
Maximizing a Submodular Function with
Viability Constraints

Wolfgang Dvořák1, Monika Henzinger1, and David P. Williamson2

1 Universität Wien, Fakultät für Informatik, Währingerstraße 29, A-1090 Vienna,
Austria

2 School of Operations Research and Information Engineering, Cornell University,
Ithaca, New York, 14853, USA

Abstract. We study the problem of maximizing a monotone submod-
ular function with viability constraints. This problem originates from
computational biology, where we are given a phylogenetic tree over a set
of species and a directed graph, the so-called food web, encoding via-
bility constraints between these species. These food webs usually have
constant depth. The goal is to select a subset of k species that satisfies
the viability constraints and has maximal phylogenetic diversity. As this
problem is known to be NP-hard, we investigate approximation algo-
rithm. We present the first constant factor approximation algorithm if
the depth is constant. Its approximation ratio is (1− 1√

e
). This algorithm

not only applies to phylogenetic trees with viability constraints but for
arbitrary monotone submodular set functions with viability constraints.
Second, we show that there is no (1− 1/e+ ε)-approximation algorithm
for our problem setting (even for additive functions) and that there is no
approximation algorithm for a slight extension of this setting.

1 Introduction

We consider the problem of maximizing a monotone submodular set function
f over subsets of a ground set X, subject to a restriction on what subsets are
allowed. As discussed below, this problem has been well-studied with constraints
on the allowed sets that are downward-closed; that is, if S is allowed subset, then
so is any S′ ⊂ S. Here we study the problem of maximizing such a function with
a constraint that is not downwards-closed. Specifically, we assume that there
exists a directed acyclic graph D with the elements of X as nodes in the graph
and only consider so-called viable sets of a certain size. A set S is viable if each
element either has no outgoing edges in D or it has a path P to such an element
with P ⊆ S. Such viability constraints are a natural way to model dependencies
between elements, where an element can only contribute to the function if it
appears together with specific other elements.

We are motivated by a problem arising in conservation biology. The problem
is given as a rooted phylogenetic tree T with nonnegative weights on the edges,
where the leaves of the tree represent species, and the weights represent genetic
distance. Given a conservation limit k, we would like to select k species so as

to maximize the overall phylogenetic diversity of the set, which is equivalent
to maximizing the weight of the induced subtree on the k selected leaves plus
the root. This problem, known as Noah’s Ark problem [16], can be solved in
polynomial time via a greedy algorithm [3, 12, 14]. Moulton, Semple, and Steel
[10] introduced a more realistic extension of the problem which takes into account
the dependence of various species upon one another in a food web. In this food
web an arc is directed from species a towards species b if a’s survival depend
on species b’s. Moulton et al. now consider selecting viable subsets given by the
food web of size k, i.e. a species is viable if also at least one of its successors in
the food web is preserved. Note that in real life the depth of the food web, i.e.,
the longest shortest path between any node in D and the “nearest” node with
no out-edge, is constant (usually no larger than 30). Faller et al. [4] show that
the problem of maximizing phylogenetic diversity with viability constraints is
NP-hard, even in simple special cases with constant depth (e.g. the food web is
a directed tree of constant depth).

Since phylogenetic diversity induces a monotone, submodular function on a
set of species, this problem is a special case of the problem of maximizing a sub-
modular function with viability constraints. There exists a long line of research
on approximately maximizing monotone submodular functions with constraints.
This line of work was initiated by Nemhauser et al. [11] in 1978; they give a
greedy (1− 1

e)-approximation algorithm for maximizing a monotone submodular
function subject to a cardinality constraint. Fisher et al. [6] introduced approx-
imation algorithms for maximizing a monotone submodular function subject to
matroid constraints (in which the set S must be an independent set in a single or
multiple matroids). In recent work other types of constraints have been studied,
as well as nonmonotone submodular functions; see the surveys by Vondrak [15]
and Goundan and Schulz [7].

In our case, the viability constraints are not downwards-closed while most
of the prior work studies downwards-closed constraints. One notable exception,
where not downwards-closed constraints are considered, are matroid base con-
straints [9]. The viability constraint could be extended to be downwards-closed
by simply defining every subset of a viable set to be allowable. However, this
extension violates the exchange property of matroids and thus viability con-
straints also differ from matroid base constraints. Hence we consider a new type
of constraint in submodular function maximization. We show how variants on
the standard greedy algorithm can be used to derive approximation algorithms
for maximizing a monotone, submodular function with viability constraints; thus
we show that a new type of constraint can be handled in submodular function
maximization.

Specifically we first present a scheme of (1 − 1
ep/(p+d−1))/2 - approximation

algorithms for monotone submodular set functions with viability constraints,
where d is the depth of the food web and p is a parameter of the algorithm,
such that the running time is exponential in p but is polynomial for any fixed p.
For instance if we set p = d we achieve a (1− 1√

e
)/2 - approximation algorithm.

We further present a variant of these algorithms which are (1 − 1
ep/(p+d−1)) -

approximations, but whose running time is exponential in both d and p. For fixed
d=p this is polynomial and provides an (1− 1√

e
) - approximation algorithm.

