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Abstract

We study dynamic (1 + ε)-approximation algorithms for the single-source shortest paths
problem in an unweighted undirected n-node m-edge graph under edge deletions. The fastest
algorithm for this problem is an algorithm with O(n2+o(1)) total update time and constant query
time by Bernstein and Roditty (SODA 2011). In this paper, we improve the total update time
to O(n1.8+o(1)+m1+o(1)) while keeping the query time constant. This running time is essentially
tight when m = Ω(n1.8) since we need Ω(m) time even in the static setting. For smaller values
of m, the running time of our algorithm is subquadratic, and is the first that breaks through the
quadratic time barrier.

In obtaining this result, we develop a fast algorithm for what we call center cover data
structure. We also make non-trivial extensions to our previous techniques called lazy-update
and monotone Even-Shiloach trees (ICALP 2013 and FOCS 2013). As by-products of our new
techniques, we obtain two new results for the decremental all-pairs shortest-paths problem. Our
first result is the first approximation algorithm whose total update time is faster than O(mn)
for all values of m. Our second result is a new trade-off between the total update time and the
additive approximation guarantee.
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1 Introduction

Dynamic graph algorithms are data structures that support update as well as query operations on
a graph. They are usually classified according to the types of updates allowed: decremental if only
deletions are allowed, incremental if only insertions are allowed, and fully dynamic if both types of
updates are allowed.

The Problem. We consider the decremental single-source shortest paths (SSSP) problem where
we wish to maintain the distances between every node and a given source node s in an undirected
unweighted graph under a sequence of the following delete and distance query operations:

• Delete(u, v): delete edge (u, v) from the graph, and

• Distance(x): return the distance between node s and node x in the current graph G, denoted
by dG(s, x).

We use the term decremental all-pairs shortest paths (APSP) to refer to the more general case where
the distance query is of the form Distance(x, y), and we have to return dG(x, y), the distance
between nodes x and y. The efficiency is judged by two parameters: query time denoting the time
needed to answer each distance query, and total update time denoting the time needed to process
all edge deletions. The running time will be in terms of n, the number of nodes in the graph, and
m, the number of edges before any deletion.

We use Õ-notation to hide an O(poly log n) term. When it is clear from the context, we say
“time” instead of “total update time”, and, unless stated otherwise, the query time is O(1). The
goal is to optimize the total update time while keeping the query time and approximation guarantees
small. We say that an algorithm provides an (α, β)-approximation if the distance query on nodes
x and y on the current graph G returns d̂(x, y) such that dG(x, y) ≤ d̂(x, y) ≤ αdG(x, y) + β. We
call α and β multiplicative and additive errors, respectively. When β = 0, we say α-approximation
instead of (α, 0)-approximation.

Previous Results. The best exact algorithm has O(mn) total update time and goes back three
decades to Even and Shiloach [14]. King [19] later generalized this result to directed weighted
graphs. Roditty and Zwick [21] showed that this total update time is optimal for exact distances,
unless there is a major breakthrough for Boolean matrix multiplication and many other long-
standing problems [27]. It is thus natural to shift the focus to approximation algorithms. The only
approximation algorithm prior to our work is due to Bernstein and Roditty [8]; it has a (1 + ε)

approximation guarantee and an expected total update time of O(n2+O(1/
√
logn)). This time bound

is only slightly larger than quadratic time and beats the O(mn) time unless the input graph is very
sparse. For more detail, see Section 2.

1.1 Our Results

The algorithm of Bernstein and Roditty naturally leads to the question whether there is a subquadratic-
time algorithm, i.e., an algorithm with O(n2−δ) running time for some constant δ > 0. In this paper,
we show that, as long as m is subquadratic, decremental SSSP can be solved in subquadratic time:

Theorem 1.1 (Main result). For any constant 0 < ε < 1, there is a (1 + ε)-approximation algo-
rithm for decremental SSSP with worst-case constant query time and expected total update time of
O(n1.8+O(1/

√
logn) +m1+O(1/

√
logn)).1

Theorem 1.1 also implies that when m = Ω(n1.8) our total update time is almost linear
(O(m1+o(1)) time) and thus almost tight. The algorithm is, as all algorithms in this paper, correct

1To be precise, the O(1/
√

logn) term in Theorem 1.1 is
√

log(12/ε)/ logn.
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with high probability. Also note that the expected total update time guarantee can be turned
into a high probability guarantee by simply running Θ(log n) copies of the algorithm in parallel2.
Additionally, as by-products of the techniques developed in this paper, we obtain two new results
for decremental APSP.

