
Difference-Preserving Process Merge

Kristof Böhmer and Stefanie Rinderle-Ma

University of Vienna, Faculty of Computer Science
a1063026@unet.univie.ac.at, stefanie.rinderle-ma@univie.ac.at

Abstract. Providing merging techniques for business processes fosters
the management and maintenance of (large) process model repositories.
Contrary to existing approaches that focus on preserving behavior of all
participating process models, this paper presents a merging technique
that aims at preserving the difference between the participating process
models by exploiting the existence of a common parent process, e.g., a
reference or standard process model.

Keywords: Process Design, Process Merging

1 Motivation

Nowadays, many companies face a multitude of different business process models
or versions being in use simultaneously. As an example take the SAP reference
process catalog containing more than 600 different process definitions [1]. Aside
modeling and enacting these processes, their models have to be maintained and
often adapted to reflect constantly changing market situations which can be the
result of takeovers, acquisitions or amendments [2]. Hence, techniques to support
users in keeping track and managing different process models or model versions
are of great importance [3]. This has been recognized by literature, particularly
resulting in techniques for process (model) merge [4, 5]: given a set of process
models {P1, . . . , Pn} existing techniques aim at preserving the behavior of each
process model Pi within the merged model Pmerge. An example for this approach
is depicted in Figure 1. On the left side process models Process 1 and Process 2
are to be merged. The behavior-preserving merge produces the result depicted
in the middle of the figure. Without presenting formal details on the process
model due to space restrictions, the number of paths from the original models (1
or 2 respectively) has increased to 8 paths in Pmerge. In some cases, even some
additional executions paths might added which were not present in one of the
original process models Pi.

Despite obvious advantages of this kind of merge techniques such as quickly
giving an overview about the merged processes, they might create quite complex
and hard to understand results [6] with increasing number of execution paths.
This high number of execution paths might also necessitate that users have to
configure the resulting process model for each use case.

This leads to the following questions:
1. Are there any other ways of merging process models?
2. How can process merging techniques be evaluated?

rinderas8
Schreibmaschinentext
The final publication isavailable at link.springer.com

rinderas8
Schreibmaschinentext

rinderas8
Schreibmaschinentext

rinderas8
Schreibmaschinentext
K. Böhmer, S. Rinderle-Ma: Difference-Preserving Process Merge. Int'l Confon Cooperative Information Systems (CoopIS) 2013. http://www.springer.com/computer/ai/book/978-3-642-41032-1



A D
Child: P1

A X CB

Child: P2

Y

Y
A X CB

YB

Behavior preserving merge result

A C
Parent: P0

B

Difference preserving merge result

D D

Yet to be merged processes

A X YB

Fig. 1. Comparison of behavior and difference preserving merge

2 Difference-Preserving Merge

Following the above two questions, in this paper, we try to adopt the idea of
merging software code (cf. e.g., [7]) in merging process models in a difference-
preserving way. One assumption that has to be made is that the process models
to be merged (child processes) all relate to an initial process (for now on called
parent process), i.e., a child process has been derived from the parent process by
applying a set of change operations, e.g., inserting or deleting nodes. An example
is show in Figure 1 where P1 and P2 are children of P0. P1, for example, was
derived from P0 by deleting node C and inserting node Y. These differences are
then to be preserved in the merge result.

Our presumption is that the difference-preserving merge will create much
smaller, transparent, understandable and accessible results especially if the re-
sults should e.g. be merged again. Take result of difference-preserving merge as
shown in Fig. 1 (right side): this model contains 4 instead of 6 elements and 2
instead of 8 paths when compared to the behavior-preserving merge result.

Approach: In the following we consider a set of three basic change operations
which can be applied on the edges or nodes of a parent process to create a new
child process. So we will tackle operations to add new edges and nodes using
insert(edge(from, to)), and insert(node), to delete information by delete(node)
or delete(edge) and to modify existing nodes e.g. by changing it’s properties
by calling modify(node, new data). Other high level operations like replace or
move can be constructed using this basic operations. We also assume that all
the applied operations will be used to create sound processes so that the later
applied conflict resolution techniques only have to tackle merge related process
conflicts.