Next by a reduction from the maximum coverage problem, we show that there
is no (1−1/e+ε)-approximation algorithm for the phylogenetic diversity problem
with viability constraints (unless P = NP). Finally we consider a generalization
of our problem where we additionally allow AND-constraints such as “species
a is only viable if we preserve both species b and species c” and show that
this generalization has no approximation algorithm (assuming P 6= NP) by a
reduction from 3-SAT.

We define the problem more precisely in Section 2, introduce our algorithms
in Section 3, and give the hardness results in Section 4. All omitted proofs can
be found in the appendix.

2 Phylogenetic Diversity with Viability Constraints

We first give a formal definition of the problem.

Definition 1. A (rooted) phylogenetic tree T = (T,ET) is a rooted tree with
root r and each non-leaf node having at least 2 child-nodes together with a weight
function w assigning non-negative integer weights to the edges. Let X denote the
set of leaf nodes of T . For any set A ⊆ X the operator T (A) yields the spanning
tree of the set A ∪ {r}, and by TE(A) we denote the edges of this spanning tree.
Then for any set S ⊆ X the phylogenetic diversity is defined as

PD(S) =
∑

e:e∈TE(S)

w(e)

A food web D for the phylogenetic tree T = (T,ET) is an acyclic directed graph
(X,E). A set S ⊆ X is called viable if each s ∈ S is either a sink (a node with
out-degree 0) in D or there is a s′ ∈ S such that (s, s′) ∈ E.

Now our problem of interest is defined as follows.

Definition 2. The Optimizing Phylogenetic Diversity with Viability Constraints
(OptPDVC) problem is defined as follows. You are given a phylogenetic tree T
and a food web D = (X,E), and a positive integer k. Find a viable subset S ⊆ X
of size (at most) k maximizing PD(S).

OptPDVC is known to be NP-hard [4], even for restricted classes of phylogenetic
trees and dependency graphs.

First we study fundamental properties of the function PD.

Definition 3. The set function PD(.|.) : 2X × 2X 7→ N0 for each A,B ⊆ X is
defined as PD(A|B) = PD(A ∪B)− PD(B).

The intuitive meaning of PD(A|B) is the gain of diversity we get by adding the
set A to the already selected species B.

We next recall the definition of submodular set functions.We call a set func-
tion submodular if

∀A,B,C ⊆ Ω : A ⊆ B ⇒ f(A ∪ C)− f(A) ≥ f(B ∪ C)− f(B).

Proposition 1. PD is a non-negative, monotone, and submodular function [2].

Now consider the function PD(.|.). As PD(.) is monotone also PD(.|.) is
monotone in the first argument and because of the submodularity of PD(.) the
function PD(.|.) is anti-monotone in the second argument.

In the remainder of the paper we will not refer to the actual definition of the
functions PD(.), PD(.|.), but only exploit monotonicity, submodularity and the
fact that these functions can be efficiently computed.

Moreover we will consider a function VE (viable extension) which, given a
set of species S, returns a viable set S′ of minimum size containing S. In the
simplest case where S consist of just one species it computes a shortest path to
any sink node in the food web. We define the depth d of a food web (X,E) as

d(X,E) = max
s∈X
|VE({s})|.

If the food web is clear from the context we just write d instead of d(X,E).
Note that the problem remains NP-hard for instances with d = 2, even if PD is
additive [4]. Finally we define the costs of adding a set of species A to a set B

c(A|B) = |VE(B ∪A)| − |B|.

We will tacitly assume that d ≤ k. Otherwise we can eliminate species s with
c({s}|∅) > k by polynomial time preprocessing, using a shortest path algorithm.

3 Approximation Algorithms

In this section we assume that a non-negative, monotone submodular function
PD(.) is given as an oracle and we want to maximize PD(.) under viability
constraints together with a cardinality constraint. We first review the greedy
algorithm given by Faller et al. [4] presented in Algorithm 1. The idea is that, in
each step, one considers only species which either have no successors in the food
web or for which one of the successors has already been selected (adding one of
these species will keep the set viable). Then one adds the species that gives the

Algorithm 1 Greedy, Faller et al.

1: S ← ∅
2: while |S| < k do
3: s← argmax

c(s|S)=1

v({s}|S)

4: S ← S ∪ {s}
5: end while

r

y z x1 x2

0 C 1 1

(a) Phylogenetic Tree

y

z

x1 x2

(b) Food Web

Fig. 1. An illustration of Example 1.

largest gain of preserved diversity. By the restriction on the considered species
the constructed set is always viable, but we might miss highly valuable species
which is illustrated by the following example.

Example 1. Consider the set of species X = {y, z, x1, x2} the phylogenetic tree
T = ({r} ∪ X, {(r, y), (r, z), (r, x1), (r, x2)}, weights w(r, xi) = 1, w(r, y) = 0,
w(r, z) = C with C > 2 and the food web (X, {(z, y)}) (see Fig. 1). Assume a
budget k = 2, now as the species y has weight 0, Algorithm 1 would pick x1, and
x2. Hence Algorithm 1 results a viable set with diversity 2. But the set {z, y} is
viable and has diversity C, which can be made arbitrarily large.

