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Abstract

Training of Artificial Neural Networks for large data sets is a time consuming task. Various approaches have been proposed
to reduce the efforts, many of them by applying parallelization techniques. In this paper we develop and analyze two novel
parallel training approaches for Backpropagation neural networks for face recognition. We focus on two specific paralleliza-
tion environments, using on the one hand OpenMP on a conventional multithreaded CPU and CUDA on a GPU. Based on
our findings we give guidelines for the efficient parallelization of Backpropagation neural networks on multicore and GPU
architectures.

Additionally, we present a traversal method finding the best combination of learning rate and momentum term by varying
the number of hidden neurons supporting the parallelization efforts.
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1. Introduction

Neural networks are efficient to solve problems where mathematical modeling of the problem is difficult.
They are used to overcome problems including predictions, classifications, feature extraction, image matching
and noise reduction. Typically large amount of data is required to train and evaluate neural networks. As the
size of the neural network increases the time required to train or evaluate increases exponentially. Many efforts
are made to reduce the training time of the neural network by selecting initial values[1], controlling the learning
parameters of a neural network[2] and determining weight adjustments[3]. However there exits still a greater
need to exploit the capabilities of modern hardware and softwares interfaces, specifically by the exploiting the
parallelization capabilities of multicore/multithreaded CPUs or of graphic processing units (GPUs), which earned
a strong research focus today. A modern GPU provides hundred of streaming cores and handles thousands of
threads, which makes it specifically suitable for compute intensive applications like neural network simulation.

Two software environments, CUDA and OpenMP, have established themselves as quasi-standard for GPU
and multicore systemes respectively. The Compute Unified Device Architecture (CUDA) is a parallel computing
platform and programming model invented by NVIDIA[4]. It provides set of extensions to standard programming
languages, like C, that enables implementation of parallel algorithms. Since the launch of the CUDA architec-
ture many applications were developed and more features were added to new GPUs. The OpenMP Application
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Programming Interface is a powerful and compact programming model for shared memory parallelism in C/C++
and FORTRAN in multi-core servers [5]. It provides directives, library routines, and environment variables to
manage a parallel program across the different processors in a server. OpenMP exits in industry since the 90’s and
became a de-facto standard to exploit the capabilities of available multi-core processors with virtualization and
hyper-threading with shared memory.

In this paper we explore the features of CUDA on GPU and OpenMP on multicore CPUs for the parallelized
simulation of a neural network based face recognition application. We analyze the application for different con-
figurations of neural networks and give recommendations for their effective parallel simulation on both GPU and
OpenMP versions.

The paper is organised as follows. Section 2 presents the state of the art and elaborates the recent research
trends. Section 3 describes the details of the parallelization approach and implementation. In section 4 we discuss
the results obtained and derive our recommendations. Finally, section 5 gives the conclusion and future directions
of our work.

2. Related Work

With advancement in the technology we have multicore processors and powerful graphic processing units
(GPU) in our desktop and servers, affordable to everyone. Applying parallelization techniques for neural net-
work simulation became a promising research field by using modern hardware. In [6] the author gives a survey
of the state-of-the-art parallel computer hardware from a neural networks user’s point of view focusing on the
implementation of artificial neural networks on common and highly accessible parallel computer hardware (PCs,
workstations, clusters, multicore processor machines), while keeping in mind related software matters as well.

Lindholm et al. [7] and Ryoo et al. [8] concentrate on GPU-related issues regarding general parallel programs.
They focus on NVIDIA’s Tesla unified graphics and computing architecture that utilizes NVIDIA GPUs and allows
to create parallel programs based on the CUDA programming API. In their work CUDA is described as a minimal
extension of the C/C++ programming language, where programmers write serial programs that call kernels, which
are executed in parallel across a set of threads. Moreover they discuss other approaches related to GPU like Brook,
OpenCL or PGI Accelerator.

