
Change Patterns for Supporting the Evolution
of Event-Based Systems

Simon Tragatschnig, Huy Tran, and Uwe Zdun

Research Group Software Architecture
University of Vienna, Austria

{simon.tragatschnig,huy.tran,uwe.zdun}@univie.ac.at

Abstract. As event-driven architectures consist of highly decoupled components,
they are a promising solution for facilitating high flexibility, scalability, and con-
currency of distributed systems. However, the evolution of an event-based system
is often challenging due to the intrinsic loose coupling of its components. This
problem occurs, on the one hand, because of the absence of explicit information on
the dependencies among the constituting components. On the other hand, assist-
ing techniques for investigating and understanding the implications of changes are
missing, hindering the implementation and maintenance of the changes in event-
based architectures. Our approach presented in this paper aims at overcoming
these challenges by introducing primitive change actions and higher-level change
patterns, formalized using trace semantics, for representing the modification ac-
tions performed when evolving an event-based system. Our proof-of-concept im-
plementation and quantitative evaluations show that our approach is applicable for
realistic application scenarios.

1 Introduction

Event-driven architectures are a promising solution for developing distributed systems
that facilitates high flexibility, scalability, and concurrency [6, 8]. An event-based sys-
tem consists of a number of computational or data components that communicate with
each other by emitting and receiving events [8]. Each component may independently
perform a particular task, for instance, accessing a database, checking a credit card,
interacting with users, or writing to a log file. The execution of a component can be
triggered by some particular events, which are called the input events. In turn, a com-
ponent can also emit one or many output events. The transfer of events among the
components is performed through an event channel. Therefore, every component is to-
tally unaware of the others. This way, the event-based communication style can support
a high degree of flexibility. For instance, it enables replacing or altering any compo-
nent (e.g., with a bug-fixed or upgraded version) or to change the execution order of the
components (e.g., re-routing, skipping, or adding some components) whilst the system
is running. There is a rich body of work in different research areas that investigate and
exploit the prominent advantages of event-based communication styles such as middle-
ware infrastructure [4], event-based coordination [2], active database systems [10], and
service-oriented architectures [9], to name but a few.

R. Meersman et al. (Eds.): OTM 2013, LNCS 8185, pp. 283–290, 2013.
c© Springer-Verlag Berlin Heidelberg 2013



284 S. Tragatschnig, H. Tran, and U. Zdun

Unfortunately, by introducing additional degrees of flexibility, the loose coupling in
event-based systems also increases the difficulty and uncertainty in maintaining and
evolving these systems. Implementing specific changes in an event-based system is
challenging, because of the absence of explicit dependencies among constituent com-
ponents makes understanding and analyzing the overall system composition difficult.

We present in this paper a novel approach for supporting the evolution of event-based
systems. In particular, we introduce fundamental abstractions for describing primitive
modifications that can be used to alter an event-based system. These primitive actions
capture the low-level actions for modifying event-based systems, and therefore, can be
efficiently leveraged by technical experts. On top of these primitive actions, we devise a
number of high-level abstractions described as change patterns for event-based systems
along with their formal descriptions based on trace semantics. These patterns encapsu-
late essential change actions that recur in many software systems. A certain evolution
requirement can be implemented through low-level abstractions by applying an indi-
vidual or a chain of primitive actions or at higher level of abstractions by using one or
more change patterns, respectively. Our quantitative evaluations show the applicability
of our approach for realistic application scenarios.

The paper is structured as following. In Section 2, we introduce some preliminary
concepts and definitions in the context of event-based software systems and the trace
semantics used to formalize our change patterns. Section 3 describes the fundamental
concepts and abstractions of our approach for supporting the evolution of
event-based systems. Section 4 presents evaluations of its productivity, based on our
proof-of-concept implementation. The related literature is discussed in Section 5. We
summarize the main contributions and discuss the planned future work in Section 6.

