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We consider directed graphs where each edge is labeled with an integer weight and study the fun-
damental algorithmic question of computing the value of a cycle with minimum mean weight. Our
contributions are twofold: (1) First we show that the algorithmic question is reducible inO(n2) time
to the problem of a logarithmic number ofmin-plusmatrix multiplications ofn×n-matrices, where
n is the number of vertices of the graph. (2) Second, when the weights are nonnegative, we present
the first(1+ ε)-approximation algorithm for the problem and the running time of our algorithm is
Õ(nω log3 (nW/ε)/ε)1, whereO(nω) is the time required for theclassic n×n-matrix multiplication
andW is the maximum value of the weights.

1 Introduction

Minimum cycle mean problem. We consider a fundamental graph algorithmic problem of computing
the value of a minimum mean-weight cycle in a finite directed graph. The input to the problem is a
directed graphG= (V,E,w) with a finite setV of n vertices,E of m edges, and a weight functionw that
assigns an integer weight to every edge. Given a cycleC, the mean weightµ(C) of the cycle is the ratio
of the sum of the weights of the cycle and the number of edges inthe cycle. The algorithmic question
asks to computeµ = min{µ(C) | C is a cycle}: the minimum cycle mean. The minimum cycle mean
problem is an important problem in combinatorial optimization and has a long history of algorithmic
study. AnO(nm)-time algorithm for the problem was given by Karp [17]; and the current best known
algorithm for the problem, which is over two decades old, by Orlin and Ahuja requireO(m

√
nlog(nW))

time [22], whereW is the maximum absolute value of the weights.

Applications. The minimum cycle mean problem is a basic combinatorial optimization problem that has
numerous applications in network flows [2]. In the context offormal analysis of reactive systems, the per-
formance of systems as well as the average resource consumption of systems is modeled as the minimum
cycle mean problem. A reactive system is modeled as a directed graph, where vertices represent states of
the system, edges represent transitions, and every edge is assigned anonnegativeinteger representing the
resource consumption (or delay) associated with the transition. The computation of a minimum average
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resource consumption behavior (or minimum average response time) corresponds to the computation of
the minimum cycle mean. Several recent works model other quantitative aspects of system analysis (such
as robustness) also as the mean-weight problem (also known asmean-payoff objectives) [4, 9].

Results.This work contains the following results.

1. Reduction to min-plus matrix multiplication.We show that the minimum cycle mean problem is
reducible inO(n2) time to the problem of a logarithmic number of min-plus matrix multiplications
of n×n-matrices, wheren is the number of vertices of the graph. Our result implies that algorith-
mic improvements for min-plus matrix multiplication will carry over to the minimum cycle mean
problem with a logarithmic multiplicative factor andO(n2) additive factor in the running time.

2. Faster approximation algorithm.When the weights are nonnegative, we present the first(1+ ε)-
approximation algorithm for the problem that outputsµ̂ such thatµ ≤ µ̂ ≤ (1+ ε)µ and the run-
ning time of our algorithm is̃O(nω log3 (nW/ε)/ε). As usual, theÕ-notation is used to “hide” a
polylogarithmic factor, i.e.,̃O(T(n,m,W)) = O(T(n,m,W) · polylog(n)), andO(nω) is the time
required for theclassic n× n-matrix multiplication. The current best known bound forω is
ω < 2.3727. The worst case complexity of the current best known algorithm for the minimum
cycle mean problem isO(m

√
nlog(nW)) [22], which could be as bad asO(n2.5 log(nW)). Thus

for (1+ε)-approximation our algorithm provides better dependence in n. Note that in applications
related to systems analysis the weights are always nonnegative (they represent resource consump-
tion, delays, etc); and the weights are typically small, whereas the state space of the system is large.
Moreover, due to imprecision in modeling, approximations in weights are already introduced dur-
ing the modeling phase. Hence(1+ ε)-approximation of the minimum cycle mean problem with
small weights and large graphs is a very relevant algorithmic problem for reactive system analysis,
and we improve the long-standing complexity of the problem.

The key technique that we use to obtain the approximation algorithm is a combination of the value
iteration algorithm for the minimum cycle mean problem, anda technique used for an approx-
imation algorithm for all-pair shortest path problem for directed graphs. Table 1 compares our
algorithm with the asymptotically fastest existing algorithms.