In Nickolls et al. [9] and Che et al. [10] the authors also deal with CPU-based parallel approaches such as
OpenMP, Pthreads or MPI (Message Passing Interface). They elaborate the CUDA architecture in detail covering
streaming processor cores interconnected to external DRAM partitions. In contrast to our approach most of the
work treats GPU- and CPU-based parallelism on a very high and generic level only, e.g. not giving a concrete and
applicable evaluation scenario for a specific purpose.

Jang et al. [11] describe a MLP-based (Multi-Layer Perceptron) text detection algorithm implemented using
CUDA and OpenMP. They tried to simplify the usage of GPUs for those users who have very little knowledge of
GPU programming. In their approach the MLP consists of one input layer, one or more hidden layers and one
output layer. They outline difficulties and obstacles in their implementation, present some sample code and also
depict a short evaluation section. In contrast, our work focuses on the generalized Backpropagation paradigm and
concentrates more specficially on the evaluation details. Nevertheless, the authors in [11] also experienced im-
provements regarding the computation times of their implementation by making use of parallelization techniques.

Xavier et al. [12] describe the parallel training of Backpropagation of neural network using CUBLAS, a
CUDA implementation of BLAS (Basic Linear Algebra Subprogram). They compared the CPU and CUDA
implementations for varying hidden neuron and reported the performance of GPU against serial execution on a
classical CPU. Ting He et al. [13] used GPU standard capabilities to train MLPs by using CUDA functionalities
and gained an acceleration factor of 5.21 as compared to CPU by doing most of the matrix multiplications and
vector operations on GPU. In Shetal et al. [14] the implementation of an algorithm for pattern recognition is
presented, which is used to recognize hand written digits. They compare their GPU implementation with a Matlab
(CPU) version and report on speedups on the GPU.

In literature many approaches can be found for the parallelization of neural networks that have been deployed
on different hardware architectures. For example, Pethick et al. [15] reported several different approaches for
the parallelization of the neural network training. A good survey can be found in [16], which describes and
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categorises the various levels of parallelization of neural network. Specifically, this classification was further
refined by [17], where the authors divided Data Parallel (DP) category to Structural DP and Topological DP.
This paper complements our previous work where we developed different parallelization approaches of neural
networks simulations for different hardware infrastructures, as hypercube[18], cluster[19, 20], and multiprocessor
systems[21].

In our work we run our experiments with a varying number of hidden neurons and processing cores, for both
setups (OpenMP and CUDA). We are close to [22] where the author implemented a block mode Backpropagation
for training neural networks for speech recognition on multicore and GPU systems and stated a speedup of 10 for
CUDA and 4 for the multithreaded version as compared to serial execution. In contrast, we follow the approach
finding the maximum number of threads for multithreaded OpenMP version depending on the input size and then
compare the results with both GPU and CPU version.

Summing up, in our work we analyze on the one hand the multicore versus GPU performance gains by paral-
lelization, but on the other hand we also analyze the application behaviour of neural network face recognition by
a sweep of problem specific parameters.

3. Methodology

The use case for our parallelization approaches is face recognition by Backpropagation neural networks.

The face images we used are from [23] and are available in a pgm-p2 format. These images contain faces of
20 people, in various head poses (left, right, straight, up), various expressions (neutral, happy, sad, angry) and
different eye status (open, closed), as shown in Figure 1 and Figure 2. The images are available in different
resolutions: 32x30, 64x60 and 128x120 pixels. In our evaluation we used images in the resolutions 32x30 and
128x120. For each resolution 70 images were used as the trainset and 32 images were used as the testset — for the
evaluation phase of a neural network — to verify the quality of the training.
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Fig. 1. (a) left-angry-closed (b) right-happy-open.
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Fig. 2. (a) straight-sad-open (b) up-neutral-open.
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3.1. Mathematical Model