2 Preliminaries

Our approach aims at introducing techniques for implementing changes in event-based
systems. Without loss of generality, we adopt the notion that a generic event-based sys-
tem comprises a number of components performing computational or data tasks and
communicating by exchanging events through event channels [8]. The inherent loosely
coupled nature of the participating components of an event-based system makes it chal-
lenging to understand and implement changes. This issue is, on the one hand, due to
the absence of explicit dependency information. On the other hand, software engineers
have to deal with the complexity and every technical details of the underlying event-
based systems because of the lack of appropriate abstractions for handling and man-
aging changes. To aid the software engineers in better analyzing and applying changes
for an event-based system, we make some basic assumptions that slightly reduce the
system’s non-determinism while still preserving a large degree of the flexibility and
adaptability: (1) each component exposes an event-based interface that specifies a set
of events that the component expects (aka the input events) and a set of events that the
component will emit (aka the output events); (2) the execution of a component is trig-
gered by its input events; and (3) after a component is executed, it will eventually emit
its output events.



Change Patterns for Supporting the Evolution of Event-Based Systems 285

These requirements aim at specifying the semantics of the typical behavior of an
event-based component and making some pragmatic assumptions that are slightly con-
straining the non-deterministic nature of event-based systems. Please note that the first
requirement does not forbid the alteration of a component’s input and output events
but only enables us to be able to observe the input/output event information at a cer-
tain point in time. The major advantage of this perspective on event-based systems is
that it supports extracting dependency information at any time without requiring access
to the (currently deployed) source code. In addition, this requirement is pragmatic in
case third-party components are used as they are often provided as black-boxes with
documented interfaces.

Please also note that these requirements can be satisfied for most event-based com-
ponents without change or with reasonable extra costs (e.g., for developing simple
wrappers in case of using third-party libraries and components). Most of the exist-
ing event-based systems already support equivalent concepts [8]. For demonstration
purpose, we leverage the Dynamic Event-driven Actor Runtime Architecture (DERA)
framework [16] that provides basic concepts for modeling and developing event-based
systems and supports the three requirements. The DERA concepts can easily be gener-
alized to the concepts found in other event-based systems.

In DERA, a computational or data handling component is represented by an event
actor (or actor for short). An event can be considered essentially as “any happening
of interest that can be observed from within a computer” [8] (or a software system).
An event might contain some attributes such as its unique identification, timing, data
references, and so on [8]. DERA uses the notion of event types to represent a class of
events that share a common set of attributes. To encapsulate a logical group of related
actors (for instance, actors that perform the functionality of a certain department or or-
ganization), DERA provides the concept of execution domains. Two execution domains
can be connected via a special kind of actor, namely, event bridge, which receives and
forwards events from one domain to the other [16]. Well-defined actor interfaces sup-
port us in analyzing and performing runtime changes in event-based systems, such as
substituting an event actor by another with a compatible port or changing the execution
order of event actors by substituting an actor with another [16].

In this paper, we leverage trace semantics [3] for describing the observed behavior
of event-based systems and the semantics of the proposed change patterns. One of the
major advantages of trace semantics, which is very suitable for our approach, is that the
underlying system can be treated as a black box and its behavior is described in terms
of the states and actions that we observe from outside.

3 Approach

The implementation of a particular change in an event-based system involves defining
the relevant actions (e.g., adding or removing components, enabling or disabling com-
ponents, altering the components’ inputs or outputs, or adjusting the execution order of
components) and carrying out these actions while taking into account the consequences
(as other components might be affected by these actions). That is, in order to enact a
change in an event-based system, the software engineers have to deal with many tech-
nical details at different levels of abstraction, which is very tedious and error-prone.



