
Towards a Smart Webservice Marketplace

Ralph Vigne
CERN

CH-1211 Genve 23
Switzerland

Email: ralph.vigne@cern.ch

Werner Mach
Faculty of Computer Science

University of Vienna
Vienna, Austria, A-1090 Währingerstr. 29

Email: werner.mach@univie.ac.at

Erich Schikuta
Faculty of Computer Science

University of Vienna
Vienna, Austria, A-1090 Währingerstr. 29

Email: erich.schikuta@univie.ac.at

Abstract—Electronic contracts are crucial for future e-
Business models due to the increasing importance of webservices
and the cloud as a reliable commodity enabling service-based
value chains. Negotiation is the prerequisite for establishing a
contract between two or more partners. These contracts are usu-
ally based on Service Level Agreements (SLAs). In this paper we
present the framework of a smart webservice marketplace, which
allows for automatic, autonomous, and adaptive negotiation and
re-negotiation of webservices based on economic principles. Our
approach enables market based service trading following a bazaar
style and extends the classical supermarket approach typical for
service negotiation today. We extend the WS-Agreement standard
by feasible workflows to support auctioning for negotiation and
re-negotiation. A specific highlight of our framework is the
mapping of business strategies defined by economic goals of
the respective organization into an ICT enabled framework. It
facilitates autonomic agents acting as organizational representa-
tives stipulating SLAs without human interaction. This allows
for business transactions transparently to the environment but
adhering to business objectives of the originating organization.

I. INTRODUCTION

Service oriented utility computing paves the way towards
realization of service markets, which promise metered services
through negotiable Service Level Agreements (SLA). A market
does not necessarily imply a simple provider-consumer rela-
tionship, rather it is the culmination point of a complex chain
of stake-holders with integration of value along each link in
a service value chain. In such chains, services corresponding
to different partners are aggregated in a producer-consumer
manner resulting in added value.

We believe that in current SLA research negotiation be-
tween provider and consumer is only insufficiently considered.
In most cases one-phase negotiations are being used to keep
the effort for the negotiation as small as possible. One-phase
negotiation means that service providers offer their services
in form of agreement templates which the consumer can
either accept or reject. Although this templates may contain
a number of alternative service descriptions with different
service qualities, the consumer can only choose one template
which fulfills its requirements best. After choosing the offered
template consumer and provider create an agreement. This
approach is like buying in a supermarket: the provider offers
a set of products and the consumer chooses one or more of it.

Open Grid Forum has defined an extension to the WS-
Agreement Specification [1] named the WS-Agreement Ne-
gotiation version 1.0 [2] supporting multi-round negotiations
[3]. Although the WS-Agreement Negotiation protocol does

not explicit support auctioning and biding, it still provides an
applicable protocol for communication.

Today, the range of information technology supported
negotiations are wide spread, starting from simple communi-
cation structures, supporting only electronic messaging, up to
fully evolved negotiation support systems [4]. Current research
[5], [6] shows a special interest in self-interacting software
agents enabling fully automated negotiations.

Negotiations can be divided in two categories: (1) single-
attribute negotiating and (2) multi-attribute negotiating. In case
of a single-attribute negotiating only one attribute, e.g. the
price, is a negotiable part of a contract. While this may be
sufficient for people’s every day business, todays electronic
commerce has become more complex. Usually, negotiations
in the context of electronic commerce cover multi-attribute
contracts. This means that for example not only the price
of a resource is addressed by the negotiation but also its
availability and probability of failure are negotiable. While
single-attribute negotiations are already extensively investi-
gated, multi-attribute negotiations are still at an early stage
[7].

In our approach we aim to provide a single- and multi-
attribute negotiation system where the participating agents do
only know about their own preference/utility function but have
no initial knowledge about the preferences/utility functions of
the other participants. Based on this characteristics we present
a webservice marketplace, where negotiation is performed in
a fully automatic way in a Bazaar style form opposed to the
conventional supermarket form.

In the next section we identify the fundamental questions
for delivering the envisioned marketplace. In section III we
provide detailed answers and describe the necessary com-
ponents of our framework. This is followed by a justifying
example applying our methodology. The paper is closed by
conclusions and description of future work.

II. TOWARDS A SERVICE BAZAAR

Existing frameworks for self-governing ICT infrastructures
use a knowledge base for their decisions during operation [8],
following the concept of autonomic managers which comprises
four states: Monitor, Analyze, Plan and Execute (MAPE).
Self-governing principles augment the autonomic systems. In
autonomic systems the rules and policies are defined by hu-
mans whereas self-governing systems may produce, improve,
and evolve the rules without intervention from outside. Due
to dynamics of infrastructure changes (e.g. frequent service

failures) the rules for QoS re-negotiation have to evolve
reactively (e.g. new negotiation strategy have to be used). This
has to happen without human interaction and has to be based
on predefined guidelines.

Our proposed webservice marketplace establishes a self-
governing infrastructure, which allows for automatic, adaptive
and autonomous negotiation processes. To realize this vision
we have to provide answers to the following questions:

• How can services be selected and service chains
instantiated from a set of existing and registered
services?
We need a Service Template Registry, a contract
aware marketplace, which abstracts from the heteroge-
neous offers of different services providers and allows
for the selection/filtering and instantiation of services
(see section III-A).

• How can a negotiation process between service
providers and requesters be realized, which allows for
multi-round negotiations?
We need a self governing, generic Negotiation
Framework, which allow for multi-round negotiation
for consumer-provider contracting by auctioning pro-
cesses (see section III-B).

• On what basis have decisions on service negotiations
be made?
We need a Utility Knowledge Base, which provides
on the one hand all information necessary to calculate
an over-all utility function based on economic prin-
ciples, and on the other hand specialized information
about each service invocation within distinct domains
(see section III-C).

