
Dynamic Approximate All-Pairs Shortest Paths: Breaking the
O(mn) Barrier and Derandomization∗

Monika Henzinger† Sebastian Krinninger† Danupon Nanongkai‡

Abstract

We study dynamic (1 + ε)-approximation algorithms for the all-pairs shortest paths
problem in unweighted undirected n-node m-edge graphs under edge deletions. The
fastest algorithm for this problem is a randomized algorithm with a total update time
of Õ(mn/ε) and constant query time by Roditty and Zwick [FOCS 2004]. The fastest
deterministic algorithm is from a 1981 paper by Even and Shiloach [JACM 1981]; it has
a total update time of O(mn2) and constant query time. We improve these results as
follows:

(1) We present an algorithm with a total update time of Õ(n5/2/ε) and constant query
time that has an additive error of 2 in addition to the 1 + ε multiplicative error.
This beats the previous Õ(mn/ε) time when m = Ω(n3/2). Note that the additive
error is unavoidable since, even in the static case, an O(n3−δ)-time (a so-called
truly subcubic) combinatorial algorithm with 1 + ε multiplicative error cannot
have an additive error less than 2− ε, unless we make a major breakthrough for
Boolean matrix multiplication [Dor et al. FOCS 1996] and many other long-standing
problems [Vassilevska Williams and Williams FOCS 2010].
The algorithm can also be turned into a (2 + ε)-approximation algorithm (without
an additive error) with the same time guarantees, improving the recent (3 + ε)-
approximation algorithm with Õ(n5/2+O(

√
log (1/ε)/ logn)) running time of Bernstein

and Roditty [SODA 2011] in terms of both approximation and time guarantees.
(2) We present a deterministic algorithm with a total update time of Õ(mn/ε) and a

query time of O(log logn). The algorithm has a multiplicative error of 1 + ε and
gives the first improved deterministic algorithm since 1981. It also answers an open

∗The definite version of this article is published as: Monika Henzinger, Sebastian Krinninger, and
Danupon Nanongkai. “Dynamic Approximate All-Pairs Shortest Paths: Breaking the O(mn) Barrier and
Derandomization”. In: SIAM Journal on Computing (forthcoming). A preliminary version was presented at
the 2013 IEEE 54th Annual Symposium on Foundations of Computer Science (FOCS 2013).
†University of Vienna, Faculty of Computer Science, Austria. Supported by the Austrian Science Fund

(FWF): P23499-N23, the Vienna Science and Technology Fund (WWTF) grant ICT10-002, the University of
Vienna (IK I049-N), and a Google Faculty Research Award. The research leading to these results has received
funding from the European Research Council under the European Union’s Seventh Framework Programme
(FP/2007-2013) / ERC Grant Agreement no. 340506 and from the European Union’s Seventh Framework
Programme (FP7/2007-2013) under grant agreement no. 317532.
‡University of Vienna, Faculty of Computer Science, Austria. Work partially done while at ICERM, Brown

University, USA, and Nanyang Technological University, Singapore 637371, and while supported in part by
the following research grants: Nanyang Technological University grant M58110000, Singapore Ministry of
Education (MOE) Academic Research Fund (AcRF) Tier 2 grant MOE2010-T2-2-082, and Singapore MOE
AcRF Tier 1 grant MOE2012-T1-001-094.

1

http://dx.doi.org/10.1137/140957299
http://dx.doi.org/10.1137/140957299

question raised by Bernstein [STOC 2013]. The deterministic algorithm can be
turned into a deterministic fully dynamic (1 + ε)-approximation with an amortized
update time of Õ(mn/(εt)) and a query time of Õ(t) for every t ≤

√
n.

In order to achieve our results, we introduce two new techniques: (1) A monotone
Even–Shiloach tree algorithm which maintains a bounded-distance shortest-paths tree on
a certain type of emulator called locally persevering emulator. (2) A derandomization
technique based on moving Even–Shiloach trees as a way to derandomize the standard
random set argument. These techniques might be of independent interest.

2

Contents

1 Introduction 4
1.1 The Problem . 4
1.2 Our Results . 5
1.3 Techniques . 7

1.3.1 Monotone Even–Shiloach Tree for Improved Randomized Algorithms . 7
1.3.2 Moving Even–Shiloach Tree for Improved Deterministic Algorithms . . 11

1.4 Related Work . 13

2 Background 16
2.1 Basic Definitions . 16
2.2 Decremental Shortest-Path Tree Data Structure (Even–Shiloach Tree) 18
2.3 The Framework of Roditty and Zwick . 22

3 Õ(n5/2)-Total Time (1 + ε, 2)- and (2 + ε, 0)-Approximation Algorithms 25
3.1 (1, 2, d2/εe)-Locally Persevering Emulator of Size Õ(n3/2) 26
3.2 Maintaining Distances Using Monotone Even–Shiloach Tree 29
3.3 From Approximate SSSP to Approximate APSP 39
3.4 Putting Everything Together: Õ(n5/2)-Total Time Algorithm for (1 + ε, 2)-

and (2 + ε, 0)-Approximate APSP . 44

4 Deterministic Decremental (1+ε)-Approximate APSP with Total Update
Time O(mn logn) 46
4.1 A Deterministic Moving Centers Data Structure (MovingCenter) 47
4.2 A Deterministic Center Cover Data Structure (CenterCover) 51

4.2.1 High-Level Ideas . 51
4.2.2 Algorithm Description . 54
4.2.3 Analysis . 56

4.3 Deterministic Fully Dynamic Algorithm . 63

5 Conclusion 64

References 65

A Proof of Fact 1.1 69

3

1 Introduction

Dynamic graph algorithms is one of the classic areas in theoretical computer science with
a countless number of applications. It concerns maintaining properties of dynamically
changing graphs. The objective of a dynamic graph algorithm is to efficiently process an
online sequence of update operations, such as edge insertions and deletions, and query
operations on a certain graph property. It has to quickly maintain the graph property
despite an adversarial order of edge deletions and insertions. Dynamic graph problems are
usually classified according to the types of updates allowed: decremental problems allow
only deletions, incremental problems allow only insertions, and fully dynamic problems allow
both.

1.1 The Problem

We consider the decremental all-pairs shortest paths (APSP) problem where we wish to
maintain the distances in an undirected unweighted graph under a sequence of the following
delete and distance query operations:

• Delete(u, v): delete edge (u, v) from the graph, and

• Distance(x, y): return the distance between node x and node y in the current graph
G, denoted by dG(x, y).

We use the term single-source shortest paths (SSSP) to refer to the special case where the
distance query can be done only when x = s for a prespecified source node s. The efficiency
is judged by two parameters: query time, denoting the time needed to answer each distance
query, and total update time, denoting the time needed to process all edge deletions. The
running time will be in terms of n, the number of nodes in the graph, and m, the number
of edges before any deletion. We use Õ-notation to hide an O(poly logn) term. When it is
clear from the context, we use “time” instead of “total update time,” and, unless stated
otherwise, the query time is O(1). One of the main focuses of this problem in the literature,
which is also the goal in this paper, is to optimize the total update time while keeping
the query time and approximation guarantees small. We say that an algorithm provides
an (α, β)-approximation if the distance query on nodes x and y on the current graph G
returns an estimate δ(x, y) such that dG(x, y) ≤ δ(x, y) ≤ αdG(x, y) + β. We call α and β
multiplicative and additive errors, respectively. We are particularly interested in the case
where α = 1 + ε, for an arbitrarily small constant ε > 0, β is a small constant, and the query
time is constant or near-constant.

Previous Results. Prior to our work, the best total update time for deterministic decre-
mental APSP algorithms was Õ(mn2) by one of the earliest papers in the area from 1981
by Even and Shiloach [ES81]. The fastest exact randomized algorithms are the Õ(n3)-time
algorithms by Demetrescu and Italiano [DI06] and Baswana, Hariharan, and Sen [BHS07].
The fastest approximation algorithm is the Õ(mn)-time (1 + ε, 0)-approximation algorithm
by Roditty and Zwick [RZ12]. If we insist on an O(n3−δ) running time, for some constant
δ > 0, Bernstein and Roditty [BR11] obtain an Õ(n2+1/k+O(1/

√
logn))-time (2k − 1 + ε, 0)-

approximation algorithm, for any integer k ≥ 2, which gives, e.g., a (3 + ε, 0)-approximation

4

Reference Total Running Time Approximation Deterministic?
[ES81] Õ(mn2) Exact Yes

This paper Õ(mn/ε) (1 + ε, 0) Yes
[DI06, BHS07] Õ(n3) Exact No

[RZ12] Õ(mn/ε) (1 + ε, 0) No
This paper Õ(n5/2/ε) (1 + ε, 2) No

[BR11] Õ(n5/2+
√

log(6/ε)/
√

logn) (3 + ε, 0) No
This paper Õ(n5/2/ε) (2 + ε, 0) No

Table 1: Comparisons between our and previous algorithms that are closely related. For
details of these and other results see Section 1.4. All algorithms, except our deterministic
algorithm, have O(1) query time. Our deterministic algorithm has O(log logn) query time.

guarantee in Õ(n5/2+O(1/
√

logn)) time. All these algorithms have an O(1) worst-case query
time. See Section 1.4 for more detail and other related results.

1.2 Our Results

We present improved randomized and deterministic algorithms. Our deterministic algo-
rithm provides a (1 + ε, 0)-approximation and runs in Õ(mn/ε) total update time. Our
randomized algorithm runs in Õ(n5/2/ε) time and can guarantee both (1+ε, 2)- and (2+ε, 0)-
approximations. Table 1 compares our results with previous results. In short, we make the
following improvements over previous algorithms (further discussions follow).

• The total running time of deterministic algorithms is improved from Even and Shiloach’s
Õ(mn2) to Õ(mn) (at the cost of (1+ ε, 0)-approximation and O(log logn) query time).
This is the first improvement since 1981.

• Form = ω(n3/2), the total running time is improved from Roditty and Zwick’s Õ(mn/ε)
to Õ(n5/2/ε), at the cost of an additive error of 2, which appears only when the distance
is O(1/ε) (since otherwise it could be treated as a multiplicative error of O(ε)) and is
unavoidable (as discussed below).

• Our (2+ε, 0)-approximation algorithm improves the algorithm of Bernstein and Roditty
in terms of both total update time and approximation guarantee. The multiplicative
error of 2 + ε is essentially the best we can hope for, if we do not want any additive
error.

To obtain these algorithms, we present two novel techniques, called moving Even–Shiloach
tree and monotone Even–Shiloach tree, based on a classic technique of Even and Shiloach
[ES81]. These techniques are reviewed in Section 1.3.

Improved Deterministic Algorithm. In 1981, Even and Shiloach [ES81] presented a
deterministic decremental SSSP algorithm for undirected, unweighted graphs with a total
update time of O(mn) over all deletions. By running this algorithm from n different nodes,
we get an O(mn2)-time decremental algorithm for APSP. No progress on deterministic
decremental APSP has been made since then. Our algorithm achieves the first improvement

5

over this algorithm, at the cost of a (1 + ε, 0)-approximation guarantee and O(log logn)
query time. (Note that our algorithm is also faster than the current fastest randomized
algorithm [RZ12] by a logn factor.) Our deterministic algorithm also answers a question
recently raised by Bernstein [Ber13] which asks for a deterministic algorithm with a total
update time of Õ(mn/ε). As pointed out in [Ber13] and several other places, this question is
important due to the fact that deterministic algorithms can deal with an adaptive offline
adversary (the strongest adversary model in online computation [BEY98, BDBK+94]), while
the randomized algorithms developed so far assume an oblivious adversary (the weakest
adversary model) where the order of edge deletions must be fixed before an algorithm makes
random choices. Our deterministic algorithm answers exactly this question. Using known
reductions, we also obtain a deterministic fully dynamic (1 + ε)-approximation with an
amortized running time of Õ(mn/(εt)) per update and a query time of Õ(t) for every t ≤ n.

Improved Randomized Algorithm. Our aim is to improve the Õ(mn) running time
of Roditty and Zwick [RZ12] to so-called truly subcubic time, i.e., O(n3−δ) time for some
constant δ > 0, a running time that is highly sought after in many problems (e.g., [VWW10,
VWY09, RT13]). Note, however, that this improvement has to come at the cost of worse
approximation.

Fact 1.1 ([DHZ00, VWW10]). For any α ≥ 1 and β ≥ 0 such that 2α + β < 4, there
is no combinatorial (α, β)-approximation algorithm, not even a static one, for APSP on
unweighted undirected graphs that is truly subcubic, unless we make a major breakthrough on
many long-standing open problems, such as a combinatorial Boolean matrix multiplication
and triangle detection.

This fact is due to the reductions of Dor, Halperin, and Zwick [DHZ00] and Vassilevska
Williams and Williams [VWW10] (see Appendix A for a proof sketch). (Roditty and Zwick
[RZ11] also showed a similar fact for decremental exact SSSP. For the weighted case, lower
bounds can be obtained even for noncombinatorial algorithms by assuming the hardness
of APSP computation [RZ11, AVW14].) Very recently (after the preliminary version of
this paper appeared), Henzinger et al. [HKN+15] showed that Fact 1.1 holds even for
noncombinatorial algorithms assuming that there is no truly subcubic-time algorithm for a
problem called online Boolean matrix-vector multiplication. Henzinger et al. [HKN+15] argue
that refuting this assumption will imply the same breakthrough as mentioned in Fact 1.1
if the term “combinatorial algorithm” (which is not a well-defined term) is interpreted in
a certain way (in particular if it is interpreted as a “Strassen-like algorithm” as defined
in [BDH+12], which captures all known fast matrix multiplication algorithms). Thus, the
best approximation guarantee we can expect from truly subcubic algorithms is, e.g., a
multiplicative or additive error of at least 2. Our algorithms achieve essentially these best
approximation guarantees: in Õ(n5/2/ε) time, we get a (1 + ε, 2)-approximation, and, if we
do not want any additive error, we can get a (2 + ε, 0)-approximation (see Theorem 3.22 and
Corollary 3.23 for the precise statements of these results).1 We note that, prior to our work,
Bernstein and Roditty’s algorithm [BR11] could achieve, e.g., a (3 + ε, 0)-approximation
guarantee in Õ(n5/2+O(

√
1/ logn)) time. This result is improved by our (2+ε, 0)-approximation

1We note that there is still some room to eliminate the ε-term, i.e., to get a (1, 2)-approximation algorithm.
But anything beyond this is unlikely to be possible.

6

algorithm in terms of both time and approximation guarantees and is far worse than our
(1 + ε, 2)-approximation guarantee, especially when the distance is large. Also note that the
running time of our (1 + ε, 2)-approximation algorithm improves the Õ(mn) one of Roditty
and Zwick [RZ12] when m = ω(n3/2), except that our algorithm gives an additive error of 2
which is unavoidable and appears only when the distance is O(1/ε) (since otherwise it could
be counted as a multiplicative error of O(ε)).

1.3 Techniques

Our results build on two previous algorithms. The first algorithm is the classic SSSP
algorithm of Even and Shiloach [ES81] (with the more general analysis of King [Kin99]),
which we will refer to as the Even–Shiloach tree. The second algorithm is the (1 + ε, 0)-
approximation APSP algorithm of Roditty and Zwick [RZ12]. We actually view the algorithm
of Roditty and Zwick as a framework which runs several Even–Shiloach trees and maintains
some properties while edges are deleted. We would like to alter the Roditty–Zwick framework
but doing so usually makes it hard to bound the cost of maintaining Even–Shiloach trees (as
we will discuss later). Our main technical contribution is the development of new variations
of the Even–Shiloach tree, called moving Even–Shiloach tree and monotone Even–Shiloach
tree, which are suitable for our modified Roditty–Zwick frameworks. Since there are many
other algorithms that run Even–Shiloach trees as subroutines, it might be possible that other
algorithms will benefit from our new Even–Shiloach trees as well.

Review of Even–Shiloach Tree. The Even–Shiloach tree has two parameters: a root
(or source) node s and the range (or depth) R. It maintains a shortest paths tree rooted at
s and the distances between s and all other nodes in the dynamic graph, up to distance R
(if the distance is more than R, it will be set to ∞). It has a query time of O(1) and a total
update time of O(mR) over all deletions. The total update time crucially relies on the fact
that the distance between s and any node v changes monotonically: it will increase at most
R times before it exceeds R (i.e., from 1 to R). This “monotonicity” property heavily relies
on the “decrementality” of the model, i.e., the distance between two nodes never decreases
when we delete edges, and is easily destroyed when we try to use the Even–Shiloach tree in a
more general setting (e.g., when we want to allow edge insertions or alter the Roditty–Zwick
framework). Most of our effort in constructing both randomized and deterministic algorithms
will be spent on recovering from the destroyed decrementality.

1.3.1 Monotone Even–Shiloach Tree for Improved Randomized Algorithms

The high-level idea of our randomized algorithm is to run an existing decremental algorithm
of Roditty and Zwick [RZ12] on a sparse weighted graph that approximates the distances
in the original graph, usually referred to as an emulator (see Section 3.1 for more detail).
This approach is commonly used in the static setting (e.g., [ACI+99, DHZ00, Elk05, EP04,
ABC+98, Coh98, CZ01, TZ05, Zwi02]), and it was recently used for the first time in the
decremental setting by Bernstein and Roditty [BR11]. As pointed out by Bernstein and
Roditty, while it is a simple task to run an existing APSP algorithm on an emulator in
the static setting, doing so in the decremental setting is not easy since it will destroy the
“decrementality” of the setting: when an edge in the original graph is deleted, we might

7

have to insert an edge into the emulator. Thus, we cannot run decremental algorithms
on an arbitrary emulator, because from the perspective of this emulator, we are not in a
decremental setting.

Bernstein and Roditty manage to get around this problem by constructing an emulator
with a special property.2 Roughly speaking, they show that their emulator guarantees that
the distance between any two nodes changes Õ(n) times. Based on this simple property,
they show that the (2k − 1, 0)-approximation algorithm of Roditty and Zwick [RZ12] can be
run on their emulator with a small running time. However, they cannot run the (1 + ε, 0)-
approximation algorithm of Roditty and Zwick on their emulator. The main reason is that
this algorithm relies on a more general property of a graph under deletions: for any R
between 1 and n, the distance between any two nodes changes at most R times before it
exceeds R (i.e., it changes from 1 to R). They suggested finding an emulator with this more
general property as a future research direction.

In our algorithm, we manage to run the (1+ε, 0)-approximation algorithm of Roditty and
Zwick on our emulator, but in a conceptually different way from Bernstein and Roditty. In
particular, we do not construct the emulator asked for by Bernstein and Roditty; rather, we
show that there is a type of emulator such that, while edge insertions can occur often, their
effect can be ignored. We then modify the algorithm of Roditty and Zwick to incorporate
this ignoring of edge insertions. More precisely, the algorithm of Roditty and Zwick relies on
the classic Even–Shiloach tree. We develop a simple variant of this classic algorithm called
the monotone Even–Shiloach tree that can handle restricted kinds of insertions and use it to
replace the classic Even–Shiloach tree in the algorithm of Roditty and Zwick.

Our modification to the Even–Shiloach tree is as follows. Recall that the Even–Shiloach
tree can maintain the distances between a specific node s and all other nodes, up to R, in
O(mR) total update time under edge deletions. This is because, for any node v, it has to do
work O(deg(v)) (the degree of v) only when the distance between s and v changes, which
will happen at most R times (from 1 to R) in the decremental model. Thus, the total work
on each node v will be O(R deg(v)) which sums to O(mR) in total. This algorithm does
not perform well when there are edge insertions: one edge insertion could cause a decrease
in the distance between s and v by as much as Ω(R), causing an additional Ω(R) distance
changes. The idea of our monotone Even–Shiloach tree is extremely simple: ignore distance
decreases! It is easy to show that the total update time of our algorithm remains the same
O(mR) as the classic one. The hard part is proving that it gives a good approximation
when run on an emulator. This is because it does not maintain the exact distances on an
emulator anymore. So, even when the emulator gives a good approximate distance on the
original graph, our monotone Even–Shiloach tree might not. Our monotone Even–Shiloach
tree does not give any guarantee for the distances in the emulator, but we can show that it
still approximates the distances in the original graph. Of course, this will not work on any
emulator; but we can show that it works on a specific type of emulator that we call locally
persevering emulators.3 Roughly speaking, a locally persevering emulator is an emulator

2In fact, their emulator is basically identical to one used earlier by Bernstein [Ber09], which is in turn
a modification of a spanner developed by Thorup and Zwick [TZ05, TZ06]. However, the properties they
proved are entirely new.

3We remark that there are other emulators that can be maintained in the decremental setting; see, e.g.,
[TZ05, TZ06, RZ12, Ber09, BR11, AFI06, Elk11, BKS12]. We are the first to introduce the notion of locally
persevering emulators and show that there is an emulator that has this property.

8

where, for any “nearby”4 nodes u and v in the original graph, either

(1) there is a shortest path from u to v in the original graph that also appears in the
emulator, or

(2) there is a path in the emulator that approximates the distance in the original graph
and behaves in a persevering way, in the sense that all edges of this path are in the
emulator since before the first deletion and their weights never decrease. We call the
latter path a persevering path.

Once we have the right definition of a locally persevering emulator, proving that our monotone
Even–Shiloach tree gives a good distance estimate is conceptually simple (we sketch the
proof idea below). Our last step is to show that such an emulator exists and can be efficiently
maintained under edge deletions. We show (roughly) that we can maintain an emulator,
which (1 + ε, 2)-approximates the distances and has Õ(n3/2) edges, in Õ(n5/2/ε) total update
time under edge deletions. By running the Õ(mn)-time algorithm of Roditty and Zwick on
this emulator, replacing the classic Even–Shiloach tree by our monotone version, we have
the desired Õ(n5/2/ε)-time (1 + ε, 2)-approximation algorithm. To turn this algorithm into a
(2 + ε, 0)-approximation, we observe that we can check if two nodes are of distance 1 easily;
thus, we only have to use our (1 + ε, 2)-approximation algorithm to answer a distance query
when the distance between two nodes is at least 2. In this case, the additive error of 2 can
be treated as a multiplicative factor.

Proving the Approximation Guarantee of the Monotone Even–Shiloach Tree.
To illustrate why our monotone Even–Shiloach tree gives a good approximation when run on
a locally persevering emulator, we sketch a result that is weaker and simpler than our main
results; we show how to (3, 0)-approximate distances from a particular node s to other nodes.
This fact easily leads to a (3 + ε, 0)-approximation Õ(n5/2/ε)-time algorithm, which gives
the same approximation guarantee as the algorithm of Bernstein and Roditty [BR11] and is
slightly faster and reasonably simpler. To achieve this, we use the following emulator which
is a simple modification of the emulator of Dor, Halperin, and Zwick [DHZ00]: Randomly
select Θ̃(

√
n) nodes. At any time, the emulator consists of all edges incident to nodes of

degree at most
√
n and edges from each random node c to every node v of distance at most

2 from c with weight equal to the distance between v and c. When the distance exceeds 2,
the edge is deleted from the emulator. It can be shown that this emulator can be maintained
in Õ(mn1/2) = Õ(n5/2) time under edge deletions. Moreover, it is a (3, 0)-emulator with
high probability, since for every edge (u, v) either

(i) (u, v) is in the emulator, or

(ii) there is a path 〈u, c, v〉 of length at most three, where c is a random node.

Observe further that if (ii) happens, then the path 〈u, c, v〉 is persevering (as in Item (2)
above):

4Note that the word “nearby” will be parameterized by a parameter τ in the formal definition. So, formally,
we must use the term (α, β, τ)-locally persevering emulator where α and β are multiplicative and additive
approximation factors, respectively. See Section 3.1 for detail.

9

(ii’) 〈u, c, v〉 must be in this emulator since before the first deletion, and the weights of the
edges (u, c) and (c, v) have never decreased.

It follows that this emulator is locally persevering.5 Now we show that when we run the
monotone Even–Shiloach tree on the above emulator, it gives (3, 0)-approximate distances
between s and all other nodes. Recall that the monotone Even–Shiloach tree maintains a
distance estimate, say `(v), between s and every node v in the emulator.6 For every node v,
the value of `(v) is regularly updated, except that when the degree of a node drops to

√
n

and the resulting insertion of an edge, say (u, v), decreases the distance between v and s in
the emulator; in particular, `(v) > `(u) + w(u, v), where w(u, v) is the weight of edge (u, v).
A usual way to modify the Even–Shiloach tree for dealing with such an insertion [BR11]
is to decrease the value of `(v) to `(u) + w(u, v). Our monotone Even–Shiloach tree will
not do this and keeps `(v) unchanged. In this case, we say that the node v and the edge
(u, v) become stretched. In general, an edge (u, v) is stretched if `(v) > `(u) + w(u, v) or
`(u) > `(v) + w(u, v), and a node is stretched if it is incident to a stretched edge. Two
observations that we will use are

(O1) as long as a node v is stretched, it will not change `(v), and

(O2) a stretched edge must be an inserted edge.

We will argue that `(v) of every node v is at most three times its true distance to s in the
original graph. To prove this for a stretched node v, we simply use the fact that this is true
before v becomes stretched (by induction), and `(v) has not changed since then (by (O1)).
If v is not stretched, we consider a shortest path 〈v, u1, u2, . . . , s〉 from v to s in the original
graph. We will prove that

`(v) ≤ `(u1) + 3;
thus, assuming that `(u1) satisfies the claim (by induction), `(v) will satisfy the claim as
well. To prove this, observe that if the edge (v, u1) is contained in the emulator then we
know that `(v) ≤ `(u1) + 1 (since v is not stretched), and we are done. Otherwise, by the
fact that this emulator is locally persevering, we know that there is a path π = 〈v, c, u1〉 of
length at most 3 in the emulator, and it is persevering (see Item (ii’)). By (O2), edges in π
are not stretched. It follows that

`(v) ≤ `(c) + w(v, c) ≤ `(u1) + w(v, c) + w(c, u1) ≤ `(u1) + 3,

where w(v, c) and w(c, u1) are the current weights of edges (v, c) and (c, u1), respectively, in
the emulator. The claim follows.

In Section 3, we show how to refine the above argument to obtain a (1+ε, 2)-approximation
guarantee. The first refinement, which is simple, is extending the emulator above to a (1+ε, 2)-
emulator. This is done by adding edges from every random node c to all nodes in distance
at most 1/ε from c. The next refinement, which is the main one, is the formal definition of
(α, β, τ)-locally persevering emulators for some parameters α, β, and τ , and extending the
proof outlined above to show that the monotone Even–Shiloach tree on such an emulator
will give an (α+ β/τ, β)-approximate distance estimate. We finally show that our simple
(1 + ε, 2)-emulator is a (1, 2, 1/ε)-locally persevering emulator.

5We note that we are being vague here. To be formal, we later define the notion of (α, β, τ)-locally
persevering emulator in Definition 3.2, and the emulator we just defined will be (3, 0, 1)-locally persevering.