This example shows that the greedy solution might have an approximation
ratio that is arbitrarily bad, because it ignores highly weighted species if they
are “on the top of” less valuable species.

Hence, to get approximation ratio, we have to consider all subsets of species
up to a certain size which can be made viable and pick the most valuable subset.
Algorithm 2 deals with this observation. It generalizes concepts from [1], which
itself builds on [8]. Lines 5 - 10 of the algorithm implement a greedy algorithm
that in each step selects the most “cost efficient” subset of species of size p, i.e.
the subset S of species that maximizes the ratio of the increase in PD over the
cost of adding S, and adds it to the solution. But Algorithm 2 does not solely
run the greedy algorithm, it first computes the set with maximal PD among

Algorithm 2

1: B ← {B ⊆ X | |B| ≤ p, 1 ≤ c(B|∅) ≤ k}
2: S ← argmax

B∈B
PD(B)

3: G = VE(S)
4: G← ∅
5: while B 6= ∅ do
6: S ← argmax

B∈B

PD(B|G)
c(B|G)

7: G = VE(G ∪ S)
8: B ← {B ∈ B | |B| ≤ p, 1 ≤ c(B|G) ≤ k − |G|}
9: end while

10: if PD(G) > PD(G) then
11: G ← G
12: end if

all sets of size ≤ p that can be made viable. In certain cases this set is better
than the viable set obtained by the greedy algorithm, a fact that we exploit in
the proof of Theorem 1. In the algorithm G denotes the current set of selected
species; B contains the species we might add to G; G denotes the best viable set
we have found so far.

The next theorem will analyze the approximation ratio of Algorithm 2.

Theorem 1. Algorithm 2 is a (1 − 1
ep/(p+d−1))/2 approximation (for any p ∈

{1, . . . , bk/3c}).

To prove Theorem 1, we introduce some notation. First let O ⊆ X denote the op-
timal solution. We will consider a decomposition DO of O into sets O1, . . . , Odk/pe

of size ≤ p. By decomposition we mean that (i)
⋃dk/pe

i=1 Oi = O and (ii) Oi∩Oj =
∅ if i 6= j. Moreover we require that |VE(Oi)| ≤ p + d − 1 and

∑
i |VE(Oi)| ≤

k
p (p+ d− 1). Next we show that such a decomposition DO always exists.

Lemma 1. There exist dkp e many pairs (O1, B1), . . . , (Od kp e
, Bd kp e

) such that

O =
⋃

1≤i≤d kp e
Oi, Oi ∪ Bi is viable, |Oi| ≤ p, |Bi| ≤ d − 1 and

∑
i |Oi ∪ Bi| ≤

k
p (p+ d− 1).

Proof. The optimal solution O is a viable subset of size at most k. Consider the
reverse graph G of D projected on the set O i.e. G = (O,E−∩(O×O)), and add
an artificial root r that has an edge to all roots of G. Start a depth-first-search in
r and with the empty sets O1, B1. Whenever the DFS removes a node from the
stack, we add this node to the current set Oi, i ≥ 1. When |Oi| = p then we add
the nodes on the stack, except r, to the set Bi, but do not change the stack itself.
Then we continue the DFS with the next pair (Oi+1, Bi+1), again initialized by
empty sets. Eventually the DFS stops, then the stack is empty and thus (Od kp e

, ∅)
is the last pair. Notice that by the definition of d there are at most d nodes on the
stack, one being the root r and hence |Bi| ≤ d− 1. Since the DFS removes each
node exactly once from the stack, all the sets Oi ⊆ O are disjoint and all except
the last one are of size p. Hence the DFS produces dkp e many sets Oi satisfying

Oi∪Bi is viable, |Oi| ≤ p and |Bi| ≤ d−1. Finally as, by construction, Bd kp e
= ∅

and |Od kp e| = k mod p we obtain that
∑d kp e

i=1 |Oi ∪ Bi| =
∑b kp c

i=1 |Oi ∪ Bi| + (k

mod p) ≤ bkp c(p+ d− 1) + (k mod p) ≤ k
p (p+ d− 1). ut

First we consider the greedy algorithm and the value l where the l-th iteration

is the first iteration such that after executing the loop body, maxOj∈DO

PD(Oj |G)
c(Oj |G) >

maxB∈B
PD(B|G)
c(B|G) . If G 6= O the inequality holds at least for the last iteration of

the loop where B = ∅. We define O′l+1 = argmax
Oj∈DO

PD(Oj |G)
c(Oj |G) , i.e. O′l+1 is in the

optimal viable set and would be a better choice than the selection of the algo-
rithm, but the greedy algorithm cannot make S ∪O′l+1 viable without violating
the cardinality constraint.