• How can a specific business strategy be implemented?
We need autonomous Business-aware Process
Agents, which are capable to cope with insufficient
and changing information and make autonomously
business decisions using AI technology, e.g. Black-
boards, based on specific business strategies during
the negotiation process (see section III-D).

Thus, in the following section we will provide detailed
answers to the stated questions above.

III. COMPONENTS OF A SMART WEBSERVICE
MARKETPLACE

A. Service Template Registry

The service template registry allows consumer agents to
search for services of a certain domain and provider to
advertise their services to participate. It therefore acts as
a marketplace supporting agents in doing business together
(business enabler). To enable this functionality it must present
knowledge about what services are offered and how they can
be discovered, bought and used.

Various implementations of web service reg-
istries/repositories have been addressed for some time
in research publications (e.g. [9], [10], [11], [12]). Although
they differ in various aspects, they share the same goal,
which is to provide an open and flexible marketplace

for providers and consumers supporting automated real-time
service discovery and invocation on a pay-per-use basis. One
of the main differences between them is what information
is presented. This ranges from semantic annotations (e.g.
OWL-S) in a service repository (e.g. UDDI) to mash-up and
service composition techniques (e.g. BPEL).

In [13] we presented a feasible Service Template Registry
by introducing so called domain-level operations for unified
interface and protocol description and instance-level opera-
tions for vendor specific interfaces and protocols. This multi-
layered architecture aims to preserve the flexibility for all
participants to keep their own interface implementations. In
its latest version [14] WSAG support for unified interfaces
was added. Protocols are provided in form of microflows
representing in which order services must be called to achieve
the desired functionality. To support the concept of unified
interfaces, these microflows may further include information
about transformations based on the unified interfaces to meet
specific interfaces (e.g. parameter split/join/conversion, . . .).
Further important characteristics of this marketplace are:

• Use Cases Based: Participants can easily discover
exposed functionality not considering specific techni-
cal details. A use case is defined by the interaction
protocol to invoke a certain service functionality.

• Unified Invocation/Semantics: Services within the
same market domain are interchangeable. This is a
key prerequisite to allow providers to compete and
consumers to reason and therefore creating a market.

• Passive and Scalable: Making the marketplace pas-
sive allows for easy distribution over several nodes
within a cloud environment which further compli-
ments scalability demands.

We envision our Service Template Registry to provide all
information needed to allow autonomous agents, consumer and
provider to interact with each other in potentially complex
business transactions. Therefore two different kinds of knowl-
edge must be presented. One represents general knowledge
about the market itself while the second one focuses on each
provider individually.

1) Market Knowledge: First, knowledge about the market
itself is needed. What the commonly agreed protocols and
interfaces are, is focused by this group. For example, when an
actor wants to participate in a certain domain of the market, it
first needs to know how business in general is done there and
what information is exchanged e.g.

• By which protocol participants do compete? E.g.
supermarket approach, dutch auction, sealed-bid, two
sided auction, . . .

• In which units trade is done? E.g. currency, time
units, data units, . . .

• How are common/unified interfaces described and
what are their semantics? E.g. messages from other
participants like WSAG Offers/Templates [15] or ser-
vice usage requests, bidding requests from an auction-
eer and information necessary to place bids, . . .

We consider this kind of interaction as being many-to-
many as it represents basic rules each participant has to
agree on. Providing generic information without vendor spe-
cific details is also the purpose of domain-level operations
described in [13] which will therefore be used to express such
knowledge.

To make our framework work, each offered operation is
represented by a tuple of three related domain-level opera-
tions1:

• Service Negotiation: Represents the unified interface
and protocol to negotiate with all participants. If an
agent follows this protocol and provides all infor-
mation defined in the unified interface (i.e. WSAG
Template) it can relay on that each available provider
will participate.

• Service Usage/Invocation: Represents the actual ser-
vice invocation without any vendor specific details. It
should be noted that we see payment as part of the
service invocation because it is not obvious when it
must be done and therefore must be defined explicit.
If an agent implements this interface and protocol
it can relay on that it can use the requested service
independently of the chosen provider.

• Service Observation: Represents how the execution
of an invoked service can be observed and what data
can be expected to be received. This will be used
to ensure that agreed SLAs are respected during the
invocation. If an agent implements this interface and
protocol it can relay on that it is able to observe the
execution of the invoked service independent of the
chosen service provider.

2) Service Knowledge: The second group of provided
knowledge focuses on direct interaction with each provider
individually. As this information is only relevant in one-to-
one interactions it is sufficient if only the two interacting
parties agree on it. For example, if two participants want to do
business with each other (i.e. a consumer wants to invoke a
specific service method), additional specific knowledge about
the business partner is needed e.g.

• Which protocol must be followed for which inter-
action? E.g. invoke a specific service method, bidding
request, execution observation, . . .

• How to interact on a technical level? E.g. service
endpoints, interface transformations (based on the
unified interfaces) and descriptions (e.g. WSDL [16]),
. . .

Providing this kind of information about each participant
individually is exactly the purpose of instance-level operations
as introduced in [13].

As imposed by the marketplace, each domain-level opera-
tion consists of at least one related instance-level operation. In
our case this means that at least the same three methods defined
as domain-level operations must be present on instance level,
only this time their focus is on the protocols and interfaces

1For a detailed discussion about further possibilities of domain-level meth-
ods e.g. reusing methods for complex service composition see [13]

obliged by each provider individually. As this is only relevant
if two specific participants want to interact with each other
(one-to-one interaction), it is on their own concern if they agree
on each others interfaces (e.g. does the service support SSL
encryption?, . . .) and protocols (e.g. the supermarket approach
is the only supported negotiation protocol, . . .) or not.