Reference Running time Approximation Range
Karp [17] O(mn) exact [−W,W]

Orlin and Ahuja [22] O(m
√

nlog(nW)) exact [−W,W]∩Z
Sankowski [24] (implicit) Õ(Wnω log(nW)) exact [−W,W]∩Z

Butkovic and Cuninghame-Green [6] O(n2) exact {0,1}
This paper Õ(nω log3(nW/ε)/ε) 1+ ε [0,W]∩Z

Table 1: Current fastest asymptotic running times for computing the minimum cycle mean

1.1 Related work

The minimum cycle mean problem is basically equivalent to solving a deterministic Markov decision
process (MDP) [31]. The latter can also be seen as a single-player mean-payoff game [10, 13, 31]. We
distinguish two types of algorithms: algorithms that are independent of the weights of the graph and
algorithms that depend on the weights in some way. ByW we denote the maximum absolute edge
weight of the graph.
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Algorithms independent of weights.The classic algorithm of Karp [17] uses a dynamic programming
approach to find the minimum cycle mean and runs in timeO(mn). The main drawback of Karp’s
algorithm is that its best-case and worst-case running times are the same. The algorithms of Hartmann
and Orlin [15] and of Dasdan and Gupta [8] address this issue,but also have a worst-case complexity of
O(mn). By solving the more general parametric shortest path problem, Karp and Orlin [18] can compute
the minimum cycle mean in timeO(mnlogn). Young, Tarjan, and Orlin [27] improve this running time
to O(mn+n2 logn).

A well known algorithm for solving MDPs is the value iteration algorithm. In each iteration this
algorithm spends timeO(m) and in total it performsO(nW) iterations. Madani [20] showed that, for
deterministicMDPs (i.e., weighted graphs for which we want to find the minimum cycle mean), a certain
variant of the value iteration algorithm “converges” to theoptimal cycle afterO(n2) iterations which gives
a running time ofO(mn2) for computing the minimum cycle mean. Using similar ideas healso obtains
a running time ofO(mn). Howard’s policy iteration algorithm is another well-known algorithm for
solving MDPs [16]. The complexity of this algorithm for deterministic MDPs is unresolved. Recently,
Hansen and Zwick [14] provided a class of weighted graphs on which Howard’s algorithm performs
Ω(n2) iterations where each iteration takes timeO(m).

Algorithms depending on weights.If a graph is complete and has only two different edge weights, then
the minimum cycle mean problem problem can be solved in timeO(n2) because the matrix of its weights
is bivalent [6].

Another approach is to use the connection to the problem of detecting a negative cycle. Lawler [19]
gave a reduction for finding the minimum cycle mean that performs O(log(nW)) calls to a negative
cycle detection algorithm. The main idea is to perform binary search on the minimum cycle mean. In
each search step the negative cycle detection algorithm is run on a graph with modified edge weights.
Orlin and Ahuja [22] extend this idea by the approximate binary search technique [29]. By combining
approximate binary search with their scaling algorithm forthe assignment problem they can compute the
minimum cycle mean in timeO(m

√
nlognW).

Note that in its full generality the single-source shortestpaths problem (SSSP) also demands the
detection of a negative cycle reachable from the source vertex.2 Therefore it is also possible to reduce
the minimum cycle mean problem to SSSP. The best time bounds on SSSP are as follows. Goldberg’s
scaling algorithm [12] solves the SSSP problem (and therefore also the negative cycle detection problem)
in time O(m

√
nlogW). McCormick [21] combines approximate binary search with Goldberg’s scaling

algorithm to find the minimum cycle mean in timeO(m
√

nlognW), which matches the result of Orlin
and Ahuja [22]. Sankowski’s matrix multiplication based algorithm [24] solves the SSSP problem in time
Õ(Wnω). By combining binary search with Sankowski’s algorithm, the minimum cycle mean problem
can be solved in timẽO(Wnω lognW)

Approximation of minimum cycle mean. To the best of our knowledge, our algorithm is the first
approximation algorithm specifically for the minimum cyclemean problem. There are both additive
and multiplicative fully polynomial-time approximation schemes for solving mean-payoff games [23, 5],
which is a more general problem. Note that in contrast to finding the minimum cycle mean it is not
known whether the exact solution to a mean-payoff game can becomputed in polynomial time. The
results of [23] and [5] are obtained by reductions to a pseudo-polynomial algorithm for solving mean-
payoff games. In the case of the minimum cycle mean problem, these reductions do not provide an
improvement over the current fastest exact algorithms mentioned above.

2Remember that, for example, Dijkstra’s algorithm for computing single-source shortest paths requires non-negative edge
weights which excludes the possibility of negative cycles.
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Min-plus matrix multiplication. Our approach reduces the problem of finding the minimum cycle
mean to computing the (approximate) min-plus product of matrices. The naive algorithm for computing
the min-plus product of two matrices runs in timeO(n3). To date, no algorithm is known that runs
in time O(n3−α) for someα > 0, so-calledtruly subcubictime. This is in contrast to classic matrix
multiplication that can be done in timeO(nω) where the current best bound onω is ω < 2.3727 [25].
Moreover, Williams and Williams [26] showed that computingthe min-plus product is computationally
equivalent to a series of problems including all-pairs shortest paths and negative triangle detection. This
provides evidence for the hardness of these problems. Still, the running time ofO(n3) for the min-plus
product can be improved by logarithmic factors and by assuming small integer entries.