Let Si denote the set S added to G in iteration i of the while loop in Line 6.
Moreover, for i ≤ l we denote the set G after the i-th iteration by Gi, with
G0 = ∅, the set G ∪ S from Line 7 as G∗i = Gi−1 ∪ Si and the “costs” of adding
set Si by ci = c(Si|Gi−1) = c(Gi|Gi−1). With a slight abuse of notation we will
use Gl+1 to denote the viable set VE(Gl ∪O′l+1), cl+1 to denote c(O′l+1|Gl) and
G∗l+1 to denote the set Gl ∪O′l+1 (Gl+1 is not a feasible solution as |Gl+1| > k).
Notice that while the sets G∗i are not necessarily viable sets, all the Gi, i ≥ 0 are
viable sets and moreover PD(G) ≥ PD(Gi), i ≤ l.

First we show that in each iteration of the algorithm the set Si gives us a
certain approximation of the missing part of the optimal solution.

Lemma 2. For 1 ≤ i ≤ l + 1, p ∈ {1, . . . , bk/3c}:

PD(Si|Gi−1)

ci
≥ p

(p+ d− 1)k
· PD(O|Gi−1)

Proof. By the definition of Si for each Oj ∈ DO the following holds:

PD(Oj |Gi−1)

c(Oj |Gi−1)
≤ PD(Si|Gi−1)

c(Gi|Gi−1)

Next we use the monotonicity and submodularity of PD (for the first inequality)
and the inequality from above (for the second inequality).

PD(O|Gi−1) ≤
∑

Oj∈DO

PD(Oj |Gi−1) =
∑

Oj∈DO

PD(Oj |Gi−1)

c(Oj |Gi−1)
c(Oj |Gi−1)

≤
∑

Oj∈DO

PD(Si|Gi−1)

ci
c(Oj |Gi−1) ≤ PD(Si|Gi−1)

ci

p+ d− 1

p
· k

The last step exploits that by Lemma 1
∑

Oj∈DO
c(Oj |Gi−1) ≤ k

p ·(p+d−1). ut

Lemma 3. For 1 ≤ i ≤ l + 1:

PD(G∗i) ≥

1−
i∏

j=1

(
1− p · cj

(d+ p− 1) · k

) PD(O)

Proof. The proof is by induction on i. The base case for i = 1 is by Lemma 2.
For the induction step we show that if the claim holds for all i′ < i then it must
also hold for i. For convenience we define Ci = p·ci

(d+p−1)·k .

PD(G∗i) = PD(Gi−1) + PD(G∗i |Gi−1) ≥ PD(Gi−1) + Ci · PD(O|Gi−1)

= PD(Gi−1) + Ci · (PD(O ∪Gi−1)− PD(Gi−1))

≥ (1− Ci) · PD(Gi−1) + Ci · PD(O) ≥ (1− Ci) · PD(G∗i−1) + Ci · PD(O)

≥ (1− Ci)

[
1−

i−1∏
j=1

(1− Cj)

]
PD(O) + Ci · PD(O)

=

[
1−

i∏
j=1

(1− Cj)

]
PD(O)

ut

Proof (Theorem 1). We first give a bound forG∗l+1. To this end consider
∑l+1

m=1 cm.

As Gl+1 exceeds the cardinality constraint
∑l+1

m=1 cm > k it follows that:

1−
l+1∏
j=1

(
1− p · cj

(d+ p− 1) · (k)

)
≥ 1−

l+1∏
j=1

(
1− p · cj

(d+ p− 1) ·
∑l+1

m=1 cm

)

≥ 1−
(

1− p

(d+ p− 1) · (l + 1)

)l+1

≥ 1− 1

ep/(d+p−1)

To obtain Line 2 we used the fact the term 1−
∏l+1

j=1

(
1− c′j

C

)
with constant C

and the constraint
∑l+1

j=1 c
′
j = 1 has its maximum at c′j = 1/(l + 1).

By Lemma 3 we obtain PD(G∗l+1) ≥
(
1− 1

ep/(d+p−1)

)
· PD(O), thus it only

remains to relate PD(G∗l+1) to PD(Gl). To this end we consider the optimal
set of size p computed in Line 3 and denote it by So. If the greedy solution has
higher PD than So the algorithm returns a superset of G∗l otherwise a superset
of So. Hence, PD(G) is larger or equal to the maximum of PD(G∗l) and PD(So).
From the definitions of G∗l and So it follows that

PD(G∗l+1) ≤ PD(G∗l) + PD(O′l+1) ≤ PD(G∗l) + PD(So).

With the above result for PD(G∗l+1) we obtain that:

PD(G) ≥ max(PD(G∗l),PD(So)) ≥
(

1− 1

ep/(d+p−1)

)
· PD(O)

2

Hence Algorithm 2 provides an
(
1− 1

ep/(d+p−1)

)
/2 - approximation. ut

Theorem 2. Algorithm 2 is in time O
(
k · (3pnp+2 + np+1m)

)
.