6Here ` stands for “level” as `(v) is the level of v in the breadth-first search tree rooted at s.

10

1.3.2 Moving Even–Shiloach Tree for Improved Deterministic Algorithms

Many distance-related algorithms in both dynamic and static settings use the following
randomized argument as an important technique: if we select Õ(h) nodes, called centers,
uniformly at random, then every node will be at distance at most n/h from one of the centers
with high probability [UY91, RZ12]. This even holds in the decremental setting (assuming an
oblivious adversary). Like other algorithms, the Roditty–Zwick algorithm also heavily relies
on this argument, which is the only reason it is randomized. Our goal is to derandomize this
argument. Specifically, for several different values of h, the Roditty–Zwick framework selects
Õ(h) random centers and uses the randomized argument above to argue that every node in
a connected component of size at least n/h is covered by a center in the sense that it will
always be within distance at most n/h from at least one center; we call this set of centers a
center cover. It also maintains an Even–Shiloach tree of depth R = O(n/h) from these h
centers, which takes a total update time of Õ(mR) for each tree and thus Õ(hmR) = Õ(mn)
over all trees. To derandomize the above process, we have two constraints:

(1) the center cover must be maintained (i.e., every node in a component of size at least
n/h has a center nearby), and

(2) the number of centers (and thus Even–Shiloach trees maintained) must be Õ(h) in
total.

Maintaining these constraints in the static setting is fairly simple, as in the following
algorithm.

Algorithm 1.2. As long as there is a node v in a “big” connected component (i.e., of size
at least n/h) that is not covered by any center, make v a new center.

Algorithm 1.2 clearly guarantees the first constraint. The second constraint follows from
the fact that the distance between any two centers is more than n/h. Since understanding
the proof for guaranteeing the second constraint is important for understanding our charging
argument later, we sketch it here. Let us label the centers by numbers j = 1, 2, . . . , h. For
a center with number j, we let Bj be a “ball” of radius n/(2h); i.e., Bj is a set of nodes
in distance at most n/(2h) from center number j. Observe that Bj and Bj′ are disjoint
for distinct centers j and j′ since the distance between these centers is more than n/h.
Moreover, |Bj | ≥ n/(2h) since every center is in a big connected component. So, the number
of balls (thus the number of centers) is at most n/(n/(2h)) = 2h. This guarantees the second
constraint. Thus, we can guarantee both constraints in the static setting.

This, however, is not enough in the dynamic setting since after edge deletions, some nodes
in big components might not be covered anymore, and if we keep repeating Algorithm 1.2,
we might have to keep creating new centers to such an extent that the second constraint
is violated. The key idea that we introduce to avoid this problem is to allow a center and
the Even–Shiloach tree rooted at it to move. We call this a moving Even–Shiloach tree or
moving centers data structure. Specifically, in the moving Even–Shiloach tree, we view a
root (center) s not as a node, but as a token that can be placed on any node, and the task
of the moving Even–Shiloach tree is to maintain the distance between the node on which
the root is placed and all other nodes, up to distance R. We allow a move operation where
we can move the root to a new node and the corresponding Even–Shiloach tree must be

11

adjusted accordingly. To illustrate the power of the move operation, consider the following
simple modification of Algorithm 1.2. (Later, we also have to modify this algorithm due to
other problems that we will discuss next.)

Algorithm 1.3. As long as there is a node v in a big connected component that is not
covered by any center, we make it a center as follows. If there is a center in a small connected
component, we move this center to v; otherwise, we open a new center at v.

Algorithm 1.3 reuses centers and Even–Shiloach trees in small connected components7

without violating the first constraint since nodes in small connected components do not need
to be covered. The second constraint can also be guaranteed by showing that |Bj | ≥ n/(2h)
for all j when we open a new center. Thus, by using moving Even–Shiloach trees, we can
guarantee the two constraints above. We are, however, not done yet. This is because our new
move operation also incurs a cost! The most nontrivial idea in our algorithm is a charging
argument to bound this cost. There are two types of cost. First, the relocation cost, which is
the cost of constructing a new breadth-first search tree rooted at the new location of the
center. This cost can be bounded by O(m) since we can construct a breadth-first search tree
by running the static O(m)-time algorithm. Thus, it will be enough to guarantee that we do
not move Even–Shiloach trees more than O(n) times. In fact, this is already guaranteed
in Algorithm 1.3 since we will never move an Even–Shiloach tree back to a previous node.
The second cost, which is much harder to bound, is the additional maintenance cost. Recall
that we can bound the total update time of an Even–Shiloach tree by O(mR) because of
the fact that the distance between its root (center) and each other node changes at most R
times before exceeding R, by increasing from 1 to R. However, when we move the root from,
say, a node u to its neighbor v, the distance between the new root v and some node, say x,
might be smaller than the previous distance from u to x. In other words, the decrementality
property is destroyed. Fortunately, observe that the distance change will be at most one
per node when we move a tree to a neighboring node. Using a standard argument, we can
then conclude that moving a tree between neighboring nodes costs an additional distance
maintenance cost of O(m). This motivates us to define the notion of moving distance to
measure how far we move the Even–Shiloach trees in total. We will be able to bound the
maintenance cost by O(mn) if we can show that the total moving distance (summing over
all moving Even–Shiloach trees) is O(n). Bounding the total moving distance by O(n)
while having only O(h) Even–Shiloach trees is the most challenging part in obtaining our
deterministic algorithm. We do it by using a careful charging argument. We sketch this
argument here. For more intuition and detail, see Section 4.

Charging Argument for Bounding the Total Moving Distance. Recall that we
denote the centers by numbers j = 1, 2, . . . , h. We make a few modifications to Algorithm 1.3.
The most important change is the introduction of the set Cj for each center j (which is the
root of a moving Even–Shiloach tree). This will lead to a few other changes. The importance
of Cj is that we will “charge” the moving cost of center j to nodes in Cj ; in particular, we
bound the total moving distance to be O(n) by showing that the moving distance of center j
can be bounded by |Cj |, and Cj and Cj′ are disjoint for distinct centers j and j′. The other

7We note the detail that we need a deterministic dynamic connectivity data structure [HK01, HLT01] to
implement Algorithm 1.3. The additional cost incurred is negligible.

12

important changes are the definitions of “ball” and “small connected component” which will
now depend on Cj .

• We change the definition of Bj from a ball of radius n/(2h) to a ball of radius
(n/(2h))− |Cj |.

• We redefine the notion of “small connected component” as follows: we say that a center
j is in a small connected component if the connected component containing it has less
than (n/(2h))− |Cj | nodes (instead of n/h nodes).

These new definitions might not be intuitive, but they are crucial for the charging argument.
We also have to modify Algorithm 1.3 in a counterintuitive way: the most important
modification is that we have to give up the nice property that the distance between any two
centers is more than n/(2h) as in Algorithms 1.2 and 1.3. In fact, we will always move a
center out of a small connected component, and we will move it as little as possible, even
though the new location could be near other centers. In particular, consider the deletion
of an edge (u, v). It can be shown that there is at most one center j that is in a small
connected component (according to the new definition), and this center j must be in the
same connected component as u or v. Suppose that such a center j exists, and it is in the
same connected component as u, say X. Then we will move center j to v, which is just
enough to move j out of component X (it is easy to see that v is the node outside of X that
is nearest to j before the deletion). We will also update Cj by adding all nodes of X to
Cj . This finishes the moving step, and it can be shown that there is no center in a small
connected component now. Next, we make sure that every node is covered by opening a new
center at nodes that are not covered, as in Algorithm 1.2. To conclude, our algorithm is as
follows.

Algorithm 1.4. Consider the deletion of an edge (u, v). Check whether there is a center j
that is in a “small” connected component X (of size less than (n/(2h))− |Cj |). If there is
such a j (there will be at most one such j), move it out of X to a new node which is the
unique node in {u, v} \X. After moving, execute the static algorithm as in Algorithm 1.2.

To see that the total moving distance is O(n), observe that when we move a center j out
of component X in Algorithm 1.4, we incur a moving distance of at most |X| (since we can
move j along a path in X). Thus, we can always bound the total moving distance of center j
by |Cj |. We additionally show that Cj and Cj′ are disjoint for different centers j and j′. So,
the total moving distance over all centers is at most

∑
j |Cj | ≤ n. We also have to bound the

number of centers. Since we give up the nice property that centers are far apart, we cannot
use the same argument to show that the sets Bj are disjoint and big (i.e., |Bj | ≥ n/(2h)),
as in Algorithms 1.3 and 1.4. However, using Cj , we can still show something very similar:
Bj ∪ Cj and Bj′ ∪ Cj′ are disjoint for distinct j and j′, and |Bj ∪ Cj | ≥ n/(2h). Thus, we
can still bound the number of centers by O(h) as before.

1.4 Related Work

Dynamic APSP has a long history, with the first papers dating back to 1967 [LC67, Mur67]8.
It also has a tight connection with its static counterpart (where the graph does not change),

8The early papers [LC67, Mur67], however, were not able to beat the naive algorithm where we compute
APSP from scratch after every change.

13

which is one of the most fundamental problems in computer science: On the one hand, we
wish to devise a dynamic algorithm that beats the naive algorithm where we recompute
shortest paths from scratch using static algorithms after every deletion. On the other hand,
the best we can hope for is to match the total update time of decremental algorithms to the
best running time of static algorithms. To understand the whole picture, let us first recall the
current situation in the static setting. We will focus on combinatorial algorithms9 since our
and most previous decremental algorithms are combinatorial. Static APSP on unweighted
undirected graphs can be solved in O(mn) time by simply constructing a breadth-first search
tree from every node. Interestingly, this algorithm is the fastest combinatorial algorithm
for APSP (despite other fast noncombinatorial algorithms based on matrix multiplication).
In fact, a faster combinatorial algorithm will be a major breakthrough, not just because
computing shortest paths is a long-standing problem by itself, but also because it will imply
faster algorithms for other long-standing problems, as stated in Fact 1.1.

The fact that the best static algorithm takes O(mn) time means two things: First, the
naive algorithm will take O(m2n) total update time. Second, the best total update time we
can hope for is O(mn). A result that is perhaps the first to beat the naive O(m2n)-time
algorithm is from 1981 by Even and Shiloach [ES81] for the special case of SSSP. Even and
Shiloach actually studied decremental connectivity, but their main data structure gives an
O(mn) total update time with O(1) query time for decremental SSSP; this implies a total
update time of O(mn2) for decremental APSP. Roditty and Zwick [RZ11] later provided
evidence that the O(mn)-time decremental unweighted SSSP algorithm of Even and Shiloach
is the fastest possible by showing that this problem is at least as hard as several natural static
problems such as Boolean matrix multiplication and the problem of finding all edges of a
graph that are contained in triangles. For the incremental setting, Ausiello et al. [AIMS+91]
presented an Õ(n3)-time APSP algorithm on unweighted directed graphs. (An extension of
this algorithm for graphs with small integer edge weights is given in [AIM+92].) After that,
many efficient fully dynamic algorithms have been proposed (e.g., [HKR+97, Kin99, FR06,
DI06, DI02]). Subsequently, Demetrescu and Italiano [DI04] achieved a major breakthrough
for the fully dynamic case: they obtained a fully dynamic deterministic algorithm for the
weighted directed APSP problem with an amortized time of Õ(n2) per update, implying a
total update time of Õ(mn2) over all deletions in the decremental setting, the same running
time as the algorithm of Even and Shiloach. (Thorup [Tho04] presented an improvement of
this result.) An amortized update time of Õ(n2) is essentially optimal if the distance matrix
is to be explicitly maintained, as done by the algorithm of Demetrescu and Italiano [DI04],
since each update operation may change Ω(n2) entries in the matrix. Even for unweighted,
undirected graphs, no faster algorithm is known. Thus, the O(mn2) total update time
of Even and Shiloach remains the best for deterministic decremental algorithms, even on
undirected unweighted graphs and if approximation is allowed.

For the case of randomized algorithms, Demetrescu and Italiano [DI06] obtained an
exact decremental algorithm on weighted directed graphs with Õ(n3) total update time10 (if

9The vague term “combinatorial algorithm” is usually used to refer to algorithms that do not use algebraic
operations such as matrix multiplication.

10This algorithm actually works in a much more general setting where each edge weight can assume S
different values. Note that the amortized time per update of this algorithm is Õ(Sn), but this holds only
when there are Ω(n2) updates (see [DI06, Theorem 10]). Also note that the algorithm is randomized with
one-sided error.

14

weight increments are not considered). Baswana, Hariharan, and Sen [BHS07] obtained an
exact decremental algorithm on unweighted directed graphs with Õ(n3) total update time.
They also obtained a (1 + ε, 0)-approximation algorithm with Õ(m1/2n2) total update time.
In [BHS03], they improved the running time further on undirected unweighted graphs, at
the cost of a worse approximation guarantee: they obtained approximation guarantees of
(3, 0), (5, 0), (7, 0) in Õ(mn10/9), Õ(mn14/13), and Õ(mn28/27) time, respectively. Roditty
and Zwick [RZ12] presented two improved algorithms for unweighted, undirected graphs.
The first was a (1 + ε, 0)-approximate decremental APSP algorithm with constant query
time and a total update time of Õ(mn). This algorithm remains the current fastest. The
second algorithm achieves a worse approximation bound of (2k − 1, 0) for any 2 ≤ k ≤ logn,
but has the advantage of requiring less space (O(m+ n1+1/k)). By modifying the second
algorithm to work on an emulator, Bernstein and Roditty [BR11] presented the first truly
subcubic algorithm which gives a (2k−1+ ε, 0)-approximation and has a total update time of
Õ(n1+1/k+O(1/

√
logn)). They also presented a (1 + ε, 0)-approximation Õ(n2+O(1/

√
logn))-time

algorithm for SSSP, which is the first improvement since the algorithm of Even and Shiloach.
Very recently, Bernstein [Ber13] presented a (1 + ε, 0)-approximation Õ(mn logW)-time
algorithm for the directed weighted case, where W is the ratio of the largest edge weight
ever seen in the graph to the smallest such weight.

We note that the (1 + ε, 0)-approximation Õ(mn)-time algorithm of Roditty and Zwick
matches the state of the art in the static setting; thus, it is essentially tight. However,
by allowing additive error, this running time was improved in the static setting. For
example, Dor, Halperin, and Zwick [DHZ00], extending the approach of Aingworth et
al. [ACI+99], presented a (1, 2)-approximation for APSP in unweighted undirected graphs
with a running time of O(min{n3/2m1/2, n7/3}). Elkin [Elk05] presented an algorithm for
unweighted undirected graphs with a running time of O(mnρ + n2ζ) that approximates the
distances with a multiplicative error of 1 + ε and an additive error that is a function of ζ, ρ,
and ε. There is no decremental algorithm with additive error prior to our algorithm.

Subsequent Work. Independent of our work, Abraham and Chechik [AC13] developed a
randomized (1 + ε, 2)-approximate decremental APSP algorithm with a total update time of
Õ(n5/2+O(1/

√
logn)) and constant query time. This result is very similar to one of ours, except

that the running time in [AC13] is slightly more than Õ(n5/2). After the preliminary version
of this paper [HKN13a] appeared, we extended the randomized algorithm in this paper and
obtained the following two algorithms for APSP [HKN14a]: (i) a (1 + ε, 2(1 + 2/ε)k−2)-
approximation with total time Õ(n2+1/k(37/ε)k−1) for any 2 ≤ k ≤ logn (improving the
time in this paper with a higher additive error when k ≥ 3), and (ii) a (3 + ε)-approximation
with total time Õ(m2/3n3.8/3+O(1/

√
logn)) (it is faster than the algorithm in this paper for

sparse graphs but causes more multiplicative error). These two algorithms heavily rely on
the monotone Even–Shiloach tree introduced in this paper. In the same paper, the monotone
Even–Shiloach tree was also used in combination with techniques in [HKN13b] to obtain
the first subquadratic-time algorithm for approximate SSSP. Very recently, we obtained
an almost linear total update time for (1 + ε)-approximate SSSP in weighted undirected
graphs [HKN14b], where the monotone Even–Shiloach tree again played a central role.
We also obtained the first improvement over Even–Shiloach’s algorithm for single-source
reachability and approximate single-source shortest paths on directed graphs [HKN14c].

15

2 Background

2.1 Basic Definitions

In the following we give some basic notation and definitions.

Definition 2.1 (Dynamic graph). A dynamic graph G is a sequence of graphs G = (Gi)0≤i≤k
that share a common set of nodes V . The set of edges of the graph Gi (for 0 ≤ i ≤ k) is
denoted by E(Gi). The number of nodes of G is n = |V |, and the initial number of edges
of G is m = |E(G0)|. The set of edges ever contained in G up to time t (where 0 ≤ t ≤ k)
is Et(G) = ∪0≤i≤tE(Gi). A dynamic weighted graph H is a sequence of weighted graphs
H = (Hi, wi)0≤i≤k that share a common set of nodes V . For 0 ≤ i ≤ k and every edge
(u, v) ∈ E(Hi), the weight of (u, v) is given by wi(u, v).

Let us clarify how a dynamic graph G = (Gi)0≤i≤k is processed by a dynamic algorithm.
The dynamic graph G is a sequence of graphs picked by an adversary before the algorithm
starts. In its initialization phase, the algorithm may process the initial graph G0, and in the
i-th update phase the algorithm may process the graph Gi. At the beginning of the i-th
update phase, the graph Gi is presented to the algorithm implicitly as the set of updates
from Gi−1 to Gi. The algorithm will, for example, be informed which edges were deleted
from the graph. After the initialization phase and after each update phase, the algorithm
has to be able to answer queries. In our case, these queries will usually be distance queries,
and the algorithm will answer them in constant or near-constant time. The total update
time of the algorithm is the total time spent processing the initialization and all k updates.

Definition 2.2 (Updates). For a dynamic graph G = (Gi)0≤i≤k we say for an edge (u, v)
that

• (u, v) is deleted at time t if (u, v) is contained in Gt−1 but not in Gt;

• (u, v) is inserted at time t if (u, v) contained in Gt but not in Gt−1.

For a dynamic weighted graph H = (Hi, wi)0≤i≤k, we additionally say for an edge (u, v) that

• the weight of (u, v) is increased at time t if wt(u, v) > wt−1(u, v) (and (u, v) is contained
in both Gt−1 and Gt);

• the weight of (u, v) is decreased at time t if wt(u, v) < wt−1(u, v) (and (u, v) is
contained in both Gt−1 and Gt).

Every deletion, insertion, weight increase, or weight decrease is called an update. The total
number of updates up to time t of a dynamic (weighted) graph G is denoted by φt(G).

Definition 2.3 (Decremental graph). A decremental graph G is a dynamic graph G =
(Gi)0≤i≤k such that for every 1 ≤ i ≤ k there is exactly one edge deletion at time i. Note
that Gi is the graph after the i-th edge deletion.

By our definition decremental graphs are always unweighted. For a weighted version of
this concept it would make sense to additionally allow edge weight increases. In a decremental
graph G = (Gi)0≤i≤k we necessarily have k ≤ m because every edge can be deleted only once.

16

For decremental shortest paths algorithms the total update time usually does not depend on
the number of deletions k. This is the case because of the amortization argument typically
used for these algorithms. For this reason, it will often suffice for our purposes to bound
φk(G) or |Ek(G)| by numbers that do not depend on k.

We now formulate the approximate all-pairs shortest paths (APSP) problem we are
trying to solve.

Definition 2.4 (Distance). The distance of a node x to a node y in a graph G is denoted
by dG(x, y). If x and y are not connected in G, we set dG(x, y) =∞. In a weighted graph
(H,w) the distance of x to y is denoted by dH,w(x, y).

Definition 2.5. An (α, β)-approximate decremental all-pairs shortest paths (APSP) data
structure for a decremental graph G = (Gi)0≤i≤k maintains, for all nodes x and y and all
0 ≤ i ≤ k, an estimate δi(x, y) of the distance between x and y in Gi. After the i-th edge
deletion (where 0 ≤ i ≤ k), it provides the following operations:

• Delete(u, v): Delete the edge (u, v) from Gi.

• Distance(x, y): Return an estimate δi(x, y) of the distance between x and r in Gi
such that dGi(x, y) ≤ δi(x, y) ≤ αdGi(x, y) + β.

The total update time is the total time needed for performing all k delete operations and the
initialization, and the query time is the worst-case time needed to answer a single distance
query. The data structure is exact if α = 1 and β = 0.

Similarly, we define a data structure for decremental single-source shortest paths (SSSP).
We incorporate two special requirements in this definition. First, we are interested in SSSP
data structures that only need to work up to a certain distance range11 Rd from the source
node which is specified by a parameter Rd. Second, we demand that the data structure tells
us whenever a node leaves this distance range. The latter is a technical requirement that
simplifies some of our proofs.

Definition 2.6. An (α, β)-approximate decremental single-source shortest paths (SSSP)
data structure with source (or: root) node r and distance range parameter Rd for a
decremental graph G = (Gi)0≤i≤k maintains, for every node x and all 0 ≤ i ≤ k, an estimate
δi(x, r) ∈ {0, 1, . . . , bαRd + βc,∞} of the distance between x and r in Gi. After the i-th edge
deletion (where 0 ≤ i ≤ k), it provides the following operations:

• Delete(u, v): Delete the edge (u, v) from Gi and return the set of all nodes x such
that δi(x, r) ≤ αRd + β and δi+1(x, r) > αRd + β.

• Distance(x): Return an estimate δi(x, r) of the distance between x and r in Gi such
that δi(x, r) ≥ dGi(x, r), and if dGi(x, r) ≤ Rd, then also δi(x, r) ≤ αdGi(x, r) + β.

The total update time is the total time needed for performing all k delete operations and the
initialization, and the query time is the worst-case time needed to answer a single distance
query. The data structure is exact if α = 1 and β = 0.

11In this paper, there are two related parameters Rd (introduced here) representing the “distance range”
of an SSSP data structure (e.g., the Even–Shiloach tree described in Section 2.2) and Rc (which will be
introduced in Section 2.3) representing the “cover range” of the center cover data structure.

17

Finally, we define the remaining notions on graphs we will use.

Definition 2.7 (Degree). We say that v is a neighbor of u if there is an edge (u, v) in G. The
degree of a node u in the graph G, denoted by degG(u), is the number of neighbors of u in G.
The dynamic degree of a node u in a dynamic graph G is degG(u) = |{(u, v) | (u, v) ∈ Ek(G)}|.

Definition 2.8 (Paths). Let (H,w) be a weighted graph, and let π be a path in (H,w). The
number of nodes on the path π is denoted by |π|, and the total weight of the path (i.e., the
sum of the weights of its edges) is denoted by w(π).

Definition 2.9 (Connected component). For every graph G and every node x we denote by
CompG(x) the connected component of x in G, i.e., the set of nodes that are connected to x
in G.

2.2 Decremental Shortest-Path Tree Data Structure (Even–Shiloach Tree)

The central data structure in dynamic shortest paths algorithms is the dynamic SSSP tree
introduced by Even and Shiloach, in short ES-tree. Even and Shiloach [ES81] developed this
data structure for undirected, unweighted graphs. Later on, Henzinger and King [HK95]
observed that it can be adapted to work on directed graphs, and King [Kin99] gave a
modification for directed, weighted graphs with positive integer edge weights. In the
following we review some important properties of this data structure.

We describe an ES-tree on dynamic weighted undirected graphs for a given root node r
and a given distance range parameter Rd. The data structure can handle arbitrary edge
deletions and weight increases. The data structure maintains, for every node v, a label `(v),
called the level of v. The level of v corresponds to the distance between v and the root r. Any
node v whose distance to r is more than Rd has `(v) =∞. Initially, the values of `(v) can be
computed in Õ(m) time using, e.g., Dijkstra’s algorithm. The level `(v) implicitly implies the
shortest-path tree since the parent of every node v is a node z such that `(v) = `(z) +w(v, z).
(Every node v such that `(v) =∞ will not be in the shortest-paths tree.) Every deletion of
an edge (u, v) possibly affects the levels of several nodes. The algorithm tries to adjust the
levels of these nodes as follows.

Informal Description. How the ES-tree handles deletions can be intuitively viewed as
nodes in the input graph talking to each other as follows. Imagine that every node v in the
input graph is a computing unit that tries to maintain its level `(v) corresponding to its
current distance to the root. It knows the levels of its neighbors and has to make sure that

`(v) = min
u

(`(u) + w(u, v)) (1)

where the minimum is over all current neighbors u of v. When we delete an edge incident to
v, the value of `(v) might change. If this happens, v sends a message to each of its neighbors
to inform about this change, since the levels of these nodes might have to change as well.
Every neighbor of v then updates its level accordingly, and if its level changes, it sends
messages to its neighbors (including v), too. (See Figure 1 for an example.) An important
point, which we will show soon, is that we can implement the ES-tree in time proportional
to the number of messages. This means that when a node v’s level is changed, we can bound

18

level 0

level 1

level 2

level 3

r

ba c

d e

(a)

r

b c

eda

level(a) = 2

level(a
) =

2

level(a) = 2

(b)

r

b c

ea

d

le
ve

l(
d

)
=

3

lev
el(

d) =
3

(c)

Figure 1: Example of the view of the ES-tree as nodes talking to each other. (a) The ES-tree
before the edge deletion. (b) After deleting the edge (r, a), the level of the node a changes to
2. The node a sends a message to all neighbors to inform them about this change. (c) This
causes the node d to change its level, and thus d sends a message to inform its neighbors.
There are no other changes, so the new ES-tree is as in (c). Thus, there are 5 messages
involved in constructing the new ES-tree, and Algorithm 1 shows that this process can be
implemented in 5 time units.

the time we need to maintain the ES-tree by its current degree. Thus, the contribution of a
node v to the running time to update the ES-tree after the i-th deletion or weight increase
is degGi

(v) times its level change, i.e., min(Rd, `i(v))−min(Rd, `i−1(v)) (the minimum is to
avoid the case where `i(v) =∞). This intuitively leads to the following lemma.

Lemma 2.10 (King [Kin99]). The ES-tree is an exact decremental SSSP data structure for
shortest paths up to a given length Rd. It has constant query time, and in a decremental
graph G = (Gi, wi)0≤i≤k its total update time can be bounded by

O

φk(G) + tSP +
∑

1≤i≤k

∑
v∈V

degGi
(v)

(
min(Rd, `i(v))−min(Rd, `i−1(v))

) ,

where tSP is the time needed for computing an SSSP tree up to depth Rd and, for 0 ≤ i ≤ k,
`i(v) is the level of v after the ES-tree has processed the i-th deletion or weight increase.

Recall that φk(G) is the total number of updates (deletions and weight increases). Note
that when the graph is unweighted, only deletions are allowed. In this case, the φk(G) term
can be ignored. Lemma 2.10 can be simplified by using two specific bounds. These bounds
are in fact what we need later in this paper.