Fredman [11] gave an algorithm for computing the min-plus product with a slightly subcubic running
time of O(n3(log logn)1/3/(logn)1/3). This algorithm is “purely combinatorial”, i.e., it does not rely on
fast algorithms for classic matrix multiplication. After along line of improvements, the current fastest
such algorithm by Chan [7] runs in timeO(n3(log logn)3/(logn)2).

A different approach for computing the min-plus product of two integer matrix is to reduce the
problem to classic matrix multiplication [28]. In this way,the min-plus product can be computed in time
O(Mnω logM) which is pseudo-polynomial sinceM is the maximum absolute integer entry [3]. This
observation was used by Alon, Galil, and Margalit [3] and Zwick [30] to obtain faster all-pairs shortest
paths algorithms in directed graphs for the case of small integer edge weights. Zwick also combines
this min-plus matrix multiplication algorithm with an adaptive scaling technique that allows to compute
(1+ ε)-approximate all-pairs shortest paths in graphs with non-negative edge weights. Our approach of
finding the minimum cycle mean extensively uses this technique.

2 Definitions

Throughout this paper we letG= (V,E,w) be a weighted directed graph with a finite set of verticesV
and a set of edgesE such that every vertex has at least one outgoing edge. The weight functionw assigns
a nonnegative integer weight to every edge. We denote byn the number of vertices ofG and bym the
number of edges ofG. Note thatm≥ n because every vertex has at least one outgoing edge.

A path is a finite sequence of edgesP= (e1, . . . ,ek) such that for all consecutive edgesei = (xi ,yi)
andei+1 = (xi+1,yi+1) of P we haveyi = xi+1. Note that edges may be repeated on a path, wedo notonly
consider simple paths. Acycle is a path in which the start vertex and the end vertex are the same. The
length of a path Pis the number of edges ofP. Theweight of a path P= (e1, . . . ,ek), denoted byw(P) is
the sum of its edge weights, i.e.w(P) = ∑1≤i≤k w(ei).

Theminimum cycle meanof G is the minimum mean weight of any cycle inG. For every vertexx
we denote byµ(x) the value of the minimum mean-weight cycle reachable fromx. The minimum cycle
mean ofG is simply the minimumµ(x) over all verticesx. For every vertexx and every integert ≥ 1 we
denote byδt(x) the minimum weight of all paths starting atx that have lengtht, i.e., consist of exactlyt
edges. For all pairs of verticesx andy and every integert ≥ 1 we denote bydt(x,y) the minimum weight
of all paths of lengtht from x to y. If no such path exists we setdt(x,y) = ∞.

For every matrixA we denote byA[i, j] the entry at thei-th row and thej-th column ofA. We only
considern×n matrices with integer entries, wheren is the size of the graph. We assume that the vertices
of G are numbered consecutively from 1 ton, which allows us to useA[x,y] to refer to the entry ofA
belonging to verticesx andy. Theweight matrix D of Gis the matrix containing the weights ofG. For
all pairs of verticesx andy we setD[x,y] = w(x,y) if the graph contains the edge(x,y) andD[x,y] = ∞
otherwise.
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We denote themin-plus productof two matricesA andB by A⊗B. The min-plus product is defined
as follows. IfC= A⊗B, then for all indices 1≤ i, j ≤ n we haveC[i, j] = min1≤k≤n(A[i,k]+B[k, j]). We
denote byAt the t-th power of the matrixA. Formally, we setA1 = A andAt+1 = A⊗At for t ≥ 1. We
denote byω the exponent of classic matrix multiplication, i.e., the product of twon×n matrices can be
computed in timeO(nω). The current best bound onω is ω < 2.3727 [25].

3 Reduction of minimum cycle mean to min-plus matrix multiplication

In the following we explain the main idea of our approach which is to use min-plus matrix multiplication
to find the minimum cycle mean. The well-known value iteration algorithm uses a dynamic programming
approach to compute in each iteration a value for every vertex x from the values of the previous iteration.
After t iterations, the value computed by the value iteration algorithm for vertexx is equal toδt(x), the
minimum weight of all paths with lengtht starting atx. We are actually interested inµ(x), the value
of the minimum mean-weight cycle reachable fromx. It is well known that limt→∞ δt(x)/t = µ(x) and
that the value ofµ(x) can be computed fromδt(x) if t is large enough(t = O(n3W)) [31].3 Thus, one
possibility to determineµ(x) is the following: first, computeδt(x) for t large enough with the value
iteration algorithm and then computeµ(x) from δt(x). However, using the value iteration algorithm for
computingδt(x) is expensive because its running time is linear int and thus pseudo-polynomial.