B. Negotiation Framework

The negotiation and re-negotiation Engine is a central com-
ponent of our framework. This engine is responsible for the
whole life-cycle of a Service Level Agreement. We designed
the negotiation engine as an autonomic manager [8].

1) N:M Negotiation Pattern: In various publications, this
pattern is also referred to as (Multilateral) Competing Offers
Protocol [17], [18]. In this pattern two different roles are
identified: (1) the Initiator and (2) multiple Responders.
Although the example (illustrated in Figure 1) is illustrated
from the perspective of a single active initiator interacting with
multiple responders, a single responder can still simultaneously
participate in multiple negotiation processes at the same time.
Therefore the pattern covers M:N negotiation as well as 1:N
negotiation.

Responder's Instance Level Operation: Negotiate

Initiator's Strategic/Tactic Negotiation Service

C
la

ss
 L

e
v
e
l
O

p
e
ra

ti
o
n
:

It
e
ra

ti
n

g
 C

o
n
tr

a
ct

 N
e
t

In
te

ra
ct

io
n
 P

ro
to

co
l send

template

filter offers and create
counter templates

confirm
agreements

Responder's Strategic/Tactic Negotiation Service

quit
negotiation

SC
accepted

SC
quits

SC
countered

check
offers

WSAG Negotiation (Counter) Template (Specific) Negotiation (Counter) Template

WSAG Negotiation (Counter) Offer (Specific) Negotiation (Counter) Offer

WSAG Negotiated Offer

WSAG Agreement

(Specific) Negotiated Offer

(Specific) Agreement

1A 1B

2A

3A

4A

2B

3B

4B

1A 2A

1A 3A

1B

2A

2B

4A

3B 4BR
e
sp

o
n
d
e
r

In
it

ia
to

r

Responder's Instance Level
Operation: Agree

Fig. 1. BPMN: N:M Negotiation

It is on behalf of the initiator to provide the functionality
and infrastructure to simultaneously negotiate with all included
responders, registered in the Service Template Registry, on-
demand (activity send template). As indicated by the Multiple
Instances Symbol (), defined in BPMN [19], each responder
provides one instance-level operation: Negotiate describing
how to interact with its Strategic/Tactic Negotiation Service
when negotiating and one instance-level operation: Agree
describing how to request a final agreement when an accept-
able WSAG Agreement was negotiated. Both Strategic/Tactic
Negotiation Services implement the provided Business Rules of
their respective owner. To make this protocol work, responders
should (not must!2) further be able to create counter offers (2B)
based on templates (1B). Every time the initiator advertises

2For example, responders who do not support re-negotiation can still
participate by treating each request like it was the first, but if every responder
does like this: Why re-negotiate in the first place?

A
u
ct

io
n
e
e
r

D
o
m

a
in

 O
p
e
ra

ti
o
n
:

Request
Template

Collect Offer
for current
Template

Rank
Offers

Merge
1st & 2nd

best Offer

Request
Agreement

Clear
Auction

Initiator's Instance Level Operation: Advertise

WSAG Negotiable
Template

WSAG Negotiable Template

(Specific) Negotiable Template
(Specific)
Negotiated Offer

WSAG
Negotiated Offer

WSAG Negotiated
Offer

(Specific) Negotiated Offer
(Specific)
Agreement

WSAG Agreement
or Rejection

Initiator's Strategic Negotiation Service

Initiator's Instance Level Operation: Agree

(Specific)
Negotiable Template

Responder's Strategic Negotiation Service

Respponder's Instance Level Operation: Make Offer

(Specific) Agreement
or Rejection

WSAG
Agreement

Responder's Instance Level Operation: Outcome

R
e
sp

o
n
d
e
r

A
u
ct

io
n
e
e
r

In
it

ia
to

r

Fig. 2. BPMN: Vickrey Auction

a new template (1A), each responder is entitled to respond
either that it rejects further negotiations based on this template
or a binding negotiated offer (3A). This is performed in the
respective Responder’s Strategic/tactic Negotiation Services.
After the initiator has checked all offers, it decides if it is
willing to accept one of them.

If it decides to reject all of the received offers, it filters
the offers for responders to be left out of the next negotiation
iteration and creates new counter templates (1A) for the
remaining ones. Similar to responders, the rules for accepting
or rejecting an offer, and how to create counter templates (1A)
based on the received counter offers (2A) are applied by the
Initiator’s Strategic/Tactic Negotiation Service and defined in
the provided Business Rules.

If the initiator accepts an offer, it sends it back to the
awarded responder in expectation to receive an agreement
(4A) as response, which is binding for both parties. Based on
the content of this agreement, the service usage and service
observation processes (see Section III-A1) can be initiated.

2) Auctioning Pattern: In this pattern not only an initiator
and multiple responders are involved, but also one or more
auctioneers are included in order to establish an agreement.
The auctioneer is considered as an detached authority which
is in charge to execute the defined protocol. Every responder
is able to check the protocol in advance, as it is provided
inside the Service Template Registry. Because the protocol also
includes information about how the offers will be ranked (i.e.
which parts of the offer will be weighted with what factor),
the procurement during an auction is transparent for responders
(even if it is a sealed bid auction). It should be further noted
that the ranking algorithm is intended to be the same for
each instance of this auction protocol and therefor expresses
domain conventions instead of personal preferences. While this
additional transparency allows responders to customize their
offers in order to the defined ranking algorithm, the initiator
looses the flexibility to express its specific preferences. If an
initiator wants to apply its own ranking algorithm, the M:N
negotiation pattern described in III-B1 provides this possibility.

Figure 2 depicts the BPMN diagram of a Vickrey Auction
[20]. In this type of auction the responder with the best bid
wins the auction, but it pays only the price of the second best
bid. The initiator must accept the final offer (WSAG Negotiated
Offer) presented by the auctioneer.