Theorem 1.2 ((3 + ε)-Approximation for APSP). For any constant 0 < ε < 1, there is a (3 +
ε)-approximation algorithm for decremental APSP with O(log log n) worst-case query time and

expected total update time of Õ(m2/3n3.8/3+O(1/
√
logn)).

Theorem 1.3 (Trade-off for APSP). For any constant 0 < ε < 1 and integer 2 ≤ k ≤ log n, there
is a (1 + ε, 2(1 + 2/ε)k−2)-approximation algorithm for decremental APSP with constant worst-case
query time and expected total update time of Õ(n2+1/k(37/ε)k−1).

Prior to these results, Roditty and Zwick [22] presented a (1 + ε)-approximation algorithm with

Õ(mn) total update time. Bernstein and Roditty [8] presented algorithms with Õ(n2+1/k+O(1/
√
logn))

total update time and (2k−1+ε, 0) approximation guarantee. We [16] recently showed an algorithm
with Õ(n2.5) total update time guaranteeing both (1 + ε, 2) and (2 + ε, 0) approximation factors.
Both Bernstein and Roditty’s and our algorithms improve the Õ(mn) time of Roditty and Zwick
when the input graph is dense. Our result in Theorem 1.2 is the first approximation algorithm
that is faster than Õ(mn) for all values of m. Our result in Theorem 1.3 complements the result
of Bernstein and Roditty and generalizes our previous result in [16].

1.2 Techniques

In obtaining the subquadratic-time algorithm we develop new techniques, as well as extend some
old ones, which we hope will also be useful in other situations.

Review of Even-Shiloach Tree (ES-Tree). An Even-Shiloach tree (ES-tree) has two parame-
ters: a root node r and the range (or depth) τ . It maintains a breadth-first search tree rooted at
r and the distances between r and all other nodes in the dynamic graph, up to distance τ (if the
distance is greater than τ , it will be set to ∞). This is done by repeatedly updating every node’s
distance to r every time it increases (in the decremental setting) or decreases (in the incremental
setting), which requires time proportional to its degree. This gives a query time of O(1) and, since
every node’s distance changes at most τ times, the total update time is O(mτ); to be more precise,
it is O(mrτ) where mr is the number of edges within the distance of τ from r (this fact will play
an important role in our analysis).

Faster Algorithm for Center Cover Data Structure. In the center cover data structure, we
are given a parameter h and a constant α. We would like to maintain Õ(h) nodes, called centers,
and ES-trees of depth O(n/h) from these centers. The goal is that every node v is of distance at
most n/h from some center c (we say that v is “covered” by c) whose ES-tree is of depth at least
αn/h, where α is usually constant or near-constant. The main property of this data structure is
that every node that is of distance at most (α − 1)n/h to v is contained in the ES-tree of c. This
data structure has played an important role in solving decremental APSP (e.g. [22, 16]). In this
paper, we present a new algorithm which has the same aforementioned property and is faster than
the previous ones (with some caveats) when h is not too small, and show how to use this new
algorithm to improve over previous decremental SSSP algorithms.

2Whenever we get an update (delete) operation, we send this to a copy A only after A has finished processing
all previous update operations. At any point in time, we say that we have finished updating if one of the copies has
finished updating. We then are ready to take a new query. When we get a distance query, we query a copy that has
finished updating. Observe that the query time remains the same and the total update time is at most the minimum
total update time among all copies.
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Previously this data structure was implemented by randomly picking Õ(h) nodes as centers.
Following an argument of Ullman and Yannakakis [26], it can be shown that every node will have a
center of distance at most n/h from it with high probability, assuming that edge deletions are done
independently from the random choice of centers (i.e., assuming an oblivious adversarial model).
From each of these h centers an ES-tree of depth α · n/h is maintained in time O(αmn/h), leading
to a total update time (over Õ(h) centers) of Õ(αmn).