Information gathering The following steps will be executed sequentially to merge
multiple processes. The first step will investigate the parent process in combina-
tion with the yet to be merged child processes. The behavior preserving merge
ignores the parent process but we propose to use this additional information so
that a so called three way merge can be applied [3]. It will be used to detect



which elements (nodes and edges) have been deleted, added, or modified to cre-
ate one of the merged child processes. For each change operation an individual
set including the affected elements (edges and nodes) will be created. The algo-
rithms start by detecting the elements which have been deleted from the parent
process. This information will then be stored at a set R. The set will be filled
by comparing each element of the parent process with the child processes. If at
least one child process does not contain the element it will be added to R. A
similar approach will be used to detect newly generated elements. Therefore each
element of the child processes will be compared with the parent process. If an
element exists at a child but not at the parent it will be added to the set N. Also
a set M containing the modified elements will be generated. For each element at
the child processes it’s companion at the parent process will be identified and,
if any exists, their content will be compared. The element will be added to M
if the compared content differs. If the element has been modified differently, at
multiple child processes, the user has to decide which version should be taken.
The last piece of information contains which elements have been transferred
from the parent process to the child process without any modifications. So all
the elements available at the parent process which are not present at the set R
and M will be stored at a newly generated set O.

Creating the merged process The second step will be used to merge the vari-
ous changes\differences gathered from the parent and child processes. So the
identified changes from all child process will be combined. Therefore the sets
generated during the previouis step will be used. They are combined using the
union operation to create Pmerged = (N ∪M ∪O). The set R will here be ignored
because it has already been used to generate O so that all the detected delete
operations will be preserved.

Optimizing the results The third step will be used to enhance the result quality
and will be applied onto Pmerge. The first optimization will detect parts at
the merged control flow where the merge created a new, not present at any
child process, parallel control flow branch. Such a parallel execution can be
problematic because it can cause concurrency issues like incorrect execution
states, incomplete data or inappropriate calculations. On the other hand, it is
also possible that it just cannot be realizable in day-to-day work. So if such a
newly generated execution order (which was not present at the child processes)
is detected the merger asks the user if she or he wants to reorder this e.g. to
a sequential ordering by choosing between multiple auto generated alternative
control flow recommendations.

The second optimization will try to find gaps at the control flow. Therefore
each node n at Pmerge will be checked if it has been correctly integrated, so that
incoming and outgoing edges exists for this node. It also has to be taken into
account that start and end nodes only need an incoming or outgoing edge. After
a gap has been detected it will be closed by adding a newly generated edge.
The end\start of the new edge will be n if incoming\outgoing edges are missing.
The opposite side of the edge will be detected by analyzing the original control



flow path which was used to integrate the node. At first the child processes will
be investigated, followed up by the parent process, if necessary. So the prede-
cessors\successors, ordered by their distance to n, will be checked. The nearest
node which is also available at Pmerge will then be used as the start\end of the
edge.

3 Evaluation and Conclusion

All algorithms and concepts behind the difference-preserving merge have been
implemented as a proof of concept prototype. We experimented with different
use cases of different complexity. Overall, we can conclude that the difference-
preserving merge tends to excel the behavior-preserving merge in terms of sim-
plicity of the produced merge results. This is advantageous for understandabil-
ity, maintainability, and possible automation of the resulting process models. In
turn, behavior-based approaches provide a complete overview on all participat-
ing models and can be produced with lower computational effort.

In future research, we will further investigate means to compare both ap-
proaches, preferably based on a real-world case study. Further on, we will work
on “proving” that the approach is always difference-preserving. Another goal is
to integrate the approach with existing work on calculating difference between
process models such as [8].

References

1. Curran, T., Keller, G.: SAP R/3 Business Blueprint : Business-Engineering mit den
R/3-Referenzprozessen, Addison-Wesley (1999)

2. Davenport, T.H., Short, J.E.: The New Industrial Engineering: Information Tech-
nology and Business Process Redesign. Sloan Mgmt. Review 31(4) (1990) 11–27

3. Hallerbach, A., Bauer, T., Reichert, M.: Capturing variability in business process
models: the Provop approach. Journal of Software Maintenance 22(6-7) (2010)
519–546

4. Gottschalk, F., van der Aalst, W.M.P., Jansen-Vullers, M.H.: Merging Event-Driven
Process Chains. In: OTM Conferences (1). Volume 5331 of LNCS. (2008) 418–426

5. Rosa, M.L., Dumas, M., Uba, R., Dijkman, R.M.: Merging Business Process Models.
In: OTM Conferences (1). Volume 6426 of LNCS. (2010) 96–113

6. Mendling, J., Reijers, H.A., Cardoso, J.: What Makes Process Models Understand-
able? In: BPM. Volume 4714 of LNCS. (2007) 48–63

7. Mens, T., Demeyer, S.: Software Evolution. Springer. (2008)
8. Küster, J., Gerth, C., Förster, A., Engels, G.: Detecting and resolving process model

differences in the absence of a change log. In: Int’l Conf BPM’08. (2008) 244–260