Our idea is to computeδt(x) for a large value oft by using fast matrix multiplication instead of the
value iteration algorithm. We will compute the matrixDt , the t-th power of the weight matrix (using
min-plus matrix multiplication). The matrixDt contains the value of the minimum-weight path of length
exactlyt for all pairs of vertices. GivenDt , we can determine the valueδt(x) for every vertexx by finding
the minimum entry in the row ofDt corresponding tox.

Proposition 1. For every t≥ 1 and all vertices x and y we have (i) dt(x,y) = Dt [x,y] and (ii) δt(x) =
miny∈V Dt [x,y].

Proof. We give the proof for the sake of completeness. The claimdt(x,y) = Dt [x,y] follows from a
simple induction ont. If t = 1, then clearly the minimal-weight path of length 1 fromx to y is the edge
from x to y if it exists, otherwisedt(x,y) = ∞. If t ≥ 1, then a minimal-weight path of lengtht from x to y
(if it exists) consists of some outgoing edge ofe= (x,z) as its first edge and then a minimal-weight path
of lengtht−1 from z to y. We therefore havedt(x,y) = min(x,z)∈E w(x,z)+dt−1(z,y). By the definition
of the weight matrix and the induction hypothesis we getdt(x,y) = minz∈V D[x,z]+Dt−1[z,y]. Therefore
the matrixD⊗Dt−1 = Dt contains the value ofdt(x,y) for every pair of verticesx andy.

For the second claim,δt(x) = miny∈V Dt [x,y], observe that by the definition ofδt(x) we obviously
haveδt(x) = miny∈V dt(x,y) because the minimal-weight path of lengtht starting atx hassomenodey as
its end point.

Using this approach, the main question is how fast the matrixDt can be computed. The most im-
portant observation is thatDt (and therefore alsoδt(x)) can be computed by repeated squaring with only
O(logt) min-plus matrix multiplications. This is different from the value iteration algorithm, wheret
iterations are necessary to computeδt(x).

Proposition 2. For every t≥ 1 we have D2t = Dt ⊗Dt . Therefore the matrix Dt can be computed with
O(logt) many min-plus matrix multiplications.

3Specifically, fort = 4n3W the unique number in(δt(x)/t−1/[2n(n−1)],δt (x)/t +1/[2n(n−1)])∩Q that has a denomi-
nator of at mostn is equal toµ(x) [31].
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Proof. We give the proof for the sake of completeness. It can easily be verified that the min-plus matrix
product is associative [1] and thereforeD2t = Dt⊗Dt . Therefore, ift is a power of two, we can compute
Dt with logt min-plus matrix multiplications. Ift is not a power of two, we can decomposeDt into Dt =
Dt1⊗ . . .⊗Dtk where eachti ≤ t (for 1≤ i ≤ k) is a power of two andk≤ ⌈logt⌉. By storing intermediate
results, we can computeD2i

for every 0≤ i ≤ ⌈logt⌉ with ⌈logt⌉min-plus matrix multiplications. Using
the decomposition above, we have to multiply at most⌈logt⌉ such matrices to obtainDt . Therefore the
total number of min-plus matrix multiplications needed forcomputingDt is O(logt).

The running time of this algorithm depends on the time neededfor computing the min-plus product
of two integer matrices. This running time will usually depend on the two parametersn andM where
n is the size of then× n matrices to be multiplied (in our case this is equal to the number of vertices
of the graph) and the parameterM denotes the maximum absolute integer entry in the matrices to be
multiplied. When we multiply the matrixD by itself to obtainD2, we haveM = W, whereW is the
maximum absolute edge weight. However,M increases with every multiplication and in general, we can
bound the maximum absolute integer entry of the matrixDt only byM = tW. Note thatO(n2) operations
are necessary to extract the minimum cycle meanµ(x) for all verticesx from the matrixDt .

Theorem 3. If the min-plus product of two n×n matrices with entries in{−M, . . . ,−1,0,1, . . . ,M,∞}
can be computed in time T(n,M), then the minimum cycle mean problem can be solved in time T(n, tW) logt
where t= O(n3W).4

Unfortunately, the approach outlined above does not immediately improve the running time for the
minimum cycle mean problem because min-plus matrix multiplication currently cannot be done fast
enough. However, our approach is still useful for solving the minimum cycle mean problemapproxi-
matelybecause approximate min-plus matrix multiplication can bedone faster than its exact counterpart.