The underlying network paradigm of the parallel Backpropagation simulation is the Multi-Layer Perceptron.
It is a multi-level neural network with a varying number of hidden layers. Each neuron of a layer is connected
with each neuron of an adjacent layer. The Backpropagation paradigm is a gradient descent method to find
combinations of connection weights between the layers to map input values to given output values (supervised
learning). The feedforward evaluation of the net is defined by the propagation function net; = }; 0;(t) X w; j where
w; j represent the connection weights and o; the output value of the neuron. The correlation between the input,
hidden and output layer of the net is defined by the following system,

hidden = f(wl X inp) and
out = f(w2 X hidden),

where inp, hidden and out denotes the input pattern, the hidden layer and the output vector and wl the weight
matrix between the input and hidden, and w2 the weight matrix between hidden and output layer respectively. The
activation function is represented by the sigmoid function f(x) = Vl,x .
We used the conventional formulas for the backpropagation learning algorithm, which are given by,

Awilj=a><8i><a,-><(l—ai)><hiand
Awfj=a><Zem><am><(l—am)xw}nixej,

where w}j representes the weight values of matrix w/ and wizj of w2 respectively.

3.2. Parallelization Approaches

As discussed in section 2 we apply two parallelization approaches motivated by our problem domain and the
available hardware resources:

Structural Data Parallel. The structural data parallelization techniques is used for the multicore system. The
training images are divided into disjoint sets. Identical copy of neural networks are created for each thread. Each
thread is trained on its own data. After certain number of epochs the weights of all the threads are collected,
updated and broadcasted to the threads again. This process is continued unless the error is less than the defined
threshold value.

Topological Data Parallel. The topological node parallelization is deployed on GPU using CUDA. In this ap-
proach only one copy of the neural network is instantiated, which resides on GPU. Each thread on the GPU
behaves like a neuron and executes independently. To speed up the implementation the training weights and input
data are stored in an one dimensional array aligned with the host and the device memory for looping in GPU.

In both implementations the Backpropagation neural network (BPNN) is trained by a supervised learning
mode. Output values range from 0.0 to 1.0, where a high value (above 0.9) indicate that the image matches an
assumed person. A low value (below 0.1) indicates that the image does not belong to the assigned person. After a
feed-forward operation, the output value is compared with the target value and classified to rather high (above 0.5)
or rather low (below 0.5), to check whether the BPNN has correctly classified the face image. Both multithreaded
and GPU implementations make use of the existing timer function clock_gettime () to record the system time
and calculate the overall execution time of a simulation run of the algorithm.

3.3. Structural Data Parallel Multicore Implementation using OpenMP

The multithreaded implementation of the BPNN for a multicore CPU consists of three layers: n neurons in the
input layer, /& neurons in the hidden layer and a single neuron in the output layer. All layers are fully connected, as
depicted in Fig. 3. Additionally, the input and hidden layer also contain a bias neuron, which value is fixed to 1.0.

As described above, the face images we used are in pgm-p2 format. Every pixel of an image has a gray value
between O to 255. Thus a pixel value is divided by 255 and taken as input value of the BPNN. The image resolution
determines the number of input neurons in the first layer of the BPNN, i.e. for 32x30px images 960 input neurons
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BiAs 1 2 n feed-forward operation

input layer: n E;_1.0
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[ w[o1], w[02], ..., ... ,w[oh] ]—» thread 1
[ wln], w[12], ..., ..., w[1h] ]—» thread 2
[ w[21], w[22], ..., ..., w[2h] ]—v thread 3
[ w[nm], w[n2], ..., ... ,w[nh] ]—» thread n

output layer: 1

Fig. 3. Parallel BPNN Structure and Thread Allocation for Feed-Forward and Adjust-Weight Operations.

and for 128x120px images 15, 360 input neurons are needed. Nevertheless, the number of hidden layer neurons
can vary, while there is always exactly one output neuron in the last layer of the BPNN.

