number of rules, therefore, poses a threat to the generalizability
of our proposed approach. In addition, one could argue that the implementation
of the compliance rules in the two different languages is also a threat, because
there is the possibility of bias, in favour of the DSL, in the implementations.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

18

We minimised the effect of this threat by reviewing the compliance rules in both
DSLs to eliminate any unnecessary code.

Regarding the method we followed in carrying out the experiment, the first
threat we can identify is that of the choice of the metric. While Li and Henry
clearly state that size metrics are predictors of maintenance effort, they also
point out that these metrics are not the sole predictors [28], i.e, they should
be considered in conjunction with other metrics. Oman and Hagemeister [31]
actually propose combining a set of metrics (considered to have influence on
maintenance effort) into a single index of maintainability. In a more ideal sit-
uation, we could consider multiple metrics for evaluation. We were, however,
limited by the choice of a metric that could provide an analysis of both DSLs
side-by-side. Moreover, most metrics we came across are designed with procedu-
ral and/or object-oriented languages in mind. We did not come across metrics
that have been explicitly designed with a focus on declarative languages of the
kind that we analysed in this work.

5 Related Work

In a very general sense, all forms of monitoring are related to compliance of
some sort. Monitoring is concerned with observing the state of a system to
ensure that it fulfills a particular goal and to inform an interested party when
things go wrong. With regard to our work, the purpose of monitoring is to ensure
that our business processes actually execute compliance controls as expected at
runtime. Whereas the compliance controls are built into the system at design
and implementation time, monitoring provides the required runtime validation
and ensures that compliance of business processes is auditable [3]. In this section,
we discuss a number of other related works aimed at ensuring or monitoring for
compliance at runtime.

Compliance Monitoring Approaches The works by Mahbub and
Spanoudakis [32], Giblin et al. [33, 34], Sadiq et al. [6], and Rozinat and van
der Aalst [35] are directly related to monitoring and checking for compliance
in business processes. Sadiq et al. [6] propose an approach for incorporating
compliance at design time. They propose a method for incorporating compliance
controls into a business process. Their approach involves defining compliance
controls in Formal Constraint Language and then incorporating this into
process models through annotations. They aim to support process designers
to effectively incorporate compliance controls into business processes. This
complements our approach in the sense that processes for which our approach
creates runtime monitoring infrastructure, are designed with such compliance
controls embedded. However, the runtime monitoring still offers validation, and
ensures that processes are auditable, which are important issues in compliance.

In Mahbub and Spanoudakis [32], the authors propose an approach simi-
lar to ours in that they provide a mapping from business level information to
monitoring patterns. In their work, however, they map from BPEL4WS to event

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

19

calculus. The differences in mapping between the two approaches may have some
implications on how they are converted into a running monitor. Expressing the
patterns using event calculus informs of the changes that happen in the system
through time, whereas expressing the patterns using event algebra as we do,
simply states what are the operations performed on the events.

The approach in Giblin et al. [33, 34] aims for runtime monitoring for com-
pliance. The authors propose REALM, a meta-model for the specification of
compliance regulations in a technology-agnostic manner. A REALM model con-
sists of a concept model that captures concepts and relationships of the domain
in which regulations are being applied, a compliance rule set that represents
regulatory requirements in a real-time temporal object logic, and meta-data
providing information about the regulations, e.g. source and enactment dates.
They propose a framework that uses the REALM specification to generate tech-
nology specific correlation rules for runtime monitoring. Rather than attempt to
capture compliance rules, our approach assumes that compliance controls are al-
ready defined within a business process, for example, using methods like in Sadiq
et al. [6]. However, our approach also provides the mapping from the modelled
business process to a set of queries that are used for correlation and monitoring
of events.

Rozinat and van der Aalst [35] present an approach for conformance checking
of business processes. While the previously discussed approaches target design
time and runtime compliance checking, this approach is more retrospective with
respect to execution time, i.e., checking for conformance after business processes
have already been executed. The authors mine event logs and process models to
check conformance from two angles, the fitness, i.e., how close do the actual exe-
cution logs match with the process model, and the appropriateness, i.e., how well
does the model describe the actual process execution recovered in the execution
logs. This conformance check (specifically the fitness conformance) is similar to
how we approach compliance checking, however, we do not consider an entire

process in our checks. Instead, we consider a subset/excerpt of activities that
are specifically in a process for the purpose of checking compliance. The authors,
however, do raise an interesting qualitative issue concerning the appropriateness
of models. In our mappings from business activities to event detection patterns,
we provide all possible combinations. In cases where there would be multiple
parallel activities, the possible combinations from the mappings would be expo-
nential, and yet not all possible combinations shall exist in the actual execution
of the process.