In the auctioning based negotiation process four roles
are involved. The auctioneer is responsible for the whole
process including, defining, and controlling the auctioning
rules, collecting all offers and bids, executing clear actions,
etc. as defined in the according class-level operation.

In Figure 2 we assume that the initiator has registered
itself for an auction of this domain as well as all interested
responders. The registering can be implemented in various
ways and is therefore beyond the scope of this example.

In our example the negotiation process begins as soon
as an auctioneer requests the initiator’s WSAG Negotiable
Template. This WSAG Negotiable Template is now advertised
by the auctioneer to all responders who claimed interest in
the described kind of service before. Next, each responder
checks if the current offer meets its expectations and applies its
defined Business Rules (defined inside its private Responder’s
Strategic Negotiation Service) to derive the price it is willing
to pay for the offered service3. A WSAG Negotiated Offer,
defining the offered price, is created and advertised to the
auctioneer. After the auctioneer has collected all offers from
the responders (or a timeout was reached), the auctioneer
compares and ranks the distinct offers by its price. Because
the auctioneer executes a Vickrey auction, now in the offer
with the highest price, the price offered by the second highest
bid, is inserted. The resulting offer is now sent back to the
initiator in expectation of an WSAG Agreement in return. As
soon as the agreement is responded, the auctioneer clears the
auction by sending the agreement to the winning responder
and a reject message to all the others.

C. Utility Knowledge Base

We group our knowledge base into two major groups:
(1) the Process Region providing all information necessary to
execute the over-all user process, and (2) multiple Domain
Regions providing specialized information about each service
invocation within distinct domains.

A

B

C

D

A

(Abstract) Execution Plan

C
o
n
su

m
e
r A

g
e
n
t

In
te

rfa
ce

Service Mathcing Interface

P
ro

ce
ss

 r
e
a
so

n
in

g
In

te
rf

a
ce

None-functional
Requirements

Economic Cost
Model

Business Rules History Data

Fig. 3. The Process Region

P
ro

ce
ss R

e
a
so

n
in

g
In

te
rfa

ce

Auctioning
Interface

Current WSAG Template

Domain Specific Utility Model

Ranked WSAG Offers

D
o
m

a
in

 R
e
a
so

n
in

g
In

te
rf

a
ce

Fig. 4. The Domain Region

1) The Process Region: The first region we will discuss is
the Process Region (see Fig. 3). Its main purpose is to provide
the utility function of the process. [8] identified the following
three subregions as being crucial for such systems:

The Business Rules Repository is where the participant
(consumer or provider) stores its own business rules (rep-
resenting the specific business strategy). To allow agents to
apply this business rules while negotiating, it is crucial that
the parameters defined inside these business rules match with

3For the sake of simplicity, we assume that only the price-attribute (i.e.
single-attribute negotiation) in the WSAG template is marked as being
negotiable within a given range.

parameters defined in the according interfaces of the Service
Template Registry.

The Economic Cost Model includes costs of each pro-
duction factor (e.g. computational power, disk space, network
bandwidth, . . .). The cost model distinguishes between fixed
costs and variable costs. This is necessary to reason about
complex situations e.g.: A provider has free capacity of a
resource and a customer already running a service is paying
the fixed cost for it. Now the provider must decide at which
price the free resource can be offered.

The History Data represents the experience an actor has
collected so far while participating in the market. For example,
a consumer agent may store data collected during negotiation
and observation for each provider individually. This data will
further be used whenever the agent needs to choose between
different offers from vendors.

In order to cover as much aspects of service negotiation
as possible we hereby extend our original framework [8] by
more subregions.

The None-functional Requirements, although similar to
the business rules but not quite the same, represent additional
constraints for the negotiation process. This group contains
constraints related to none-functional aspects of an negotiation
like legal rules (e.g. only storage hosted inside the US is
allowed) or ethical rules (e.g. like only companies which are
member of the Fair Trade Association are considered).

As we will discus in Section III-D2 we also extend the
framework to make it process aware.

The Execution Plan represents the over-all business pro-
cess of the user. It is later used to encapsulate distinct service
invocations in the process and initiate the according nego-
tiations. Relaying on de-facto standards like e.g. BPEL/WS
allows for high re-usability of agents interacting with this
subregion and also for wide support on the consumer and
provider side as most of them may have either implemented
them already or can relay on profound tool sets supporting
them.

It should be noted that all four aspects of the knowledge-
base are considered to be private for each agent4. In our
framework they must therefore be provided each time a new
instance of a Consumer Agent is created.

In our framework this region offers a Consumer Agent
Interface to access all four described subregions. The Service
Matching Interface is only offered by the Execution Plan
subregion and is intended to allow the identification of Service
Template Registry domains (see Section III-A) of the various
service calls. Last is the Process Reasoning Interface which
is intended to allow all necessary operations to reason about
service selection and also to observe the state of the various
service invocations and the over-all process. It therefore in-
cludes access to all four subregions. A detailed discussion
about this interfaces and their intended use is given in Section
III-D2.

4Of course it would be beneficial if historical data is shared between
different agents of the same type (complete market transparency), but as
this will have a major impact on the overall system, we will postpone this
discussion to upcoming publications.

2) The Domain Region(s): Second type of regions are
Domain Regions (see Fig. 4). Each of these regions represents
one distinct domain of the Service Template Registry referred
in the Execution Plan. Their intention is to provide a space
for detailed knowledge about a single domain provided by
domain experts and therefore acting as knowledge source for
the Process Reasoner. Each of this regions consists of three
subregions:

Current WSAG Template is the area where the Process
Reasoner states what service (specific attributes like storage
space, computing power, . . .) it is looking for. In case of
multilateral iterated protocols it is further used to represent
the baseline for the next negotiation iteration.