Proof. First notice that computing the function VE can be reduced to a Steiner
tree problem by (i) taking all the species in S that are already connected (via
nodes in S) to a sink node in S, and merging these nodes into a single terminal
node t, and (ii) connecting the remaining sink nodes to t. As starting nodes
for the Steiner tree problem we use the remaining species in S. A viable set
S is reduced to a single vertex t and thus the number of terminal nodes in
the Steiner tree problems is bounded by a constant, hence we can solve them
in polynomial time: The Steiner tree problem on acyclic directed graphs can be
solved in time O(3jn2+nm) [13], where j is the number of starting and terminal
nodes. In Line 2 we have to consider O(np) sets S and for each of them we solve
a Steiner tree problem. with at most p starting nodes. So this first loop can be
done in time O(3pnp+2 + np+1m). The number of iterations of the while loop is
bounded by k and in each iteration, in Line 6, we have to solve O(np) Steiner
tree problems with at most p starting nodes. Now as each iteration takes time
O(3pnp+2 +np+1m) we get a total running time of O(k · (3pnp+2 +np+1m)). ut

Finally, notice that one can use a modification of the enumeration technique
as described in [8], to get rid of the factor 1/2 in the approximation ratio. The

idea is to consider all (viable) sets of a certain size and for each of them to run
the greedy algorithm starting with this set. Finally one chooses the best of the
produced solutions. These sets typically have to contain three objects of interest,
in the case of the maximum coverage problem [8] (cf. Def. 4 below) just three
sets from the collection SC. However, in our setting an object of interest is a pair
(Oi, Bi), i.e. a set Oi of size ≤ p and a set Bi of size < d making Oi viable. Thus
three objects result in a set of size of 3p + 3d − 3. This increases the running
time by a factor of n3p+3d−3. The proof of the following theorem is very similar
to the above analysis for Algorithm 2 (details are provided in the appendix).

Theorem 3. There exists an
(
1− 1

ep/(d+p−1)

)
- approximation algorithm for

OptPDVC which runs in time O
(
k · (3pn4p+3d−1 + n4p+3d−2m)

)
.

4 Impossibility Results

If we allow arbitrary monotone submodular functions it is easy to see that no
1− 1

e + ε-approximation algorithm exists (unless P = NP). This is immediate by
the corresponding result for Max Coverage (with cardinality constraints). Here
we show that, when considering viability constraints, this also holds for additive
functions and in particular for the phylogenetic diversity PD.

Definition 4. The input to the Max Coverage problem is a set of domain ele-
ments D = {1, 2, . . . , n}, together with non-negative integer weights w1, . . . wn,
a collection of subsets of D SC = {S1, . . . Sm} and a positive integer k. The goal
is to find a set SC′ ⊆ SC of cardinality k maximizing

∑
i∈

⋃
S∈SC′ S

wi.

Proposition 2. There is no α-approximation algorithm for Max Coverage with
α > 1− 1

e (unless P = NP) [5, 8].

Reduction 1. Given an instance (D,SC, k) of the Max Coverage problem, we
build an instance of OptPDVC as follows (cf. Fig. 2)

X = D ∪ {Si,j | Si ∈ SC, 1 ≤ j ≤ n}
E = {(j, Si,n) | j ∈ Si} ∪ {(Si,j+1, Si,j) | 1 ≤ i ≤ m, 1 ≤ j < n}
T = ({r} ∪X, {(r, s) | s ∈ X})

we =

{
wi e = (r, i), i ∈ D
0 otherwise

k′ = (k + 1) · n

Lemma 4. Let (D,SC, k) be an instance of the Max Coverage problem and let
(TC, (X,E), k′) be an instance of OptPDVC given by Reduction 1. Let W > 0.
Then there exists a cover C ⊆ SC of size k with w(C) ≥ W for (D,SC, k) iff
there exists a viable set A of size k′ = (k + 1) · n with PD(A) ≥W .

r

1 2 3 4 S1,1 . . . S3,4

w1 w2 w3 w4 0 0

(a) Phylogenetic Tree (T,ET) with weights wi

1 2 3 4

S1,4 S2,4 S3,4

S1,3 S2,3 S3,3

S1,2 S2,2 S3,2

S1,1 S2,1 S3,1

(b) Food Web (X,E)

Fig. 2. An illustration of Reduction 1, applied to D = {1, 2, 3, 4}, SC = {S1, S2, S3},
S1 = {1, 2, 3}, S2 = {2, 4}, S3 = {1, 3, 4}.

Proof. ⇒: First assume that there is a cover C of size k with w(C) = W . Then
A′ = {Si,j | Si ∈ C, 1 ≤ j ≤ n} ∪

⋃
Si∈C Si is a viable set of size ≤ k · n + n.

Clearly PD(A′) = W and thus we have a viable set A of size (k + 1) · n with
PD(A) ≥W by adding arbitrary viable species.
⇐: Assume there is a viable set A of size (k+ 1) ·n with PD(A) = W . There

are at most k + 1 elements Si ∈ SC such that Si,n ∈ A. This is by the fact that
if Si,n ∈ A then also Si,1, . . . , Si,n−1 ∈ A. Now consider the case where there
are exactly k + 1 such elements. Then we already have (k + 1) · n species in A
and thus no x ∈ D is contained in A. But then PD(A) = 0 as only the edges
(r, x) with x ∈ D have non-zero weight. Assuming W > 0 we thus have at most
k elements Si ∈ E such that Si,n ∈ A and further as A is viable for each x ∈ A
there is an Si,n ∈ A such that x ∈ Si. Hence C ′ = {Si | Si,n ∈ A} is of size
at most k and covers all x ∈ A ∩D, i.e. w(C ′) = W . Now by adding arbitrary
Si ∈ SC we can construct a cover C of size k with w(C) ≥W . ut

Theorem 4. There is no α-approximation algorithm for OptPDVC with α >
1− 1

e (unless P = NP), even if PD is an additive function.