Generic Business Process Monitoring Approaches Regarding more
generic approaches for monitoring business processes and SOA, i.e., not specifi-
cally monitoring as applied to compliance checking, we consider some approaches
that incorporate monitoring logic into business processes ([13, 15, 36–38]),
others leverage complex event processing ([14,39]), and finally business protocol
monitoring ([40, 41]). Baresi et al. [36] present an approach to monitor service
compositions, i.e., business processes. They embed annotations into BPEL

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

20

code, which annotations are later transformed by a preprocessor into BPEL
statements. In addition they implement a monitoring web service. This web
service is a gateway to an external server component that monitors a process
execution. While this approach has the benefit of sticking to the standard
services paradigm, the nature of web services, as the authors also recognize, is to
be stateless. This implies that it is not possible for the monitoring web service
to maintain state while monitoring an entire process; yet state is required for
monitoring a service composition over a period of time. We encountered similar
issues in our implementation of the monitoring infrastructure, and instead
opted to use a messaging queue as a gateway rather than a web service.

In both approaches by Erradi et al. [38] and Baresi et al. [37], the moni-
toring logic is also embedded into the process control flow in a similar manner
to what is done in Baresi et al. [36]. However, these two approaches are ex-
tensions to the WS-Policy specification. Erradi et al. [38] develop Manageable
and Adaptive Service Compositions (MASC), a policy-based middleware that
executes WS-Policy4MASC assertions. WS-Policy4MASC is the authors’ exten-
sion to the WS-Policy Framework – the extension enables incorporating new
monitoring and control policy assertions. Baresi et al. [37] propose Web Service
Constraint Language (WS-CoL), a domain independent language for express-
ing monitoring policies for WS-BPEL processes. WS-CoL is compliant with the
WS-Policy specification. Their approach proposes weaving monitoring directives
into a WS-BPEL specification such that calls to a monitoring manager are at-
tached to parts of the specification. This weaving is done at deployment time
to keep a separation between the WS-BPEL code and the WS-CoL monitoring
constraints. Whenever these constraints are encountered (at runtime), the moni-
toring manager performs constraint checking and then calls the relevant service.
In both these approaches, the monitoring logic is tightly coupled with the actual
running system.

Muehlen and Rosemann [13] present a process monitoring approach that
aims to not only monitor the process execution, but also the economic impact
of processes on a business. This approach achieves this by taking three views
of process monitoring, the process view, resource view and objects view. They
present an architecture for a process monitoring and control system. The essen-
tial component for the monitoring is an evaluations method library that contains
algorithms for performing the calculations based on monitored data. The library
is extensible with the possibility for one to plug in customized evaluation algo-
rithms.

The work from Grigori et al. [15] proposes an integrated business process
intelligence toolsuite for managing process execution quality. One of the com-
ponents of the tool is the Business Process Cockpit (BPC) [42] that offers an
interface for business users to monitor different perspectives (e.g., services, re-
sources) of a business processes as the process executes. The BPC monitoring
achieves this by periodically reading data from audit logs from the integrated
toolsuite. A user needs to configure alerts that determine information of inter-
est for monitoring. The BPC component alerts the user, or can execute other

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

21

actions. The alerts are similar to our the query rules that we use to configure
our event processing engine to monitor for events. However, event processing
provides continuous monitoring rather than the periodic style of the BPC. In
addition it is not clear whether it is possible for the alerts to define queries
similar to ours in the sense of mapping patterns of events to a series of service
invocations, for example.

CEP-Based Monitoring Approaches Although not explicitly stated, the
work from McGregor et al. [14] provides a form of complex event processing
monitor for QoS compliance. The monitoring solution provides a logging ser-
vice interface, to which data from the service being monitored is passed. This
data is forwarded to an internal data constructor agent that computes summary
data based on previously logged state information for the same service. This
summary data may then be checked against an original definition of the web
service capabilities to identify any discrepancies. They do not state in their ap-
proach whether it is possible to configure the agents that perform processing
on the state information concerning the web services. In our case queries are
used for such configuration and can be easily changed and updated depending
on what kind of monitoring is required. Vacuĺın and Sycara [39] also propose
complex event processing for semantic monitoring of web services. They achieve
this by extending an event algebra to enable specification of composite events.
These concepts are similar to low-level service invocation events and high-level
business events. However, they focus on monitoring for semantic web services.
They do not filter events based on syntax and parameters; rather they define an
event ontology and whenever a primitive event is fired, it is actually an instance
of the ontology class representing the event type on which semantic filtering is
performed.