4 Approximation algorithm

In this section we design an algorithm that computes an approximation of the minimum cycle mean in
graphs with nonnegative integer edge weights. It follows the approach of reducing the minimum cycle
mean problem to min-plus matrix multiplication outlined inSection 3. The key to our algorithm is a fast
procedure for computing the min-plus product of two integermatrices approximately. We will proceed as
follows. First, we explain how to compute an approximationF of Dt , thet-th power of the weight matrix
D. From this we easily get, for every vertexx, an approximation̂δt(x) of δt(x), the minimum-weight of
all paths of lengtht starting atx. We then argue that fort large enough (in particulart = O(n2W/ε)),
the valueδt(x)/t is an approximation ofµ(x), the minimum cycle mean of cycles reachable fromx. By
combining both approximations we can show thatδ̂t(x)/t is an approximation ofµ(x). Thus, the main
idea of our algorithm is to compute an approximation ofDt for a large enought.

4.1 Computing an approximation ofDt

Our first goal is to compute an approximation of the matrixDt , the t-th power of the weight matrixD,
givent ≥ 1. Zwick provides the following algorithm for approximate min-plus matrix multiplication.

Theorem 4 (Zwick [30]). Let A and B be two n× n matrices with integer entries in[0,M] and let
C := A⊗B. Let R≥ logn be a power of two. The algorithmapprox-min-plus(A,B,M,R) computes the

4Note that necessarilyT(n,M) = Ω(n2) because the result matrix hasn2 entries that have to be written.
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approximate min-plus productC of A and B in time5 O(nωRlog(M) log2(R) log(n)) such that for every
1≤ i, j ≤ n it holds that C[i, j]≤C[i, j]≤ (1+4/R)C[i, j].

We now give a modification (see Algorithm 1) of Zwick’s algorithm for approximate shortest paths [30]
such that the algorithm computes a(1+ ε)-approximationF of Dt whent is a power of two such that
for 1≤ i, j ≤ n we haveDt [i, j] ≤ F[i, j] ≤ (1+ ε)Dt [i, j]. Just as we can computeDt exactly with logt
min-plus matrix multiplications, the algorithm computes the (1+ ε)-approximation ofDt in logt iter-
ations. However, in each iteration only an approximate min-plus product is computed. LetFs be the
approximation ofDs := D2s

. In thes-th iteration we use approx-min-plus(Fs−1,Fs−1, tW,R) to calculate
Fs with Rchosen beforehand such that the desired error bound is reached forF = Flogt .

Algorithm 1: Approximation ofDt

input :weight matrixD, error boundε , t (a power of 2)
output :(1+ ε)-approximation ofDt

F ← D
r ← 4logt/ ln(1+ ε)
R← 2⌈logr⌉

for logt timesdo
F ← approx-min-plus(F,F,2tW,R)

end
return F

Lemma 5. Given an0< ε ≤ 1 and a power of two t≥ 1, Algorithm 1 computes a(1+ε)-approximation
F of Dt in time

O

(
nω · log2(t)

ε
· log(tW) log2

(
log(t)

ε

)
log(n)

)
= Õ

(
nω · log2(t)

ε
· log(tW)

)

such that Dt [i, j]≤ F[i, j]≤ (1+ ε)Dt [i, j] for all 1≤ i, j ≤ n.

Proof. The basic idea is as follows. The running time of approx-min-plus depends linearly onR and
logarithmically onM, the maximum entry of the input matrices. Algorithm 1 calls approx-min-plus logt
times. Each call increases the error by a factor of(1+4/R). However, as only logt approximate matrix
multiplications are used, settingR to the smallest power of 2 that is larger than 4log(t)/ ln(1+ε) suffices
to bound the approximation error by(1+ ε). We will show that 2tW is an upper bound on the entries
in the input matrices for approx-min-plus. The stated running time follows directly from these two facts
and Theorem 4.

Let Fs be the approximation ofDs := D2s
computed by the algorithm after iterations. Recall that

2sW is an upper bound on the maximum entry inDs. As we will show, all entries inFs are at most
(1+ ε)-times the entries inDs. Since we assumeε ≤ 1, we have 1+ ε ≤ 2. Thus 2s+1W is an upper
bound on the entries inFs. Hence 2tW is an upper bound on the entries ofFs with 1≤ s< logt, i.e., for
all input matrices of approx-min-plus in our algorithm.

5The running time of approx-min-plus is given byO(nω logM) times the time needed to multiply twoO(Rlogn)-bit
integers. With the Schönhage-Strassen algorithm for largeinteger multiplication, twok-bit integers can be multiplied in
O(k logk loglogk) time, which gives a running time ofO(nω Rlog(M) log(n) log(Rlogn) log log(Rlogn)). This can be bounded
by the running time given in Theorem 4 ifR≥ logn, which will always be the case in the following.
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This results in an overall running time of

O(nωRlog(tW) log(R) log log(R) log(n) · log(t))

= O

(
nω · log2(t)

log(1+ ε)
· log(tW) log2

(
log(t)

log(1+ ε)

)
log(n)

)

= O

(
nω · log2(t)

ε
· log(tW) log2

(
log(t)

ε

)
log(n)

)
.