286 S. Tragatschnig, H. Tran, and U. Zdun

Weber et al. identify a set of change patterns that recur in many of existing software
systems [17]. These patterns are specific for process-aware information systems (PAIS)
where the execution of the software system is bound to a process schema. Changes
mostly can not be done during runtime [1, 13, 15]. These patterns are specific for
process-aware information systems (PAIS) where the execution of the software sys-
tem is bound to a process schema, a prescribed rigid description of the behavior flow,
and therefore, mostly can not be changed during runtime or just slightly deviated from
the initial schema [1, 13, 15]. As a result, these approaches are not readily applicable
for event-based systems where components are highly decoupled and the dependencies
between components are subject to change at any time, even during the execution of
the systems. Nevertheless, the aforementioned patterns provide a basis for describing
changes of the behavior in any information systems.

In our work, we investigate and adapt these patterns in the context of event-based
software systems that are different to PAISs because there are no prescribed execution
descriptions and the constituent elements of a system and their relationships can be ar-
bitrarily changed at any time. In order to deal with the complexity and the large degree
of flexibility of event-based systems, we aim at supporting system evolution at differ-
ent levels of abstraction. We introduce low-level primitives for encapsulating the basic
change actions, such as adding or removing an event or an actor, replacing an event or
actor, and so forth.

The definitions of these primitives are given in Table 1. They describe simple, prim-
itive low-level actions for populating and modifying event-based systems that conform
to the definitions we provided in Section 2. Based on these primitives, in the following
we present change patterns for event-based systems with which the software engineers
can easier describe and apply desired changes at a higher level of abstraction.

On top of the aforementioned primitives, we introduce change patterns for event-
based systems. These patterns extend the change patterns that are frequently occurring
and supported in most of today’s information systems according to the survey of We-
ber et al. [17]. In this section, we present the change patterns along with their formal
descriptions and abbreviated proofs for correctness. We describe these pattern based on
the widely accepted intention of the developers as observed and documented in [17]
and discuss potential variants and extensions of these pattern.

Due to space limitations, we opt to present the INSERT in detail. We also realized a
set of other patterns in the same way as INSERT. An overview of our patterns as well
as their evaluation can be found in Table 2.

Pattern INSERT. As an event-based system evolves, additional functionality is often
added. We use a simple but realistic example of an online shopping system to illustrate
the situation. In this system, to complete an order, the customer can use two addresses:
one for billing and one for shipping. Let us consider the following scenario: In the
first system deployment, the shipping address is also used for the billing address. Dur-
ing evolution of the system, a new component for adding an additional billing address
should get inserted. Normally, in event-based systems the developers would have to deal
with every technical details of implementing new components and exchanging events
among the components. The INSERT pattern aims at encapsulating and hiding such de-
tails to help the developers to focus on defining the behaviors of the new components



Change Patterns for Supporting the Evolution of Event-Based Systems 287

and specifying the desired inputs and outputs of the actors. The example visualization
of the pattern below shows the change pattern to be applied in the middle. On the left
side, the event-based system before the change is depicted, and on the right side it is
depicted after the change.

Pattern: INSERT
Description INSERT(x, Y, Z) will add an actor x such that all actors of Y will become predecessors and those

of Z will become successors of x, respectively.

y e1 ze1 y e1 ze1

xe2 e3

e2 e3

xe2 e3

Insert

between
y and z

before after

An event-based system S is represented in DERA by a 2-tuple (A, E), where A is the
set of event actors and E is the set of event types exchanged by these actors. Let •x (resp.
x•) be the set of input (resp. output) events of an actor x. The INSERT pattern (repre-
sented by the function p) that transforms an execution domain S(A, E) into S ′(A′, E ′),

i.e., p : S INSERT(x,Y,Z)−−−−−−−−−→ S ′, can be defined as follows.