6 Discussion

We propose a systematic approach to map the compliance controls (activities or
sub-processes) that are defined in business processes into monitoring queries that
can check for this compliance at runtime. We now discuss some of the advantages
and limitations of this approach.

When applying our approach, we think there is a clear separation of issues
concerning the system functionality from those concerning compliance assur-
ance. As a result, maintenance overheads that are incurred without this clear
separation are reduced. This separation characteristic is also present in related
works (Sect. 5). We assume that business specialists have already incorporated
their choices on compliance controls into the business process designs, and we
make a mapping of these choices to the technical implementation of monitoring
logic. Other works like Giblin et al. [33, 34] tackle expressing these compliance
controls (as compliance rule sets [34]) and then mapping them to the technical
implementation.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

22

Organizations have to continuously adapt their processes and systems to
match ever-changing compliance requirements. Our approach provides a clear
change strategy: Whenever a compliant business process is changed, the change
impact affects the activity execution order, which in turn affect a set of CEP
rules. Hence, the explicit trace links in our approach foster understandability,
changeability, and maintainability of our event-based compliance solutions.

The identification of common activity execution order patterns might foster
reuse of compliance rules. Whenever another business process can be mapped to
the same sequence of technical events, we can identify the same business events.
Hence, even if the business process activities are not the same but can be mapped
to the same event trail, reuse of existing compliance rules is possible.

We propose to emit service invocation events to monitor business processes.
These events have a standard format and only change the values of parameters
depending on the service invoked. In an organization with many services (as is
the case in large scale SOAs), we are able to reuse the event emitting code across
services. The approach proposed by Giblin et al. [34] expresses compliance reg-
ulations in a technology-agnostic manner and finally generates the technology-
specific correlation rules. This improves reuse in situations where the runtime
monitoring technology might change.

Although our focus is on monitoring process-driven SOAs, we feel that our
approach is usable even in a situation where there exists ad-hoc implementations
of compliance regulations. This is due to the fact that the monitoring is event-
based and so regardless of the technology in use, if it is possible to emit events,
one only has to ensure that the format of the event is appropriate. This is easily
done using wrappers or transforming adaptors. Therefore, it is already possible
to use this approach for monitoring during compliance even during a transition
from ad hoc to more systematic methods of implementing compliance controls.

The compliance detection rules and queries used in CEP tools are, in most
cases, written in simple query languages. They are thus relatively easy to un-
derstand by technical personnel. Erradi et al. [38] and Baresi et al. [37] use WS-
Policy based languages that are expressed in XML – making these languages
readable and perhaps even providing opportunities for automated processing
and transformations. The other monitoring approaches use more complicated
expression languages. Giblin et al. [33, 34] use a compliance rule set based on
temporal object logic, while Vacuĺın and Sycara [39] uses an event algebra to
aggregate events.

We provide a mapping for control flows to event detection patterns. We feel
that such a mapping provides a good basis for automating the process of re-
alizing the compliance monitoring infrastructure. However, such a mapping of
BPMN control flows to executable diagrams applies to private (internal) busi-
ness processes. Our approach is, therefore, limited to realizing the monitoring
infrastructure for internal business processes. There might be some challenges
applying it in a setting with cross-organizational business processes, stemming
from the fact that business process execution (event) data is generally not shared
across organizations. The organizations only externalize a predefined interface to

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

23

partner organizations. Therefore, without access to the event data from within
an organization, we are not able to express the event patterns and consequently
are unable to generate a monitoring solution.

7 Summary and Conclusion

Compliance with regulations, laws and policies is a requirement for organiza-
tions to avoid negative consequences. These organizations thus have to monitor
their information systems to ensure that they still adhere to these compliance
concerns. Considering that many organizations today implement their systems
based on process-driven service-oriented architectures, we are proposing an ap-
proach for monitoring business processes for compliance in such process-driven
SOAs.