To improve this update time, we introduce the notion of rich and poor centers. We call the
above randomly selected centers poor centers. For each poor center r, we maintain an ES-tree from
it only when there are at most ρ edges of distance at most αn/h from r, for some parameter ρ to
be fixed later. Thus, the total update time of maintaining such an ES-tree is O(ρn/h). We call a
poor center for which we maintain an ES-tree active. Additionally, we sample Õ(m/ρ) edges and
call their end-nodes rich centers. We maintain ES-trees of depth 2αn/h from all these rich centers.
By a standard argument, we can prove the following claim.

Claim 1.4. Every node is of distance at most n/h from some active poor center (maintaining an
ES-tree of depth αn/h) or distance at most (1 + α)n/h from some rich center (maintaining an
ES-tree of depth 2αn/h).

Observe that we can use Claim 1.4 to guarantee the main property that, for every node v, every
node in distance at most (α − 1)n/h to v is contained in the ES-tree of its nearest active poor
center or rich center. When α is a constant, we need a total update time of Õ(hρn/h) = Õ(nρ) for
maintaining ES-trees from at most h active poor centers and Õ(m2/ρ·n/h) for maintaining ES-trees
from m/ρ rich centers. By setting ρ = m/

√
h, we get a total update time of Õ(nρ+m2n/(ρh)) =

Õ(mn/
√
h). This gives an improvement over the previous Õ(mn) time when h is ω(1).

Faster Decremental SSSP Algorithm on Sparse Graphs (Details in Section 3). We now
show how to use the above new algorithm to obtain an improved decremental SSSP algorithm
on sparse graphs. We note that this is already a non-trivial task since, in the case m = O(n),
no previous dynamic algorithm can beat the naive solution where we recompute the breadth-first
search (BFS) tree from scratch after every deletion (i.e. no previous algorithm achieves o(n2) total
update time). Our general approach to attack this special case is inspired by our recent technique
called lazy-update Even-Shiloach tree introduced in [17]. In [17], we used this technique to obtain a
(1 + ε)-approximation O(n1.8)-time algorithm for incremental SSSP (allowing only edge insertions)
when m = O(n)3. It is difficult to extend this approach to the decremental setting since it involves
estimating each node’s distance from the source node after each edge insertion and deletion, which
is easy to do in the incremental setting but hard in the decremental one. In this paper, we modify
(and arguably simplify) this approach so that we can avoid this problem and make use of our new
center cover data structure, as follows.

Recall that the total update time of the ES-tree crucially relies on the number of time the nodes’
distances to the root change. It is thus natural to try to reduce it by making the distance update
lazy in the sense that we will change a node’s distance only when this change is larger than some
parameter δ. Clearly, this modification reduces the number of changes of each node’s distance from
O(n) to O(n/δ), and thus can potentially reduce the total update time to O(mn/δ). However, it
also leads to a distance error. In [17], we showed that by regularly recomputing the BFS tree from
scratch, we can keep this distance error small. One crucial subroutine of this approach is checking,
after an edge deletion, whether a node’s distance (from the source) increases by at least δ. In this
paper, we provide the new insight that this task can be done using the center cover data structure,

3More generally, the total update time is O(mn2/5q2/5) where m is the number of edges in the final graph (after
all insertions) and q is the number of edge insertions.
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as follows. Let G and G′ be graphs before and after deleting edge (u, v), respectively. Assume that
we maintain a center cover data structure with parameters h = n/δ and α = 2. By Claim 1.4, there
is a center c such that dG′(c, v) ≤ 3δ, at which we maintain an ES-tree of depth Θ(δ) which is at
least dG′(c, v) + δ; let T ′ be such tree in G′. This implies that T ′ contains all nodes of distance (in
G′) at most δ from v. Also recall that every node in T ′ is of distance at most Θ(δ) from v (because
of the depth of T ′). These two facts intuitively imply that we can use T ′ to determine whether v’s
distance increases by Ω(δ):

Claim 1.5. If minx∈T ′ dG(s, x) < dG(s, v), then dG′(s, v) ≤ dG(s, v) +O(δ); otherwise, dG′(s, v) ≥
dG(s, v) + δ.