Domain Specific Utility Model is a specialized form of
the information provided in the Business Rules, Economic Cost
Model, and History Data from the process region. The modell
will be applied to rank the WSAG offers in order of their Utility
Value for the user and to create Counter WSAG Templates
during the negotiation process.

Ranked WSAG Offers contains all currently available
WSAG offers of all participating providers. The offers are
ranked according to the utility function expressed in the
Domain Specific Utility Model.

Again three interfaces are offered by this type of regions.
First is the Process Reasoning Interface as described above.
It is used to set up and update the information state to
always be in sync with the domain expectations of the Process
Reasoner and to check out the currently available offers for a
domain. Second is the Auctioning Interface which is used and
managed by the Auctioneer Agent to enable Provider Agents
to place their offers. Finally there is the Domain Reasoning
Interface. As the name suggests, the interface is used by the
Domain Reasoner to apply the Domain Specific Utility Model
and rank the offers collected by the Auctioneer Agent. Again,
a detailed discussion about the related agents is provided in
Section III-D2

D. Business-aware Process Agents

In distributed, service-oriented systems, it is a crucial task
to efficiently select and compose services required to respond
to a given request.

When constructing a concrete service value chain, each
service of the abstract chain has to be instantiated. This
has to be done in a way that is optimizing (seeking for a
minimum or a maximum) a custom utility function – the
exact objective functions depend on the specific problem. In
the focus of our economic domain this utility function will
be defined by the business strategy of the stakeholder and
represents in turn a specific economic value/goal optimization.
Mathematically, this can be mapped to a multi-dimension
multi-choice knapsack problem. Several heuristics have been
proposed to solve these QoS-aware service selection problems
which are known as NP-hard.

1) Blackboard-based Approach: Being aware of this com-
putational complexity we decided to utilize a heuristic ap-
proach for optimize our business service value chains. A
blackboard [21] – initially developed in the area of artificial in-
telligence – implements an A∗-algorithm to heuristically solve

NP-hard problems. It is especially suited for complex problems
with incomplete knowledge and uncertainties regarding the
attributes and the behavior of the involved components. So we
identified a blackboard based approach as extremely useful for
the given service chain optimization problem:

• It is very unlikely that each registered provider of a
domain is available all the time. We therefore need an
approach which is capable to provide also a solution
based on insufficient knowledge. Blackboards are
especially designed to cover this requirement.

• With an increasing number of requests, the intended
system needs to scale to provide acceptable response
times. Blackboards can be easily distributed due to its
agent based structure. This attribute of Blackboards
compliments scalability and throughput concerns of
our system.

• In the blackboards paradigm, the knowledge base is
divided into multiple inter-connected regions where
each is representing a distinct aspect of the global
problem. Each region is maintained by an expert for
this aspect, cooperating with all other experts to find a
solution for the global problem. This problem decom-
position fits very well to our problem statement when
decomposing process into multiple services and nego-
tiating them individually using autonomous experts
under consideration of various constraints defined for
the process.

In general, a blackboard consists of the three components.
A global blackboard represents a shared information space
containing input data and partial solutions. In our imple-
mentation, the information shared consists of services and
their characteristics stored in the Service Template Registry
(see section III-A). As shown above, the (utility) knowledge
base (see section III-C) is composed of several independent
regions, each resembles a single blackboard competence. The
global blackboard acts as a “mediator”, allowing the different
regions to communicate. In our implementation, the regions
are services which are realized by specific actors (detailed in
the following) performing the negotiation process (see section
III-B).

The blackboard mechanism is listed in Algorithm 1. The
goal function for evaluating possible service offer combina-
tions for a request is called the happiness function. A decision
tree is generated based on estimation of the happiness function
for the visited paths. As shown in Algorithm 1, the expansion
(choice) of promising service offers for a step in the request
set, is handled by an OpenList and BlockedList. The
OpenList contains a list of all possible service combinations
to choose from. Each of these steps is rated by applying the
happiness function that sums up the happiness of past decisions
and the happiness of the next step. Considering this, the service
which maximizes the happiness function is chosen for the
next step in the optimization approach. The BlockedList
contains services that do not fulfill the given requirements and
therefore must be excluded from the set of possible solutions.

We used this heuristic approach for several multi-
dimension multi-choice knapsack problems in the area of
computational science in the past [22], [23], [24] and it proved
extremely feasible.

OpenList = expand(s1); BlockedList = [];
while OpenList 6= [] do

Act = best(OpenList); OpenList \= Act;
if Act == Goal then

return Act;
end
foreach dx in expand(Act) do

dx.costs = Act.costs + h(dx.costs);
if dx /∈ OpenList ∧ dx /∈ BlockedList then

¡ OpenList += dx;
else

if dx.costs ¡ OpenList[dx.id].costs then
OpenList[dx.id] = dx;

end
end

end
end

Algorithm 1: Blackboard Algorithm

2) Process Aware Agents: A specific contribution of this
paper is the mapping of the Blackboard approach presented
above to a pure service oriented process aware scheme. In our
case this means that the initiator of a negotiation is allowed
to provide complex control flow structures (e.g. BPMN pro-
cesses) to its agent. In Figure 5 we provide an overview about
the necessary agents and how they must interact with each
other to enable this behaviour.