We propose a structured approach for realizing compliance monitoring com-
ponents for business processes. We assume that compliance controls are imple-
mented as business activities or groups of business activities and in effect we
monitor for the execution of these compliance controls. We evaluate our ap-
proach through a number of scenarios in order to determine the impact of our
approach and tool support on the productivity and effort a developer puts into
specifying compliance monitoring directives.

Acknowledgment

This work was supported by funds from the European Commission (contract
No. 215175 for the FP7-ICT-2007-1 project COMPAS).

References

1. Zdun, U., Hentrich, C., Dustdar, S.: Modeling process-driven and service-oriented
architectures using patterns and pattern primitives. ACM Trans. Web 1(3) (2007)
14

2. Kung, P., Hagen, C., Rodel, M., Seifert, S.: Business process monitoring & mea-
surement in a large bank: challenges and selected approaches. In: Proc. of the
16th International Workshop on Database and Expert Systems Applications. (Aug.
2005) 955–961

3. Cannon, J.C., Byers, M.: Compliance Deconstructed. Queue 4(7) (2006) 30–37
4. Anderson, R.: Security Engineering. John Wiley & Sons (2008)
5. O’Grady, S.: SOA Meets Compliance: Compliance Oriented Architecture.

http://redmonk.com/public/COA final.pdf (August 2004) [accessed April 2010].
6. Sadiq, S.W., Governatori, G., Namiri, K.: Modeling control objectives for business

process compliance. In Alonso, G., Dadam, P., Rosemann, M., eds.: BPM. Volume
4714 of Lecture Notes in Computer Science., Springer (2007) 149–164

7. Bonazzi, R., Hussami, L., Pigneur, Y.: Compliance management is becoming a
major issue in is design. In D’Atri, A., Saccà, D., eds.: Information Systems:
People, Organizations, Institutions, and Technologies. Physica-Verlag HD (2010)
391–398

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

24

8. Mulo, E., Zdun, U., Dustdar, S.: Monitoring web service event trails for business
compliance. In: SOCA, IEEE (2009) 1–8

9. Stoneburner, G., Goguen, A., Feringa, A.: National Institute of Standards and
Technology Special Publications 800-30: Risk Management Guide for Information
Technology Systems (July 2002)

10. IT Governance Institute (ITGI): IT Control Objectives for Sarbanes-Oxley. 2nd
edn. Information Systems Audit and Control Association (ISACA) Inc. (2006)

11. Havey, M.: Essential Business Process Modeling. O’Reilly Media, Inc. (2005)
12. Object Management Group/Business Process Management Initiative: Business

process modeling notation (bpmn) version 1.0 (2008)
13. zur Muehlen, M., Rosemann, M.: Workflow-based process monitoring and

controlling-technical and organizational issues. In: Proc. of the 33rd Annual Hawaii
International Conference on System Sciences. (2000) 10 pp. Vol.2

14. McGregor, C., Kumaran, S.: Business process monitoring using web services in
B2B e-commerce. In: Proc. of the International Parallel and Distributed Processing
Symposium (IPDPS 2002). (2002) 219–226

15. Grigori, D., Casati, F., Castellanos, M., Dayal, U., Sayal, M., Shan, M.C.: Business
process intelligence. Computers in Industry 53(3) (April 2004) 321–343

16. Luckham, D.C.: The Power of Events: An Introduction to Complex Event Pro-
cessing in Distributed Enterprise Systems. Addison-Wesley, Reading, MA (2002)

17. Greiner, T., Düster, W., Pouatcha, F., von Ammon, R., Brandl, H.M.,
Guschakowski, D.: Business activity monitoring of norisbank taking the example
of the application easycredit and the future adoption of complex event processing
(CEP). In: Proc. of the 4th International Symposium on Principles and Practice
of Programming in Java (PPPJ ’06), New York, NY, USA, ACM (2006) 237–242

18. Rozsnyai, S., Vecera, R., Schiefer, J., Schatten, A.: Event cloud - searching for
correlated business events. In: The 9th IEEE International Conference on E-
Commerce Technology and The 4th IEEE International Conference on Enterprise
Computing, E-Commerce and E-Services (CEC/EEE 2007). (July 2007) 409–420

19. Wei, M., Ari, I., Li, J., Dekhil, M.: ReCEPtor: Sensing Complex Events in Data
Streams for Service-Oriented Architectures. Technical Report HPL-2007-176, HP
Labs (2007)