Corollary 2.11. There is an exact decremental SSSP data structure for paths up to a given
length Rd that has constant query time, and in a decremental graph G = (Gi, wi)0≤i≤k with

19

source node r its total update time can be bounded by

O

(
φk(G) + tSP +

∑
v∈V

degG0(v) ·
(
min(Rd, dGk

(v, r))−min(Rd, dG0(v, r))
))

and O(mRd), where tSP is the time needed for computing an SSSP tree up to depth Rd, and
dG0(v, r) is the initial distance of r to v and dGk

(v, r) is the distance of v to r after all k
edge deletions.

The first bound in Corollary 2.11 is because, for every node v, we can use degGi
(v) ≤

degG0(v), and we can express the running time caused by v’s level change in terms of its
initial level (min(Rd, dG0(v, r)) and its final level (min(Rd, dGk

(v, r))). We will need this
bound in Section 4. The second bound follows easily from the first one and we will need it
in Section 3.

Implementation. The pseudocode for achieving the above result can be found in Algo-
rithm 1. (For simplicity we show an implementation using heaps, which causes an extra logn
factor in the running time. King [Kin99] explains how to avoid heaps in order to improve
the running time by a factor of logn.) For every node x the ES-tree maintains a heap N(x)
that stores for every neighbor y of x in the current graph the value of `(y) + w(x, y) where
w(x, y) is the weight of the edge (x, y) in the current graph. (Intuitively, N(x) corresponds
to the “knowledge” of x about its neighbors.) These data structures can be initialized in
Õ(m) time by running, for example, Dijkstra’s algorithm (see procedure Initialize()).12

Edge deletions and weight increases are handled in procedure Delete() and Increase(),
respectively; in fact, deletion is a special case of weight increase where we set the edge
weight to ∞. Every weight increase of an edge (u, v) might cause the levels of some nodes
to increase. The algorithm uses a heap Q to keep track of such nodes. Initially (at the
time w(u, v) is increased) the algorithm inserts u and v to Q as the levels of u and v might
increase (see Line 9). It also updates N(u) and N(v) as in Line 10. Then it updates the
levels on nodes in Q using procedure UpdateLevels().

Procedure UpdateLevels() processes the nodes in Q in the order of their current level
(see the while-loop starting on Line 13). In every iteration it will process y in Q with smallest
`(y) (as in Line 14). The lowest level that is possible for a node y is `′(y) = minz(`(z)+w(y, z)),
the minimum of `(z) + w(y, z) over all neighbors z of y in the current graph (following
Equation (1)). Therefore every node y will repeatedly update its level to `′(y) (unless its
level already has this value); see Line 15. (An exception is when the level of a node x exceeds
the desired depth Rd. In this case the level of x is set to ∞ and x will never be connected
to the tree again. See Line 18.) If this updating rule leads to a level increase, the algorithm
has to update the heap N(x) of every neighbor x and put x to the heap Q (since the level of
x might increase), as in the for-loop starting on Line 19 (this is equivalent to having y send
a message to x in the informal description).

The running time analysis takes into account the level increases occurring in the ES-tree.
It is based on the following observation: For every node x processed in the while-loop of the

12Alternatively we could compute the initial shortest paths tree using the Even–Shiloach algorithm itself: Let
G′0 be the modification of G0 where we add an edge (r, v) of weight 1 for every node v. We obtain G0 from G′0
by deleting each such edge. Starting from a trivial shortest paths tree in G′0 in which the parent of every node
v 6= r is r, we obtain the shortest paths tree of G0 in time O(

∑
v∈V

degG0 (v) ·min(Rd, dG0 (v, r))) = O(mRd).

20

21

Algorithm 1: ES-tree
// The ES-tree is formulated for weighted undirected graphs.
// Internal data structures:
• N(u): for every node u a heap N(u) whose intended use is to store for every neighbor
v of u in the current graph the value of `(v) + w(u, v), where w(u, v) is the weight of
the edge (u, v) in the current graph

• Q: global heap whose intended use is to store nodes whose levels might need to be
updated

1 Procedure Initialize()
2 Compute shortest paths tree from r in (G0, w0) up to depth Rd

3 foreach node u do
4 Set `(u) = dG0(u, r)
5 for every edge (u, v) do insert v into heap N(u) of u with key `(v) + w(u, v)

6 Procedure Delete(u, v)
7 Increase(u, v, ∞)
8 Procedure Increase(u, v, w(u, v))

// Increase weight of edge (u, v) to w(u, v)
9 Insert u and v into heap Q with keys `(u) and `(v), respectively

10 Update key of v in heap N(u) to `(v) + w(u, v) and key of u in heap N(v) to
`(u) + w(u, v)

11 UpdateLevels()
12 Procedure UpdateLevels()
13 while heap Q is not empty do
14 Take node y with minimum key `(y) from heap Q and remove it from Q
15 `′(y)← minz(`(z) + w(y, z))

// `′(y) can be retrieved from the heap N(y). arg minz(`(z) + w(y, z)) is y’s
parent in the ES-tree

16 if `′(y) > `(y) then
17 `(y)← `′(y)
18 if `′(y) > Rd then `(y)←∞
19 foreach neighbor x of y do
20 update key of y in heap N(x) to `(y) + w(x, y)
21 insert x into heap Q with key `(x) if Q does not already contain x

procedure UpdateLevels() in Algorithm 1, if the level of x increases, the algorithm has to
spend time O(deg(x) logn) updating the heaps N(y) of all neighbors y of x and adding these
neighbors to heap Q. If the level of x does not increase, the algorithm only has to spend
time O(logn). In the second case the running time can be charged to one of the following
events that causes x to be in Q: (1) a weight increase of some edge (x, y), and (2) a level
increase of some neighbor of x. This leads to the result in Lemma 2.10.

2.3 The Framework of Roditty and Zwick

In the following we review the algorithm of Roditty and Zwick [RZ12] because its main ideas
are the basis of our own algorithms. We will put their arguments in a certain structure that
clarifies for which part of the algorithm we obtain improvements. Their algorithm is based
on the following observation. Consider approximating the distance dG(x, y) for some pair of
nodes x and y. For some 0 < ε ≤ 1, we want a (1 +O(ε), 0)-approximate value of dG(x, y).
Assume that we know an integer p such that 2p is a “distance guess” of dG(x, y), i.e.,

2p ≤ dG(x, y) ≤ 2p+1. (2)

Now, suppose that there is a node z that is close to x, i.e.,

dG(x, z) ≤ ε2p. (3)

Then it follows that we can use dG(x, z) + dG(z, y) as a (1 + 2ε)-approximation of the true
distance dG(x, y); this follows from applying the triangle inequality twice (also see Figure 2a):

dG(x, y) ≤ dG(x, z) + dG(z, y)
≤ dG(x, z) + (dG(z, x) + dG(x, y)) ≤ (1 + 2ε)dG(x, y) . (4)

Thus, under the assumption that for any x we only want to determine the distances from x
to nodes y with dG(x, y) in the range from 2p to 2p+1, we only have to make sure that there
is a node z that satisfies Equation (3); we call such node z a center. We will maintain a
set U of nodes such that for every node x there is a node z ∈ U that satisfies Equation (3).
In fact, we only need this to be true for nodes x that are in a “big” connected component
since if the connected component containing x is too small, then there is no node y that
satisfies Equation (2). We call such U a center cover. The following definition states this
more precisely.

Definition 2.12 (Center cover). Let U be a set of nodes of a graph G, and let Rc be a
positive integer denoting the cover range. We say that a node x is covered by a node c ∈ U
in G if dG(x, c) ≤ Rc. We say that U is a center cover of G with parameter Rc if every node
x that is in a connected component of size at least Rc is covered by some node c ∈ U in G.

One main component of Roditty and Zwick’s framework as we describe it is the center
cover data structure. This data structure maintains a center cover U as above. Furthermore,
for every center z ∈ U , we will maintain the distance to every node y such that dG(z, y) ≤ 2p+2.
This will allow us to compute dG(x, z) + dG(z, y) as an approximate value of dG(x, y) (as
in Equation (4)). In general, we treat the number 2p+2 as another parameter of the data
structure denoted by Rd (called distance range parameter). The values of Rc and Rd are
typically closely related; in particular, Rc ≤ Rd = O(Rc). The center cover data structure is
defined formally as follows (also see Figure 2b).

22

x
y

z

2p ≤ dG(x, y) ≤ 2p+1

d G
(x
, z

) ≤
ε2
p dG(y, z) ≤ dG(x, y) + ε2 p≤ (1 + 2ε)dG(x, y)

(a)

x y

z
R
c

Rd

(b)

Figure 2: (a) depicts Equations (2) to (4). (b) shows the cover range (small circle) and
distance range (big circle) used by the center cover data structure (Definition 2.13).

Definition 2.13 (Center cover data structure). A center cover data structure with cover
range parameter Rc and distance range parameter Rd for a decremental graph G = (Gi)0≤i≤k
maintains, for every 0 ≤ i ≤ k, a set of centers Ci = {1, 2, . . . , l} and a set of nodes
Ui = {c1

i , c
2
i , . . . , c

l
i} such that Ui is a center cover of Gi with parameter Rc. For every center

j ∈ Ci and every 0 ≤ i ≤ k, we call cji ∈ Ui the location of center j in Gi, and for every
node x we say that x is covered by j if x is covered by cji in Gi. After the i-th edge deletion
(where 0 ≤ i ≤ k), the data structure provides the following operations:

• Delete(u, v): Delete the edge (u, v) from Gi.

• Distance(j, x): Return the distance dGi(c
j
i , x) between the location cji of center j and

the node x, provided that dGi(c
j
i , x) ≤ Rd. If dGi(c

j
i , x) > Rd, then return ∞.

• FindCenter(x): If x is in a connected component of size at least Rc in Gi, return a
center j (with location cji) such that dGi(x, c

j
i) ≤ Rc. If x is in a connected component

of size less than Rc in Gi, then either return ⊥ or return a center j (with location cji)
such that dGi(x, c

j
i) ≤ Rc.

The total update time is the total time needed for performing all k delete operations and the
initialization. The query time is the worst-case time needed to answer a single distance or
findCenter query.

As the update time of the data structure will depend on the number l of centers, the
goal is to keep l as small as possible, preferably l = Õ(n/Rc). As an example, consider the
following randomized implementation of Roditty and Zwick [RZ12]: randomly pick a set U of
((n/Rc) poly logn) nodes as the set of centers. It can be shown that, with high probability,
this set will remain a center cover during all deletions. The distance and findCenter
queries can be answered in O(1) time by maintaining an ES-tree of depth mRd for every
center. The total time to maintain this data structure is thus Õ(mnRd/Rc). We typically
set Rc = Ω(Rd). In this case, the total time becomes Õ(mn).

23

Note that while the implementation of Roditty and Zwick always uses the same set of
centers U , the center cover data structure that we define is flexible enough to allow this set to
change over time: i.e., it is possible that Ui 6= Ui+1 for some i. In fact, our definition separates
between the notion of centers (set Ci) and locations (set Ui) as it will allow one center to
change its location over time. This is necessary when we want to maintain o(n) centers
deterministically since if we fix the centers and their locations, then an adversary can delete
all edges adjacent to the centers, making all noncenter nodes uncovered. (The randomized
algorithm of Roditty and Zwick can avoid this by using randomness and assuming that the
adversary is oblivious.)

Using Center Cover Data Structure to Solve APSP. Given a center cover data
structure, an approximate decremental APSP data structure is obtained as follows. We
maintain dlogne “instances” of the center cover data structure where the p-th instance has
parameters Rc = ε2p and Rd = 2p+2 and is responsible for the distance range from 2p to
2p+1 (for all 0 ≤ p ≤ blognc). Suppose that after the i-th deletion we want to answer a
query for the approximate distance between the nodes x and y. For every p, we first query
for a center covering x from the p-th instance of the center cover data structure. Denote
the location of this center by zp. The distance estimate provided by the p-th instance is
dGi(zp, x)+dGi(zp, y). We will output minp dGi(zp, x)+dGi(zp, y) as an estimate of dGi(x, y).
(Note that it is possible that zp = ⊥; i.e., there is no center covering x in the p-th instance.
This might happen if x is in a connected component of size less than Rc. In this case we set
dGi(zp, x) + dGi(zp, y) =∞.)

To see the approximation guarantee, let p∗ be such that 2p∗ ≤ dGi(x, y) ≤ 2p∗+1. Observe
that if p = p∗, then dGi(zp, x) + dGi(zp, y) is a (1 +O(ε), 0)-approximate distance estimate
(due to Equation (4)), and if p 6= p∗, then dGi(zp, x) + dGi(zp, y) ≥ dGi(x, y) (by the triangle
inequality). Thus, minp dGi(zp, x)+dGi(zp, y) is a (1+O(ε), 0)-approximate value of dGi(x, y).
The query time, which is the time to compute minp dGi(zp, x) + dGi(zp, y), is O(logn).

The query time can be reduced to O(log logn) as follows. Observe that for any p < p∗,
the distance dGi(zp, x) + dGi(zp, y) might be ∞ if dGi(zp, y) > Rd; however, if it is finite, it
will provide a (1 + ε, 0)-approximation (since dGi(zp, x) ≤ εp). In other words, it suffices
to find the smallest index p∗∗ for which dGi(zp∗∗ , x) + dGi(zp∗∗ , y) is finite; this value will
be a (1 +O(ε), 0)-approximate value of dGi(x, y). To find this index, observe further that
for any p > p∗, either zp = ⊥ or dGi(zp, x) + dGi(zp, y) is finite. So, we can find p∗∗ by a
binary search (since for any p, if zp = ⊥ or dGi(zp, x) + dGi(zp, y) is finite, then we know
that p∗∗ ≤ p).

Theorem 2.14 ([RZ12]). Assume that for all parameters Rc and Rd such that Rc ≤ Rd

there is a center cover data structure that has constant query time and a total update time
of T (Rc, Rd). Then, for every ε ≤ 1, there is a (1 + ε, 0)-approximate decremental APSP
data structure with O(log logn) query time and a total update time of

∑
p T (Rc

p, R
d
p) where

Rc
p = ε2p and Rd

p = 2p+2 (for 0 ≤ p ≤ blognc).

As shown before, Roditty and Zwick [RZ12] obtain a randomized center cover data struc-
ture with constant query time and a total update time of Õ(mnRd/Rc). By Theorem 2.14
they get a (1 + ε, 0)-approximate decremental APSP data structure with a total update time
of Õ(mn/ε) and a query time of O(log logn). Note that the query time can sometimes be

24

reduced further to O(1), and this is the case for their algorithm as well as our randomized
algorithm in Section 3. This is essentially because there is a (3, 0)-approximation randomized
algorithm for APSP, which can be used to approximate p∗ (we defer details to Lemma 3.19).
To analyze the total update time of their data structure for k deletions, observe that

blognc∑
p=0

Õ(mnRd
p/R

c
p) =

blognc∑
p=0

Õ(mn2p+1/(2pε)) =
blognc∑
p=0

Õ(mn/ε)

= Õ(mn logn/ε) = Õ(mn/ε) .

In Section 3 we show that we can maintain an approximate version of the center cover
data structure in time Õ(n5/2Rd/(εRc)). Using this data structure, we will get a (1 + ε, 2)-
approximate decremental APSP data structure with a total update time of Õ(n5/2/ε) and
constant query time. In Section 4 we show how to maintain an exact deterministic center
cover data structure with a total update time of O(mnRd/Rc). By Theorem 2.14 this
immediately implies a deterministic (1 + ε, 0)-approximate decremental APSP data structure
with a total update time of O(mn logn) and a query time of O(log logn).

3 Õ(n5/2)-Total Time (1+ε, 2)- and (2+ε, 0)-Approximation
Algorithms

In this section, we present a data structure for maintaining APSP under edge deletions with
multiplicative error 1 + ε and additive error 2 that has a total update time of Õ(n5/2/ε2).
The data structure is correct with high probability. We also show a variant of this data
structure with multiplicative error 2 + ε and no additive error. In doing this, we introduce
the notion of a persevering path (see Definition 3.1) and a locally persevering emulator
(Definition 3.2). In Section 3.1, we then present the locally persevering emulator that we
will use to obtain our result. Then in Section 3.2 we explain our main technique, called
the monotone Even–Shiloach tree, where we maintain the distances from a single node to
all other nodes, up to some distance Rd, in a locally persevering emulator. (Recall that
Rd is a parameter called the “distance range.”) In Section 3.3 we show how approximate
decremental SSSP helps in solving approximate decremental APSP. Finally, in Section 3.4,
we show how to put the results in Sections 3.1 to 3.3 together to obtain the desired (1 + ε, 2)-
and (2 + ε, 0)-approximate decremental APSP data structures.

Definition 3.1 (Persevering path). Let H = (Hi, wi)0≤i≤k be a dynamic weighted graph.
We say that a path π = 〈v0, v1, . . . , v`〉 is persevering up to time t (where t ≤ k) if for all
0 ≤ i ≤ `− 1,

∀0 ≤ j ≤ t : (vi, vi+1) ∈ E(Hj) and ∀0 ≤ j < t : wj(vi, vi+1) ≤ wj+1(vi, vi+1).

In other words, edges in π always exist in H up to time t and their weights never decrease.

We now introduce the notion of a locally persevering emulator. An (α, β)-emulator of a
dynamic graph G = (Gi)0≤i≤k is usually another dynamic weighted graph H = (Hi, wi)0≤i≤k
with the same set of nodes as G that preserves the distance of the original dynamic graph; i.e.,
for all i ≤ k and all nodes x and y, there is a path πxy in Hi such that dGi(x, y) ≤ wi(πxy) ≤

25

αdGi(x, y) + β. The notion of a locally persevering emulator has another parameter τ . It
requires the condition dGi(x, y) ≤ wi(πxy) ≤ αdGi(x, y) + β to hold only when dGi(x, y) ≤ τ .
More importantly, it puts an additional restriction that the path πxy must be either a
shortest path in Gi or a persevering path.

Definition 3.2 (Locally persevering emulator). Consider parameters α ≥ 1, β ≥ 0 and
τ ≥ 1, a dynamic graph G = (Gi)0≤i≤k, and a dynamic weighted graph H = (Hi, wi)0≤i≤k.
For every i ≤ k, we say that a path π in Gi is contained in (Hi, wi) if every edge of π is
contained in Hi and has weight 1. We say that H is an (α, β, τ)-locally persevering emulator
of G if for all nodes x and y we have

(1) dGi(x, y) ≤ dHi,wi(x, y) for all 0 ≤ i ≤ k, and

(2) there are t1 and t2 with 0 ≤ t1 < t2 ≤ k + 1 such that the following hold:

(a) There is a path π from x to y in H that is persevering (at least) up to time t1
and satisfies wt(π) ≤ αdGt(x, y) + β.

(b) For every t1 < i ≤ t2, a shortest path from x to y in Gi is contained in (Hi, wi).
(c) For every i ≥ t2, dGi(x, y) > τ .

Condition (1) simply says that H does not underestimate the distances in G. Condition
(2) says that the distance between x and y must be preserved in H in the following specific
way: In the beginning (see (2)a), it must be approximately preserved by a single path π
(thus π is a persevering path). Whenever π disappears, the shortest path between x and y
must appear in H (see (2)b). However, we can remove all these conditions whenever the
distance between x and y is greater than τ (see (2)c).

3.1 (1, 2, d2/εe)-Locally Persevering Emulator of Size Õ(n3/2)

In the following we present the locally persevering emulator that we will use to achieve a
total update time of Õ(n5/2/ε2) for decremental approximate APSP. Roughly speaking, we
can replace the running time of Õ(mn/ε) by Õ(n5/2/ε2) because this emulator always has
Õ(n3/2) edges. However, to be technically correct, we have to use the stronger fact that the
number of edges ever contained in the emulator is Õ(n3/2), as in the following statement.

Lemma 3.3 (Existence of (1, 2, d2/εe)-locally persevering emulator with Õ(n3/2) edges).
For every 0 < ε ≤ 1 and every decremental graph G = (Gi)0≤i≤k, there is data structure
that maintains a dynamic weighted graph H = (Hi, wi)0≤i≤k in O(mn1/2 logn/ε) total time
such that H is a (1, 2, d2/εe)-locally persevering emulator with high probability. Moreover,
the number of edges ever contained in the emulator is |Ek(H)| = O(n3/2 logn), and the total
number of updates in H is φk(H) = O(n3/2 logn/ε).

We construct a dynamic weighted graph H = (Hi, wi)0≤i≤k as follows. Pick a set D
of nodes by including every node independently with probability (a lnn)/

√
n for a large

enough constant a. Note that the size of D is O(
√
n logn) in expectation. It is well known

that by this type of sampling every node with degree more than
√
n has a neighbor in D

with high probability (see, e.g., [UY91, DHZ00]); i.e., D dominates all high-degree nodes.
This is even true for every version Gi of a decremental graph G = (Gi)0≤i≤k. For every

26

0 ≤ i ≤ k, we define that the graph Hi contains the following two types of edges. For every
node x ∈ D and every node y such that dGi(x, y) ≤ d2/εe+ 1, Hi contains an edge (x, y) of
weight dGi(x, y). For every node x such that degGi

(x) ≤
√
n, Hi contains every edge (x, y)

of Gi.13 Note that as edges are deleted from G, distances between nodes might increase,
which in turn increases the weights of the corresponding edges in H. When the distance
between x and y in G exceeds d2/εe+ 1, the edge (x, y) is deleted from H.

In the following we prove Lemma 3.3 by arguing that the dynamic graph H described
above has the following four desired properties:

• H is a (1, 2, d2/εe)-locally persevering emulator of G.

• The expected number of edges ever contained in the emulator is |Ek(H)| = O(n3/2 logn).

• The expected total number of updates in H is φk(H) = O(n3/2 logn/ε).

• The edges of H can be maintained in expected total time O(mn1/2 logn/ε) for k
deletions in G.

The last item refers to the time needed to determine, after every deletion in G, which edges
are contained in H and what their weights are.

Lemma 3.4 (Locally persevering). The dynamic graph H described above is a (1, 2, d2/εe)-
locally persevering emulator of G with high probability.

Proof. Let t ≤ k, and let x and y be a pair of nodes. We first argue that dGt(x, y) ≤
dHt,wt(x, y). It is clear from the construction of (Ht, wt) that every edge in (Ht, wt) corre-
sponds to an edge in Gt or to a path in Gt. Therefore no path in (Ht, wt) from x to y can
be shorter than the distance dGt(x, y) of x to y in Gt.

We now argue that H fulfills the second part of the definition of a (1, 2, d2/εe)-locally
persevering emulator of G. Assume that dGt(x, y) ≤ d2/εe and that no shortest path from
x to y in Gt is also contained in (Ht, wt). Let π be an arbitrary shortest path from x to
y in Gt. Since π is not contained in Ht, there must be some edge (u, v) on π such that
(u, v) /∈ E(Ht). This can only happen if u has degree more than

√
n in Gt. With high

probability u has a neighbor z ∈ D in Gt (see, e.g., [UY91, DHZ00]). Now consider any i ≤ t.
Note that dGt(x, u) ≤ dGt(x, y) ≤ d2/εe and that dGi(x, z) ≤ dGt(x, z) because distances
never decrease in a decremental graph. By the triangle inequality we get

dGi(x, z) ≤ dGt(x, z) ≤ dGt(x, u) + dGt(u, z) ≤ d2/εe+ 1 .

Therefore, for every i ≤ t, Hi contains an edge (x, z) of weight wi(x, z) = dGi(x, z), which
means that the edge (x, z) is persevering up to time t. The same argument shows that Hi

also contains an edge (z, y) of weight wi(z, y) = dGi(z, y) for every i ≤ t; i.e., (z, y) is also
persevering up to time t. Now consider the path π′ in Ht consisting of the edges (x, z) and

13Our construction is very similar to the classic (1, 2)-emulator given by Dor, Halperin, and Zwick [DHZ00].
The main difference is that we can only insert edges of limited weight into the emulator; in particular, we
only have edges of weight O(1/ε) in the emulator. One reason for this choice is that it is not known whether
the (1, 2)-emulator of Dor et al. can be maintained in Õ(mn) time under edge deletions.

27

(z, y). Since both edges are persevering up to time t, also the path π′ is persevering up to
time t. Furthermore, π′ guarantees the desired approximation:

wt(π′) = wt(x, z) + wt(z, y) = dGt(x, z) + dGt(z, y)
≤ dGt(x, u) + dGt(u, z) + dGt(z, u) + dGt(u, y)
= dGt(x, u) + dGt(u, y) + 2
= dGt(x, y) + 2 .

To explain the last equation, remember that u lies on a shortest path from x to y and
therefore dGt(x, y) = dGt(x, u) + dGt(u, y). Thus, H is a (1, 2, d2/εe)-locally persevering
emulator of G.

Lemma 3.5 (Number of edges). The number of edges ever contained in the dynamic graph
H is |Ek(H)| = O(n3/2 logn) in expectation.

Proof. Every edge in Hi either was inserted at some time or is an edge that is also contained
in H0. Thus, it is sufficient to bound the number of inserted edges and the number of edges
in H0 by O(n3/2 logn).

We first show that the number of edges in H0 is |E(H0)| = O(n3/2 logn). We can charge
each edge in H0 either to a node in D or to a node with degree at most

√
n. For every node

x ∈ D there might be O(n) edges adjacent to x in H0. Since there are O(
√
n logn) many

nodes in D, the number of edges charged to these nodes is O(n3/2 logn). For nodes with
degree at most

√
n there are O(

√
n) edges adjacent to x in H0. Since there are O(n) such

nodes, the number of edges charged to these nodes is O(n3/2). In total, we get

|E(H0)| = O(n3/2 logn) +O(n3/2) = O(n3/2 logn) .

We now show that the number of edges inserted into H over all deletions in G is O(n3/2).
Every time the degree of a node x changes from degGi

(x) >
√
n to degGi+1(x) =

√
n (for

some 0 ≤ i < k) we insert all
√
n edges adjacent to x in Gi+1 into Hi+1. In a decremental

graph it can happen at most once for every node that the degree of a node drops to
√
n.

Therefore at most n3/2 edges are inserted in total.

Lemma 3.6 (Number of updates). The total number of updates in the dynamic graph H
described above is φk(H) = O(n3/2 logn/ε) in expectation.

Proof. Only the following kinds of updates appear in H: edge insertions, edge deletions, and
edge weight increases. Every edge that is inserted or deleted has to be contained in H at
some time. Thus, we can bound the number of insertions and deletions by |Ek(H)|, which is
O(n3/2 logn) by Lemma 3.5

It remains to bound the number of edge weight increases by O(n3/2 logn/ε). All weighted
edges are incident to at least one node in D. The maximum weight of these edges is d2/εe+ 1
and the minimum weight is 1. As all edge weights are integer, the weight of such an edge
can increase at most d2/εe + 1 times. As there are O(

√
n logn) nodes in D, each having

O(n) weighted edges, the total number of edge weight increases is O(n3/2 logn/ε).

Lemma 3.7 (Running time). The edges of the dynamic graph H described above can be
maintained in expected total time O(mn1/2 logn/ε) over all k edge deletions in G.