Service Template
Registry

Consumer Agent Process
Reasoner

Domain
Reasoner

Domain Matcher /
Service (De-)Composer

Domain
Auctioneer Provider Agents

C
o
n
su

m
e
r A

g
e
n
t

In
te

rfa
ce

Service Matching
Interface P

ro
ce

ss
 R

e
a
so

n
in

g
In

te
rf

a
ceProcess Region

P
ro

ce
ss R

e
a
so

n
in

g
In

te
rfa

ce

Auctioning
Interface D

o
m

a
in

 R
e
a
so

n
in

g
In

te
rf

a
ceDomain-* Region

*

*
1

2a

2b

3a 3b 5

4a

4c

4d

4b

Domain
Execution Observer

6a

6b

For elements marked with
* mutliple, concurrent
instances may be spawned.

Note:

Fig. 5. Agents Involved During a Negotiation

The proposed architecture aims to be able to optimize
the execution plan of a process in terms of service selec-
tion, constantly track its execution, and trigger immediate if
incidents occur. Using the A∗ algorithm allows for nearly
optimal resources efficiency, as the further the execution of the
process is going, the less uncertainties must be considered (i.e.
resources must be spared in order) during the service selection.

In Figure 5 a Process Region and a Domain Region are
depicted, representing a simple, shared and structured storage
space for all information related to the process execution and
service invocation.

a) Consumer Agent: In our framework the Consumer
Agent is in charge of setting up the process region on
behalf of a service consumer. It therefore needs to fill all four
subregions (see Sec. III-C1 for details) with data expressing
the consumers preferences. After the setup is complete, the
Domain Matcher / Service (De-)Composer (Sec. III-D2b) can
start with its work. During the execution of the process, the
Consumer Agent can check the Execution Plan for (a) the
selected providers of each invocation and (b) if the agreed
conditions from the WSAG are respected (see Sec. III-D2f
for details).

b) Domain Matcher / Service (De-)Composer: The
purpose of this agent is twofold. First it matches the service
invocations against the Service Template Registry domains.

By parsing the business process, each activity causing a
service invocation is assigned to one domain defined inside
the Service Template Registry (see Sec. III-A) and annotated
with the according information while all internal activities of
the process are removed to keep it as simple as possible.

Second task of this agent is to check if other options can
be explored by service (de-)composition. This is basically
an attempt to extend the solution space from a single ser-
vice invocation to (complex) combinations of various service
invocations with similar functionality. An extended list of
possibilities allows the Process Reasoner to explore more
options and therefore makes the optimization result more
trustworthy.

c) Process/Meta-Reasoner: This agent is the most com-
plex one in our framework. Its purpose is to coordinate the
goals/restrictions of the over-all process (Process Region) and
the various service invocations (Domain Regions). To do so,
it first parses the (Abstract) Execution Plan (updated and
annotated by the Domain Matcher / Service (De-) Composer)
and deduces the domain specific WSAG templates for each
service invocation by identifying relevant subsets of all data
defined in the Business Rule subregion, Economic Cost Model
subregion, None-functional subregion, and the History Data
subregion.

At his point, also the Meta-Reasoning is applied. By doing
so the Process Reasoner tries to predict potential differences
between the agreed SLA and the expected result during in-
vocation in a certain domain. This knowledge is now used
to adapt all succeeding WSAG templates to be already aware
of potential threats. After all WSAG templates are educed, it
spawns a new Domain Region for each distinct one and set it
up by filling all three subregions (see Section III-C2).

After it has set up all required domain regions (and
spawned the according agents) it waits for the first offers of
each domain. With the first set of offers it can start to reason
about the distinct WSAG offers and either (1) accept them, (2)
wait for additional ones, or (3) updated the according WSAG
template to meet its expectations. For a start we propose to use
an A* algorithm for the process optimization as it has special
advantages when finding paths through multi-dimensional
DAGs.

By applying all defined constraints/models provided by the
Consumer Agent, the Process Reasoner ensures that only valid
execution plans are created. As soon as the first valid execution
plan is found, the (Abstract) Execution Plan is updated and
the Consumer Agent gets notified. From this time on the
optimization is a constant process which updates the execution
plan every time the Ranked WSAG offers subregion is updated.

d) Domain Auctioneer: As discussed in Sec. III-A the
purpose of this agent is to enforce the commonly agreed
protocols of the domain (Class Level Negotiation Protocol).
Every time the WSAG template is updated it starts a new
bidding round. For each (first) round all Provider Agents,
registered in the Service Template Registry, are invoked ac-
cording to their specific protocol (Instance Level Negotiation
Protocol) to request a WSAG offer and updates the according
entries on the blackboard. As this is a constant process, the
blackboard always provides the latest valid WSAG offers of
each participating provider. To avoid resource dissipation the

order in which the Provider Agents are asked for offers is
deduced from the History Data favouring the ones with good
results in the recent past. For iterating negotiation protocols,
the agent must maintain a list with Provider Agents that already
left the bidding round to avoid unnecessary resource usage and
decide if they should be re-invited after a significant change
in the WSAG template happened. If a change is considered to
be significant is deduced from the Economic Cost Model.

e) Domain Reasoner: This agent applies the Domain
Specific Utility Model to rank the particular WSAG offers
collected by the Auctioneer Agent. Doing so allows the Pro-
cess Reasoner to efficiently request the top N WSAG offers
when optimizing the execution plan. It is further in charge
of maintaining the list of WSAG offers by deleting expired
once and notifying the Auctioneer Agent about it. In case of
iterating protocols this agent constantly updates the WSAG
template with the current best, valid offer and therefore triggers
constantly new bidding rounds till the best one is identified (i.e.
a Pareto Optimum has been achieved).

f) Domain Execution Observer: This agent utilizes
the knowledge provided by the Service Template Registry
to observe the actual service invocation and notifying the
Process Reasoner about the current state of the execution
and about SLA violations. It further adds all observations to
the History Data subsection and therefore constantly extends
the knowledge accessible to the Process Reasoner and the
Auctioneer Agent.