The last equation follows from the inequality 1/ ln(1+ ε)≤ (1+ ε)/ε for ε > 0. Sinceε ≤ 1 it follows
that 1/ log(1+ ε) = O(1/ε).

To show the claimed approximation guarantee, we will prove that the inequality

Ds[i, j]≤ Fs[i, j]≤
(

1+
4
R

)s

Ds[i, j] .

holds after thes-th iteration of Algorithm 1 by induction ons. Note that the(1+ ε)-approximation
follows from this inequality because the parameterR is chosen such that after the(logt)-th iteration of
the algorithm it holds that

(
1+

4
R

)logt

≤
(

1+
ln(1+ ε)

logt

)logt

≤ eln(1+ε) = 1+ ε .

For s= 0 we haveFs = Ds and the inequality holds trivially. Assume the inequality holds fors. We
will show that it also holds fors+1.

First we prove the lower bound onFs+1[i, j]. LetCs+1 be the exact min-plus product ofFs with itself,
i.e.,Cs+1 = Fs⊗Fs. Let kc be the minimizing index such thatCs+1[i, j] = min1≤k≤n(Fs[i,k]+Fs[k, j]) =
Fs[i,kc]+Fs[kc, j]. By the definition of the min-plus product

Ds+1[i, j] = min
1≤k≤n

(Ds[i,k]+Ds[k, j])≤ Ds[i,kc]+Ds[kc, j] . (1)

By the induction hypothesis and the definition ofkc we have

Ds[i,kc]+Ds[kc, j]≤ Fs[i,kc]+Fs[kc, j] =Cs+1[i, j] . (2)

By Theorem 4 the values ofFs+1 can only be larger than the values inCs+1, i.e.,

Cs+1[i, j] ≤ Fs+1[i, j] . (3)

Combining Equations (1), (2), and (3) yields the claimed lower bound,

Ds+1[i, j] ≤ Fs+1[i, j] .

Next we prove the upper bound onFs+1[i, j]. Let kd be the minimizing index such thatDs+1[i, j] =
Ds[i,kd] +Ds[kd, j]. Theorem 4 gives the error from one call of approx-min-plus,i.e., the error in the
entries ofFs+1 compared to the entries ofCs+1. We have

Fs+1[i, j]≤
(

1+
4
R

)
Cs+1[i, j] . (4)
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By the definition of the min-plus product we know that

Cs+1[i, j]≤ Fs[i,kd]+Fs[kd, j] . (5)

By the induction hypothesis and the definition ofkd we can reformulate the error obtained in the firsts
iterations of Algorithm 1 as follows:

Fs[i,kd]+Fs[kd, j]≤
(

1+
4
R

)s

Ds[i,kd]+

(
1+

4
R

)s

Ds[kd, j] ,

=

(
1+

4
R

)s

(Ds[i,kd]+Ds[kd, j]) ,

=

(
1+

4
R

)s

Ds+1[i, j] . (6)

Combining Equations (4), (5), and (6) yields the upper bound

Fs+1[i, j] ≤
(

1+
4
R

)s+1

Ds+1[i, j] .

Once we have computed an approximation of the matrixDt , we extract from it the minimal entry
of each row to obtain an approximation ofδt(x). Here we use the equivalence between the minimum
entry of rowx of Dt andδt(x) established in Proposition 1. Remember thatδt(x)/t approachesµ(x) for
t large enough and later on we want to use the approximation ofδt(x) to obtain an approximation of the
minimum cycle meanµ(x).
Lemma 6. The valueδ̂t(x) := miny∈V F[x,y] approximatesδt(x) with δt(x) ≤ δ̂t(x)≤ (1+ ε)δt(x) .

Proof. Let yf andyd be the indices where thex-th rows ofF andDt obtain their minimal values, respec-
tively, i.e.,

yf := argmin
y∈V

F[x,y] and yd := argmin
y∈V

Dt [x,y] .

By these definitions and Lemma 5 we have

δt(x) = Dt [x,yd]≤ Dt [x,yf ]≤ F[x,yf ] = δ̂t(x)

and
δ̂t(x) = F[x,yf ]≤ F [x,yd]≤ (1+ ε)Dt [x,yd] .

4.2 Approximating the minimum cycle mean

We now add the next building block to our algorithm. So far, wecan obtain an approximation̂δt(x)
of δt(x) for any t that is a power of two. We now show thatδt(x)/t is itself an approximation of the
minimum cycle meanµ(x) for t large enough. Then we argue thatδ̂t(x)/t approximates the minimum
cycle meanµ(x) for t large enough. This value oft bounds the number of iterations of our algorithm. A
similar technique was also used in [31] to bound the number ofiterations of the value iteration algorithm
for the two-player mean-payoff game.