Proof. Immediate by Proposition 2, Lemma 4 and the fact that Reduction 1 can
be performed in polynomial time. ut

Finally let us consider a straightforward generalization of viability constraints.
So far we assumed that a species is viable iff at least one of its successors sur-
vives, but one can also imagine cases where one node needs several or even all
of its successors to survive to be viable. In the following we consider food webs
where we allow two types of nodes: (i) nodes that are viable if at least one suc-
cessors survives and (ii) nodes that are only viable if all successors survive. We
will show that in this setting no approximation algorithm is possible using a re-
duction from the NP-hard problem of deciding whether a propositional formula
in 3-CNF is satisfiable. A 3-CNF formula is a propositional formula which is the
conjunction of clauses, and each clause is the disjunction of exactly three literals,
e.g. φ = (x1 ∨ x2 ∨ x3) ∧ (x2 ∨ ¬x3 ∨ ¬x4) ∧ (x2 ∨ x3 ∨ x4).

r

t x1 x̄1 cx1
. . . x4 x̄4 cx4 c1 c2 c3

1 0 0 0 0 0 0 0 0 0

(a) Phylogenetic Tree (T,ET) with weights wi

t

c1 c2 c3

x1 x̄1 x2 x̄2 x3 x̄3 x4 x̄4

cx1 cx2 cx3 cx4

(b) Food Web (X,E)

Fig. 3. An illustration of Reduction 2, applied to the propositional formula φ = (x1 ∨
x2 ∨ x3) ∧ (x2 ∨ ¬x3 ∨ ¬x4) ∧ (x2 ∨ x3 ∨ x4).

Reduction 2. Given a propositional formula φ in 3-CNF over propositional
variables V = {x1, . . . , xn} with clauses c1, . . . , cm build the following instance
(T,ET), (X,E) and weight we (cf. Fig. 3) :

X = {c1, . . . , cm} ∪ {x, x̄, cx | x ∈ V} ∪ {t}
T = ({r} ∪X, {(r, s) | s ∈ X})

we =

{
1 e = (r, t)

0 otherwise

E = {(cx, x), (cx, x̄) | x ∈ V} ∪ {(ci, x) | x ∈ ci} ∪ {(ci, x̄) | ¬x ∈ ci}
∪ {(t, ci), (t, cx) | 1 ≤ i ≤ m,x ∈ V}

k = 2 · |V|+m+ 1

The species {c1, . . . cm} ∪ {x, x̄, cx | x ∈ V} are viable in the traditional sense
and t is viable iff all its successors survive. More formally, a set S ⊆ X is viable
if (i) for each s ∈ S either s is a sink or there is a s′ ∈ S with (s, s′) ∈ E and
(ii) if t ∈ S it holds for all s′ with (t, s′) ∈ E that s′ ∈ S.

Lemma 5. Given a propositional formula φ and the instance (TC, (X,E), k) of
OptPDVC given by Reduction 2. Then φ is satisfiable iff there exists a viable set
A of size ≤ k with PD(A) > 0.

Now assuming that there is an approximation algorithm for OptPDVC with
generalized viability constraints we would immediately get an procedure deciding
3-CNF formulas: apply Reduction 2, compute PD using the α-approximation
algorithm, and return satisfiable if PD is positive.

Theorem 5. It is NP-hard to decide whether an instance of OptPDVC with
generalized viability constraints has a viable set S with PD(S) > 0. Thus no
approximation algorithm for the problem can exist unless P = NP.

Proof. Immediate by Lemma 5, and the fact that Reduction 2 can be performed
in polynomial time.

References

1. Magnus Bordewich and Charles Semple. Nature reserve selection problem: A tight
approximation algorithm. Computational Biology and Bioinformatics, IEEE/ACM
Transactions on, 5(2):275–280, 2008.

2. Magnus Bordewich and Charles Semple. Budgeted nature reserve selection with
diversity feature loss and arbitrary split systems. Journal of mathematical biology,
64(1-2):69–85, 2012.

3. Daniel P. Faith. Conservation evaluation and phylogenetic diversity. Biological
Conservation, 61(1):1–10, 1992.

4. Beáta Faller, Charles Semple, and Dominic Welsh. Optimizing Phylogenetic Di-
versity with Ecological Constraints. Annals of Combinatorics, 15:255–266, 2011.

5. Uriel Feige. A threshold of ln n for approximating set cover. J. ACM, 45(4):634–
652, 1998.

6. M. L. Fisher, G. L. Nemhauser, and L. A. Wolsey. An analysis of approximations
for maximizing submodular set functions – II. Mathematical Programming Study,
8:73–87, 1978.

7. Pranava R. Goundan and Andreas S. Schulz. Revisiting the
greedy approach to submodular set function maximization. Work-
ing Paper, Massachusetts Institute of Technology, 2007. Available at
http://www.optimization-online.org/DB HTML/2007/08/1740.html.