Proof Sketch. Consider when minx∈T ′ dG(s, x) < dG(s, v). Let x = arg minx∈T ′ dG(s, x). (i) Note
that dG′(s, x) < dG(s, v). This is because we know that dG′(s, x) = dG(s, x) since deleting (u, v)
does not affect the distance of any node y such that dG(s, y) < dG(s, v). (ii) Also note that
dG′(v, x) = O(δ) because v and x are in the same tree T ′ of depth O(δ). So, we have dG′(s, v) ≤
dG′(s, x) + dG′(x, v) ≤ dG(s, v) +O(δ) (the last inequality is by (i) and (ii)).

Now consider when minx∈T ′ dG(s, x) ≥ dG(s, v). Assume for a contradiction that dG′(s, v) ≤
dG(s, v) + δ− 1. Then, there must be a path of length at most δ in G′ between v and some node y
such that dG′(s, y) < dG(s, v). Node y must be in T ′ since T ′ contains all nodes of distance at most
δ from v. This means that minx∈T ′ dG(s, x) ≤ dG(s, y) ≤ dG′(s, y) < dG(s, v). This contradicts the
assumption that minx∈T ′ dG(s, x) ≥ dG(s, v).

Observe that the condition minx∈T ′ dG(s, x) < dG(s, v) in Claim 1.5 does not require the knowl-
edge of the distance in G′; in other words, we can estimate the distance change of v after the edge
deletion by examining the distance of every node before the deletion and updating the center cover
data structure. This is the key insight that allows us to check whether v’s distance increases by
Ω(δ). We can thus obtain the same result as we have obtained in the case of the incremental model
[17], i.e., Õ(n1.8) total update time when m = Õ(n).

Monotone ES-Trees on Sparse Emulator (Details in Section 4). To prove Theorem 1.1
when the input graph is not sparse, we extend the monotone ES-tree technique we developed in [16].
This technique is designed to maintain an ES-tree on an emulator, a sparse dynamic graph that
preserves the distance between all nodes in the dynamic input graph. It is generally hard to bound
the error incurred by running the monotone ES-tree on an emulator. In [16], we showed that the
error can be bounded if we run the monotone ES-tree on a certain type of emulator called locally-
persevering, and showed that we can dynamically maintain such an emulator having Õ(n1.5) edges.
We will be done if we can show that a similar result can be obtained for some very sparse emulator
(having Õ(n) edges). The difficulty is, however, that we are not aware of any locally-persevering
emulator having o(n1.5) edges. We get around this by combining our previous technique in [16]
and the proof of Thorup and Zwick [25] to show that our monotone ES-tree works well on their
emulator [24, 25]. In particular, Thorup and Zwick [25] showed that, for any k ≥ 2, their emulator
has Õ(n1+1/k) edges and approximates the distances between all pairs with (1 + ε)-multiplicative
and (O(1/ε))k-additive error. We show that the same error guarantee can be obtained when we
run the monotone ES-tree on this emulator. In principle we apply the same proof idea as Thorup
and Zwick [25], except that we have to carefully argue that the error bound holds despite the edge
insertions. Our new analysis also leads to new algorithms for decremental APSP as in Theorem 1.3.

2 Related Work

The decremental SSSP problem was the first dynamic problem studied in theoretical computer
science. Besides being interesting in its own right, it also arises as a subproblem in many other
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dynamic algorithms and can be adapted to other settings (e.g. [5, 6, 7, 16, 17, 19, 21, 22]). The first
non-trivial result is from 1981 by Even and Shiloach [14]. They showed an algorithm with O(mn)
total update time and O(1) query time, which, as observed by King [19], works even on directed
unweighted graphs. (King also observed a pseudopolynomial total update time of O(mnW ), where
W is the largest edge weight.) King and Thorup [20] later presented a technique that allows us
to implement this algorithm using less space. More recently, Bernstein [6] extended Even and
Shiloach’s algorithm to a (1 + ε)-approximation one on directed weighted graphs. This in turn
serves as an important subroutine for his recent breakthrough for the decremental all-pairs shortest
paths problem on directed weighted graphs [7].