We start by showing thatδt(x)/t differs fromµ(x) by at mostnW/t for any t. Then we will turn this
additive error into a multiplicative error by choosing a large enough value oft. A multiplicative error
implies that we have to compute the solution exactly forµ(x) = 0. We will use a separate procedure
to identify all verticesx with µ(x) = 0 and compute the approximation only for the remaining vertices.
Note thatµ(x)> 0 impliesµ(x)≥ 1/n because all edge weights are integers.
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Lemma 7. For every x∈V and every integer t≥ 1 it holds that

t ·µ(x)−nW≤ δt(x)≤ t ·µ(x)+nW.

Proof. We first show the lower bound onδt(x). Let P be a path of lengtht starting atx with weightδt(x).
Consider the cycles inP and letE′ be the multiset of the edges inP that are in a cycle ofP. There can
be at mostn edges that are not in a cycle ofP, thus there are at least max(t− n,0) edges inE′. Since
µ(x) is the minimum mean weight of any cycle reachable fromx, the sum of the weight of the edges in
E′ can be bounded below byµ(x) times the number of edges inE′. Furthermore, the value ofµ(x) can
be at mostW. As we only allow nonnegative edge weights, the sum of the weights of the edges inE′ is
a lower bound onδt(x). Thus we have

δt(x)≥ ∑
e∈E′

w(e)≥ (t−n)µ(x)≥ t ·µ(x)−n·µ(x) ≥ t ·µ(x)−nW.

Next we prove the upper bound onδt(x). Let l be the length of the shortest path fromx to a vertexy
in a minimum mean-weight cycleC reachable fromx (such that onlyy is both in the shortest path and in
C). Let c be the length ofC. Let the pathQ be a path of lengtht that consists of the shortest path from
x to y, ⌊(t− l)/c⌋ rounds onC, andt− l −c⌊(t− l)/c⌋ additional edges inC. By the definition ofδt(x),
we haveδt(x) ≤ w(Q). The sum of the length of the shortest path fromx to y and the number of the
remaining edges ofQ not in a complete round onC can be at mostn because in a graph with nonnegative
weights no shortest path has a cycle and no vertices inC excepty are contained in the shortest path from
x to y. Each of these edges has a weight of at mostW. The mean weight ofC is µ(x), thus the sum of the
weight of the edges in all complete rounds onC is µ(x) ·c⌊(t− l)/c⌋ ≤ µ(x) · t. Hence we have

δt(x) ≤w(Q)≤ t ·µ(x)+nW.

In the next step we show that we can use the fact thatδt(x)/t is an approximation ofµ(x) to obtain a
(1+ ε)-approximationµ̂(x) of µ(x) even if we only have an approximation̂δt(x) of δt(x) with (1+ ε)-
error. We exclude the caseµ(x) = 0 for the moment.

Lemma 8. Assume we have an approximationδ̂t(x) of δt(x) such thatδt(x) ≤ δ̂t(x) ≤ (1+ ε)δt(x) for
0< ε ≤ 1/2. If

t ≥ n2W
ε

, µ(x) ≥ 1
n
, and µ̂(x) :=

δ̂t(x)
(1− ε)t

,

then
µ(x)≤ µ̂(x) ≤ (1+7ε)µ(x) .

Proof. We first show that̂µ(x) is at least as large asµ(x). From Lemma 7 we haveδt(x)≥ t ·µ(x)−nW.
As t is chosen large enough,

δt(x)
t
≥ µ(x)− nW

t
≥ µ(x)− ε

n
≥ µ(x)− εµ(x)≥ (1− ε)µ(x) .

Thus, by the assumptionδt(x) ≤ δ̂t(x) we have

µ(x)≤ δ̂t(x)
(1− ε)t

= µ̂(x) .
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For the upper bound on̂µ(x) we use the inequalityδt(x) ≤ t · µ(x)+ nW from Lemma 7. Ast is
chosen large enough,

δt(x)
t
≤ µ(x)+

nW
t
≤ µ(x)+

ε
n
≤ (1+ ε)µ(x) .

With δ̂t(x) ≤ (1+ ε)δt(x) this gives

µ̂(x) =
δ̂t(x)

(1− ε)t
≤ (1+ ε)2

(1− ε)
µ(x) .

It can be verified by simple arithmetic that forε > 0 the inequalityε ≤ 1/2 is equivalent to

(1+ ε)2

(1− ε)
≤ (1+7ε) .

As a last ingredient to our approximation algorithm, we design a procedure that deals with the special
case that the minimum cycle mean is 0. Since our goal is an algorithm with multiplicative error, we have
to be able to compute the solution exactly in that case. This can be done in linear time because the
edge-weights are nonnegative.