A′ = p(A) = A ∪ x
E ′ = p(E) = E ∪ x• ∪ •x
Y ′ = p(Y ) : ∀y ∈ Y : y′• = y• ∪ •x,where y′ = p(y)
Z′ = p(Z) : ∀z ∈ Y : •z′ = •z ∪ x•,where z′ = p(z)

(1)

The developers may want to use a variant of the INSERT pattern in which the tran-
sitions from the actors of Y to those of Z will be strictly redirected through x, i.e.,
y′ → x′ → z′. A formal description of the variant can be adapted from Equation (1) as:

•y′ = •y \ {e|e ∈ x• ∩ •y ∧ e �∈ a•,∀a ∈ A},where y′ = p(y)
y′• = y• \ {e|e ∈ y• ∩ •z ∧ e �∈ a•,∀a ∈ A},where y′ = p(y)
•x′ = •x ∪ y′•,where x′ = p(x), y′ = p(y)
•z′ = x• ∪ •z′ \ {e|e ∈ y• ∩ •z ∧ e �∈ a•,∀a ∈ A}where z′ = p(z)

(2)

The specification of •y′ in Equation (2) is to adjust any transition x → y that exists
before changing. We alter the output of y′, i.e., y′•, and the inputs of x′ and z′, i.e., •x′

and •z′, respectively, so direct transitions y → z will be transformed to y′ → x′ → z′.
We devise the post-conditions for the basic case of the INSERT pattern according to

the Equation (1) and assert that the changed system must satisfy these conditions. The
conditions for the extended cases and their proofs can be achieved in the same manner.

Lemma 1. The new state S ′ of the execution domain S achieved by applying the INSERT

pattern, i.e., S INSERT(x,Y,Z)−−−−−−−−−→ S ′, satisfies:

∀t ∈ TS′ ,∀y ∈ Y : y ∈ t ⇒ y ≺ x (3)

∀t ∈ TS′ ,∀z ∈ Z : x ∈ t ⇒ x ≺ z (4)

We sketch a simple proof for Equation (3), which can be applied for Equation (4).

Proof. Let S ′ be the result of the application of the INSERT(x, Y, Z) pattern on S.
When an actor y ∈ Y finishes its execution, y will emit all of its output events according
to the prerequisite R3 including the events that x is awaiting with respect to Equation 1.
As a result, x will be triggered next due to R2. Thus, y ≺ x. ��



288 S. Tragatschnig, H. Tran, and U. Zdun

4 Evaluation

In the scope of our work, a proof-of-concept implementation of the primitive actions and
change patterns has been developed and incorporated into the DERA framework [16]. In
order to illustrate the increase of productivity using our approach, we estimate the neces-
sary effort for manually implementing a change on an event-based system and compare
these results to our change patterns. To quantify the required efforts for a change, we
count the number of statements used for implementing a change. This is analogous to
Line of Code metrics [5].

In Table 1, the number of statements encapsulated in the primitive change actions are
presented. The first column contains a letter representing the corresponding primitive
action shown in the second column. The third column, namely, Es, depicts the number
of statements needed to express the primitives. We note that only the major statements
for the implementation are counted while the declarations (e.g. of packages, class body,
methods or variables), comments, logging or failure handling are ignored. Also, the
number of statements reflect the most simple case, handling only one predecessor and
successor.

Table 1. Change Primitives for DERA-based systems

Change Primitives Description Es

INS add(Actor a) Add the actor a to the execution domain 9
DEL remove(Actor a) Remove the actor a from the execution domain 8
TAR setTarget(Actor a, ExecutionDomain d) Set the execution domain d for an actor a 3
PRT set(Actor a, Port p) Set a new port p for the actor a 8
DOM setDomain(Actor a, ExecutionDomain d) Set the execution domain d for actor a 2
ADD add(Port p, Event[] events) Add a set of events to port p 14
REM remove(Port p, Event[] events) Remove a set of events from port p 12

REPALL replace(Port p, Event[] events)
Replace all events of port p with another set of
events

7

REP replace(Port p, Event e1, Event e2) Replace event e1 of port p with event e2 11