8. Samir Khuller, Anna Moss, and Joseph Naor. The budgeted maximum coverage
problem. Inf. Process. Lett., 70(1):39–45, 1999.

9. Jon Lee, Vahab S. Mirrokni, Viswanath Nagarajan, and Maxim Sviridenko. Non-
monotone submodular maximization under matroid and knapsack constraints. In
Michael Mitzenmacher, editor, Proceedings of the 41st Annual ACM Symposium
on Theory of Computing, STOC 2009, Bethesda, MD, USA, May 31 - June 2,
2009, pages 323–332. ACM, 2009.

10. Vincent Moulton, Charles Semple, and Mike Steel. Optimizing phylogenetic diver-
sity under constraints. Journal of Theoretical Biology, 246(1):186 – 194, 2007.

11. G. L. Nemhauser, L. A. Wolsey, and M. L. Fisher. An analysis of approximations
for maximizing submodular set functions — I. Mathematical Programming, 14:265–
294, 1978.

12. Fabio Pardi and Nick Goldman. Species choice for comparative genomics: being
greedy works. PLoS Genetics, 1(6):e71, 2005.

13. Tsan sheng Hsu, Kuo-Hui Tsai, Da-Wei Wang, and D. T. Lee. Two variations of
the minimum steiner problem. J. Comb. Optim., 9(1):101–120, 2005.

14. Mike Steel. Phylogenetic diversity and the greedy algorithm. Systematic Biology,
54(4):527–529, 2005.

15. Jan Vondrák. Submodular functions and their appli-
cations. SODA 2013 plenary talk. Slides available at
http://theory.stanford.edu/∼jvondrak/data/SODA-plenary-talk.pdf.

16. Martin L. Weitzman. The Noah’s ark problem. Econometricay, 66:1279 – 1298,
1998.

Appendix

Lemma 5 Given a propositional formula φ and the instance (TC, (X,E), k) of
OptPDVC given by Reduction 2. Then φ is satisfiable iff there exists a viable
set A of size ≤ k with PD(A) > 0.

Proof. ⇒: Let α be a truth assignment satisfying φ, i.e. α(φ) = 1. Then it is easy
to verify that A = {x | x ∈ V, α(x) = 1} ∪ {x̄ | x ∈ V, α(x) = 0} ∪ {c1, . . . cm} ∪
{cx | x ∈ V} ∪ {t} is a viable set of size k = 2 · |V|+m+ 1 with PD(A) = 1.
⇐: If there is a viable subset A′ with PD(A′) > 0 there is also a viable

set A ⊃ A′ of size k = 2 · |V| + m + 1 and PD(A) > 0, because |X| is of size
3 · |V|+m+ 1. We show that truth-assignment α setting each s ∈ A∩V to 1 and
each s ∈ V\A to 0 satisfies φ. As PD(A) > 0 we clearly have that t ∈ A. Now as A
is viable and we have an AND constraint on t also {c1, . . . cm}∪{cx | x ∈ X} ⊆ A.
By cx ∈ A we obtain that for each x ∈ X either x ∈ A or x̄ ∈ A, but not both
of them (as there are only |V| species left). Finally as ci ∈ A we have that for
each clause there is either an x ∈ C with α(x) = 1 or a ¬x ∈ C with α(x) = 0.
Thus each clause ci is satisfied by α, i.e. α(ci) = 1, and hence also α(φ) = 1. ut

Proof of Theorem 3

With Algorithm 3 we give a precise formulation of the algorithm in Theorem 3.

Algorithm 3

1: G ← ∅
2: for each G ⊆ X, G viable, |G| ≤ min(3p+ 3d− 3, k) do
3: B ← {B ⊆ X | |B| ≤ p, 1 ≤ c(B|G) ≤ k − |G|}
4: while B 6= ∅ do
5: S ← argmax

B∈B

PD(B|G)
c(B|G)

6: G = VE(G ∪ S)
7: B ← {B ∈ B | |B| ≤ p, 1 ≤ c(B|G) ≤ k − |G|}
8: end while
9: if PD(G) > PD(G) then

10: G ← G
11: end if
12: end for

Again let O be the optimal viable set and DO a decomposition of O, given by
Lemma 1. We consider the set G∗0 = O∗1 ∪O∗2 ∪O∗3 with {O∗1 , O∗2 , O∗3} ⊆ DO such
that {O∗1 , O∗2} = argmax

{Oi,Oj}⊆DO

PD(Oi ∪Oj) and O∗3 = argmax
Oi∈DO

PD(O∗1 ∪O∗2 ∪Oi)

and the viable extension G0 = G∗0 ∪ B∗1 ∪ B∗2 ∪ B∗3 . At some point Algorithm 2
will consider G0. We consider this iteration of the for loop in line 2 and use
the same notation as in the proof of Theorem 1, the only difference being the
definition of the set G0 above.