28

Proof. We use the following data structures: (A) For every node, we maintain its incident
edges in H with a dynamic dictionary using dynamic perfect hashing [DKM+94] or cuckoo
hashing [PR04]. This graph representation allows us to perform insertions and deletions of
edges as well as edge weight increases. (B) For every node x, we maintain the degree of x
in G. (C) For every node x ∈ D we maintain a (classic) ES-tree (see Section 2.2) rooted at x
up to distance d2/εe+ 1.

We now explain how to process the i-the edge deletion in G of, say, the edge (u, v). First,
we update (B) by decreasing the number that stores the degree of u in G and then do the
same for v. If the degree of u (or v) drops to

√
n, we insert all edges incident to u (or v) in

Gi into Hi in (A). After this procedure, for every node x ∈ D, we do the following to update
(C): First of all, we report the deletion of (u, v) to the ES-tree rooted at x. Every node y
has a level in this ES-tree. If the level of y increases to ∞, then dGi(x, y) > d2/εe+ 1 and
therefore we remove the edge (x, y) from H in (A). If the level of y increases, but does not
reach ∞, then dGi(x, y) ≤ d2/εe+ 1 and we update the weight of the edge (x, y) in (A).

We can perform each deletion, insertion, and edge weight increase in expected amortized
constant time. As there are O(n3/2 logn/ε) updates in H in expectation by Lemma 3.6,
the expected total time for maintaining (A) is O(n3/2 logn/ε). We need constant time per
deletion in G to update (B) and thus time O(m) in total. Maintaining the ES-tree takes
total time O(m/ε) for each node in D (see Section 2.2). Since in expectation there are
O(n1/2 logn) nodes in D, the expected total time for maintaining (A) is O(mn1/2 logn/ε)
in total.

Thus, the expected total update time for maintaining H under deletions in G is
O(n3/2 logn/ε+m+mn1/2 logn/ε), which is O(mn1/2 logn/ε).

3.2 Maintaining Distances Using Monotone Even–Shiloach Tree

In this section, we show how to use a locally persevering emulator to maintain the distances
from a specific node r (called root) to all other nodes, up to distance Rd, for some parameter
Rd. The hope of using an emulator is that the total update time will be smaller since an
emulator has a smaller number of edges. In particular, recall that if we run an ES-tree on
an input graph, the total update time is Õ(mRd). Now consider running an ES-tree on
an emulator H instead; we might hope to get a running time of Õ(m′Rd), where m′ is the
number of edges ever appearing in H. This is beneficial when m′ � m (for example, the
emulator we construct in the previous section has m′ = Õ(n1.5), which is less than m when
the input graph is dense). The main result of this section is that we can achieve exactly this
when H is a locally-persevering emulator, and we run a variant of the ES-tree called the
monotone ES-tree on H.

Lemma 3.8 (Monotone ES-tree + Locally Persevering Emulator). For every distance range
parameter Rd, every source node r, and every decremental graph G = (Gi)0≤i≤k with an
(α, β, τ)-locally persevering emulator H = (Hi, wi)0≤i≤k, the monotone ES-tree on H is an
(α+ β/τ, β)-approximate decremental SSSP data structure for G. It has constant query time
and a total update time of

O(φk(H) + |Ek(H)| · ((α+ β/τ)Rd + β)) ,

where φk(H) is the total number of updates in H up to time k and Ek(H) is the set of all
edges ever contained in H up to time k.

29

Note that we need to modify the ES-tree because although the input graph undergoes
only edge deletions, the emulator might have to undergo some edge insertions. If we
straightforwardly extend the ES-tree to handle insertions, we will have to keep the level of
any node y at `(y) = minz(`(z) + w(y, z)) as in Line 15 of Algorithm 1. This might cause
the level `(y) of some node y in the ES-tree to decrease. This destroys the monotonicity of
levels of nodes, which is the key to guaranteeing the running time of the ES-tree, as shown
in Section 2.2. The monotone ES-tree is a variant that insists on keeping the nodes’ levels
monotone (thus the name); it never decreases the level of any node.

Implementation of Monotone ES-Tree. Our monotone ES-tree data structure is a
modification of the ES-tree, which always maintains the level `(x) of every node x in a
shortest paths tree rooted at r up to depth Rd, as presented in Section 2.2. Algorithm 2 shows
the pseudocode of the monotone ES-tree. Our modification can deal with edge insertions,
but does this in a monotone manner: it will never decrease the level of any node. In doing so,
it will lose the property of providing a shortest paths tree of the underlying dynamic graph,
which in our case is the emulator H. However, due to special properties of the emulator, we
can still guarantee that the level provided by the monotone ES-tree is an approximation of
the distance in the original decremental graph G. The distance estimate provided for a node
x is the level of x in the monotone ES-tree.

The overall algorithm now is as follows (see Algorithm 2 for details). We initialize the
monotone ES-tree by computing a shortest paths tree in the emulator H0 up to depth
(α+ β/τ)Rd + β. For every node x in this tree we set `(x) = dH0(x, r), and for every other
node x we set `(x) =∞. Starting with these levels, we maintain an ES-tree rooted at r up to
depth (α+ β/τ)Rd + β on the graph H. This ES-tree alone cannot deal with edge insertions
and edge weight increases. Our additional procedure that is called after the insertion of an
edge (u, v) only updates the value of v in the heap N(u) of u to `(v) +w(u, v). In particular,
the level of u is not changed after such an insertion.

Order of Updates. Before we start analyzing our algorithm we clarify a crucial detail
about the order of updates in the locally persevering emulator H. Consider an edge deletion
in the graph Gi that results in the graph Gi+1. In the emulator H, it might be the case that
several updates are necessary to obtain (Hi+1, wi+1) from (Hi, wi). There could be several
insertions, edge weight increases, and edge deletions at once.14 Our algorithm will process
these updates (using the monotone ES-tree) in a specific order: First, it processes the edge
insertions, one after the other. Afterward, we process the edge deletions and edge weight
increases (also one after the other). This order is crucial for the correctness of our algorithm.

Analysis. We first argue about the correctness of the monotone ES-tree and afterward
argue about its running time. In the following we let `i(u) be the level of u in the monotone
ES-tree after it has processed the i-th edge deletion in G (which could mean that it has
processed a whole series of insertions, weight increases, and deletions of the emulator H).
Remember that (Hi, wi) denotes the emulator after all updates caused by the i-th deletion in
G. We say that an edge (u, v) is stretched if `i(u) 6=∞ and `i(u) > `i(v) + wi(u, v). We say

14We could also allow edge weight decreases and handle them in exactly the same way as edge insertions.
For simplicity, we omit this case from our description.

30

31

Algorithm 2: Monotone ES-tree
// The algorithm is like the usual ES-tree (Algorithm 1) with three modifications:

1. The algorithm runs on H = (H0, H1, . . .) instead of G.

2. The depth of the tree is (α+ β/τ)Rd + β instead of Rd

3. There are additional procedures for the insertion of edges and edge weight increases.

// Procedures Delete() and Increase() are the same as before.
// Line numbers in the form i* indicate lines that are different from Algorithm 1.

Blue color marks the changes.
1 Procedure Initialize()

2* Compute shortest paths tree from r in (H0, w0) up to depth (α+ β/τ)Rd + β
3 foreach node u do

4* Set `(u) = dH0(u, r)
5 for every edge (u, v) do insert v into heap N(u) of u with key `(v) + w(u, v)

6 Procedure Insert(u, v, w(u, v))
7 Insert v into heap N(u) with key `(v) + w(u, v) and u into heap N(v) with key

`(u) + w(u, v)

8 Procedure UpdateLevels()
9 while heap Q is not empty do

10 Take node y with minimum key `(y) from heap Q and remove it from Q
11 `′(y)← minz(`(z) + w(y, z))

// minz(`(z) + w(y, z)) can be retrieved from the heap N(y).
arg minz(`(z) + w(y, z)) is y’s parent in the ES-tree.

12 if `′(y) > `(y) then
13 `(y)← `′(y)

14* if `′(y) > (α+ β/τ)Rd + β then `(y)←∞
15 foreach neighbor x of y do
16 update key of y in heap N(x) to `(y) + w(x, y)
17 insert x into heap Q with key `(x) if Q does not already contain x

that a node u is stretched if it is incident to an edge (u, v) that is stretched. Note that for a
node u that is not stretched we either have `i(u) =∞ or `i(u) ≤ `i(v) + wi(u, v) for every
edge (u, v) ∈ E(Hi). Our analysis uses four simple observations about the algorithm. (Recall
that a tree edge is an edge between any node y and its parent as in Line 11 of Algorithm 2;
i.e., it is an edge (y, z′) for some node z′ = arg minz(`(z) + w(y, z)).)

Observation 3.9. The following holds for the monotone ES-tree:

(1) The level of a node never decreases.

(2) An edge can only become stretched when it is inserted.

(3) As long as a node x is stretched, its level does not change.

(4) For every tree edge (u, v) (where v is the parent of u), `(u) ≥ `(v) + w(u, v).

Proof. The only places in the algorithm where the level of a node is modified are in Line 4
during the initialization and in Line 13. The if-condition in Line 12 guarantees that the
level of a node never decreases and thus (1) holds. Furthermore, whenever the level of a
node y increases in Line 13 we have `(y) = minz(`(z) + w(y, z)) ≤ `(z′) + w(y, z′) for every
neighbor z′ of y. Thus, after such a level increase the edge (y, z′) is nonstretched for every
neighbor z′ of y, and so is the node y.

To prove (2), consider an edge (x, y) that becomes stretched. This can only happen if the
edge (x, y) was not contained in the graph before and is inserted or if the edge changes from
nonstretched to stretched. When (x, y) is nonstretched we have `(x) ≤ `(y) + w(x, y). For
(x, y) to become stretched (i.e., for `(x) > `(y) +w(x, y) to hold) either the left-hand side of
this inequality has to increase or the right-hand side has to decrease. When the left-hand
side increases, the level of x changes and, as argued above, this implies that (x, y) will be
nonstretched. As the level of y is nondecreasing, the right-hand side can only decrease when
the weight of the edge (x, y) decreases. This can only happen after inserting this edge with
a smaller weight.

We now prove (3). Consider a node x that is stretched. As long as it is stretched, the
level of x does not increase because, as argued above, each level increase immediately makes
x nonstretched.

Finally, we prove (4). Consider an edge (u, v) such that v is the parent of u. It is easy
to see that `(u) ≥ `(v) + w(u, v) as long as v stays the parent of u because the level of u
increases if and only if the level of v or the weight of the edge (u, v) increases. In such a
case we have `(u) = `(v) + w(u, v). The only other possibility for the right-hand side of the
inequality to change is when the weight of the edge (u, v) decreases, which can happen after
an insertion. But decreasing this value does not invalidate the inequality.

We now prove that the monotone ES-tree provides an (α+ β/τ, β)-approximation of the
true distance if it runs on an (α, β, τ)-locally persevering emulator. We use an inductive
argument to show that, after having processed the i-th deletion of an edge in G, the level
of every node x is a (α + β/τ, β)-approximation of the distance of x to the root, i.e.,
dGi(x, r) ≤ `i(x) ≤ (α+ β/τ)dGi(x, r) + β. The intuition why this should be correct is as
follows: If the monotone ES-tree gives the desired approximation before a deletion in G and
the deletion does not cause an edge in H to become stretched, then the structure of the

32

monotone ES-tree is similar to the ES-tree, and the same argument that we use for the
ES-tree should show that the monotone ES-tree still gives the desired approximation. If,
however, an edge becomes stretched in H, then the level of the affected node does not change
anymore and, thus, as distances in decremental graphs never decrease, we should still obtain
the desired approximation. This intuition is basically correct, but the correctness proof also
requires the emulator to be persevering, as a persevering path does not contain any inserted
edge and, thus, no stretched edges.

Remember that processing an edge deletion in G might mean processing a series of
updates in H. We will first show that the approximation guarantee holds for every node
that is stretched after the monotone ES-tree has processed the i-th deletion. Afterward we
will show that it holds for every node.

Lemma 3.10. Let 0 < i ≤ k and assume that `i−1(x′) ≤ (α + β/τ) · dGi−1(x′, r) + β for
every node x′ with `i−1(x′) 6=∞. Then `i(x) ≤ (α+ β/τ) · dGi(x, r) + β for every stretched
node x.

Proof. Here we need the assumption that the monotone ES-tree sees the updates in the
emulator caused by a single edge deletion in a specific order, namely such that all edge
insertions can be processed before the edge weight increases and edge deletions. Since x is
stretched, there must have been a previous insertion of an edge (x, y) incident to x such
that x is stretched since the time this edge was inserted (see Observation 3.9(2)). Let `′(x)
denote the level of x after the insertion of (x, y) has been processed. By Observation 3.9,
nodes do not change their level as long as they are stretched, and therefore `i(x) = `′(x).

We now show that `i(x) = `′(x) = `i−1(x). The insertion of (x, y) could either happen at
time i or at some earlier time (i.e., either it was caused by the i-th edge deletion or by a
previous edge deletion). If the insertion was caused by a previous edge deletion, we clearly
have `i−1(x) = `′(x) because the level of x has not changed since this insertion. Consider now
the case that the insertion was caused by the i-th edge deletion. Recall that all insertions
caused by the i-th deletion are processed before any other updates of the emulator are
processed. Since edge insertions do not change the level of any node, we have `′(x) = `i−1(x).
In both cases we have `′(x) = `i−1(x) and thus `i(x) = `i−1(x). Since `i(x) 6=∞, we have
`i−1(x) 6=∞. It follows that

`i(x) = `i−1(x) ≤ (α+ β/τ) · dGi−1(x, r) + β ≤ (α+ β/τ) · dGi(x, r) + β

as desired. The first inequality above follows from the assumptions of the lemma, and the
second one is because G is a decremental graph in which distances never decrease.

In order to prove the approximation guarantee for nonstretched nodes, we have to exploit
the properties of the (α, β, τ)-locally persevering emulator H. In the classic ES-tree the
level of two nodes differs by at most the weight of a path connecting them—modulo some
technical conditions that arise for ES-trees of limited depth. In the monotone ES-tree this is
only true for persevering paths (see Lemma 3.12). Before we can show this we need an even
simpler property of the monotone ES-tree: If two nodes are connected by an edge that is
not stretched, then their levels differ by at most the weight of the edge connecting them.
Again, in the classic ES-tree this holds for any edge.

33

Lemma 3.11. Consider any 0 ≤ i ≤ k and any (x, y) ∈ E(Hi). We have

`i(x) ≤ `i(y) + wi(x, y)

if `i(y) + wi(x, y) ≤ (α + β/τ)Rd + β and either (a) i = 0 or (b) i ≥ 1, `i−1(x) 6= ∞ and
(x, y) is not stretched.

Proof. Note that no edge in H0 is stretched. Thus, (x, y) is not stretched for i ≥ 0. Hence,
we either have `i(x) ≤ `i(y) + wi(x, y), as desired, or `i(x) = ∞. Thus, we only have to
argue that `i(x) 6=∞.

Assume by contradiction that `i(x) =∞. As `i−1(x) 6=∞, the level of x is not changed
while the monotone ES-tree processes the insertions in H caused by the i-th deletion in G.
Thus, the only possibility for the level to be increased to ∞ is when the monotone ES-tree
processes the edge deletions and edge weight increases. For every node v, let `′(v) and w′(u, v)
denote the level of every node v and the weight of every edge (u, v) directly after the level of
x has been increased to∞. Since `′(x) =∞ it must be the case that minz(`′(z) +w′(x, z)) >
(α+β/τ)Rd+β, and therefore also `′(y)+w′(x, y) > (α+β/τ)Rd+β. But since levels and edge
weights never decrease, we also have `′(y) + w′(x, y) ≤ `i(y) + wi(x, y) ≤ (α+ β/τ)Rd + β,
which contradicts the inequality we just derived. Therefore it cannot be the case that
`′(x) =∞.

Lemma 3.12. For every path π from a node x to a node z that (1) is persevering up to time i
and (2) has the property that `i(z) +wi(π) ≤ (α+β/τ)Rd +β, we have `i(x) ≤ `i(z) +wi(π).

Proof. The proof is by induction on i and the length of the path π. The claim is clearly
true if i = 0 or the path has length 0. Consider now the induction step. Let (x, y)
denote the first edge on the path. Let π′ denote the subpath of π from y to z. Note that
`i(z) + wi(π′) ≤ `i(z) + wi(π) ≤ (α+ β/τ)Rd + β. Therefore we may apply the induction
hypothesis on y and get that `i(y) ≤ `i(z) + wi(π′). Thus, we get

`i(y) + wi(x, y) ≤ `i(z) + wi(π′) + w(x, y) = `i(z) + wi(π) ≤ (α+ β/τ)Rd + β .

By the definition of persevering paths, every edge (u, v) on π has always existed in H since
the beginning. Therefore the edge (x, y) has never been inserted which means that (x, y) is
not stretched by Observation 3.9(2). Since levels and edge weights are nondecreasing we have
`i−1(z) +wi−1(π) ≤ `i(z) +wi(π) ≤ (α+ β/τ)Rd + β. By the induction hypothesis for i− 1
this implies that `i−1(x) ≤ `i−1(z) + wi−1(π) 6= ∞. We therefore may apply Lemma 3.11
and get that `i(x) ≤ `i(y) + wi(x, y) ≤ `i(z) + wi(π).

Using the property above, we would ideally like to do the following: Split a shortest path
from x to the root r into subpaths of length ≤ τ and replace each subpath by a persevering
path such that the length of each subpath and the persevering path by which it is replaced
are approximately the same. Repeated applications of the inequality of Lemma 3.12 would
then allow us to bound the level of x. However, this approach alone does not work because
the definition of a locally persevering emulator does not always guarantee the existence of
a persevering path. Instead of a persevering path, the locally persevering emulator might
also provide us with a shortest path of Gi that is contained in the current emulator Hi. In
principle this is a nice property because a shortest path is even better than an approximate

34

shortest path. But the problem now is that nodes on this path could be stretched and only
for nonstretched nodes can the difference in levels of two nodes be bounded by the weight of
the edge between them. We can resolve this issue by induction on the distance to r, which
allows us to use the contained path only partially.

Lemma 3.13 (Correctness). For every node x and every 0 ≤ i ≤ k, `i(x) ≥ dGi(x, r), and
if dGi(x, r) ≤ Rd, then `i(x) ≤ (α+ β/τ) · dGi(x, r) + β.

Proof. We start with a proof of the first inequality, `i(x) ≥ dGi(x, r). Consider the (weighted)
path π from x to the root r in the monotone ES-tree. Recall that the parent of node v is a node
u = arg minz(`(z) +w(y, z)) as in Line 11 in Algorithm 2. For every edge (u, v) on this path,
where v is the parent of u, we have `i(u) ≥ `i(v)+wi(u, v) by Observation 3.9(4). By repeated
applications of this inequality for every edge on π we get `i(x) ≥ wi(π) + `i(r) = wi(π)
(since the level of the root r is always 0). Since π is a path in Hi we have wi(π) ≥ dGi(x, r)
because a locally persevering emulator never underestimates the true distance by definition.

We now prove the second inequality, `i(x) ≤ (α + β/τ) · dGi(x, r) + β if dGi(x) ≤ Rd.
The proof is by induction on i and the distance of x to r in Gi.

The claim is clearly true if x is the root node r itself. If i ≥ 1, then note that
dGi−1(x, r) ≤ dGi(x, r) ≤ Rd, and therefore, by the induction hypothesis for i− 1, we have
`i−1(x) 6=∞. Therefore we may apply Lemma 3.10, which means that the desired inequality
holds if x is stretched. Thus, from now on we assume that x 6= r and that x is not stretched.
We distinguish two cases.

Case 1: Consider first the case that there is a shortest path from x to r in Gi such that
its first edge (x, y) is contained in (Hi, wi). Note that dGi(y, r) < dGi(x, r). Therefore we
may apply the induction hypothesis, and by doing so we get `i(y) ≤ (α+ β/τ)dGi(y, r) + β.
We now want to argue that `i(x) ≤ `i(y) +wi(x, y) by applying Lemma 3.11. The edge (x, y)
is contained in (Hi, wi) with weight wi(x, y) = dGi(x, y), and thus

`i(y) + wi(x, y) = `i(y) + dGi(x, y) ≤ (α+ β/τ) · dGi(y, r) + β + dGi(x, y)
≤ (α+ β/τ) · (dGi(x, y) + dGi(y, r)) + β

= (α+ β/τ) · dGi(x, r) + β (1)
≤ (α+ β/τ) ·Rd + β . (2)

Remember that (x, y) is not stretched and if i ≥ 1, then `i−1(x) 6= ∞ (as argued above).
Using (2) we may now apply Lemma 3.11 and, together with (1), get that

`i(x) ≤ `i(y) + wi(x, y) ≤ (α+ β/τ) · dGi(x, r) + β

as desired.
Case 2: Consider now the case that for every shortest path from x to r in Gi its first

edge is not contained in (Hi, wi). Define the node z as follows. If dGi(x, r) < τ , then z = r.
If dGi(x, r) ≥ τ , then z is a node on a shortest path from x to r in Gi whose distance to x is
τ , i.e., dGi(x, z) = τ and dGi(x, r) = dGi(x, z) + dGi(z, r). In both cases there is no shortest
path from x to z in Gi that is also contained in (Hi, wi) because every shortest path from
x to z can be extended to a shortest path from x to r in Gi and (Hi, wi) does not contain
the first edge of such a path. Since H is an (α, β, τ)-locally persevering emulator, we know

35

that there is a path π from x to z in (Hi, wi) that is persevering up to time i such that
wi(π) ≤ αdGi(x, z) + β.

If z = r, we have `i(z) = 0, and therefore we get

`i(z) + wi(π) = wi(π) ≤ αdGi(x, z) + β ≤ (α+ β/τ) · dGi(x, r) + β

≤ (α+ β/τ) ·Rd + β

as desired. Consider now the case that z 6= r. Since dGi(z, r) < dGi(x, r), we may apply
the induction hypothesis on z and get that `i(z) ≤ (α+ β/τ) · dGi(z, r) + β. Together with
dGi(x, z) = τ , we get

`i(z) + wi(π) ≤ (α+ β/τ) · dGi(z, r) + β + αdGi(x, z) + β

= (α+ β/τ) · dGi(z, r) + β + αdGi(x, z) + β · dGi(x, z)/τ
= (α+ β/τ) · dGi(z, r) + β + (α+ β/τ) · dGi(x, z)
= (α+ β/τ) · (dGi(x, z) + dGi(z, r)) + β

= (α+ β/τ) · dGi(x, r) + β

≤ (α+ β/τ) ·Rd + β .

The last equation follows from the definition of z.
In both cases we have `i(z) + wi(π) ≤ (α+ β/τ) ·Rd + β. Since π is persevering up to

time i, we may apply Lemma 3.12 and get the following approximation guarantee:

`i(x) ≤ `i(z) + wi(π) ≤ (α+ β/τ) · dGi(x, r) + β .

Finally, we provide the running time analysis. In principle we use the same charging
argument as for the classic ES-tree. We only have to deal with the fact that the degree of a
node might change over time in the dynamic emulator.

Lemma 3.14 (Running Time). For k deletions in G, the monotone ES-tree has a total
update time of O(φk(H) logn+ |Ek(H)| · ((α+ β/τ)Rd + β) logn), where Ek(H) is the set
of all edges ever contained in H up to time k.

Proof. We first bound the time needed for the initialization. Using Dijkstra’s algorithm, the
shortest paths tree can be computed in time O(|E(H0)|+n logn), which is O(|Ek(H)| logn).

We now bound the time for processing all edge deletions in G. Remember that the
monotone ES-tree runs on the emulator H. An edge deletion in G could result in several
updates in the emulator H. All of these updates have to be processed by the monotone
ES-tree with time O(logn) per update plus the time needed for running the procedure
UpdateLevels. Therefore the total update time is O(φk(H) logn), where φk(H) is the
total number of updates in H, plus the cumulated time for updating the levels in procedure
UpdateLevels.

We now bound the running time of the procedure UpdateLevels. Here, the well-
known level-increase argument works. We define the dynamic degree of a node x by
degH(x) = |{(x, y) | (x, y) ∈ Ek(H)}|. Clearly, the dynamic degree never underestimates the
current degree of a node in the emulator. We charge time O(degH(x) log(x)) to every level
increase of a node x and time O(logn) to every update in H.

36

We now argue that this charging covers all costs in the procedure UpdateLevels.
Consider a node x that is processed in the while-loop of the procedure UpdateLevels
after some update in the emulator. Now the following holds: If the level of x increases, the
monotone ES-tree has to spend time O(degH(x) log(x)) because degH(x) bounds the current
degree of x in the emulator. If the level of x does not increase, the monotone ES-tree has
to spend time O(logn). We now only have to argue that the cost of O(logn) in the second
case is already covered by our charging scheme.

There are two possibilities explaining why x is in the heap. The first one is that x is
processed directly after the deletion or weight increase of an edge (x, y). The second one
is that it was put there by one of its neighbors. In the first situation we can charge the
running time of O(logn) to the weight increase (or delete) operation. Consider now the
second situation: the level of a node y increases and its neighbor x is put into the heap for
later processing. Later on x is processed but its level does not increase. Then we can charge
the running time of O(logn) to the time O(degH(x) logn) that we already charge to y.

Since the monotone ES-tree is only maintained up to depth (α+ β/τ)Rd + β, at most
(α + β/τ)Rd + β level increases are possible for every node. Thus, the total update time
of the monotone ES-tree is O(φk(H) logn+

∑
x∈U degH(x)((α+ β/τ)Rd + β) logn). Since∑

x∈U degH(x) ≤ 2|EH(U)|, the total update time is O(φk(H) + EH(U)((α + β/τ)Rd +
β) logn).

Eliminating the logn-factor. The factor logn in the running time of Lemma 3.14 comes
from using a heap Q and, for every node u, a heap N(u). We now want to avoid using these
heaps and only charge O(degH(u)) to every level increase of a node u and time O(1) to
every update in H. King [Kin99] explained how to eliminate the logn-factor for the classic
ES-tree. However, we cannot use the same modified data structures as King because of the
possibility of insertions and edge weight increases.

First we explain how to avoid the heap Q. Observe that every time we increase the level
of a node, it suffices to increase the level by only 1. Thus, instead of a heap for Q we can
also use a simple queue, implemented with a list that allows us to retrieve and remove its
first element and to append an element at its end.

Now we explain how to avoid the heap N(u) of every node u. Remember that we only
want to increase the level of a node u if there is no neighbor v of u such that

`(v) + w(u, v) ≤ `(u) . (5)

Therefore we maintain a counter c(u) for every node u such that c(u) = |{v | `(v) +w(u, v) ≤
`(u)}|.15 If the counters are correctly maintained, we can simply check whether c(u) is
0 to determine whether the level of u has to increase (which replaces Lines 11 and 12 of
Algorithm 2). For a node u and its neighbor v the status of Inequality (5) only changes (i.e.,
the inequality starts or stops being satisfied) in the following cases:

• The level of u or the level of v increases.