Proposition 9. Given a graph with nonnegative integer edge weights, we can find out all vertices x such
that µ(x) = 0 in time O(m).

Proof. Note that in the case of nonnegative edge weights we haveµ(x) ≥ 0. Furthermore, a cycle can
only have mean weight 0 if all edges on this cycle have weight 0. Thus, it will be sufficient to detect
cycles in the graph that only contain edges that have weight 0.

We proceed as follows. First, we compute the strongly connected components ofG, the original
graph. Each strongly connected componentGi (where 1≤ i ≤ k) is a subgraph ofG with a set of vertices
Vi and a set of edgesEi. For every 1≤ i ≤ k we let G0

i = (E0
i ,Vi) denote the subgraph ofGi that only

contains edges of weight 0, i.e.,E0
i = {e∈Ei|w(e) = 0}. As argued above,Gi contains a zero-mean cycle

if and only if G0
i contains a cycle. We can check whetherG0

i contains a cycle by computing the strongly
connected components ofG0

i : G0
i contains a cycle if and only if it has a strongly connected component

of size at least 2 (we can assume w.l.o.g. that there are no self-loops). LetZ be the set of all vertices in
strongly connected components ofG that contain a zero-mean cycle. The vertices inZ are not the only
vertices that can reach a zero-mean cycle. We can identify all vertices that can reach a zero-mean cycle
by performing a linear-time graph traversal to identify allvertices that can reachZ.

Since all steps take linear time, the total running time of this algorithm isO(m).

Finally, we wrap up all arguments to obtain our algorithm forapproximating the minimum cycle
mean. This algorithms performs logt approximate min-plus matrix multiplications to compute anap-
proximation ofDt andδt(x). Lemma 8 tells us thatt = n2W/ε is just the right number to guarantee that
our approximation ofδt(x) can be used to obtain an approximation ofµ(x). The value oft is relatively
large but the running time of our algorithm depends ont only in a logarithmic way.

Theorem 10. Given a graph with nonnegative integer edge weights, we can compute an approximation
µ̂(x) of the minimum cycle mean for every vertex x such thatµ(x) ≤ µ̂(x) ≤ (1+ ε)µ(x) for 0< ε ≤ 1
in time

O

(
nω

ε
log3

(
nW
ε

)
log2

(
log
(

nW
ε
)

ε

)
log(n)

)
= Õ

(
nω

ε
log3

(
nW
ε

))
.
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Proof. First we find all verticesx with µ(x) = 0. By Proposition 9 this takes timeO(n2) for m= O(n2).
For the remaining verticesx we approximateµ(x) as follows.

Let ε ′ := ε/7. If we execute Algorithm 1 with weight matrixD, error boundε ′ andt such thatt is
the smallest power of two witht ≥ n2W/ε ′, we obtain a(1+ ε ′)-approximationF[x,y] of Dt [x,y] for all
verticesx andy (Lemma 5). By calculating for everyx the minimum entry ofF [x,y] over ally we have a
(1+ ε ′)-approximation ofδt(x) (Lemma 6). By Lemma 8̂µ(x) := δ̂t(x)/((1− ε ′)t) is for this choice of
t an approximation ofµ(x) such thatµ(x) ≤ µ̂(x) ≤ (1+7ε ′)µ(x). By substitutingε ′ with ε/7 we get
µ(x) ≤ µ̂(x)≤ (1+ ε)µ(x) i.e., a(1+ ε)-approximation ofµ(x).

By Lemma 5 the running time of Algorithm 1 fort = 2⌈log(n2W/ε ′)⌉ = O(n2W/ε) is

O


nω

ε
log2

(
n2W

ε

)
log

(
n2W2

ε

)
log2




log
(

n2W
ε

)

ε


 log(n)


 .

With log(n2W)≤ log((nW)2) = O(log(nW)) we get that Algorithm 1 runs in time

O

(
nω

ε
log3

(
nW
ε

)
log2

(
log
(

nW
ε
)

ε

)
log(n)

)
. (7)

5 Open problems

We hope that this work draws attention to the problem of approximating the minimum cycle mean. It
would be interesting to study whether there is a faster approximation algorithm for the minimum cycle
mean problem, maybe at the cost of a worse approximation. Therunning time of our algorithm imme-
diately improves if faster algorithms for classic matrix multiplication, min-plus matrix multiplication
or approximate min-plus multiplication are found. However, a different approach might lead to better
results and might shed new light on how well the problem can beapproximated. Therefore it would be
interesting to remove the dependence on fast matrix multiplication and develop a so-called combinatorial
algorithm.

Another obvious extension is to allow negative edge weightsin the input graph. Furthermore, we
only consider the minimum cycle mean problem, while it mightbe interesting to actually output a cycle
with approximately optimal mean weight.
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