Table 2. Change Patterns and Effort Reduction

Change Pattern Description Primitive Ep Es ER (%)
INSERT will add an actor x such that all actors of Y will become

predecessors and those of Z will become successors of x,
respectively

INS, 2*ADD 3 37 8.11

DELETE will remove the actor x from the current execution domain S DEL 1 8 12.50
MOVE (x, y, z) will move the actor x in a way that the actor y will become

predecessor and the actor z will become successor of x, re-
spectively

2*ADD,
REPALL

3 35 8.57

REPLACE(x, y) will substitute the actor x by the actor y INS, DEL,
2*ADD

4 45 8.89

SWAP(x, y) Given an actor x that precedes an actor y, this pattern will
switch the execution order between x and y

4*REPALL 4 28 14.29

PARALLELIZE(x, y) enables the concurrent execution of two actors x and y that
are performed sequentially before

4*REPALL 4 28 14.29

MIGRATE(x, S1,S2) will migrate an actor x from an execution domain S1 to an-
other execution domain S2

INS, DEL,
DOM, 4*ADD

7 75 9.33

Average 10.89

The result of the effort comparison between the number of statements for change
primitives and the change patterns are shown in Table 2. The first column shows
the name of the change pattern. The second column lists the used change primitives.
The third column shows the number of change primitives Ep used by a change pat-
tern. The third column shows the number of Java statements Es used to implement



Change Patterns for Supporting the Evolution of Event-Based Systems 289

these change primitives. The last column shows the effort ratio ER between the change
primitives and the sum of Java statements, where ER = Ep/Es. The ratio shows that
describing changes using our change patterns is about 11 percent of the effort compared
to the code needed to implement each change manually. Using the change patterns, there
are roughly 9 times (i.e., 1/11%) less statements needed to be written in comparison to
code each change individually.

5 Related Work

Weber et al. [14, 17] identified a large set of change patterns that are frequently occur-
ring in and supported by the most of today’s process-aware information systems, where
a process is described by a number of activities and a control flow is defining their ex-
ecution sequence. Since the process structure is defined at design time, changing it at
runtime is very difficult. Several approaches try to relax the rigid structures of process
descriptions to enable a certain degree of flexibility of process execution [7, 11, 12].
Event-based systems, like DERA, provide a high flexibility for runtime changes, since
only virtual relationships among actors exist. The change patterns observed by We-
ber et al. are designed to target PAIS in which the execution order of the elements are
prescribed at design time and not changed or slightly deviated from the prescribed de-
scriptions at runtime. Therefore, they are readily applicable for event-based systems
where components are highly decoupled from each other.

6 Conclusion

Supporting the evolution of event-based systems is challenging because software en-
gineers have to deal not only with the complexity but also a large degree of flexibility
of these systems. We address this challenge in this paper by introducing novel con-
cepts and techniques for aiding the software engineers in better analyzing and imple-
menting particular changes on an event-based system. At the low level of abstraction,
our approach provides primitive change actions that encapsulates several programming
language-level and/or event exchange-level statements. Although these primitives can
be used by technical experts who are able to handle technical details, it is still tedious
and error prone to use them directly. We propose, at a higher level of abstraction, change
patterns for event-based systems that are frequently supported and used in several infor-
mation systems nowadays along with their formal descriptions. If the change patterns
can be used, the effort required for a change can be significantly reduced as shown
in our evaluation. A limitation of our approach is that the change patterns only per-
form all required changes, if the change requirements do not deviate from the specified
patterns. In such cases, the changes must be manually reviewed and maybe additional
changes using the primitive actions are needed. We plan to further automate changes in
our future work, e.g. by supporting parameterizable variants of the change patterns and
suggesting useful additional changes through tool support.

Acknowledgement. This work was partially supported by the European Union FP7
project INDENICA, Grant No. 257483 and the WWTF project CONTAINER, Grant
No. ICT12-001.