• The weight of the edge (u, v) increases.
15The idea of maintaining this kind of counter has previously been used by Brim et al. [BCD+11] in the

context of mean-payoff games.

37

• The edge (u, v) is inserted (thus v becomes a neighbor of u).

• The edge (u, v) is deleted (thus v stops being a neighbor of v).

Note that for two nodes u and v we can check whether they satisfy Inequality (5) in constant
time. Thus, we can efficiently maintain the counters as follows:

• Every time we update an edge (u, v) (by an insertion, deletion, or weight increase), we
check in constant time whether Inequality (5) holds before the update and whether it
holds after the update. Then we increase or decrease c(v) and c(u) if necessary. These
operations take constant time, which we charge to the update in H.

• Every time `(u) increases, we recompute c(u). This takes time O(degH(u)). Further-
more, for every neighbor v of u, we check in constant time whether Inequality (5)
holds before the update and whether it holds after the update. Then we increase or
decrease c(v) if necessary. This takes constant time for every neighbor of u and thus
time O(degH(u)) for all of them. We can charge the running time O(degH(u)) to the
level increase of u.

Having explained how to maintain the counters, the remaining running time analysis is
the same as in Lemma 3.14. The improved running time can therefore be stated as follows.

Lemma 3.15 (Improved Running Time). For k deletions in G, the monotone ES-tree can
be implemented with a total update time of O(φk(H) + |Ek(H)| · ((α+ β/τ)Rd + β)), where
Ek(H) is the set of all edges ever contained in H up to time k.

Note that the solution proposed above does not allow us to retrieve the parent of every
node in the tree in constant time. This would be desirable because then, for every node v,
we could not only get the approximate distance of v to the root in constant time, but also a
path of corresponding or smaller length in time proportional to the length of this path.

We can achieve this property as follows. For every node u we maintain a list L(u) of
nodes. Every time a node u and one of its neighbors v start to satisfy Inequality (5), v
is appended to L(u). Note that it is not always the case that u and all nodes v in the
list L(u) satisfy Inequality (5). We just have the guarantee that they satisfied it at some
previous point in time. However, the converse is true: If u and its neighbor v currently
satisfy Inequality (5), then v is contained in L(u). Using the same argument as above for
maintaining the counters, the running time for appending nodes to the lists is paid for by
charging O(1) to every update in H and O(degH(u)) to every level increase of a node u.

We can now decide whether the level of a node u has to increase as follows (this replaces
Lines 11 and 12 of Algorithm 2). Look at the first node v in the list L(u). If u and v
still satisfy Inequality (5), the level of u does not have to increase. Otherwise, we retrieve
and remove the first element from the list until we find a node v such that u and v satisfy
Inequality (5). If no such node v can be found in the list, then the list will be empty after
this process and we know that the level of u has to increase. Otherwise, the first node in the
list L(u) serves as the parent of u in the tree. The constant running time for reading and
removing the first node can be charged to the previous appending of this node to L(u).

Note that the list L(u) of each node u might require a lot of space because some nodes
might appear several times. If we want to save space, we can do the following. For every

38

node u we maintain a set S(u) that stores for every neighbor of u whether it is contained in
L(u). Every time we add or remove a node from L(u) we also add or remove it from S(u).
Before adding a node to L(u) we additionally check whether it is already contained in S(u)
and thus also in L(u). We implement S(u) with a dynamic dictionary using dynamic perfect
hashing [DKM+94] or cuckoo hashing [PR04]. This data structure needs time O(1) for
look-ups and expected amortized time O(1) for insertions and deletions. Thus, the running
time bound of Lemma 3.15 will still hold in expectation. Furthermore, for every node u,
the space needed for L(u) and S(u) is bounded by O(degH(u)). However, this solution is no
longer deterministic.

3.3 From Approximate SSSP to Approximate APSP

In the following, we show how a combination of approximate decremental SSSP data
structures can be turned into an approximate decremental APSP data structure. We follow
the ideas of Roditty and Zwick [RZ12], who showed how to obtain approximate APSP from
exact SSSP. We remark that one can obtain an efficient APSP data structure from this
reduction, if the running time of the (approximate) SSSP data structure depends on the
distance range that it covers in a specific way.

We first define an approximate version of the center cover data structure and show how
such a data structure can be obtained from an approximate decremental SSSP data structure
by marginally worsening the approximation guarantee. We slightly modify the notions of a
center cover and a center cover data structure we gave in Section 2.3, where we reviewed
the algorithmic framework of Roditty and Zwick [RZ12]. The main idea behind their APSP
data structure is to maintain logn instances of center cover data structures such that the
instance p can answer queries for the approximate distance of two nodes x and y if the
distance between them is in the range from 2p to 2p+1. Arbitrary distance queries can then
be answered by performing a binary search over the instances to determine p. We will follow
this approach using approximate instead of exact data structures.

Definition 3.16 (Approximate center cover). Let U be a set of nodes in a graph G, let
Rc be a positive integer, the cover range, and let α ≥ 1 and β ≥ 0. We say that a node x
is (α, β)-covered by a node c ∈ U in G if dG(x, c) ≤ αRc + β. We say that U is an (α, β)-
approximate center cover of G with parameter Rc if every node x that is in a connected
component of size at least Rc is (α, β)-covered by some node c ∈ U in G.

Definition 3.17. An (α, β)-approximate center cover data structure with cover range
parameter Rc and distance range parameter Rd for a decremental graph G = (Gi)0≤i≤k
maintains, for every 0 ≤ i ≤ k, a set of centers Ci = {1, 2, . . . , l} and a set of nodes
Ui = {c1

i , c
2
i , . . . , c

l
i} such that Ui is an (α, β)-approximate center cover of Gi with parameter

Rc. For every center j ∈ Ci and every 0 ≤ i ≤ k, we call cji the location of center j in Gi
and for every node x we say that x is (α, β)-covered by j in Gi if x is (α, β)-covered by cji in
Gi. After the i-th edge deletion (where 0 ≤ i ≤ k), the data structure provides the following
operations:

• Delete(u, v): Delete the edge (u, v) from Gi.

• Distance(j, x): Return an estimate δi(cji , x) of the distance between the location
cji of center j and the node x such that δi(cji , x) ≤ αdGi(c

j
i , x) + β, provided that

39

dGi(c
j
i , x) ≤ Rd. If dGi(c

j
i , x) > Rd, then either return δi(cji , x) = ∞ or return

δi(cji , x) ≤ αdGi(c
j
i , x) + β.

• FindCenter(x): If x is in a connected component of size at least Rc, then return a
center j (with current location cji) such that dGi(x, c

j
i) ≤ αRc +β. If x is in a connected

component of size less than Rc, then either return ⊥ or return a center j such that
dGi(x, c

j
i) ≤ αRc + β.

The total update time is the total time needed to perform all k delete operations and the
initialization, and the query time is the worst-case time needed to answer a single distance
or find center query.

We now show how to obtain an approximate center cover data structure that is correct with
high probability, which means that, with small probability, the operation FindCenter(x)
might return ⊥ although x is in a connected component of size at least Rc.

Lemma 3.18 (Approximate SSSP implies approximate center cover). Let Rc and Rd be
parameters such that Rc ≤ Rd. If there are (α, β)-approximate decremental SSSP data
structures with distance range parameters Rc and Rd for some α ≥ 1 and β ≥ 0 that have
constant query times and total update times of T (Rc) and T (Rd), respectively (where T (Rd)
is Ω(n)), then there is an (α, β)-approximate center cover data structure that is correct
with high probability and has constant query time and an expected total update time of
O((T (Rd)n logn)/Rc).

Proof. Let G = (Gi)0≤i≤k be a decremental graph. It is well known (see, for example,
[UY91] and [RZ12]) that, by random sampling, we can obtain a set U = {c1, c2, . . . , cl} of
expected size O(n logn/Rc) that is a center cover of Gi for every i ≤ k with high probability.
Clearly, every center cover is also an (α, β)-approximate center cover. Thus, U is an (α, β)-
approximate center cover of Gi for every 0 ≤ i ≤ k. Throughout all deletions, the set
C = {1, 2, . . . , l} will serve as the set of centers and each center j will always be located at
the same node cj .

We use the following data structures: For every center j, we maintain two (α, β)-
approximate decremental SSSP data structures with source cj : For the first one we use the
parameter Rc, and for the second one we use the parameter Rd. As there are O(n logn/Rc)
centers, the total update time for all these SSSP data structures is O(T (Rd)(n logn)/Rc).
For every node x and every center j, let δi(x, cj) denote the estimate of the distance between
x and the location of center j returned by the second SSSP data structure with source cj
after the i-th edge deletion. For every node x we maintain a set Sx of centers that cover x
such that (a) if dGi(x, cj) ≤ Rc, then j ∈ Sx and (b) for all j ∈ Sx, δi(x, cj) ≤ αRc + β.

The set Sx can be implemented by using an array of size |C| = O((n logn)/Rc) for
every node x. We initialize Sx in time O((n logn)/Rc) as follows: For every center j, we
query δ0(x, cj) and insert j into Sx if δ0(x, cj) ≤ αRc + β. Since δ0(x, cj) ≤ αdG0(x, cj) + β,
this includes every center j such that dG0(x, cj) ≤ Rc. To maintain the sets of centers, we
do the following after every deletion. Remember that for every center j, the first SSSP
data structure with source cj returns every node x such that δi(x, cj) ≤ αRc + β and
δi+1(x, cj) > αRc + β. For every such node x we remove j from Sx. Note that every
center j with δt(x, cj) > αRc + β (for 0 ≤ t ≤ k) can safely be removed from Sx because
δt(x, cj) > αRc + β implies dGt(x, cj) > Rc and dGi(x, cj) ≥ dGt(x, cj) for all i ≥ t. We

40

can charge the running time for maintaining the sets of centers to the delete operations in
the SSSP data structures. Thus, this running time is already included in the total update
time stated above. For every node x, no center is ever added to Sx after the initialization.
Thus, in the array representing Sx, we can maintain a pointer to the leftmost center time
proportional to the size of the array, which is |C| = O((n logn)/Rc).

We now show how to perform the operations of an approximate center cover data structure,
as specified in Definition 3.17, in constant time. Let i be the index of the last deletion. Given
a center j and a node x, we answer a query for the distance of x to cj by returning δi(x, cj)
from the second SSSP data structure of cj , which gives an (α, β)-approximation of the true
distance. Given a node x, we answer a query for finding a nearby center by returning any
center j in the set of centers Sx of x. If Sx is empty, we return ⊥. Note that for every center
j in Sx we know that dGi(x, cj) ≤ αRc + β, as required, because dGi(x, cj) ≤ δi(x, cj). If x
is in a connected component of size at least Rc, we can ensure that we find a center j in Sx
because, by our random choice of centers, we have dGi(x, cj) ≤ Rc for some center j with
high probability. If dGi(x, cj) ≤ Rc, then Sx contains j.

We now show why the approximate center cover data structure is useful. If one can
obtain an approximate center cover data structure, then one also obtains an approximate
decremental APSP data structure with slightly worse approximation guarantee. The proof
of this observation follows Roditty and Zwick [RZ12]. In their algorithm, Roditty and Zwick
keep a set of nodes U (which we call centers) such that every node (that is in a sufficiently
large connected component) is “close” to some node in U . To be able to efficiently find a
close center for every node, they maintain, for every node, the nearest node in the set of
centers. However, it is sufficient to return any center that is close.

Lemma 3.19 (Approximate center cover implies approximate APSP). Assume that for
all parameters Rc and Rd such that Rc ≤ Rd there is an (α, β)-approximate center cover
data structure that has constant query time and a total update time of T (Rc, Rd). Then,
for every 0 < ε ≤ 1, there is an (α+ 2εα2, 2β + 2αβ)-approximate decremental APSP data
structure with O(log logn) query time and a total update time of T̂ =

∑blognc
p=0 T (Rc

p, R
d
p),

where Rc
p = ε2p and Rd

p = αε2p + β + 2p+1 (for 0 ≤ p ≤ blognc).
The query time can be reduced to O(1) if there is an (α′, β′)-approximate decremental

APSP data structure for some constants α′ and β′ with constant query time and a total
update time of T̂ .

Proof. The data structure uses dlogne many instances where the p-th instance is responsible
for the distance range from 2p to 2p+1. For the p-th instance we maintain a center cover data
structure using the parameters Rc

p = ε2p and Rd
p = 2p+1 + αε2p + β. For every center j and

every node x, let δpi (cj , x) denote the estimate of the distance between cj and x provided by
the p-th center cover data structure. Let G = (Gi)0≤i≤k be a decremental graph and let i be
the index of the last deletion.

For every instance p, we can compute a distance estimate δ̂pi (x, y) for all nodes x and y
as follows. Using the center cover data structure, we first check whether there is some center
j with location cj that (α, β)-covers x, i.e., dGi(x, cj) ≤ αRc

p + β. If x is not (α, β)-covered
by any center, we set δ̂pi (x, y) = ∞. Otherwise we query the center cover data structure
to get estimates δpi (cj , x) and δpi (cj , y) of the distances between cj and x and between cj

41

and y, respectively. (Remember that these distance estimates might be ∞.) We now set
δ̂pi (x, y) = δpi (cj , x) + δpi (cj , y). Note that, given p, we can compute δ̂pi (x, y) in constant time.
The query procedure will rely on three properties of the distance estimate δ̂pi (x, y).

1. The distance estimate never underestimates the true distance, i.e., δ̂pi (x, y) ≥ dGi(x, y).

2. If dGi(x, y) ≥ 2p and δ̂pi (x, y) 6=∞, then δ̂pi (x, y) ≤ (α+ 2α2)dGi(x, y) + 2β + 2αβ.

3. If x is in a connected component of size at least Rc
p and dGi(x, y) ≤ 2p+1, then

δ̂pi (x, y) 6=∞.

The first property is clearly true if δ̂pi (x, y) =∞ and otherwise follows by applying the
triangle inequality (note that dGi(cj , y) ≤ δpi (cj , y) in any case):

dGi(x, y) ≤ dGi(cj , x) + dGi(cj , y) ≤ δpi (cj , x) + δpi (cj , y) = δ̂pi (x, y) .

Thus, δ̂pi (x, y) never underestimates the true distance. For the second property we remark
that if δ̂pi (x, y) 6= ∞, it must be the case that we have found a center j with location
cj that (α, β)-covers x. Therefore dGi(x, cj) ≤ αRc

p + β. Furthermore it must be the
case that δpi (x, cj) 6= ∞ and δpi (cj , y) 6= ∞, and therefore δpi (x, cj) ≤ αdGi(x, cj) + β and
δpi (cj , y) ≤ αdGi(cj , y) + β. Now simply consider the following chain of inequalities:

δ̂pi (x, y) = δpi (x, cj) + δpi (cj , y) ≤ α(dGi(cj , x) + dGi(cj , y)) + 2β
≤ α(dGi(cj , x) + dGi(cj , x) + dGi(x, y)) + 2β
= α(2dGi(cj , x) + dGi(x, y)) + 2β
≤ α(2αRc

p + 2β + dGi(x, y)) + 2β
= α(2αε2p + 2β + dGi(x, y)) + 2β
≤ α(2αεdGi(x, y) + 2β + dGi(x, y)) + 2β
= (α+ 2εα2)dGi(x, y) + 2β + 2αβ

We now prove the third property. If x is in a component of size at least Rc
p, then, with high

probability, it is covered by some center j with location cj , and we have

dGi(cj , x) ≤ αRc
p + β = αε2p + β ≤ Rd

p .

Therefore we get δpi (cj , x) ≤ αdGi(cj , x) + β <∞. Furthermore, we have

dGi(cj , y) ≤ dGi(cj , x) + dGi(x, y) ≤ αε2p + β + 2p+1 = Rd
p ,

which gives δpi (cj , y) ≤ αdGi(cj , y) + β <∞. As both of its components are not ∞, the sum
δ̂pi (x, y) = δpi (cj , x) + δpi (cj , y) is also not ∞, as desired.

A query time of O(logn) is immediate as we can simply return the minimum of all
distance estimates δ̂pi (x, y). A query time of O(log logn) is possible because of the following
idea: If dGi(x, y) 6=∞, it is sufficient to find the minimum index p such that δ̂pi (x, y) 6=∞.
This minimum index can be found by performing binary search over all logn possible indices.
Furthermore, the query time can be reduced to O(1) if there is a second (α′, β′)-approximate
decremental APSP data structure with constant query time for some constants α′ and β′.

42

We first compute the distance estimate δ′i(x, y) of the second data structure for which we
know that dGi(x, y) ∈ [δ′i(x, y)/α′ − β′, δ′i(x, y)]. Now there is only a constant number of
indices p such that {2p, . . . , 2p+1} ∩ [δ′i(x, y)/α′ − β′, δ′i(x, y)] 6= ∅. For every such index we
compute δ̂pi (x, y) and return the minimum distance estimate obtained by this process.

Finally, we show how to obtain an approximate decremental APSP data structure from
an approximate decremental SSSP data structure if the approximation guarantee is of the
form (α+ ε, β). In that case we can avoid the worsening of the approximation guarantee of
Lemma 3.18.

Lemma 3.20. Assume that for some α ≥ 1 and β ≥ 0, every 0 < ε ≤ 1, and all 0 ≤ Rd

there is an (α + ε, β)-approximate decremental SSSP data structure with distance range
parameter Rd that has constant query time and a total update time of T ′(Rd, ε). Then
there is an (α+ ε, β)-approximate decremental APSP data structure with a query time of
O(log logn) and a total update time of

T̂ =
blognc∑
p=0

(T ′(Rd
p, ε̂)n logn)/Rc

p + nT ′(R̂d, ε̂)

where ε̂ = ε/(18α2), R̂d = (4α+ 8β)/ε̂, Rc
p = ε̂2p, and Rd

p = αε̂2p + β + 2p+1 (for 0 ≤ p ≤
blognc).

The query time can be reduced to O(1) if there is an (α′, β′)-approximate decremental
APSP data structure for some constants α′ and β′ with constant query time and a total
update time of T̂ .

Proof. By combining Lemma 3.18 with Lemma 3.19 the approximate decremental SSSP
data structure implies that there is an (α̂, β̂)-approximate decremental APSP data structure
where α̂ = (α+ ε̂) + 2ε̂(α+ ε̂)2 and β̂ = 2β + 2(α+ ε̂)β. This APSP data structure has a
query time of O(log logn) and a total update time of

blognc∑
p=0

(T ′(Rd
p , ε̂)(n logn)/Rc

p .

By Lemma 3.19 the query time can be reduced to O(1) if, for some constants α′ and β′,
there is an (α′, β′)-approximate decremental APSP data structure with constant query time
and a total update time of T̂ .

The data structure above provides, for every decremental graph G = (Gi)0≤i≤k and all
nodes x and y, a distance estimate δi(x, y) such that dGi(x, y) ≤ δi(x, y) ≤ α̂dGi(x, y) + β̂
after the i-th deletion. By our choice of ε̂ = ε/(18α2) we get

α̂ = (α+ ε̂) + 2ε̂(α+ ε̂)2 ≤ α+ ε̂α2 + 2ε̂(α+ α)2 = α+ 9ε̂α2 = α+ ε/2

and
β̂ = 2β + 2(α+ ε̂)β ≤ 2β + 2(α+ 1)β = (2α+ 4)β

Thus, if dGi(x, y) ≥ (4α+ 8β)/ε, then

δi(x, y) ≤ (α+ ε/2)dGi(x, y) + (2α+ 4)β ≤ (α+ ε/2)dGi(x, y) + εdGi(x, y)/2
= (α+ ε)dGi(x, y) .

43

Additionally, we use a second approximate decremental APSP data structure to deal with
distances that are smaller than (4α+ 8β)/ε (which is less than (4α+ 8β)/ε̂). For this data
structure we simply maintain an (α+ ε̂, β)-approximate decremental SSSP data structure
for every node with distance range parameter R̂d = (4α+ 8β)/ε̂. We answer distance queries
by returning the minimum of the distance estimates provided by both APSP data structures.
As both APSP data structures never underestimate the true distance, the minimum of both
distance estimates gives the desired (α+ ε, β)-approximation.

3.4 Putting Everything Together: Õ(n5/2)-Total Time Algorithm for (1 +
ε, 2)- and (2 + ε, 0)-Approximate APSP

In the following we show how the monotone ES-tree of Lemma 3.8 together with the locally
persevering emulator of Lemma 3.3 can be used to obtain (1+ε, 2)- and (2+ε, 0)-approximate
decremental APSP data structures with Õ(n5/2/ε2) total update time. These results are
direct consequences of the previous parts of this section. We first show how to obtain
a (1 + ε, 2)-approximate decremental SSSP data structure. Using Lemma 3.20 we then
immediately obtain a (1 + ε, 2)-approximate decremental APSP data structure.

Corollary 3.21 ((1 + ε, 2)-approximate monotone ES-tree). Given the (1, 2, d2/εe)-locally
persevering emulator H of Lemma 3.3, there is a (1 + ε, 2)-approximate decremental SSSP
data structure for every distance range parameter Rd that is correct with high probability, and
has constant query time and an expected total update time of O(n3/2 logn/ε+ n3/2Rd logn),
where the time for maintaining H is not included.

Proof. Let G = (Gi)0≤i≤k be a decremental graph and let H be the (1, 2, d2/εe)-locally
persevering emulator of Lemma 3.3. By Lemma 3.8 there is an approximate decremental
SSSP data structure for every source node r and every distance range parameter Rd. Let
δi(x, r) denote the estimate of the distance between x and r provided after the i-th edge
deletion in G. By Lemma 3.8 we have dGi(x, c) ≤ δi(x, c), and furthermore, if dGi(x, c) ≤ Rd,
then

δi(x, c) ≤ (1 + 2/(d2/εe))dGi(x, c) + 2 ≤ (1 + ε)dGi(x, c) + 2 .

By Lemma 3.3, the number of edges ever contained in the emulator is |Ek(H)| = O(n3/2 logn)
and the total number of updates in H is φk(H) = O(n3/2 logn/ε). Therefore, by Lemma 3.8,
the total update time of the approximate decremental SSSP data structure is

O(φk(H) + |Ek(H)| · ((α+ β/τ)Rd + β))
= O((n3/2 logn)/ε+ (n3/2 logn) · ((1 + ε)Rd + 2))

= O((n3/2 logn)/ε+ n3/2Rd logn) .

Theorem 3.22 (Main result of Section 3: Randomized (1 + ε, 2)-approximation with
truly-subcubic total update time). For every 0 < ε ≤ 1, there is a (1 + ε, 2)-approximate
decremental APSP data structure with constant query time and an expected total update time
of O((n5/2 log3 n)/ε) that is correct with high probability.

Proof. We set ε̂ = ε/18. Let H denote the (1, 2, 2/ε̂)-locally persevering emulator of
Lemma 3.3. The total update time for maintaining H is O(mn1/2 logn/ε). Since m ≤ n2 this

44

is within the claimed total update time. By Corollary 3.21 we can useH to maintain, for every
distance range parameter Rd, a (1 + ε̂, 2)-approximate decremental SSSP data structure that
has constant query time and a total update time of T (Rd) = O((n3/2 logn)/ε+n3/2Rd logn).

Using α = 1 and β = 2, it follows from Lemma 3.20 that there is a (1 + ε, 2)-approximate
decremental APSP data structure whose total update time is proportional to

blognc∑
p=0

(T (Rd
p)n logn)/Rc

p + T (R̂d)n =

blognc∑
p=0

((n3/2 logn)/ε̂+ n3/2Rd
p logn)(n logn)/Rc

p + ((n3/2 logn)/ε̂+ n3/2R̂d logn)n

where ε̂ = ε/18, R̂d = 12/ε̂, Rc
p = ε̂2p, and Rd

p = αε̂2p + 2p+1 + 2 (for 0 ≤ p ≤ blognc). Note
that 1/ε̂ = O(1/ε), R̂d = O(1/ε), and Rd

p/R
c
p = O(1/ε). Therefore the total update time is

O((n5/2 log3 n)/ε).
The query time of the APSP data structure provided by Lemma 3.20 can be reduced to

O(1). The reason is that Bernstein and Roditty [BR11] provide, for example, a (5 + ε′, 0)-
approximate decremental APSP data structure for some constant ε′. The total update time
of this data structure is

Õ
(
n2+1/3+O(1/

√
logn)

)
which is well within O(n5/2).

The (2 + ε, 0)-approximate decremental APSP data structure now follows as a corollary.
We simply need the following observation: If the distance between two nodes is 1, then we
can answer queries for their distance exactly by checking whether they are connected by an
edge.

Corollary 3.23 (Randomized (2 + ε, 0)-approximation with truly-subcubic total update
time). For every 0 < ε ≤ 1, there is a (2 + ε, 0)-approximate decremental APSP data
structure with constant query time and an expected total update time of O((n5/2 log3 n)/ε)
that is correct with high probability.

Proof. By using the data structure of Theorem 3.22 we can, after the i-th edge deletion in a
decremental graph G = (Gi)0≤i≤k and for all nodes x and y, query for a distance estimate
δi(x, y) in constant time that satisfies

dGi(x, y) ≤ δi(x, y) ≤ (1 + ε)dGi(x, y) + 2 .

Note that if dGi(x, y) ≥ 2, then

δi(x, y) ≤ (1 + ε)dGi(x, y) + 2 ≤ (1 + ε)dGi(x, y) + dGi(x, y) = (2 + ε)dGi(x, y) .

If dGi(x, y) < 2, then we actually have dGi(x, y) ≤ 1 because Gi is an unweighted graph.
A distance of 1 simply means that there is an edge connecting x and y in Gi. Since the

45

adjacency matrix of G is maintained anyway, we can find out in constant time whether
dGi(x, y) = 1. By setting, for all nodes x and y,

δ′i(x, y) =

0 if x = y,
1 if (x, y) ∈ E(Gi),
δi(x, y) otherwise,

we get dGi(x, y) ≤ δ′i(x, y) ≤ (2 + ε)dGi(x, y). Clearly, this data structure can answer
queries in constant time by returning the distance estimate δ′i(x, y) and has the same
total update time as the (1 + ε, 2)-approximate decremental APSP data structure, namely,
O((n5/2 log3 n)/ε).

4 Deterministic Decremental (1+ε)-Approximate APSP with
Total Update Time O(mn logn)

In this section, we present a deterministic decremental (1 + ε)-approximate APSP algorithm
with O(mn logn/ε) total update time.

Theorem 4.1 (Main result of Section 4: Deterministic O((mn logn)/ε) total update time).
For every 0 < ε ≤ 1, there is a deterministic (1 + ε, 0)-approximate decremental APSP data
structure with a total update time of O((mn logn)/ε) and a query time of O(log logn).

Using known reductions, we show in Section 4.3 that this decremental algorithm implies
a deterministic fully dynamic algorithm with an amortized running time of Õ(mn/(εt) per
update and a query time of Õ(t) for every t ≤ n.