Lemma 6. For 1 ≤ i ≤ l + 1, p ∈ {1, . . . , bk/3c}:

PD(Si|Gi−1)

ci
≥ p

(p+ d− 1)(k − |G0|)
· PD(O|Gi−1)

Proof. By the definition of Si for each Oj ∈ DO the following holds:

PD(Oj |Gi−1)

c(Oj |Gi−1)
≤ PD(Si|Gi−1)

c(Gi|Gi−1)

Next we use the monotonicity and submodularity of PD (for the first in-
equality), the inequality from above (for the second inequality). We use D′O to
denote DO \ {Oj ⊆ Gi−1}.

PD(O|Gi−1) ≤
∑

Oj∈D′O

PD(Oj |Gi−1) =
∑

Oj∈D′O

PD(Oj |Gi−1)

c(Oj |Gi−1)
c(Oj |Gi−1)

≤
∑

Oj∈D′O

PD(Si|Gi−1)

ci
c(Oj |Gi−1) =

PD(Si|Gi−1)

ci

∑
Oj∈D′O

c(Oj |Gi−1)

≤ PD(Si|Gi−1)

ci

p+ d− 1

p
· (k − |G0|)

The last step exploits that by Lemma 1
∑

Oj∈D′O
c(Oj |Gi−1) ≤ k−|G0|

p ·(p+d−1).
ut

Lemma 7. For 1 ≤ i ≤ l + 1:

PD(G∗i |G0) ≥

1−
i∏

j=1

(
1− p · cj

(d+ p− 1) · (k − |G0|)

) PD(O|G0)

Proof. The proof is by induction on i. The base case for i = 1 is by Lemma 6.
For the induction step we show that if the claim holds for all i′ < i then it must
also hold for i. For convenience we define Ci = p·ci

(d+p−1)·(k−|G0|) .

PD(G∗i |G0) = PD(Gi−1|G0) + PD(G∗i |Gi−1)

≥ PD(Gi−1|G0) + Ci · (PD(O|Gi−1))

= PD(Gi−1|G0) + Ci · (PD(O ∪Gi−1)− PD(G0)− (PD(Gi−1)− PD(G0)))

≥ (1− Ci) · PD(Gi−1|G0) + Ci · PD(O|G0)

≥ (1− Ci) · PD(G∗i−1|G0) + Ci · PD(O|G0)

≥ (1− Ci)

[
1−

i−1∏
j=1

(1− Cj)

]
PD(O|G0) + Ci · PD(O|G0)

=

[
1−

i∏
j=1

(1− Cj)

]
PD(O|G0)

ut

Proof (Theorem 3 approximation ratio). We first give a bound for Gl+1. To this

end consider
∑l+1

m=1 cm. As Gl+1 exceeds the cardinality constraint
∑l+1

m=1 cm >
k − |G0| and hence:

1−
l+1∏
j=1

(
1− p · cj

(d+ p− 1) · (k − |G0|)

)
≥ 1−

l+1∏
j=1

(
1− p · cj

(d+ p− 1) ·
∑l+1

m=1 cm

)

≥ 1−
(

1− p

(d+ p− 1) · (l + 1)

)l+1

≥ 1− 1

ep/(d+p−1)

To obtain Line 2 we used the fact the term 1−
∏l+1

j=1

(
1− c′j

C

)
with constant C

and the constraint
∑l+1

j=1 c
′
j = 1 has its maximum at c′j = 1/(l + 1).

By Lemma 7 we obtain PD(G∗l+1|G0) ≥
(
1− 1

ep/(d+p−1)

)
PD(O|G0), thus

it only remains to relate G∗l+1 to Gl. First as G0 = O∗1 ∪ O∗2 ∪ O∗3 and by the
definition of O∗1 , O

∗
2 we get PD(O∗3 |O∗1 ∪O∗2) ≤ PD(G0)/3. Next consider

PD(G∗l+1)− PD(Gl) = PD(O′l+1|Gl) ≤ PD(O′l+1|O∗1 ∪O∗2)

≤ PD(O∗3 |O∗1 ∪O∗2) ≤ PD(G0)/3

Finally, we can combine our results to obtain the claim:

PD(G) ≥ PD(Gl) ≥ PD(G∗l+1)− PD(G0)/3

= PD(G∗l+1|G0) + PD(G0)− PD(G0)/3

≥
(

1− 1

ep/(p+d−1)

)
(PD(O)− PD(G0)) + 2/3 · PD(G0)

≥
(

1− 1

ep/(p+d−1)

)
· PD(O)

The last in equality is by the fact that 1− 1
ep/(p+d−1) ≤ 2/3 for all p, d ≥ 1. ut

Proof (Theorem 3 - running time). As mentioned before computing the function
VE is basically a Steiner tree problem and can be solved in time Õ(3jn2 +nm),
where j is the number of starting nodes. In the algorithm we have to consider
O(n3p+3d−3) sets S and for each of them we start the greedy algorithm. The
number of iterations of the while loop is bounded by k and in each iteration, in
Line 6, we have to solve O(np) Steiner tree problems with at most p starting
nodes. As each iteration takes time O(3pnp+2+np+1m) we get a running time of
O
(
n3p+3d−3 · k · (3pnp+2 + np+1m)

)
= O

(
k · (3pn4p+3d−1 + n4p+3d−2m)

)
. ut