Achieving an o(mn) total update time with a small query time for decremental SSSP has been
a long-standing open problem but no progress has been made since 1981. Roditty and Zwick [21]
provided an explanation for this by showing that achieving an o(mn)-time exact combinatorial
algorithm for the incremental and decremental SSSP problems on unweighted undirected graphs
is impossible unless we make a major breakthrough for Boolean matrix multiplication and many
other long-standing problems. For approximation algorithms, Bernstein and Roditty [8] recently

achieved a (1 + ε)-approximation algorithm with Õ(n2+O(1/
√
logn)) expected total update time and

O(1) query time, thus improving the previous O(mn) total update time as long as the input graph
is not too sparse. The present paper further improves the total update time further.

Much more progress has been seen for decremental APSP. Dor et al. [12] showed that unless we
make a major breakthrough for Boolean matrix multiplication and many other long-standing prob-
lems, we cannot achieve a combinatorial algorithm for APSP with an approximation factor less than
2, even in the static setting (see [16, Fact 2] for more detail). The current fastest exact algorithms
for both incremental and decremental setting are due to Ausiello et al. [2, 3], Baswana et al. [5],
and Demetrescu and Italiano [11], which have Õ(n3) expected total update time and work even
on directed graphs. The current fastest (1 + ε)-approximation algorithm on unweighted undirected
graphs was presented by Roditty and Zwick [22]. Its expected total update time is Õ(mn) (improv-
ing from Baswana et al. [5, 4]), and is likely to be tight unless we make a major breakthrough as
explained above. As noted after Theorem 1.3, results in [8, 16] and this paper build on and extend
Roditty and Zwick’s algorithms. One of their algorithms was also recently derandomized in [16].
Also very recently, a (1 + ε)-approximation Õ(mn logW )-time algorithm for the directed weighted
case was presented in [7], where W is the ratio of the largest edge weight ever seen in the graph
to the smallest such weight. We refer the readers to, e.g., [1, 12, 13] for previous static algorithms
and [9, 10, 11, 15, 18, 19, 23] for previous fully dynamic algorithms for APSP.

3 New Decremental SSSP Algorithm for Sparse Graphs

We now give an algorithm that maintains approximate shortest paths from a source node s up to
depth τ under edge deletions. We first present an algorithm that computes approximate distances
with additive error. Then we will turn the additive error into a multiplicative error of 1 + ε. We
denote the current distance between the nodes x and y in the graph G by dG(x, y). When the graph
we refer to is clear from the context, we omit the subscript in the distance function. The goal of
the (1 + ε)-approximate algorithm is to maintain a distance estimate d̂(v, s) for every node v such
that d̂(v, s) ≥ dG(v, s) and if dG(v, s) ≤ τ , then also d̂(v, s) ≤ (1 + ε)dG(v, s). A decremental SSSP
algorithm for full depth sets τ = n.

3.1 Additive Approximation Algorithm

We first explain how the additive approximation algorithm works (see Algorithm 1 for the pseu-
docode). We assume that the graph from which we delete edges always stays connected (see
Section 3.3 how to remove this assumption). The algorithm has the parameters κ ≤ m, δ ≤ τ , and
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ρ ≤ m. It will use a special set of nodes called centers that “cover” other nodes. We say that a
node v is t-covered by a center c if d(c, v) ≤ t. We initialize the algorithm by sampling two sets of
random nodes. First, we sample each edge independently with probability a logm

ρ for a large enough
constant a. The nodes incident to the sampled edges will be used as rich centers. Note that the
expected number of rich centers is O(m logm

ρ ). Second, we sample each node independently with

probability a logn
δ . The sampled nodes will be used as poor centers. The expected number of poor

centers is O(n logn
δ ). The algorithm will make a poor center active if it is not 3δ-covered by any rich

center. By a standard “hitting set” argument, we can argue that every node is in small distance to
a center.

Lemma 3.1. Every node is either 4δ-covered by a rich center or δ-covered by an active poor center
with high probability (whp).

Proof. Suppose that v is not δ-covered by a rich center. (If it is δ-covered by a rich center, it is also
4δ-covered.) Let c be the closest rich center to v . Since c does not δ-cover v, we have d(v, c) > δ.
Therefore the shortest path from v to c contains at least δ nodes (Note that the shortest path exists
because we assume that the graph stays connected). By our sampling process one of the first δ
nodes on this path is a poor center whp. Thus, v is δ-covered by a poor center c. If c is inactive,
then it is 3δ-covered by a rich center c′. In that case v is 4δ-covered by c′.