Considering the CPU multithreaded version we first have to define empirically the optimal number of threads
per problem size. Therefore we run our program with 2, 4, 8, 16 or 32 threads (10 epochs, 512 hidden neurons) to
determine the optimal number of threads. We found that for 960 inputs (32x30) 4 threads are the best choice and
for 15,360 inputs (128x120) 8 threads are optimal.

The following steps are carried out for the parallel execution of neural network in OpenMP:

Initialization.

o Creation of a disjoint training data set.

e Setting of execution threads and respective neural network instantiations.
e Transfer of input data into memory for initialization of neural network.

e Weight matrix initialization with random numbers between —1.0 to 1.0.

Computation.

e Execution of computation for feed forward, weight adjustment, record output errors and others operations.
o Transfer back of weight matrix after certain epochs.
e Weight adjustment and broadcast to execution threads.

Finish & Persist.

e Saving of errors and trained neural network on the hard disk.

3.4. Topological Data Parallel GPU Implementation using CUDA

The parallel execution of the neural network in CUDA consists basically of two phases, the forward and the
weight adaptation phase.

Feed-Forward Phase. The CUDA program aims for a fully parallelization of the feed-forward operation using
a huge number of threads to avoid any looping. This means every GPU-thread is therefore responsible for the
computation of only a single weight value. Thus (15,360 + 1) = 1,024 threads were launched for a BPNN with
15,360 inputs and 1,024 hidden neurons in the feed-forward phase from the input to the hidden layer. Hereby,
each thread has read access to a single input neuron, read access to a single weight value and write access to a
hidden neuron, resulting in (n + 1) % & write operations in the hidden layer. In fact this setup causes a tremendous
bottleneck at the hidden layer and therefore increases the execution time.
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To overcome this burden we decided to use a smaller number of threads was used, where each thread is
responsible for all weights related to a specific hidden neuron. So the number of threads was reduced to 1,024
threads for the above mentioned use-case. Hereby, each thread has read access to all input layer neurons, read
access to a column of weights concerning a specific hidden neuron (edges from each input neuron to this particular
hidden neuron) and write access to the same single hidden neuron. Therefore the write accesses to the hidden layer
are reduced to A, each thread having only to perform a single write operation.

Adjust-Weight Phase. In the CUDA implementation two versions of the adjust-weight operation were imple-
mented and analyzed: a row-oriented version, where all weights of an input node (layer 1) are handled by a
thread, and a column-oriented version, where all weights of a hidden node (layer 2) are handled by a thread. The
row-oriented version results in a lower execution time than the column-oriented version due to the given physi-
cal layout of the weight matrix and its values that are allocated row-wise in memory. The row-oriented version
reaches a better spatial locality concerning the write operations and was therefore chosen for the experiments.

4. Performance Observations and Discussion

4.1. Computation Environment

For the two multithreaded versions of the BPNN face recognition algorithm we used the following hard and
software environment: The multithreaded CPU program was compiled by GCC 4.3.3 and runs on a dual Xeon
X5570 machine (2x 2.93GHz quad-cores with hyper-threading, each 6GB memory at 1333MHz). Thus totally 16
logical cores can be used. The multithreaded GPU program was compiled by CUDA NVCC 3.0 and runs on a
Tesla C1060 graphics card (240x 1.296GHz streaming cores, 4GB memory at 800MHz).

4.2. Performance Analysis

Both implementations produced similar results regarding the error rate in the training phase as shown in
Figure 4 and evaluation phase as shown in Figure 5. For our simulation runs the CPU and GPU programs used
the same BPNN configuration (learning rate, momentum, number of neurons, initialized weights and number of
epochs). Therefore we can directly compare the execution times of the different runs. For all runs we set the
learning rate (0.3) and the momentum (0.3) and vary only the number of epochs (100 epochs for 960 inputs, 20
epochs for 15,360 inputs) and the number of hidden neurons (from 8 to 1,024)
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Fig. 4. Backpropagation neural network: Error Rates for varying Numbers of threads for training (a) Training multithreaded (CPU) (b)
Training on GPU.