IV. RESOURCE SELECTION EXAMPLE

In this section we apply the so far stated concept to a real-
world use case in the field of physics data analysis. Due to the
limitation of the paper size we have to stick to the sketch of a
quite simple example. The Worldwide LHC Computing Grid
(WLCG) [25] is used for all computing intensive data analysis
tasks related to the various experiments hosted at CERN. We
assume that the deadline of a big physics conference is nearing
and the need for certain analysis arises. We further assume that
all available resources of the WLCG are already occupied by
this task. In order to stick to the deadline, additional resources
must be acquired (e.g. by cloud bursting). The task of deciding
which resource provider to use will be used to illustrate our
approach to choose the best matching offers to a given request

A prerequisite to rank competing offers and therefore
reason about the best one are (1) constraints (e.g. money, disk
space, . . .), (2) happiness functions H expressing the added
value of the distinct resources (e.g. band width, disk space,
. . .) to the overall happiness. To keep our example focused and
avoid unnecessary complexity, we assume to have three WSAG
attributes to consider: (1) available band width (BW), which
we weight with 0.7 in our happiness function. We further state
that we need at least a 10Mbit connection to consider the offer
and that we do not gain additional happiness over 20Mbit, as
we are limited by our infrastructure. (2) we consider disk space
(DS) as crucial in the received offers. We know that we need
at least 100 gigabyte and that we can achieve a speed-up in
execution time up to 200 gigabyte of disk space while running
our data analysis. Therefore offers with less than 100 GB are
excluded and offer with more than 200 GB do not increase the
happiness value. Finally we weight disk space with 0.3 for the
overall happiness.

As an example how such constraints can be expressed
the resulting happiness function for disk space (HDS

5) is
provided:

HDS(ds) =

{
(1a) 0 : if ds < 100GB
(1b) HDS(ds) : if 100GB < ds < 200GB
(1c) HDS(200) : if 200GB < ds

The values must further be normalized to avoid a single
input dominating others due to the unit it is traded in e.g. 10
MBit would always be worth only one tenth of the happiness
value of 100 GB although their weighting in the happiness
function may be different.

(2a) HDS(ds) = 0.7 ∗ ds−dsmin

dsmax−dsmin

(2b) HBW (bw) = 0.3 ∗ bw−bwmin

bwmax−bwmin

Finally the overall value of the happiness function can be
derived as

(3) Hall(ds, bw) = HDS(ds) ∗HBW (bw)

Due to a very strict budget in research expenses the
happiness function is obviously influenced by the money spent
for service invocation. So, the price (P) mentioned inside the
responded WSAG offers (O) adds as third attribute to the
equations. The goal function of the optimization process in
this scenario could look like this:

(4) min(P ((Hall(On)) ∀ Hall(On) > 0

Consumers can very easy and fast reason about what offer
provides their minimal requirements (or as close as it gets) for
the lowest price.

Equation 4 is the goal function for our Blackboard algo-
rithm. For our algorithm 1 the start node is the set of defined
service requests. The nodes in the OpenList are expanded by
mapping matching offers to requests. The happiness function
Hall evaluates all expanded nodes on basis of usefulness and
is used for ordering possible solutions in the OpenList.

This happiness function shown in the examples is defined
by the business rules repository, which is in the center of our
framework as it defines the agent’s behaviour when reasoning
about which offer to choose.

This example is easily extendable to more complex sce-
narios. The Blackboard regions allow also the adaptation of
requests if offers are not available, e.g. there is no provider
offering 100 GB or more. So, if in the business rules repository
a compromise is allowed, the request constraint can be weak-
ened by adapting the expanded solution nodes in the OpenList.
This approach is similar to handling dynamics in Blackboard
methods, which we elaborated in [26].

5Please note that the constraint (1a) and (1b) are usually part of the WSAG
template (to avoid filter invalid offers) but due to comprehensiveness reasons
we included them in the happiness function for this example.

V. CONCLUSION AND FUTURE WORK

E-Business infrastructures need to act in a more agile
fashion due to the shift of economy from CAPEX to OPEX.
Accordingly ICT environments have to adapt automatically to
changing needs.

We presented a novel framework for a smart webservice
marketplace which allows for Bazaar-style negotiation pro-
cesses building service-based value chains based on economic
principles.

The implementation of the framework is ongoing. In the
near future we will conduct an empirical evaluation of our ap-
proach by simulation. A main focus of our future research will
be an analysis of the behavior of different auctioning models.
Specific focus will be laid on defining business strategies in
the knowledge base of the autonomic system by following a
Canvas-based modelling approach [27].

REFERENCES

[1] A. Andrieux, K. Czajkowski, A. Dan, K. Keahey, H. Ludwig, T. Nakata,
J. Pruyne, J. Rofrano, S. Tuecke, and M. Xu, “Web services agreement
specification (ws-agreement),” in Open Grid Forum, 2007.

[2] OpenGridForum, “Ws-agreement negotiation,”
http://www.ogf.org/documents/GFD.193.pdf, 2012.

[3] A. Rumpl, O. Wldrich, and W. Ziegler, “Extending ws-agreement with
multi-round negotiation capability,” in Grids and Service-Oriented
Architectures for Service Level Agreements, P. Wieder, R. Yahyapour,
and W. Ziegler, Eds. Springer US, 2010, pp. 89–103. [Online].
Available: http://dx.doi.org/10.1007/978-1-4419-7320-7 9

[4] G. E. Kersten and S. J. Noronha, “WWW-based negotiation support:
design, implementation, and use,” Decision Support Systems, vol. 25,
pp. 135–154, 1999.

[5] Agent-based Negotiation for Resource Allocation in Grid, vol. In Pro-
ceeding of the 3rd Workshop on Computational Grids and Applications
(WCGA’2005), Rio de Janeiro, Brasil, LNCC, 2005.