The main task in proving Theorem 4.1 is to design a deterministic version of the center
cover data structure (see Section 2.3) with a total deterministic update time of O(mnRd/Rc)
and constant query time. Once we have this data structure, Theorem 4.1 directly follows
as a corollary from Theorem 2.14. Note that we cannot use the same idea as in [RZ12] to
reduce the query time from O(log logn) to O(1). This would require a deterministic (α, β)-
approximate decremental APSP data structure for some constants α and β with constant
query time and a total update time of O((mn logn)/ε). To the best of our knowledge such a
data structure has not yet been developed.

Recall that Rc and Rd are the coverage range and distance range parameters where (a)
we want every node (in a connected component of size at least Rc) to be within distance of
at most Rc from some center, and (b) we want to maintain the distance from each center to
every node within distance at most Rd. Roditty and Zwick [RZ12], following an argument
of Ullman and Yannakakis [UY91], observed that making each node a center independently
at random with probability (a lnn)/Rc, where a is a constant and 1 ≤ Rc ≤ n, gives a
set C of centers such that with probability at least 1− n−(a−1) the conditions of a center
cover with parameter Rc are fulfilled by C in the initial graph and the expected size of C is
O((n logn)/Rc). The randomized decremental APSP algorithm of [RZ12] simply chooses
a large enough value of a so that with high probability C not only fulfills the center cover
properties with parameter Rc in the initial graph but continues to fulfill them in all the O(n2)
graphs generated during O(n2) edge deletions. This is only possible because it is assumed
that the “adversary” that generates the deletions is oblivious, i.e., does not know the location

46

of the centers. The main challenge for the deterministic algorithm is to dynamically adapt
the location and number of the centers so that (i) the center cover properties with size Rc

continue to hold, while the graph is modified, and (ii) the total cost incurred is O(mn). Once
we have such a data structure, we can use the approach of Roditty and Zwick, as discussed
in Section 2.3, to obtain an algorithm for maintaining decremental approximate shortest
paths.

The new feature of our deterministic center cover data structure is that it sometimes
moves centers to avoid opening too many centers (which are expensive to maintain). As we
described in Section 1, the key technique behind the new data structure is what we call a
moving Even–Shiloach tree. We note that the moving ES-tree is actually a concept rather
than a new implementation: we implement it in a straightforward way by building a new
ES-tree every time we have to move it. However, analyzing the total update time needs new
insights and a careful charging argument. To separate the analysis of the moving ES-tree
from the charging argument, we describe the data structure in two parts:

(1) First, in Section 4.1, we give the moving centers data structure that can answer
Distance and FindCenter queries, but needs to be told where to move a center,
when a center has to be moved. This data structure is basically an implementation of
several moving ES-trees.16

(2) Then, in Section 4.2, we show how to determine when a center (with a moving ES-tree
rooted at it) has to be moved and, if so, where it has to move.

Combining these two parts gives the center cover data structure.

4.1 A Deterministic Moving Centers Data Structure (MovingCenter)

In the following, we design a deterministic data structure, called moving centers data
structure, and analyze its cost in terms of the number of centers opened (Nopen) and the
moving distance (Dmove). When a center is created, it is given a unique identifier j. The
data structure can handle the following operations.

Definition 4.2 (Moving centers data structure). A moving centers data structure with cover
range parameter Rc and distance range parameter Rd for a decremental graph G = (Gi)0≤i≤k
maintains, for every 0 ≤ i ≤ k, a set of centers Ci = {1, 2, . . . , l} and a set of nodes
Ui = {c1

i , c
2
i , . . . , c

l
i}. For every center j ∈ C and every 0 ≤ i ≤ k, we call cji ∈ Ui the

location of center j in Gi. After the i-th edge deletion (where 0 ≤ i ≤ k), the data structure
provides the following operations:

• Delete(u, v): Delete the edge (u, v) from Gi.

• Open(x): Open a new center at node x and return the ID of the opened center for
later use.

• Move(j, x): Move the center j from its current location cji to node x.
16Later on we want to use the moving centers data structure, and not directly the moving ES-trees, because

we will need an additional operation which is not directly provided by the ES-trees (in particular, the
FindCenter operation defined in Section 4.1).

47

• Distance(j, x): Return the distance dGi(c
j
i , x) between the location cji of center j and

the node x, provided that dGi(c
j
i , x) ≤ Rd. If dGi(c

j
i , x) > Rd, then return ∞.

• FindCenter(x): Return a center j (with location cji) such that dGi(x, c
j
i) ≤ Rc. If

no such center exists, return ⊥.

The total update time is the total time needed for performing all the delete, open, and move
operations and the initialization. The query time is the worst-case time needed to answer a
single distance or find center query.

The moving centers data structure is a first step toward implementing the center cover
data structure: It can answer all query operations that are posed to the center cover data
structure, but, unlike the center cover data structure, it needs to be told where to place
the centers and where to open new centers. This information is determined by the data
structure in the next section.

In the rest of Section 4.1 we use the following notation: The decremental graph G
undergoes a sequence of k edge deletions. By Gi we denote the graph after the i-th deletion
(for 0 ≤ i ≤ k). Each deletion in the graph is reported to the moving centers data structure
by a delete operation. By Ci we denote the set of centers at the time of the i-th delete
operation, and by cji we denote the location of center j ∈ Ci at the time of the i-th delete
operation.

Definition 4.3 (Moving distance (Dmove)). The total moving distance, denoted by Dmove,
is defined as Dmove =

∑
0≤i<k

∑
j∈Ci

dGi(c
j
i , c

j
i+1).

The main result of this section is that we can maintain a moving centers data structure
in O(m(NopenR

d +Dmove)) time, as in Proposition 4.4 below. The data structure is actually
very simple: We maintain an ES-tree of depth at most Rd at every node for which we open
a center and for every node to which we move a center. Note that our algorithm treats an
ES-tree at each such node as a new tree, regardless of whether we open a center or move a
center there. While the algorithm can naively treat each ES-tree as a new one, the analysis
cannot: If we do so, we will get a total update time of O((Nopen +Nmove)mRd), where Nmove
is the total number of move-operations (since maintaining each ES-tree takes O(mRd) total
update time). Instead, we bound the cost incurred by the move-operation based on how far
a center is moved, i.e., the moving distance Dmove. This argument allows us to replace the
unfavorable term NmovemR

d by Dmovem. The deterministic center cover data structure of
Section 4.2 will generate a sequence of center open and move requests so that Dmove= O(n).
For simplifying the analysis, we state the following result under a technical assumption,
which will always be fulfilled by the intended use of the moving centers data structure in
Section 4.2.17

Proposition 4.4 (Main result of Section 4.1: deterministic moving centers data structure).
Let Rc and Rd be parameters such that Rc ≤ Rd. Under the assumption that between two
consecutive delete operations there can be at most one open or delete operation for each
center, there is a moving centers data structure with a total deterministic update time of

17Without this assumption the total update time will be O((NopenR
d +Nmove +Dmove)m), where Nopen

is the number of open-operations, Nmove is the number of move operations, and Dmove is the total moving
distance.

48

O((NopenR
d + Dmove)m), where Nopen is the number of open-operations and Dmove is the

total moving distance.18 The data structure can answer each query in constant time.

Proof. Our data structure maintains (1) an ES-tree of depth Rd rooted at every node that
currently hosts a center; and (2) for every node a doubly linked center list of centers by
which it is covered. Recall that a node is covered by a center if and only if the node is
contained in the ES-tree of depth Rc of the center. For every center j and node x we keep a
pointer of the node representing x in the ES-tree of j to the list element representing j in
the center list of x.

The data structure is updated as follows: Every time we open a center j at some node x
we build an ES-tree of depth Rd rooted at x. Additionally we add j to the center list of all
nodes covered by j and set the pointers from the ES-tree to the center lists.

When we move a center j from a node x to another node y we build an ES-tree of depth
Rd rooted at y and stop maintaining the ES-tree rooted at x. Additionally we use the
pointers from the ES-tree rooted at x into the center lists to remove j from all the center
lists of the nodes in the ES-tree rooted x. Then we add j to the suitable center lists for all
nodes in the ES-tree of y and add pointers into these lists from the ES-tree of y.

After deleting an edge we update all ES-trees of depth Rd. If a node x reaches a level
larger than Rd in the ES-tree of j, it is removed from the ES-tree of j and we use its
pointer in the ES-tree to remove j from x’s center list. The total work of this operation is
proportional to the amount of time spent updating all the ES-trees.

To answer a distance query for center j and node x we return the distance of x to the
root of the ES-tree of j. To answer a find center query for node u we simply return the first
element of the center list of node u. Both query operations take constant worst-case time.

We now bound the running time for maintaining the ES-trees of the centers. First, we
bound the initialization costs. For each open-operation and each move operation of a center
j we spend time O(m) for (re)initializing the ES-tree of center j. This leads to a total
running time of O(Nopenm+Nmovem) for all initializations, where Nmove is the total number
of move operations. Note that we can ignore every move operation that does not change the
location of any center. Every other move operation increases the total moving distance by
at least 1. Therefore we can charge the initialization cost of O(m) for moving a center to
the moving distance, which means that the quantity O(Nopenm+Nmovem) will be absorbed
by O((NopenR

d +Dmove)m), the projected total update time.
We are left to bound the time spent for processing the deletions in the ES-trees of centers.

For every center j, we denote by T (i, j) the running time for processing the i-th edge deletion
in the ES-tree of center j. Furthermore, we denote by oj the index of the delete operation
before which the center j has been opened, i.e., center j was opened before the oj-th and after
the (oj−1)-th delete operation. Remember that the set of centers never shrinks, i.e., Ci ⊆ Ck
for every 0 ≤ i ≤ k. We will show that

∑
0<i≤k

∑
j∈Ci

T (i, j) = O((NopenR
d +Dmove)m).

The basic idea is that the time spent up to deletion i for node x in the ES-tree of
center j is O(degG0(x) · dGi(x, c

j
i)). After a move operation the distance of x to the new

root cji+1 is at most dGi(c
j
i+1, c

j
i) smaller than the previous distance and, thus, at most

18Note that the total moving distance might be ∞ if, after some deletion i, a center j is moved from cj
i to

cj
i+1 such that there is no path between cj

i and cj
i+1 in Gi. In this case our analysis cannot bound the total

update time of the moving centers data structure.

49

∑
0≤i<k degG0(x) · dGi(c

j
i , c

j
i+1) additional time will be spent updating x in the ES-tree of

center j.
Consider the (i+ 1)-th edge deletion and let j ∈ Ci+1 be a center. By Corollary 2.11,

the total time for processing this deletion in the ES-tree of center j is

T (i+ 1, j) =
∑
x∈V

degG0(x) ·
(
min

(
dGi+1(x, cji+1), Rd

)
−min

(
dGi(x, c

j
i+1), Rd

))
(6)

If j has already been opened before the i-th edge deletion, then, by the triangle inequal-
ity, we get dGi(x, c

j
i) ≤ dGi(x, c

j
i+1) + dGi(c

j
i , c

j
i+1), which is equivalent to dGi(x, c

j
i+1) ≥

dGi(x, c
j
i)− dGi(c

j
i , c

j
i+1) . It follows that

min
(
dGi(x, c

j
i+1), Rd

)
≥ min

(
dGi(x, c

j
i)− dGi(c

j
i+1, c

j
i), R

d
)

≥ min
(
dGi(x, c

j
i), R

d
)
− dGi(c

j
i , c

j
i+1) .

Therefore we get

T (i+ 1, j) ≤
∑
x∈V

degG0(x) ·
(
min

(
dGi+1(x, cji+1), Rd

)
−min

(
dGi(x, c

j
i), R

d
)

+ dGi(c
j
i , c

j
i+1)

)
=
∑
x∈V

degG0(x) ·
(
min

(
dGi+1(x, cji+1), Rd

)
−min

(
dGi(x, c

j
i), R

d
))

+
∑
x∈V

degG0(x) · dGi(c
j
i , c

j
i+1)

≤
∑
x∈V

degG0(x) ·
(
min

(
dGi+1(x, cji+1), Rd

)
−min

(
dGi(x, c

j
i), R

d
))

+ 2m · dGi(c
j
i , c

j
i+1) .

Summing up all T (i, j) for every deletion i > oj gives a telescoping sum that results in the
following term:

∑
oj<i≤k

T (i, j) =
∑
x∈V

degG0(x) ·min
(
dGk

(x, cjk), R
d
)

−
∑
x∈V

degG0(x) ·min
(
dGoj

(x, coj), Rd
)

+
∑

oj≤i<k
2m · dGi(c

j
i , c

j
i+1) .

Consider now a center j and the oj-th edge deletion. By (6) we can bound the running
time T (oj , j) as follows:

T (oj , j) ≤
∑
x∈V

degG0(x) ·min
(
dGoj

(x, cjoj
), Rd

)
.

50

Therefore the total time for maintaining the moving ES-tree of center j over all deletions is∑
oj≤i≤k

T (i, j) = T (oj , j) +
∑

oj<i≤k
T (i, j)

≤
∑
x∈V

degG0(x) ·min
(
dGk

(x, cjk), R
d
)

+
∑

oj≤i<k
2m · dGi(c

j
i , c

j
i+1)

≤
∑
x∈V

degG0(x) ·Rd +
∑

oj≤i<k
2m · dGi(c

j
i , c

j
i+1)

≤ 2mRd +
∑

oj≤i<k
2m · dGi(c

j
i , c

j
i+1) .

By summing up this quantity over all centers and switching the order of the double sum, we
arrive at the following total time:∑

0<i≤k

∑
j∈Ci

T (i, j) =
∑
j∈Ck

∑
oj≤i≤k

T (i, j)

≤
∑
j∈Ck

2mRd +
∑
j∈Ck

∑
oj≤i<k

2m · dGi(c
j
i , c

j
i+1)

=
∑
j∈Ck

2mRd + 2m ·
∑

0≤i<k

∑
j∈Ci

dGi(c
j
i , c

j
i+1)

= 2NopenmR
d + 2mDmove

Therefore the total update time for maintaining the moving centers data structure over all
operations is O((NopenR

d +Dmove)m).

4.2 A Deterministic Center Cover Data Structure (CenterCover)

In this section, we present a deterministic algorithm for maintaining the center cover data
structure CenterCover, as defined in Definition 2.13. That is, for parameters Rc and Rd,
we show that we can maintain a set of centers with the following two properties. First, all
nodes in a connected component of size at least Rc are covered by some center; i.e., each
of them is in distance at most Rc to some center. Second, for every center, the distance to
every node up to distance Rd is maintained. This section is devoted to proving the following.

Proposition 4.5 (Main result of Section 4.2). For every cover range parameter Rc and
every distance range parameter Rd such that Rc ≤ Rd, there is a center cover data structure
with a total deterministic update time of O(mnRd/Rc) and constant query time.

4.2.1 High-Level Ideas

Our algorithm will internally use the moving centers data structure from Section 4.1 (called
MovingCenter). It has to determine how to open and move centers in a way that ensures
that at any time every node in a connected component of size at least Rc is covered by some
center,;i.e., its distance to the nearest center is at most Rc. At a high level, our algorithm is
very simple (see Figure 3 for an example; note that q = Rc): For each center j, it maintains
two sets Bj and Cj , where Bj is always defined to be the set of nodes whose distance to

51

c1 B1

v0 v1 v q
4
v q

4 +1 v q
2 −1 v q

2
v q

2 +1 vq vq+1

(a) Initial center locations

c1 B1 c2B2

v0 v1 v q
4
v q

4 +1 v q
2 −1 v q

2
v q

2 +1 vq vq+1

(b) After edge (v q
2−1, vq+1) is deleted

c1 B1 c2B2

v0 v1 v q
4
v q

4 +1 v q
2 −1 v q

2
v q

2 +1 vq vq+1

(c) Deleting edge (v q
4
, v q

4 +1) without moving c1

C1 c1 B1 c2B2

v0 v1 v q
4
v q

4 +1 v q
2 −1 v q

2
v q

2 +1 vq vq+1

(d) After moving c1

Figure 3: Example of our algorithm for maintaining the center cover data structure using the moving
centers data structure, as in Proposition 4.5. We use q = Rc and, for any j, we let cj denote the
location of center j. Boxes filled with colors show sets Bj and Cj . (a) shows a possible initial location
of center c1. This makes B1 = {v0, . . . , vq/2} ∪ {vq+1} and C1 = ∅. All nodes are covered by center
c1. (b) shows what our algorithm does when edge (vq/2−1, vq+1) is deleted. In this case, vq+1 is not
covered by c1 anymore, so we open a center c2 at vq+1. (c) shows what B1 will look like after edge
(vq/4, vq/4+1) is deleted, if we do not move center c1. In particular, |B1 ∪ C1| < q/2. (d) shows what
our algorithm will do after edge (vq/4, vq/4+1) is deleted to maintain the largeness property (i.e., to
make sure that |B1 ∪ C1| ≥ q/2): it moves nodes v0, . . . , vq/4 from B1 to C1 and moves the first
center from v0 to vq/4+1.

center j is at most Rc−|Cj |. Initially, the algorithm sets Cj = ∅ and chooses a set of centers
such that all sets Bj are disjoint (see Figure 3a). The sets Cj will never decrease during
the algorithm. After an edge deletion, if some node in a large connected component (size
≥ Rc) that is no longer covered by any center (e.g., vq+1 in Figure 3b), then the algorithm
simply opens a new center at that node. However, before doing so it has to check whether
|Bj ∪Cj | < Rc/2 for some existing center j. (For example, after edge (vq/4, vq/4+1) is deleted
as in Figure 3c, |B1 ∪ C1| = (q/4 + 1) < q/2 = Rc/2.) If this is the case for center j, it will
add all nodes of Bj to Cj and move the center j to the end-node of the deleted edge that is
in a different connected component than the old location of j. As we will show, the nodes in
Bj at the new location are not contained in Bj′ for any center j′ 6= j; i.e., the invariant that
all sets Bj are disjoint remains valid. For example, in Figure 3d, the algorithm puts nodes
v0, . . . , vq/4 to C1 and moves c1 to node vq/4+1, which is the end-node of the deleted edge
(vq/4, vq/4+1) that is in a connected component different from center c1.

We now give the intuition behind this algorithm and its analysis before going into detail.
Recall from Proposition 4.4 that opening and maintaining a center together costs O(mRc)
time in total, and a move-operation incurs a total time of O(m) per one unit moving distance.
So, to get the desired O(mnRd/Rc) total time bound, we will make sure that our algorithm
uses a limited number of open-operations and a limited moving distance; in particular, we
will make sure that

Nopen = O(n/Rc) and Dmove = O(n).

To guarantee that we open at most O(n/Rc) centers, we imagine that each node holds
a coin at the beginning of the algorithm, which it can give to at most one center during
the algorithm, and we require that each center must receive at least Rc/2 coins from some

52

nodes in the end. Clearly, this will automatically ensure that at most 2n/Rc centers will be
opened. Since the graph keeps changing, it is hard to say which node should give a coin to
which center at the beginning. Instead, our algorithm will maintain two sets for each center
j: the set Bj of borrowed nodes from which center j has borrowed coins that it might have
to return, and the set Cj of collected nodes from which center j has collected coins that it
will never return. After all edge deletions, j will hold the coins of all nodes in Bj ∪ Cj . Our
algorithm will maintain Bj ∪ Cj with two properties:

1. (Largeness.) |Bj ∪ Cj | ≥ Rc/2 at any time (so that j gets enough coins in the end).

2. (Disjointness.) Bj ∪Cj is disjoint from Bj′ ∪Cj′ for all centers j 6= j′ (so that no node
gives a coin to more than one center).

These two properties easily imply that every center will get at least Rc/2 coins in the
end—center j simply collects coins from the nodes in Bj ∪ Cj ; consequently, they guarantee
that Nopen = O(n/Rc), as desired. Note that Bj and Cj are only introduced for the analysis;
our algorithm does not need to maintain them explicitly. If the location of center j is moved
from x to y, then we say for every node u on a shortest path between x to y that the center
has been moved through u. To guarantee that the total moving distance is O(n), we need
one more property:

3. (Confinement.) The location of center j is moved only through nodes that are added to
Cj .

By the disjointness property, no two centers are moved along the same node if the confinement
property is satisfied. So, the total moving distance will be Dmove = O(n), as desired.

It is left to check whether the algorithm we have sketched earlier satisfies all three
properties above. The largeness property can be guaranteed using the fact that after every
edge deletion, the algorithm will move every center j such that |Bj ∪ Cj | < Rc/2 to a new
node; the only nonobvious property we have to prove is that Bj will be large enough after
the move, and the key to this proof is the fact that the connected component containing the
new location of center j has size at least Rc/2− |Cj |. For the disjointness property, we will
show two further properties.

(P1) (Initial-disjointness) When we open a center j, Bj is disjoint from Bj′ ∪ Cj′ for all
other centers j′.

(P2) (Shrinking) We never add any node to Bj ∪Cj . (For example, B1 ∪C1 in Figure 3a is
a subset of B1 ∪ C1 in Figure 3d.)

These two properties are sufficient to guarantee the disjointness property because if two sets
Bj ∪ Cj and Bj′ ∪ Cj′ are disjoint at the beginning (by Property (P1)), they will remain
disjoint if we never add a node to them (by Property (P2)). The shrinking property (Property
(P2)) can be checked simply by observing the behavior of the algorithm (see Lemma 4.12 for
details). To show the initial-disjointness property (Property (P1)), we use the fact that j is
of distance at least Rc from other centers when j is opened, which implies that Bj ∩Bj′ = ∅.
Additionally, we will prove that Cj′ contains only nodes in connected components of size
less than Rc, whereas any new center j is opened in a connected component of size at least
Rc. This implies that Bj ∩ Cj′ = ∅ when j is opened.

53

Finally, for the confinement property, just observe that before the algorithm moves a
center j, it puts all nodes in the connected component containing the center j to Cj and
moves j to a node outside of this connected component. For example, in Figure 3d the
algorithm puts nodes v1, . . . , vq/4 to C1 before moving the first center through v1, . . . , vq/4
to vq/4+1.

4.2.2 Algorithm Description

Our algorithm is outlined in Algorithm 3. For each center j, the algorithm maintains its
location cj , which could change over time since centers can be moved. In addition, it also
maintains the set Cj and the number rj , which are set to ∅ and Rc/2, respectively, when
center j is opened. The intended value of rj is rj = Rc/2− |Cj |, and the algorithm always
updates rj in a way that this is ensured. The algorithm also uses the moving centers
data structure (denoted by MovingCenter and explained in Section 4.1) to maintain the
distance between each center j to other nodes in the graph, up to distance Rd. This helps
us to implement CenterCover.FindCenter and CenterCover.Distance queries in a
straightforward way: the algorithm just invokes the same queries from the moving centers
data structure.

Initially, on G0 (i.e., before the graph changes), our algorithm initializes the moving
centers data structure by opening centers in a greedy manner: as long as there is a node
x that is not covered by any center, it opens a center at x. This process will also be used
every time an edge is deleted, to make sure that every node remains covered by a center.
Procedure CenterCover.GreedyOpen proceeds as follows. For every node x, it checks
whether x is not covered; this is the case if CenterCover.FindCenter(x) returns ⊥
and the size of the connected component containing x is at least Rc (we refer the reader
to Lemma 4.21 for how to compute the size of this component). If x is not covered, the
algorithm opens a center at x, stores the index j of this new center, and initializes the values
of Cj , rj , and cj , as in Line 6. This completes the GreedyOpen procedure.

The main work of Algorithm 3 lies in the Delete operation, since it has to make sure
that all nodes are still covered by some centers after the deletion. Procedure Center-
Cover.Delete proceeds as follows. Let us assume that the (i+ 1)-th edge (u, v) is deleted
from Gi, and let Gi+1 denote the resulting graph. First, the procedure checks whether there
is any center j that is in a large component in Gi and in a small connected component in
Gi+1; i.e., the size of the connected component of cj is at least rj in Gi and less than rj in
Gi+1 (see Line 16 of Algorithm 3). Next, if such a center j in a small connected component
exists (in fact, we will show that there exists at most one such j; see Lemma 4.15), we will
move j to a different component and update the values of Cj , rj , and cj . It is crucial in
our analysis that j must be moved carefully. In particular, we will move j to either u or
v, depending on which node is in a different component from cj , the current location of
j. (Note that one of u and v will be in the same connected component as j and the other
will be in a different component.) We use a variable y ∈ {u, v} to refer to the new location
to which we move center j (see Line 18). We then update the values of Cj , rj , and cj . In
particular, we put all nodes in the connected component that previously contained center
j (before we move it to y) into Cj and update rj to Rc/2 − |Cj | and cj to y. Then we
report the move of center j to y to the moving centers data structure. Afterward, we report
the deletion of the edge (u, v) to the moving centers data structure so that it updates the

54

Algorithm 3: CenterCover (Deterministic Center Cover Data Structure)
// Given a decremental graph G = (Gi)0≤i≤k and integers Rc and Rd, this data

structure maintains a set of centers such that every node (that is in a connected
component of size at least Rc) has distance at most Rc to at least one center and
we can query the distance between a center and a node if their distance is at most
Rd (otherwise, we will get ∞ in return). It allows four operations: Initialize,
Delete, FindCenter and Distance, as defined in Definition 2.13.

1 Procedure CenterCover.GreedyOpen()
2 Let Gi denote the current graph
3 foreach node x do

// The if-statement checks if x is not covered by a center and the size of the
connected component containing it is larger than Rc. See Lemma 4.21 for
the implementation detail.

4 if FindCenter(x) = ⊥ and |CompGi
(x)| ≥ Rc then

// tell moving centers data structure to open new center at x. Let j be the
index of this center.

5 j ← MovingCenter.Open(x)
6 Set Cj ← ∅, rj ← Rc/2, and cj ← x

// Parameters: Initial version G0 of decremental graph G, integers Rc and Rd.
7 Procedure CenterCover.Initialize(G0, Rc, Rd)

// Initialize the moving centers data structure (see Definition 4.2)
8 MovingCenter.Initialize(G0, Rc, Rd)
9 GreedyOpen()

10 Procedure CenterCover.FindCenter(v) // Parameter: Node v.
11 return MovingCenter.FindCenter(v)

// Parameters: Center index j and node v.
12 Procedure CenterCover.Distance(j, v)
13 return MovingCenter.Distance(j, v)

// Parameter: (i+ 1)-th deleted edge (u, v).
14 Procedure CenterCover.Delete(u, v)
15 Let Gi denote the graph before deleting (u, v) and let Gi+1 denote the graph

afterwards.
// Find a center j for which the connected component containing it becomes

smaller than rj . See Lemma 4.22 for how to find such a center j. (Actually,
there will be at most one such center, see Lemma 4.15.)

16 Find a center j such that |CompGi+1(cj)| < rj .
17 if such a center j exists then

// Move j to either u or v depending on who is in a different connected
component than cj .