290 S. Tragatschnig, H. Tran, and U. Zdun

References

[1] van der Aalst, W.M.P., Pesic, M., Schonenberg, H.: Declarative workflows: Balancing be-
tween flexibility and support. Computer Science - Research and Development 23(2), 99–
113 (2009)

[2] Arbab, F., Talcott, C. (eds.): COORDINATION 2002. LNCS, vol. 2315. Springer, Heidel-
berg (2002)

[3] Broy, M., Olderog, E.R.: Trace-Oriented Models of Concurrency. In: Bergstra, J., Ponse, A.,
Scott, S. (eds.) Handbook of Process Algebra, pp. 101–195. Elsevier Science B.V. (2001)

[4] Carzaniga, A., Rosenblum, D.S., Wolf, A.L.: Design and evaluation of a wide-area event
notification service. ACM Trans. Comput. Syst. 19(3), 332–383 (2001)

[5] Fenton, N.E., Pfleeger, S.L.: Software Metrics: A Rigorous and Practical Approach, 2nd
edn. PWS (1998)

[6] Fiege, L., Mühl, G., Gärtner, F.C.: Modular event-based systems. The Knowledge Engineer-
ing Review 17(4), 359–388 (2002)

[7] Hallerbach, A., Bauer, T., Reichert, M.: Capturing variability in business process models:
the provop approach. J. Softw. Maint. Evol. 22, 519–546 (2010)

[8] Mühl, G., Fiege, L., Pietzuch, P.: Distributed Event-Based Systems. Springer (2006)
[9] Overbeek, S., Janssen, M., Bommel, P.: Designing, formalizing, and evaluating a flexible

architecture for integrated service delivery: combining event-driven and service-oriented
architectures. Service Oriented Computing and Applications 6, 167–188 (2012)

[10] Paton, N.W., Díaz, O.: Active database systems. ACM Comput. Surv. 31(1), 63–103 (1999)
[11] Redding, G., Dumas, M., ter Hofstede, A., Iordachescu, A.: Modelling flexible processes

with business objects. In: IEEE Conf. on Commerce and Enterprise Computing (CEC), pp.
41–48 (2009)

[12] Reichert, M., Dadam, P.: Enabling adaptive process-aware information systems with
ADEPT2. In: Handbook of Research on Business Process Modeling, pp. 173–203. Infor-
mation Science Reference (2009)

[13] Reichert, M., Weber, B.: Enabling Flexibility in Process-Aware Information Systems - Chal-
lenges, Methods, Technologies. Springer (2012)

[14] Rinderle-Ma, S., Reichert, M., Weber, B.: On the formal semantics of change patterns in
process-aware information systems. In: Li, Q., Spaccapietra, S., Yu, E., Olivé, A. (eds.) ER
2008. LNCS, vol. 5231, pp. 279–293. Springer, Heidelberg (2008)

[15] Schonenberg, H., Mans, R., Russell, N.: Process flexibility: A survey of contemporary
approaches. In: Dietz, L.G., Albani, A., Barjis, J. (eds.) CIAO! 2008 and EOMAS 2008.
LNBIP, vol. 10, pp. 16–30. Springer, Heidelberg (2008)

[16] Tran, H., Zdun, U.: Event-driven actors for supporting flexibility and scalability in service-
based integration architecture. In: Meersman, R., et al. (eds.) OTM 2012, Part I. LNCS,
vol. 7565, pp. 164–181. Springer, Heidelberg (2012)

[17] Weber, B., Rinderle, S., Reichert, M.: Change patterns and change support features in
process-aware information systems. In: Krogstie, J., Opdahl, A.L., Sindre, G. (eds.) CAiSE
2007. LNCS, vol. 4495, pp. 574–588. Springer, Heidelberg (2007)


	Change Patterns for Supporting the Evolution of Event-Based Systems
	Introduction
	Preliminaries
	Approach
	Evaluation
	Related Work
	Conclusion