[6] H. Saddiki and H. Harroud, “An agent-based negotiation model for
user-adaptive service provision,” in Multimedia Computing and Systems
(ICMCS), 2012 International Conference on, may 2012, pp. 973 –978.

[7] G. Lai and K. Sycara, “A generic framework for automated
multi-attribute negotiation,” Group Decision and Negotiation, vol. 18,
pp. 169–187, 2009. [Online]. Available: http://dx.doi.org/10.1007/
s10726-008-9119-9

[8] W. Mach and E. Schikuta, “A generic negotiation and re-negotiation
framework for consumer-provider contracting of web services,” in
iiWAS, 2012, pp. 348–351.

[9] R. Buyya, C. S. Yeo, and S. Venugopal, “Market-Oriented Cloud
Computing: Vision, Hype, and Reality for Delivering it Services as
Computing Utilities,” in High Performance Computing and Commu-
nications, 2008. HPCC ’08. 10th IEEE International Conference on,
2008.

[10] M. Sabou and J. Pan, “Towards Semantically Enhanced Web Service
Repositories,” Web Semantics: Science, Services and Agents on
the . . . , vol. 5, no. 2, pp. 142–150, 2007. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S1570826807000066

[11] D. Martin, M. Burstein, D. Mcdermott, S. Mcilraith, M. Paolucci,
K. Sycara, D. L. Mcguinness, E. Sirin, and N. Srinivasan, “Bringing
Semantics to Web Services with OWL-S,” World Wide Web, vol. 10,
no. 3, pp. 243–277, 2007.

[12] P. A. Bernstein and U. Dayal, “An overview of repository technology,”
in Proceedings of the International Conference on Very Large Data
Bases. Institute of Electrical & Electronics Engeniers (IEEE), 1994,
pp. 705–705.

[13] R. Vigne, J. Mangler, E. Schikuta, and S. Rinderle-Ma, “A structured
marketplace for arbitrary services,” Future Generation Computing
Systems, vol. 1, no. 28, pp. 48–58, Jan. 2011. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0167739X11001063

[14] R. Vigne, J. Mangler, E. Schikuta, and S. Rinderle-ma, “WS-Agreement
based Service Negotiation in a Heterogeneous Service Environment,” in
to appear in: Service-Oriented Computing and Applications (SOCA’12),
The 2012 5th IEEE Internation Conference on, 2012.

[15] A. Andrieux, K. Czajkowski, A. Dan, K. Keahey, H. Ludwig, T. Nakata,
J. Pruyne, J. Rofrano, S. Tuecke, and M. Xu, “Web services agreement
specification (WS-Agreement),” in Global Grid Forum, 2004.

[16] E. Christensen, F. Curbera, G. Meredith, and W. Sanjiva, “Web
Service Definition Language (WSDL),” http://www.w3.org/TR/wsdll,
2001. [Online]. Available: http://www.w3.org/TR/wsdl

[17] J. Yan, R. Kowalczyk, J. Lin, M. B. Chhetri, S. K. Goh, and J. Zhang,
“Autonomous service level agreement negotiation for service composi-
tion provision,” Future Generation Computer Systems, vol. 23, no. 6,
pp. 748–759, Jul. 2007.

[18] J. Odell, S. Poslad, and R. Levy, “Fipa iterated contract net interaction
protocol specification,” Dec. 2002.

[19] S. A. White, “Introduction to BPMN,” IBM Cooperation, pp. 2008–
2029, 2004.

[20] W. Vickrey, “Counterspeculation, auctions, and competitive sealed
tenders,” The Journal of Finance, vol. 16, no. 1, pp. 8–37,
1961. [Online]. Available: http://dx.doi.org/10.1111/j.1540-6261.1961.
tb02789.x

[21] D. Corkill, “Blackboard Systems,” AI Expert, vol. 6, no. 9, January
1991.

[22] K. Kofler, I. Haq, and E. Schikuta, “User-Centric, heuristic optimization
of service composition in clouds,” in 16th European Conference on
Parallel and Distributed Computing (Euro-Par 2010), ser. Lecture
Notes in Computer Science, P. D’Ambra, M. Guarracino, and
D. Talia, Eds., vol. 6271. Springer Berlin / Heidelberg, 2010,
p. 405–417, 10.1007/978-3-642-15277-1 39. [Online]. Available:
http://dx.doi.org/10.1007/978-3-642-15277-1 39

[23] E. Vinek, P. P. Beran, and E. Schikuta, “A dynamic multi-objective
optimization framework for selecting distributed deployments in a
heterogeneous environment,” in International Conference on Compu-
tational Science (ICCS 2011), ser. Procedia Computer Science series.
Singapore: Elsevier Science, June 2011.

[24] P. P. Beran, E. Vinek, E. Schikuta, and M. Leitner, “An adaptive heuristic
approach to service selection problems in dynamic distributed systems,”
in 13th ACM/IEEE International Conference on Grid Computing (Grid
2012). Beijing, China: IEEE, 2012, pp. 66–75.

[25] WLCG Project, “The Worldwide LHC Computing Grid (WLCG),”
http://wlcg.web.cern.ch/, 2012. [Online]. Available: http://wlcg.web.
cern.ch/

[26] E. Schikuta, H. Wanek, and I. U. Haq, “Grid workflow
optimization regarding dynamically changing resources and
conditions,” Concurrency and Computation: Practice and Experience,
vol. 20, no. 15, p. 1837–1849, 2008. [Online]. Available:
http://dx.doi.org/10.1002/cpe.1317

[27] A. Osterwalder and Y. Pigneur, Business model generation: a handbook
for visionaries, game changers, and challengers. Wiley, 2010.