18 if u and cj are not connected in Gi+1 then y ← u else y ← v
19 Set Cj ← Cj ∪ CompGi+1(cj), rj ← rj − |CompGi+1(cj)|, and cj ← y

20 MovingCenter.Move(j, y)
// Report edge deletion to moving centers data structure (Definition 4.2).

21 MovingCenter.Delete(u, v)
22 GreedyOpen()

distances between centers and nodes to the new distances in Gi+1. Finally, we execute the
CenterCover.GreedyOpen procedure to make sure that every node remains covered: if
there is a node x that is not covered, we open a center at x. This completes the deletion
operation.

4.2.3 Analysis

The correctness of Algorithm 3 is immediate. As the procedure GreedyOpen is called after
every edge deletion, every node in a connected component of size at least Rc will always be
covered. In the following we analyze the running time of Algorithm 3.

Our main task is to bound the running time of the moving centers data structure internally
used by the algorithm. In particular we want to use the running time bound stated in
Proposition 4.4 which requires us to bound the number Nopen of open-operations performed
by the algorithm and the total moving distance Dmove. As outlined in Section 4.2.1 we assign
to each center j the set Bj ∪ Cj . The set Cj contains all nodes of connected components
in which the center j once was located, as shown in Algorithm 3. The set Bj is the set of
all nodes that are at distance at most rj from the center j in the current graph. We first
show that the sets Bj ∪ Cj fulfill two properties: disjointness and largeness. Disjointness
says that for all centers j 6= j′ the sets Bj ∪ Cj and Bj′ ∪ Cj′ are disjoint. Largeness says
that the set Bj ∪ Cj has size at least Rc/2 for each center j. Using these two properties,
we will prove that there are at most Nopen = O(n/Rc) open-operations and that the total
moving distance is Dmove = O(n). These bounds will then allow us to obtain a total update
time of O(mnRd/Rc) for the moving centers data structure used by Algorithm 3. Afterward
we will show that all other operations of the algorithm can also be carried out within this
total update time. To make our arguments precise we will use the following notation.

Definition 4.6. Let G = (Gi)0≤i≤k be a decremental graph for which Algorithm 3 maintains
a center cover data structure. The graph undergoes a sequence of k deletions, and by Gi we
denote the graph after the i-th deletion. We use the following notation:

• For all nodes x and y, we denote by di(x, y) = dGi(x, y) the distance between x and y
in the graph Gi.

• For every node x, we denote by Compi(x) = CompGi
(x) the nodes in the connected

component of x in the graph Gi.

• For every center j, we denote by cji , r
j
i , and C

j
i the values of cj, rj, and Cj after the

algorithm has processed the i-th deletion, respectively (equivalently: the values before
the (i+ 1)-th deletion).

• For every center j, we define the set Bj
i by Bj

i = {x ∈ V | di(cji , x) ≤ rji }; i.e., B
j
i

is the set of all nodes that are within distance rji to the location cji of center j in the
graph Gi.

Preliminary Observations. We first state some simple observations that will be helpful
later on.

56

Observation 4.7. Let x be a node, let i ≤ k, and let B′ be the set B′ = {y ∈ V | di(x, y) ≤ r}
for some integer r. If |Compi(x)| < r, then Compi(x) = B′. Furthermore, |Compi(x)| < r
if and only if |B′| < r.

Proof. Clearly B′ ⊆ Compi(x), and thus |B′| ≤ |Compi(x)|. Therefore, if |Compi(x)| < r,
also |B′| < r. Now assume that |B′| < r. We first show that Compi(x) ⊆ B′. Let y be a
node in Compi(x) and assume by contradiction that di(x, y) > r. Since y ∈ Compi(x), x
and y are connected, and therefore the shortest path from x to y has to contain some node z
such that di(x, z) = r. The shortest path π from x to z contains di(x, z) = r edges and r+ 1
nodes. For every node z′ on π we have di(x, z′) ≤ r, and thus π ⊆ B′. Since |π| = r + 1, we
get |B′| ≥ r + 1, which contradicts our assumption. Therefore di(x, y) ≤ r, which means
that Compi(x) ⊆ B′. Now |Compi(x)| ≤ |B′| < r, as desired.

Observation 4.8. For every center j and every i ≤ k, rji = Rc/2− |Cji |.

Proof. When the center j is opened the algorithm sets rji = Rc/2 and Cji = ∅. Therefore
rji = Rc/2− |Cji | trivially holds. Afterward the algorithm only modifies rj and Cj when a
center is moved. Since rj is increased by exactly the amount by which |Cj | is decreased, the
equation remains true.

Observation 4.9. For every center j and every i ≤ k, |Compi(x)| < Rc for every node
x ∈ Cji .

Proof. For every node x that is put into Cji after the i-th edge deletion, we have |Compi(x)| <
rji . Since the size of the connected component of x never increases in a decremental graph
and rji ≤ Rc for all i ≤ k by Observation 4.8, the claim is true.

Observation 4.10. For every center j and every i ≤ k, the sets Bj
i and Cji are disjoint.

Proof. The set Cji only contains nodes in connected components from which the center j has
been moved away, i.e., that do not contain cji . No center will ever be moved back into such a
connected component. Since Bj

i ⊆ Compi(c
j
i), we conclude that Bj

i and Cji are disjoint.

Disjointness Property. We now want to prove the disjointness property. We will proceed
as follows: First we show that, for every center j that is opened, the set Bj ∪ Cj is disjoint
from the set Bj′ ∪Cj′ of every other existing center j′. Afterward we show that the algorithm
never adds any nodes to Bj ∪ Cj . These two facts will imply that all the sets Bj ∪ Cj are
disjoint.

Lemma 4.11 (Initial disjointness). When the algorithm opens a center j after the i-th edge
deletion, the set Bj

i ∪ C
j
i is disjoint from the set Bj′

i ∪ C
j′

i for every other center j 6= j′.

Proof. Let j be the center that is opened, and let j′ 6= j be an existing center. The algorithm
sets Cji = ∅, and therefore we only have to argue that Bj

i and Bj′

i ∪ C
j′

i are disjoint. Note
that cji is in a connected component of size at least Rc, because otherwise the algorithm
would not have opened a center at cji . Observe that the set Bj

i is contained in the connected
component of cji . By Observation 4.9 all nodes of Cj

′

i are in a connected component of size

57

less than Rc, and therefore Bj
i ∩ C

j′

i = ∅. We now argue that Bj
i ∩B

j′

i = ∅. Suppose that
there is some node x contained in both Bj

i and Bj′

i . By the definition of Bj
i and Bj′

i we get
di(cji , x) ≤ rji = Rc/2− |Cji | ≤ Rc/2 as well as di(cj

′

i , x) ≤ Rc/2. By the triangle inequality
we get

di(cji , c
j′

i) ≤ di(cji , x) + di(x, cj
′

i) ≤ Rc/2 +Rc/2 = Rc .

But then cji is covered by cj
′

i . This means that the algorithm would not have opened a new
center at cji , which contradicts our assumption.

Lemma 4.12 (Shrinking property). For every center j and every i < k, we have Bj
i ∪C

j
i ⊆

Bj
i+1 ∪ C

j
i+1.

Proof. Let (u, v) be the (i+ 1)-th deleted edge. We only have to argue that the claim holds
for centers that the algorithm has already opened before this deletion. If the algorithm does
not move j, then the values of Cj , rj , and cj are not changed at all, and thus Cji+1 = Cji ,
rji+1 = rji , and c

j
i+1 = cji . Furthermore, since distances never decrease in a decremental graph

we also have Bj
i+1 ⊆ B

j
i and the claim follows.

Now consider the case that the algorithm moves the center j from x = cji to c
j
i+1, where

either cji+1 = u or cji+1 = v. Assume without loss of generality that cji+1 = v. To simplify
notation, let A denote the set A = Compi+1(x). The fact that the algorithm moves the
center implies that |A| < rji . Note that the algorithm sets Cji+1 = Cji ∪A and rji+1 = rji −|A|.

The observation needed for proving the shrinking property is Bj
i+1 ∪ A ⊆ Bj

i . From
this observation we get Bj

i+1 ∪ C
j
i+1 = Bj

i+1 ∪ C
j
i ∪A ⊆ B

j
i ∪ C

j
i , as desired. We first prove

A ⊆ Bj
i and then Bj

i+1 ⊆ Bj
i . Let B′ be the set B′ = {z ∈ V | di+1(x, z) ≤ rji }. Since

|A| < rji we get A ⊆ B′ by Observation 4.7, and since di(x, z) ≤ di+1(x, z) for every node z
we have B′ ⊆ Bj

i . Now A ⊆ B′ and B′ ⊆ Bj
i , and we may conclude that A ⊆ Bj

i .
Finally, we prove that Bj

i+1 ⊆ Bj
i . Since we move the center j from x to v it must be

the case, by the way the algorithm works, that |A| = |Compi+1(x)| < |Compi(x)| and that
v is not connected to x in Gi+1. This can only happen if v is connected to x in Gi. Let z be
a node in Bj

i+1, which means that di+1(v, z) ≤ rji+1. Consider a shortest path π from x to
v in Gi consisting of di(x, v) many edges. Every edge on π except for the last one (which
is (u, v)) is also contained in Gi+1, and therefore all nodes on π except for v are contained
in A. Therefore we get |A| ≥ |π \ {v}| = di(x, v). We now get z ∈ Bj

i by observing that
di(x, z) ≤ rji , which can be seen from the following chain of inequalities:

di(x, z) ≤ di(x, v) + di(v, z) ≤ di(x, v) + di+1(v, z) ≤ |A|+ rji+1 = rji .

Lemma 4.13 (Disjointness). Algorithm 3 maintains the following invariant: For all centers
j 6= j′ and every i ≤ k, Bj

i ∪ C
j
i is disjoint from Bj′

i ∪ C
j′

i .

Proof. By Lemma 4.11 the invariant holds after the initialization. Now consider the (i+1)-th
edge deletion. Let j 6= j′ be two different existing centers. By the induction hypothesis
Bj
i ∪C

j
i and Bj′

i ∪C
j′

i are disjoint. Since Bj
i+1∪C

j
i+1 ⊆ B

j
i ∪C

j
i and Bj′

i+1∪C
j′

i+1 ⊆ B
j′

i ∪C
j′

i

by Lemma 4.12, also Bj
i+1 ∪ C

j
i+1 and Bj′

i+1 ∪ C
j′

i+1 are disjoint. Now let j be an existing
center and let j′ be a center that is opened in the procedure CenterCover.GreedyOpen

58

(called at the end of the procedure CenterCover.Delete). By Lemma 4.11 we also have
that Bj

i+1 ∪C
j
i+1 and Bj′

i+1 ∪C
j′

i+1 are disjoint. This shows that, for all centers j and j′ such
that j 6= j′, Bj

i+1 ∪ C
j
i+1 and Bj′

i+1 ∪ C
j′

i+1 are disjoint.

Largeness Property. We now want to prove the largeness property which states that for
every center j the size of the set Bj ∪ Cj is always at least Rc/2. The largeness property
will follow from the invariant |Bj | ≥ rj . Before we can prove this invariant we have to
argue that our algorithm really moves every center j that fulfills the “moving condition”
|Compi(cj)| ≥ rj and |Compi+1(cj)| < rj . Remember that the algorithm only moves one
such center after each deletion. We show that there actually is at most one center fulfilling
the moving condition, and therefore it is not necessary that the algorithm also moves any
other center.

Observation 4.14. Let (u, v) be the (i + 1)-th deleted edge. If |Compi(c
j
i)| ≥ rji and

|Compi+1(cji)| < rji , then u ∈ B
j
i and v ∈ Bj

i .

Proof. Suppose that di(u, cji) > rji . Let π be a shortest path from cji to u in Gi consisting
of di(u, cji) > rji many edges and thus at least rji + 1 nodes. The edge (u, v) can only
appear as the last edge on the shortest path π. Therefore, after deleting it, there are still
rji nodes connected to cji , which contradicts the assumption that Compi+1(cji) < rji . Thus,
di(u, cji) ≤ rji which means that u ∈ Bj

i . Since the edge (u, v) is undirected the same
argument works for v.

Lemma 4.15 (Uniqueness of center to move). Let (u, v) be the (i+ 1)-th deleted edge. If
|Bj

i | ≥ r
j
i for every center j, then there is at most one center j such that |Compi+1(cji)| < rji

and, in Gi+1, either u is connected to cji (and v is disconnected from cji) or v is connected to
cji (and u is disconnected from cji).

Proof. Let j be a center such that |Compi+1(cji)| < rji . As |Bj
i | ≥ rji , we also have

|Compi(c
j
i)| ≥ r

j
i by Observation 4.7. The size of the connected component of cji can only

decrease if the deletion of (u, v) disconnects at least one node from Compi(cj). For this to
happen, u and v must be connected to cji in Gi, and furthermore one of these nodes (either
u or v) must be disconnected from cji in Gi+1 while the other node stays connected to cji .

Now suppose that there are two centers j 6= j′ such that |Compi(c
j
i)| ≥ rji and

|Compi+1(cji)| < rji , and |Compi(c
j′

i)| ≥ rj
′

i and |Compi+1(cj
′

i)| < rj
′

i . By Observation 4.14,
we get u ∈ Bj

i and u ∈ Bj′

i , which contradicts the disjointness property of Lemma 4.13. We
conclude that there cannot be two such centers j 6= j′.

Lemma 4.16. For every center j and every i ≤ k, Algorithm 3 maintains the invariant
|Bj

i | ≥ r
j
i .

Proof. We first argue that the invariant holds for every center j that we open at some
node x in the greedy open procedure after the i-th deletion. The algorithm only opens the
center if x is in a connected component of size at least Rc. Since rji = Rc/2 − |Cji | ≤ Rc

(Observation 4.8) we have |Compi(x)| ≥ rji . Therefore we get |Bj
i | ≥ r

j
i by Observation 4.7.

59

We now show that the invariant is maintained for all centers that have already been opened
before we delete the (i+1)-th edge (u, v). Consider first the case that |Compi+1(cji)| ≥ r

j
i . In

that case the center j will not be moved and we have Cji+1 = Cji , B
j
i+1 = Bj

i , and r
j
i+1 = rji .

Since |Compi+1(cji+1)| ≥ rji+1 we get |Bj
i+1| ≥ r

j
i+1, as desired by Observation 4.7.

Now consider the case that |Compi+1(cji)| < rji . Since the invariant holds for i,
Lemma 4.15 applies, and thus we can be sure that the algorithm will move center j
from node x to node y (where either y = u or y = v). Remember that we have cji = x,
cji+1 = y, and rji+1 = rji − |Compi+1(x)| in that case. Since x and y were connected in Gi
but are no longer connected in Gi+1 we get Compi+1(y) = Compi(x) \ Compi+1(x). Due to
Compi+1(x) ⊆ Compi(x) it follows that

|Compi+1(y)| = |Compi(x)| − |Compi+1(x)| ≥ rji − |Compi+1(x)| = rji+1 .

By Observation 4.7, the fact that |Compi+1(y)| ≥ rji+1 implies that |Bj
i+1| ≥ rji+1 as

desired.

Lemma 4.17 (Largeness). For every center j and every i ≤ k, Algorithm 3 maintains the
invariant |Bj

i ∪ C
j
i | ≥ Rc/2.

Proof. By Observation 4.10, Bj
i and Cji are disjoint, and by Observation 4.8 we have

rji = Rc/2− |Cji |. By Lemma 4.16 we have |Bj
i | ≥ r

j
i . Therefore we get the desired bound

as follows:

|Bj
i ∪ C

j
i | = |B

j
i |+ |C

j
i | ≥ r

j
i + |Cji | = Rc/2− |Cji |+ |C

j
i | = Rc/2

where the inequality above follows from Lemma 4.16.

Bounding the Number of Open-Operations. Now that we have established the dis-
jointness and the largeness property for the sets Bj ∪Cj of every center j, we can bound the
number of open-operations by Nopen = O(n/Rc). This will be useful for our goal of limiting
the total update time of the moving centers data structure to O(mnRd/Rc).
Lemma 4.18 (Number of open-operations). Over all edge deletions, Algorithm 3 performs
O(n/Rc) open-operations in its internal moving centers data structure.
Proof. Let Ck denote the set of centers after all k deletions. Note that moving a center does
not change the number of centers. Therefore, the size of Ck is equal to the total number of
centers opened. Due to the disjointness property (Lemma 4.13) the sets Bj

k ∪ C
j
k after all k

edge deletions are disjoint for all centers j. When we sum up over all these sets we do not
count any node twice. Therefore we get

∑
j∈Ck

|Bj
k ∪ C

j
k| =

∣∣∣∣∣∣
⋃
j∈Ck

(Bj
k ∪ C

j
k)

∣∣∣∣∣∣ ≤ n
By the largeness property (Lemma 4.17) every set Bj

k ∪ C
j
k has size at least Rc/2, i.e.,

|Bj
k ∪ C

j
k| ≥ Rc/2. We now combine both inequalities and get

n ≥
∑
j∈C
|Bj

k ∪ C
j
k| ≥

∑
j∈C

Rc/2 = |C|Rc/2

which gives |C| ≤ 2n/Rc, as desired.

60

Bounding the Total Moving Distance. Finally, we prove that the total moving distance
of the moving centers data structure used by our algorithm is O(n). For this proof we will
use a property of the algorithm that we call confinement: Every center j will be moved only
through nodes that are added to Cj .

Lemma 4.19 (Confinement). For every move of center j from cji to c
j
i+1 after the (i+ 1)-th

edge deletion, let πji be the set of nodes on a shortest path from cji to c
j
i+1 in Gi. Then, for

every center j and every 0 ≤ i < k, πji \ {c
j
i+1} ⊆ C

j
i+1 \ C

j
i .

Proof. Let (u, v) be the (i+ 1)-th deleted edge. Consider the situation that the algorithm
moves some center j from cji to c

j
i+1. By the rules of the algorithm for moving centers we

have either cji+1 = u or cji+1 = v. Due to Observation 4.14 we have cji+1 ∈ B
j
i , which means

that di(cji , c
j
i+1) ≤ rji .

Now let πji be a shortest path from cji to c
j
i+1 in Gi. All nodes in πji , except for c

j
i+1, are

connected to cji in Gi+1 since the edge (u, v) only appears as the last edge on the shortest
path due to cji+1 = u or cji+1 = v. Therefore we have πji \ {c

j
i+1} ⊆ Compi+1(cji). Since

Cji+1 = Cji ∪Compi+1(cji), we get π
j
i \{c

j
i+1} ⊆ C

j
i+1. We also have πji \{c

j
i+1} ⊆ B

j
i because

di(cji , c
j
i+1) ≤ rji . Since B

j
i and Cji are disjoint (Observation 4.10), also πji \ {c

j
i+1} and C

j
i

are disjoint. It therefore follows that πji \ {c
j
i+1} ⊆ C

j
i+1 \ C

j
i .

Lemma 4.20 (Total moving distance). The total moving distance of the moving centers
data structure used by Algorithm 3 is Dmove = O(n).

Proof. We let Ck denote the set of centers after the algorithm has processed all deletions.
Furthermore, we denote by oj the index of the edge deletion before which the center j has
been opened; i.e., center j was opened before the oj-th and after the (oj − 1)-th deletion.

Consider the situation that the algorithm moves a center j from cji to cji+1 after the
(i+ 1)-th edge deletion and let πji be a shortest path from cji to c

j
i+1 in Gi as in Lemma 4.19.

The shortest path πji consists of di(cji , c
j
i+1) many edges and di(cji , c

j
i+1) + 1 many nodes.

Therefore we get di(cji , c
j
i+1) = |πji \ {c

j
i+1}|. By Lemma 4.19 we have πji \ {c

j
i+1} ⊆ C

j
i+1 \C

j
i

for every center j and every 0 ≤ i < k. The value of the set Cj after all edge deletions
is given by Cjk for every center j. By the disjointness property (Lemma 4.13) we have∑
j∈C |C

j
k| =

∣∣∣⋃j∈C Cjk∣∣∣. We now obtain the bound Dmove ≤ n as follows:

Dmove =
∑
j∈Ck

∑
oj≤i<k

di(cji , c
j
i+1) =

∑
j∈Ck

∑
oj≤i<k

|πji \ {c
j
i+1}|

≤
∑
j∈Ck

∑
oj≤i<k

|Cji+1 \ C
j
i | =

∑
j∈Ck

|Cjk| =

∣∣∣∣∣∣
⋃
j∈C

Cjk

∣∣∣∣∣∣ ≤ n .
Implementation Details. Before we finish this section we clarify two implementation
details of Algorithm 3 and argue that they can be carried out within the total update time
of O(mnRd/Rc).

There are two places in the algorithm where we have to compute the sizes of connected
components. First, in the procedure GreedyOpen, we have to check for every node that is

61

not covered by any center whether it is in a connected component of size at least Rc. Second,
in the procedure Delete, we have to check whether the size of the connected component
of some center j drops below rj . So far we have not explained explicitly how to carry out
these steps. If we could obtain the size of the connected component deterministically in
linear time, the running time analysis we have given so far would suffice. Remember that
the moving centers data structure internally maintains an ES-tree for every center. Thus, it
would seem intuitive to use the ES-trees for counting the number of nodes in the current
component of each center. However, we do not report edge deletions to the moving centers
data structure immediately. Therefore it is not clear how to use these ES-trees to determine
the size of the connected components of a centers.

Instead, we do the following. In parallel to our own algorithm we use the deterministic
(fully) dynamic connectivity data structure of Henzinger and King [HK01].19 This data
structure can answer queries of the form “are the nodes x and y connected?” in constant
time. Its amortized time per deletion is O(n1/3 logn). Thus, its total update time over all
deletions is O(mn1/3 logn). Trivially, this data structure allows us to compute the size of
the connected component of a node x in time O(n): We simply iterate over all nodes and
count how many of them are connected to x. We now explain how to perform the two tasks
listed above using the dynamic connectivity data structure.

Lemma 4.21 (Detail of Line 4 in Algorithm 3). Given a dynamic connectivity data structure
with constant query time, performing the check in the if-condition of Line 4 takes time
O((n+Nopen)n) over all deletions, where Nopen is the total number of open-operations.

Proof. Given a node x we have to check whether FindCenter(x) = ⊥ and |CompGi
(x)| ≥

Rc. We first check whether x is covered by any center by querying the moving centers data
structure (if x is covered, the procedure returns a center covering x; otherwise it returns
⊥.) This check takes constant time. If a node x is not covered, we additionally have to
check whether |Compi(x)| < Rc. Note that if |Compi(x)| < Rc for some node x, we do not
have to consider this node anymore after future deletions because connected components
never increase their size in a decremental graph. Therefore we may spend time O(n) for
every node x to determine |Compi(x)|. If |Compi(x)| < Rc, then we charge this time to the
node and will never process the node again in the future, and if |Compi(x)| ≥ Rc, then we
charge this time to the open-operation. Therefore the total running time over all deletions
for performing this check in the if-condition is O((n + Nopen)n), where Nopen is the total
number of open-operations.

Lemma 4.22 (Detail of Line 16 of Algorithm 3). Given a dynamic connectivity data
structure with constant query time, we can, after the (i+ 1)-th deletion, find a center j such
that |Compi+1(cji)| < rji if it exists in time O(n).

Proof. Let (u, v) be the (i+1)-th deleted edge. For every center j such that |Compi+1(cji)| <
rji , we have u ∈ B

j
i by Observation 4.14. Moreover, by the disjointness property (Lemma 4.13),

there can only be at most one center j such that u ∈ Bj
i . The algorithm for finding this

center now is simple: We find a center j such that u ∈ Bj
i , which is unique if it exists;

then we compute the size of the connected component containing cji using the dynamic
19This is the fastest known deterministic dynamic connectivity data structure with constant query time.

62

connectivity data structure [HK01]. In particular, we iterate over all centers in time O(n)
to find a candidate center j such that di(u, cji) ≤ rj (i.e., u ∈ Bj

i) (as argued above, at
most one such center exists). We can determine the distance di(u, cji) in constant time by
querying the moving centers data structure. For the candidate center j we now have to
check whether |Compi+1(cji)| < rji . We determine the size of Compi+1(cji) in time O(n) by
using the dynamic connectivity data structure with constant query time. Thus, the running
time for this algorithm is O(n) per deletion.

Total Update Time. Now we state the total update time of Algorithm 3. The bounds
on the number of centers opened and the total moving distance of the centers allow us to
bound the running time of the moving centers data structure used by the algorithm.

Theorem 4.23. The deterministic center cover data structure of Algorithm 3 has constant
query time and a total update time of O(mnRd/Rc).

Proof. By Proposition 4.4 the moving centers data structure internally used by Algorithm 3
has constant query time and a total deterministic update time of O(NopenmR

d +Dmovem),
where Nopen is the total number of open-operations and Dmove is the total moving distance.
Algorithm 3 delegates all queries to the moving centers data structure and therefore also
has constant query time. By Lemma 4.18 the number of open-operations is O(n/Rc), and
by Lemma 4.20 the total moving distance is O(n). Therefore the total update time of the
moving centers data structure is

O(NopenmR
d +Dmovem) = O(mnRd/Rc +mn) = O(mnRd/Rc)

because Rc ≤ Rd. As argued in Lemma 4.21 and ??, all other operations of the algorithm
can be implemented within a total update time of O(mnRd/Rc). Therefore the claimed
running time follows.

4.3 Deterministic Fully Dynamic Algorithm

There is a well-known reduction by Henzinger and King [HK95] for converting a decremental
algorithm into a fully dynamic algorithm. A similar approach has been used by Roditty and
Zwick [RZ12], using the decremental algorithm we derandomized above as the starting point.
In the following we sketch the deterministic fully dynamic algorithm implied by Theorem 4.1.
The fully dynamic algorithm allows two update operations: deleting an arbitrary set of edges
and inserting a set of edges touching a node v, called the center of the insertion.

Theorem 4.24. For every 0 < ε ≤ 1 and every t ≤
√
n there is a deterministic fully

dynamic (1 + ε, 0)-approximate APSP data structure with amortized update time O(mn/(εt))
and query time Õ(t).

Proof. The algorithm works in phases. After each t update operations we start a new phase.
At the beginning of each phase we re-initialize the decremental algorithm of Theorem 4.1.
We report to this algorithm all future deletions of the phase, but no insertions. For all
nodes u and v let δ1(u, v) denote the (1 + ε)-approximate distance estimate obtained by the
decremental algorithm. Additionally, after every update in the graph, we do the following:
Let I denote the set of centers of all insertions that so far happened in the current phase.

63

For every v ∈ I, we compute the shortest paths from v to all nodes in the current graph, i.e.,
where all insertions and deletions are considered. We use Dijkstra’s algorithm for this task
and denote by δ2(u, v) the distance from u to v computed in this way.