For 960 inputs the execution time of a single-threaded CPU program increases dramatically as the number of
hidden neurons increases. In this case the multithreaded CPU program outperforms the GPU program, having a
better runtime for each variation of hidden neurons as shown in Figure 6(a). In contrast, Figure 6(b) shows with
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15,360 inputs that the GPU program performs better than the CPU program due to its superior way of utilizing
the streaming cores.

With more than 64 hidden neurons the GPU program begins to outperform the CPU OpenMP program con-
sidering the speedup. As compared to serial execution on CPU (speedup = 1) for a BPNN with 1,024 hidden
neurons the GPU program ( speedup = 22) outperforms the multithreaded CPU program (4 threads, speedup = 7)
as shown in Figure 7(a). In contrast having 15, 360 inputs the GPU program reveals its great advantage when the
size of the input neurons of the BPNN increases. Then a speedup of 18 (GPU program) in comparison to 4 (CPU
program, 8 threads) is achieved, while the speedup of the CPU program stagnates (see Figure7(b)).

4.3. Guidelines for Environment Selection

In a feed forward neural network the complexity of neural network increases as the number of neurons in
hidden layer increases for a fixed neurons in input layer. We have defined the problem size as the product of
neurons in input layer to hidden layer. We have described [24] rules for the parallelization for neural networks
on clusters, however in this paper we presented to choose a particular hardware and software configuration by
taking in considerations of problem size as shown in Figure 8. The figure represents the absolute execution time
of the neural network training as we changed number of neurons in input and hidden layers for openMP (optimal
number of threads) and GPU implementations.

250 —0—GPU —&—CPU-MultiThreaded

200

150

Execution Time

weight matrix size

Fig. 8. Selection of openMP or GPU

Finally we used a traversal method to find the best combination of learning rate (LR) and momentum (M)
for our BPNN considering a varying number of hidden neurons and an input size of 960. Therefore we did a
parameter sweep by setting LR and M with values from 0.1 to 0.9 (in 0.1 steps) and got about 81 possibilities
to run our algorithm. This allowed us to seek for the best combination, where the output error converges below
0.0001 and the number of epochs is minimal. As outlined in Tab. 1 the best setup is using 128 hidden neurons, a
learning rate of 0.4 and a momentum of 0.1.

5. Conclusion & Future Work

In this paper we compared GPU performance to multithreaded CPU performance by implementing a neural
network face recognition scenario. From the results we derived the following findings: for simulation (train-
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Table 1. Traversal Method: Varying Learning Rate and Momentum for 960 Inputs (32x30)
number of hidden neurons LR M  epochs (error <= 0.0001)

8 05 04 62
16 04 0.6 55
32 03 06 69
64 05 03 63
128 04 0.1 33
256 04 0.1 99
512 0.1 05 75

ing and evaluation) of BPNN algorithm GPU based parallelization should be preferred generally to CPU based
multithreaded program. However, for BPNN simulations with small input and few hidden neurons CPU based
execution is better. But, if the input size and thus the number of input neurons increases GPU-based paralleliza-
tion is suitable to reduce training and evaluation. In [25, 26] authors have implemented Convolutional Neural
Networks (CNNis) for face detection and document processing on GPU and achieved performance gain of 11 —13
and 3.1 — 4.1 respectively as compared to ours which is 22. Ho et al.[27] presented a GPU-based Cellular Neural
Network simulator which can run 8 — 17 times faster than CPU-based simulator.

As we have learned from this application that a compute intensive application can be implemented using
different environment, like serial, CUDA, OpenMP, with varying performance depending on the input data. We
envision to exploit the capabilities of GPU and multicores in cloud environments and offering them as services,
where users can query and select them, depending on respective service level agreements (SLA) and the system is
providing high performance by automatic parallelization. First prototypes of this system vision exist already for
Grids[28] and Clouds[29].
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