20. Brandl, H.M.: Complex event processing in the context of business activity moni-
toring. Master’s thesis, University of Applied Sciences Regensburg (2007)

21. Wu, E., Diao, Y., Rizvi, S.: High-performance complex event processing over
streams. In: Proc. of the ACM SIGMOD International Conference on Management
of Data (SIGMOD ’06), New York, NY, USA, ACM (2006) 407–418

22. Völter, M.: Md* best practices. Journal of Object Technology 8(6) (2009) 79–102
23. Workflow Management Coalition Specification: Workflow Management Coalition

Terminology & Glossary (Document No. WFMC-TC-1011). Workflow Manage-
ment Coalition Specification (1999)

24. Wohed, P., van der Aalst, W.M.P., Dumas, M., ter Hofstede, A.H.M., Russell,
N.: On the suitability of bpmn for business process modelling. In Dustdar, S.,
Fiadeiro, J.L., Sheth, A.P., eds.: Business Process Management. Volume 4102 of
Lecture Notes in Computer Science., Springer (2006) 161–176

25. Zdun, U.: A DSL toolkit for deferring architectural decisions in DSL-based software
design. Information and Software Technology 52(7) (2010) 733 – 748

26. EsperTech: Esper Reference Documentation Version 3.2.0. EsperTech Inc. (2009)
27. Basili, V., Caldiera, G., Rombach, H.: The Goal Question Metric Approach. En-

cyclopedia of Software Engineering 1 (1994) 528–532

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

25

28. Li, W., Henry, S.M.: Object-oriented metrics that predict maintainability. Journal
of Systems and Software 23(2) (1993) 111–122

29. Hatton, L.: Does oo sync with how we think? IEEE Software 15(3) (1998) 46–54
30. Henderson-Sellers, B.: Object-oriented metrics: measures of complexity. Prentice

Hall object-oriented series. Prentice Hall PTR (1996)
31. Oman, P., Hagemeister, J.: Metrics for assessing a software system’s maintainabil-

ity. In: Software Maintenance, 1992. Proceerdings., Conference on. (nov 1992) 337
–344

32. Mahbub, K., Spanoudakis, G.: A framework for requirements monitoring of service
based systems. In Aiello, M., Aoyama, M., Curbera, F., Papazoglou, M.P., eds.:
ICSOC, ACM (2004) 84–93

33. Giblin, C., Liu, A.Y., Zhou, X.: Regulations expressed as logical models (REALM).
In Press, A.I.O.S., ed.: Proc. of the 18th Annual Conference on Legal Knowledge
and Information Systems (JURIX ’05). (2005) 37–48

34. Giblin, C., Müller, S., Pfitzmann, B.: From regulatory policies to event monitoring
rules: Towards model-driven compliance automation. Technical Report RZ 3662,
IBM Research (2006)

35. Rozinat, A., van der Aalst, W.M.P.: Conformance checking of processes based on
monitoring real behavior. Inf. Syst. 33(1) (2008) 64–95

36. Baresi, L., Ghezzi, C., Guinea, S.: Smart Monitors for Composed Services. In:
ICSOC ’04: Proceedings of the 2nd international conference on Service oriented
computing, New York, NY, USA, ACM (2004) 193–202

37. Baresi, L., Guinea, S., Plebani, P. Lecture Notes in Computer Science. In: WS-
Policy for Service Monitoring. Springer Berlin / Heidelberg (2006) 72–83

38. Erradi, A., Maheshwari, P., Tosic, V.: WS-Policy based monitoring of composite
web services. In: 5th IEEE European Conference on Web Services (ECOWS ’07).
(Nov. 2007) 99–108

39. Vaculin, R., Sycara, K.: Specifying and monitoring composite events for semantic
web services. In: 5th IEEE European Conference on Web Services (ECOWS ’07).
(Nov. 2007) 87–96

40. Li, Z., Jin, Y., Han, J.: A runtime monitoring and validation framework for web
service interactions. In: The Australian Software Engineering Conference (ASWEC
’06). (2006) 70–79

41. Benatallah, B., Casati, F., Toumani, F.: Analysis and management of web service
protocols. In: Proc. of the 23rd International Conference on Conceptual Modeling
(ER ’04), Shanghai, China (November 2004) 524–541

42. Sayal, M., Casati, F., Dayal, U., Shan, M.C.: Business process cockpit. In: VLDB,
Morgan Kaufmann (2002) 880–883

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