To answer a query for the approximate distance between nodes u and v we compute and
return the following value: δ(u, v) = min(δ1(u, v),minx∈I(δ2(u, x) + δ2(x, v))). Let d(u, v)
denote the distance from u to v in the current graph. If there is a shortest path from u to v
that does not use any edge inserted in the current phase, then the decremental algorithm
provides a (1+ε)-approximation of the distance between u and v, i.e., δ1(u, v) ≤ (1+ε)d(u, v).
Otherwise the shortest path from u to v contains an inserted node x ∈ I. In that case
we have d(u, v) = δ2(u, x) + δ2(x, v) and thus d(u, v) = minx∈I(δ2(u, x) + δ2(x, v)). This
means that δ(u, v) ≤ (1 + ε)d(u, v). As both δ1(u, v) and minx∈I(δ2(u, x) + δ2(x, v)) never
underestimate the true distance, we also have δ(u, v) ≥ d(u, v).

As the query time of the decremental algorithm is O(log logn), the query time of the
fully dynamic algorithm is O(t + log logn) = Õ(t). The decremental approximate APSP
data structure has a total update time of Õ(mn/ε). Amortized over the whole phase, we
have to pay Õ(mn/(εt)) per update for this data structure. Computing the shortest paths
from the inserted nodes takes time Õ(tm) per update. This gives an amortized update time
of Õ(mn/(εt) + tm). If t ≤

√
n, the term tm is dominated by the term mn/t, and thus the

amortized update time is Õ(mn/(εt)).

We remark that the fully dynamic result of Roditty and Zwick [RZ12] is still a bit
stronger. Their trade-off is basically the same, but it holds for a larger range of t, namely,
t ≤ m1/2−δ for every fixed δ > 0. The reason is that they use randomization not only for
the decremental algorithm but also for some other part of the fully dynamic algorithm.

5 Conclusion

We obtained two new algorithms for solving the decremental approximate APSP algorithm
in unweighted undirected graphs. Our first algorithm provides a (1 + ε, 2)-approximation
and has a total update time of Õ(n5/2/ε) and constant query time. The main idea behind
this algorithm is to run an algorithm of Roditty and Zwick [RZ12] on a sparse dynamic
emulator. In particular, we modify the central shortest paths tree data structure of Even and
Shiloach [ES81, Kin99] to deal with edge insertions in a monotone manner. Our approach is
conceptually different from the approach of Bernstein and Roditty [BR11], who also maintain
an ES-tree in a sparse dynamic emulator. The sparsification techniques used here and at
other places only work for undirected graphs. Using a new sampling technique, we recently
obtained a (1 + ε, 0)-approximation for decremental SSSP in directed graphs with constant
query time and a total update time of o(mn) [HKN14c].

Our second algorithm provides a (1 + ε, 0)-approximation and has a deterministic total
update time of O(mn logn/ε) and constant query time. We obtain it by derandomizing the
algorithm of [RZ12] using a new amortization argument based on the idea of relocating
ES-trees.

Our results directly motivate the following directions for further research. It would
be interesting to extend our derandomization technique to other randomized algorithms.
In particular, we ask whether it is possible to derandomize the exact decremental APSP
algorithm of Baswana, Hariharan, and Sen [BHS07] (total update time Õ(n3)).

64

Another interesting direction is to check whether our monotone ES-tree approach also
works for other dynamic emulators, in particular for weighted graphs. One of the tools
that we used was a dynamic (1 + ε, 2)-emulator for unweighted undirected graphs. Is it also
possible to obtain purely additive dynamic emulators or spanners with small additive error?

Maybe the most important open problem in this field is a faster APSP algorithm for
the fully dynamic setting. The fully dynamic algorithm of Demetrescu and Italiano [DI04]
provides exact distances and takes time Õ(n2) per update, which is essentially optimal. Is it
possible to get a faster fully dynamic algorithm that still provides a good approximation—for
example a (1 + ε)-approximation?

References

[ABC+98] Baruch Awerbuch, Bonnie Berger, Lenore Cowen, and David Peleg. “Near-
Linear Time Construction of Sparse Neighborhood Covers”. In: SIAM Journal
on Computing 28.1 (1998). Announced at FOCS’93, pp. 263–277 (cit. on p. 7).

[AC13] Ittai Abraham and Shiri Chechik. “Dynamic Decremental Approximate Dis-
tance Oracles with (1 + ε, 2) stretch”. In: CoRR abs/1307.1516 (2013) (cit. on
p. 15).

[ACI+99] Donald Aingworth, Chandra Chekuri, Piotr Indyk, and Rajeev Motwani.
“Fast Estimation of Diameter and Shortest Paths (Without Matrix Multiplica-
tion)”. In: SIAM Journal on Computing 28.4 (1999). Announced at SODA’96,
pp. 1167–1181 (cit. on pp. 7, 15).

[AFI06] Giorgio Ausiello, Paolo Giulio Franciosa, and Giuseppe F. Italiano. “Small
Stretch Spanners on Dynamic Graphs”. In: Journal of Graph Algorithms and
Applications 10.2 (2006). Announced at ESA’05, pp. 365–385 (cit. on p. 8).

[AIMS+91] Giorgio Ausiello, Giuseppe F. Italiano, Alberto Marchetti-Spaccamela, and
Umberto Nanni. “Incremental Algorithms for Minimal Length Paths”. In:
Journal of Algorithms 12.4 (1991). Announced at SODA’90, pp. 615–638 (cit.
on p. 14).

[AIM+92] Giorgio Ausiello, Giuseppe F. Italiano, Alberto Marchetti-Spaccamela, and
Umberto Nanni. “On-Line Computation of Minimal and Maximal Length
Paths”. In: Theoretical Computer Science 95.2 (1992), pp. 245–261 (cit. on
p. 14).

[AVW14] Amir Abboud and Virginia Vassilevska Williams. “Popular conjectures imply
strong lower bounds for dynamic problems”. In: Symposium on Foundations
of Computer Science (FOCS). 2014, pp. 434–443 (cit. on p. 6).

[BCD+11] Lubos Brim, Jakub Chaloupka, Laurent Doyen, Raffaella Gentilini, and Jean-
François Raskin. “Faster algorithms for mean-payoff games”. In: Formal Meth-
ods in System Design 38.2 (2011). Announced at MEMICS’09 and GAMES’09,
pp. 97–118 (cit. on p. 37).

[BDBK+94] Shai Ben-David, Allan Borodin, Richard M. Karp, Gábor Tardos, and Avi
Wigderson. “On the Power of Randomization in On-Line Algorithms”. In:
Algorithmica 11.1 (1994). Announced at STOC’90, pp. 2–14 (cit. on p. 6).

65

http://dx.doi.org/10.1137/S0097539794271898
http://dx.doi.org/10.1137/S0097539794271898
http://arxiv.org/abs/1307.1516
http://arxiv.org/abs/1307.1516
http://dx.doi.org/10.1137/S0097539796303421
http://dx.doi.org/10.1137/S0097539796303421
http://dx.doi.org/10.7155/jgaa.00133
http://dx.doi.org/10.7155/jgaa.00133
http://dx.doi.org/10.1016/0196-6774(91)90036-X
http://dx.doi.org/10.1016/0304-3975(92)90267-J
http://dx.doi.org/10.1016/0304-3975(92)90267-J
http://dx.doi.org/10.1109/FOCS.2014.53
http://dx.doi.org/10.1109/FOCS.2014.53
http://dx.doi.org/10.1007/s10703-010-0105-x
http://dx.doi.org/10.1007/BF01294260

[BDH+12] Grey Ballard, James Demmel, Olga Holtz, and Oded Schwartz. “Graph Ex-
pansion and Communication Costs of Fast Matrix Multiplication”. In: Journal
of the ACM 59.6 (2012). Announced at SPAA’11, 32:1–32:23 (cit. on p. 6).

[Ber09] Aaron Bernstein. “Fully Dynamic (2 + ε) Approximate All-Pairs Shortest
Paths with Fast Query and Close to Linear Update Time”. In: Symposium on
Foundations of Computer Science (FOCS). 2009, pp. 693–702 (cit. on p. 8).

[Ber13] Aaron Bernstein. “Maintaining Shortest Paths Under Deletions in Weighted
Directed Graphs”. In: Symposium on Theory of Computing (STOC). 2013,
pp. 725–734 (cit. on pp. 2, 6, 15).

[BEY98] Allan Borodin and Ran El-Yaniv. Online Computation and Competitive Anal-
ysis. Cambridge University Press, 1998, pp. I–XVIII, 1–414 (cit. on p. 6).

[BHS03] Surender Baswana, Ramesh Hariharan, and Sandeep Sen. “Maintaining All-
Pairs Approximate Shortest Paths Under Deletion of Edges”. In: Symposium
on Discrete Algorithms (SODA). 2003, pp. 394–403 (cit. on p. 15).

[BHS07] Surender Baswana, Ramesh Hariharan, and Sandeep Sen. “Improved decremen-
tal algorithms for maintaining transitive closure and all-pairs shortest paths”.
In: Journal of Algorithms 62.2 (2007). Announced at STOC’02, pp. 74–92
(cit. on pp. 4, 5, 15, 64).

[BKS12] Surender Baswana, Sumeet Khurana, and Soumojit Sarkar. “Fully Dynamic
Randomized Algorithms for Graph Spanners”. In: ACM Transactions on
Algorithms 8.4 (2012). Announced at ESA’04 and SODA’08, 35:1–35:51 (cit.
on p. 8).

[BR11] Aaron Bernstein and Liam Roditty. “Improved Dynamic Algorithms for Main-
taining Approximate Shortest Paths Under Deletions”. In: Symposium on
Discrete Algorithms (SODA). 2011, pp. 1355–1365 (cit. on pp. 1, 4–10, 15, 45,
64).

[Coh98] Edith Cohen. “Fast Algorithms for Constructing t-Spanners and Paths with
Stretch t”. In: SIAM Journal on Computing 28.1 (1998). Announced at
FOCS’93, pp. 210–236 (cit. on p. 7).

[CZ01] Edith Cohen and Uri Zwick. “All-Pairs Small-Stretch Paths”. In: Journal of
Algorithms 38.2 (2001). Announced at SODA’97, pp. 335–353 (cit. on p. 7).

[DHZ00] Dorit Dor, Shay Halperin, and Uri Zwick. “All-Pairs Almost Shortest Paths”. In:
SIAM Journal on Computing 29.5 (2000). Announced at FOCS’96, pp. 1740–
1759 (cit. on pp. 1, 6, 7, 9, 15, 26, 27, 69).

[DI02] Camil Demetrescu and Giuseppe F. Italiano. “Improved Bounds and New
Trade-Offs for Dynamic All Pairs Shortest Paths”. In: International Colloquium
on Automata, Languages and Programming (ICALP). 2002, pp. 633–643 (cit.
on p. 14).

[DI04] Camil Demetrescu and Giuseppe F. Italiano. “A New Approach to Dynamic
All Pairs Shortest Paths”. In: Journal of the ACM 51.6 (2004). Announced at
STOC’03, pp. 968–992 (cit. on pp. 14, 65).

66

http://dx.doi.org/10.1145/2395116.2395121
http://dx.doi.org/10.1145/2395116.2395121
http://dx.doi.org/10.1109/FOCS.2009.16
http://dx.doi.org/10.1109/FOCS.2009.16
http://dx.doi.org/10.1145/2488608.2488701
http://dx.doi.org/10.1145/2488608.2488701
http://dl.acm.org/citation.cfm?id=644108.644171
http://dl.acm.org/citation.cfm?id=644108.644171
http://dx.doi.org/10.1016/j.jalgor.2004.08.004
http://dx.doi.org/10.1016/j.jalgor.2004.08.004
http://dx.doi.org/10.1145/2344422.2344425
http://dx.doi.org/10.1145/2344422.2344425
http://dx.doi.org/10.1137/1.9781611973082.104
http://dx.doi.org/10.1137/1.9781611973082.104
http://dx.doi.org/10.1137/S0097539794261295
http://dx.doi.org/10.1137/S0097539794261295
http://dx.doi.org/10.1006/jagm.2000.1117
http://dx.doi.org/10.1137/S0097539797327908
http://dx.doi.org/10.1007/3-540-45465-9_54
http://dx.doi.org/10.1007/3-540-45465-9_54
http://dx.doi.org/10.1145/1039488.1039492
http://dx.doi.org/10.1145/1039488.1039492

[DI06] Camil Demetrescu and Giuseppe F. Italiano. “Fully dynamic all pairs shortest
paths with real edge weights”. In: Journal of Computer and System Sciences
72.5 (2006). Announced at FOCS’01, pp. 813–837 (cit. on pp. 4, 5, 14).

[DKM+94] Martin Dietzfelbinger, Anna Karlin, Kurt Mehlhorn, Friedhelm Meyer auf der
Heide, Hans Rohnert, and Robert Endre Tarjan. “Dynamic Perfect Hashing:
Upper and Lower Bounds”. In: SIAM Journal on Computing 23.4 (1994).
Announced at FOCS’88, pp. 738–761 (cit. on pp. 29, 39).

[Elk05] Michael Elkin. “Computing Almost Shortest Paths”. In: ACM Transactions
on Algorithms 1.2 (2005). Announced at PODC’01, pp. 283–323 (cit. on pp. 7,
15).

[Elk11] Michael Elkin. “Streaming and Fully Dynamic Centralized Algorithms for
Constructing and Maintaining Sparse Spanners”. In: ACM Transactions on
Algorithms 7.2 (2011). Announced at ICALP’07, 20:1–20:17 (cit. on p. 8).

[EP04] Michael Elkin and David Peleg. “(1 + ε, β)-Spanner Constructions for General
Graphs”. In: SIAM Journal on Computing 33.3 (2004). Announced at STOC’01,
pp. 608–631 (cit. on p. 7).

[ES81] Shimon Even and Yossi Shiloach. “An On-Line Edge-Deletion Problem”. In:
Journal of the ACM 28.1 (1981), pp. 1–4 (cit. on pp. 1, 4, 5, 7, 14, 18, 64).

[FR06] Jittat Fakcharoenphol and Satish Rao. “Planar graphs, negative weight edges,
shortest paths, and near linear time”. In: Journal of Computer and System
Sciences 72.5 (2006). Announced at FOCS’01, pp. 868–889 (cit. on p. 14).

[HK01] Monika R. Henzinger and Valerie King. “Maintaining Minimum Spanning
Forests in Dynamic Graphs”. In: SIAM Journal on Computing 31.2 (2001).
Announced at ICALP’97, pp. 364–374 (cit. on pp. 12, 62, 63).

[HK95] Monika R. Henzinger and Valerie King. “Fully Dynamic Biconnectivity and
Transitive Closure”. In: Symposium on Foundations of Computer Science
(FOCS). 1995, pp. 664–672 (cit. on pp. 18, 63).

[HKN13a] Monika Henzinger, Sebastian Krinninger, and Danupon Nanongkai. “Dynamic
Approximate All-Pairs Shortest Paths: Breaking the O(mn) Barrier and De-
randomization”. In: Symposium on Foundations of Computer Science (FOCS).
2013, pp. 538–547 (cit. on p. 15).

[HKN13b] Monika Henzinger, Sebastian Krinninger, and Danupon Nanongkai. “Sublinear-
Time Maintenance of Breadth-First Spanning Tree in Partially Dynamic
Networks”. In: International Colloquium on Automata, Languages and Pro-
gramming (ICALP). 2013, pp. 607–619 (cit. on p. 15).

[HKN14a] Monika Henzinger, Sebastian Krinninger, and Danupon Nanongkai. “A Subquadratic-
Time Algorithm for Decremental Single-Source Shortest Paths”. In: Symposium
on Discrete Algorithms (SODA). 2014, pp. 1053–1072 (cit. on p. 15).

[HKN14b] Monika Henzinger, Sebastian Krinninger, and Danupon Nanongkai. “Decre-
mental Single-Source Shortest Paths on Undirected Graphs in Near-Linear
Total Update Time”. In: Symposium on Foundations of Computer Science
(FOCS). 2014, pp. 146–155 (cit. on p. 15).

67

http://dx.doi.org/10.1016/j.jcss.2005.05.005
http://dx.doi.org/10.1016/j.jcss.2005.05.005
http://dx.doi.org/10.1137/S0097539791194094
http://dx.doi.org/10.1137/S0097539791194094
http://dx.doi.org/10.1145/1103963.1103968
http://dx.doi.org/10.1145/1921659.1921666
http://dx.doi.org/10.1145/1921659.1921666
http://dx.doi.org/10.1137/S0097539701393384
http://dx.doi.org/10.1137/S0097539701393384
http://dx.doi.org/10.1145/322234.322235
http://dx.doi.org/10.1016/j.jcss.2005.05.007
http://dx.doi.org/10.1016/j.jcss.2005.05.007
http://dx.doi.org/10.1137/S0097539797327209
http://dx.doi.org/10.1137/S0097539797327209
http://dx.doi.org/10.1109/SFCS.1995.492668
http://dx.doi.org/10.1109/SFCS.1995.492668
http://dx.doi.org/10.1109/FOCS.2013.64
http://dx.doi.org/10.1109/FOCS.2013.64
http://dx.doi.org/10.1109/FOCS.2013.64
http://dx.doi.org/10.1007/978-3-642-39212-2_53
http://dx.doi.org/10.1007/978-3-642-39212-2_53
http://dx.doi.org/10.1007/978-3-642-39212-2_53
http://dx.doi.org/10.1137/1.9781611973402.79
http://dx.doi.org/10.1137/1.9781611973402.79
http://dx.doi.org/10.1109/FOCS.2014.24
http://dx.doi.org/10.1109/FOCS.2014.24
http://dx.doi.org/10.1109/FOCS.2014.24

[HKN14c] Monika Henzinger, Sebastian Krinninger, and Danupon Nanongkai. “Sublinear-
Time Decremental Algorithms for Single-Source Reachability and Shortest
Paths on Directed Graphs”. In: Symposium on Theory of Computing (STOC).
2014, pp. 674–683 (cit. on pp. 15, 64).

[HKNrt] Monika Henzinger, Sebastian Krinninger, and Danupon Nanongkai. “Dynamic
Approximate All-Pairs Shortest Paths: Breaking the O(mn) Barrier and De-
randomization”. In: SIAM Journal on Computing (forthcoming). Announced
at FOCS’13 (cit. on p. 1).

[HKN+15] Monika Henzinger, Sebastian Krinninger, Danupon Nanongkai, and Thatchaphol
Saranurak. “Unifying and Strengthening Hardness for Dynamic Problems via
the Online Matrix-Vector Multiplication Conjecture”. In: Symposium on The-
ory of Computing (STOC). 2015 (cit. on p. 6).

[HKR+97] Monika R. Henzinger, Philip Klein, Satish Rao, and Sairam Subramanian.
“Faster Shortest-Path Algorithms for Planar Graphs”. In: Journal of Computer
and System Sciences 55.1 (1997). Announced at STOC’94, pp. 3–23 (cit. on
p. 14).

[HLT01] Jacob Holm, Kristian de Lichtenberg, and Mikkel Thorup. “Poly-Logarithmic
Deterministic Fully-Dynamic Algorithms for Connectivity, Minimum Span-
ning Tree, 2-Edge, and Biconnectivity”. In: Journal of the ACM 48.4 (2001).
Announced at STOC’98, pp. 723–760 (cit. on p. 12).

[Kin99] Valerie King. “Fully Dynamic Algorithms for Maintaining All-Pairs Shortest
Paths and Transitive Closure in Digraphs”. In: Symposium on Foundations of
Computer Science (FOCS). 1999, pp. 81–91 (cit. on pp. 7, 14, 18–20, 37, 64).

[LC67] P.S. Loubal and Bay Area Transportation Study Commission. A Network
Evaluation Procedure. Bay Area Transportation Study Commission, 1967 (cit.
on p. 13).

[Mur67] John D. Murchland. The effect of increasing or decreasing the length of a
single arc on all shortest distances in a graph. Tech. rep. LBS-TNT-26. London
Business School, Transport Network Theory Unit, 1967 (cit. on p. 13).

[PR04] Rasmus Pagh and Flemming Friche Rodler. “Cuckoo hashing”. In: Journal of
Algorithms 51.2 (2004). Announced at ESA’01, pp. 122–144 (cit. on pp. 29,
39).

[RT13] Liam Roditty and Roei Tov. “Approximating the Girth”. In: ACM Transactions
on Algorithms 9.2 (2013). Announced at SODA’11, 15:1–15:13 (cit. on p. 6).

[RZ11] Liam Roditty and Uri Zwick. “On Dynamic Shortest Paths Problems”. In:
Algorithmica 61.2 (2011). Announced at ESA’04, pp. 389–401 (cit. on pp. 6,
14).

[RZ12] Liam Roditty and Uri Zwick. “Dynamic Approximate All-Pairs Shortest
Paths in Undirected Graphs”. In: SIAM Journal on Computing 41.3 (2012).
Announced at FOCS’04, pp. 670–683 (cit. on pp. 1, 4–8, 11, 15, 22–24, 39–41,
46, 63, 64).

68

http://dx.doi.org/10.1145/2591796.2591869
http://dx.doi.org/10.1145/2591796.2591869
http://dx.doi.org/10.1145/2591796.2591869
http://dx.doi.org/10.1137/140957299
http://dx.doi.org/10.1137/140957299
http://dx.doi.org/10.1137/140957299
http://dx.doi.org/10.1006/jcss.1997.1493
http://dx.doi.org/10.1145/502090.502095
http://dx.doi.org/10.1145/502090.502095
http://dx.doi.org/10.1145/502090.502095
http://dx.doi.org/10.1109/SFFCS.1999.814580
http://dx.doi.org/10.1109/SFFCS.1999.814580
http://dx.doi.org/10.1016/j.jalgor.2003.12.002
http://dx.doi.org/10.1145/2438645.2438647
http://dx.doi.org/10.1007/s00453-010-9401-5
http://dx.doi.org/10.1137/090776573
http://dx.doi.org/10.1137/090776573

[Tho04] Mikkel Thorup. “Fully-Dynamic All-Pairs Shortest Paths: Faster and Allowing
Negative Cycles”. In: Scandinavian Workshop on Algorithm Theory (SWAT).
2004, pp. 384–396 (cit. on p. 14).

[TZ05] Mikkel Thorup and Uri Zwick. “Approximate Distance Oracles”. In: Journal
of the ACM 52.1 (2005). Announced at STOC’01, pp. 74–92 (cit. on pp. 7, 8).

[TZ06] Mikkel Thorup and Uri Zwick. “Spanners and emulators with sublinear distance
errors”. In: Symposium on Discrete Algorithms (SODA). 2006, pp. 802–809
(cit. on p. 8).

[UY91] Jeffrey D. Ullman and Mihalis Yannakakis. “High-Probability Parallel Transitive-
Closure Algorithms”. In: SIAM Journal on Computing 20.1 (1991). Announced
at SPAA’90, pp. 100–125 (cit. on pp. 11, 26, 27, 40, 46).

[VWW10] Virginia Vassilevska Williams and Ryan Williams. “Subcubic Equivalences
between Path, Matrix and Triangle Problems”. In: Symposium on Foundations
of Computer Science (FOCS). 2010, pp. 645–654 (cit. on pp. 1, 6, 69).

[VWY09] Virginia Vassilevska, Ryan Williams, and Raphael Yuster. “All Pairs Bottleneck
Paths and Max-Min Matrix Products in Truly Subcubic Time”. In: Theory of
Computing 5.1 (2009). Announced at STOC’07, pp. 173–189 (cit. on p. 6).

[Zwi02] Uri Zwick. “All Pairs Shortest Paths using Bridging Sets and Rectangular
Matrix Multiplication”. In: Journal of the ACM 49.3 (2002). Announced at
FOCS’98, pp. 289–317 (cit. on p. 7).

A Proof of Fact 1.1

Due to a reduction by Dor, Halperin, and Zwick [DHZ00], a combinatorial20 algorithm
for APSP, even a (2− ε, 0)-approximation or (1 + ε, 1)-approximation one,21 with running
time O(n3−δ), for any δ > 0, will imply a combinatorial algorithm for Boolean matrix
multiplication with the same running time, another breakthrough result. Further, due to
Vassilevska Williams and Williams [VWW10, Theorem 1.3], the O(n3−δ)-time combinatorial
algorithm will imply breakthrough results for a few other problems. Since combinatorial
dynamic algorithms can be used to solve static APSP, the same argument applies. In
particular, the additive error of 2 in our (1 + ε, 2)-approximation algorithm is unavoidable
if we wish to get an O(n1−δ) running time (a so-called truly subcubic time) and keep a
small multiplicative error of 1 + ε. For the same reason, a multiplicative error of 2 in
our (2 + ε, 0)-approximation algorithm is also unavoidable. Similarly, the running time of
our deterministic algorithm cannot be improved further unless we allow larger additive or
multiplicative errors.

20The vague term “combinatorial algorithm” is usually used to refer to algorithms that do not use algebraic
operations such as matrix multiplication.

21In general, the reduction of Dor et al. holds for any (α, β) approximation as long as 2α+ β < 4.

69

http://dx.doi.org/10.1007/978-3-540-27810-8_33
http://dx.doi.org/10.1007/978-3-540-27810-8_33
http://dx.doi.org/10.1145/1044731.1044732
http://dl.acm.org/citation.cfm?id=1109557.1109645
http://dl.acm.org/citation.cfm?id=1109557.1109645
http://dx.doi.org/10.1137/0220006
http://dx.doi.org/10.1137/0220006
http://dx.doi.org/10.1109/FOCS.2010.67
http://dx.doi.org/10.1109/FOCS.2010.67
http://dx.doi.org/10.4086/toc.2009.v005a009
http://dx.doi.org/10.4086/toc.2009.v005a009
http://dx.doi.org/10.1145/567112.567114
http://dx.doi.org/10.1145/567112.567114

	1 Introduction
	1.1 The Problem
	1.2 Our Results
	1.3 Techniques
	1.3.1 Monotone Even–Shiloach Tree for Improved Randomized Algorithms
	1.3.2 Moving Even–Shiloach Tree for Improved Deterministic Algorithms

	1.4 Related Work

	2 Background
	2.1 Basic Definitions
	2.2 Decremental Shortest-Path Tree Data Structure (Even–Shiloach Tree)
	2.3 The Framework of Roditty and Zwick

	3 (n5/2) -Total Time (1+, 2)- and (2+, 0)-Approximation Algorithms
	3.1 (1, 2, "4264306 2 / "5265307)-Locally Persevering Emulator of Size (n3/2)
	3.2 Maintaining Distances Using Monotone Even–Shiloach Tree
	3.3 From Approximate SSSP to Approximate APSP
	3.4 Putting Everything Together: (n5/2)-Total Time Algorithm for (1+, 2)- and (2+, 0)-Approximate APSP

	4 Deterministic Decremental (1 +) -Approximate APSP with Total Update Time O(mnlogn)
	4.1 A Deterministic Moving Centers Data Structure (MovingCenter)
	4.2 A Deterministic Center Cover Data Structure (CenterCover)
	4.2.1 High-Level Ideas
	4.2.2 Algorithm Description
	4.2.3 Analysis

	4.3 Deterministic Fully Dynamic Algorithm

	5 Conclusion
	References
	A Proof of fact:truly subcubic lower bound