For every rich center we maintain an Even-Shiloach tree (ES-tree) up to depth 6δ and for every
active poor center we maintain an ES-tree up to depth 3δ. Note that a poor center c might not be
active from the beginning. We will start maintaining the ES-tree of c only when c becomes active.
It is clear that as soon as a poor center becomes active it will stay active because distances never
decrease in the decremental setting. Furthermore, for every center we will keep a priority queue
whose elements are the nodes of the graph and the key of each node v is L(v), a certain estimate
of the distance between v and s to be defined below. Since we maintain these ES-trees, we can, for
every node v, easily maintain a list of rich centers and poor centers by which it is 4δ-covered or
δ-covered, respectively. After the ES-tree of a center c is initialized, we add c to the list of centers
of every node v such that v is at depth at most 4δ or δ in the ES-tree, respectively. When the
depth of a node v in the ES-tree of a center c increases to more than 4δ or δ, respectively, then we
delete c from the list of centers of v. Now every node can always find a rich center by which it is
4δ-covered or a poor center by which it is δ-covered by retrieving the first element from this list.

The main algorithm works in phases. At the beginning of each phase, we first compute a BFS
tree T rooted at s up to depth τ . This computation also determines the current distance from
s of every node. For every node v, we define the level l(v) of v as the distance between v and
s at the beginning of the current phase. Furthermore we define the rounded level L(v) of v as
the value of l(v) rounded down to the nearest multiple of δ, i.e., L(v) = bl(v)/δc · δ. Note that
L(v) ≤ l(v) < L(v) + δ . The second step at the beginning of each phase is to update the priority
queues of the centers. For every node v we check whether L(v) has increased since the last phase.
If yes, then for every center c we set the key of v in the priority queue of c to L(v).

We now explain how the algorithm proceeds after each edge deletion. We first check whether
the number of edges deleted since the beginning of the current phase has reached κ. If yes, we start
a new phase. This ensures that there are at most κ edge deletions in each phase. Otherwise, we
start the following reconnection procedure. Let U be the set of nodes for which the edge to their
parent in the tree T has been deleted since the beginning of the current phase. We now do the
following for every node u ∈ U to find a new parent to connect to in T . Let c be a rich center
that 4δ-covers u or an active poor center that δ-covers u. By Lemma 3.1 such a center exists whp.
Let v be a node of minimum rounded level L(v) in the ES-tree of c, which can be obtained from
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Algorithm 1: Additive approximation algorithm

// After deleting an edge (x, y), the deletion procedure has to be executed

for both (x, y) and (y, x).

1 initialize()

// First initialization and re-initialization at beginning of new phase

2 Compute BFS tree T rooted at s up to depth τ
3 foreach node v do set level l(v) to current distance between v and s and L(v) to

bl(v)/δc · δ
4 foreach node v such that L(v) has increased do
5 foreach center c do set key of v in priority queue of c to L(v)

6 U ← ∅

7 delete(x, y)
8 if y is parent of x in tree T then add x to U
9 if there were κ updates since the beginning of the current phase then

10 initialize() // start new phase

11 else
// ‘‘reconnection procedure’’

12 foreach u ∈ U do
13 Find rich center c that 4δ-covers u or active poor center c that δ-covers u
14 if s is contained in ES-tree of c then
15 Make s the parent of u in T
16 else
17 Find node v with minimum rounded level L(v) in ES-tree of c
18 if L(v) < l(u)− δ then
19 Make v the parent of u in T
20 else
21 initialize() // start new phase

7



the priority queue of c.4 If L(v) < l(u) − δ, the algorithm will make v the parent of u in T and
mark this edge with the center c. For the correctness of the algorithm we will show that taking
the edge (u, v) instead of the deleted tree edge increases the additive error by at most 10δ. If
L(v) ≥ l(u) − δ, we start a new phase. For the running time analysis we will argue later that in
this case the algorithm makes progress: the distance between u and s has increased by at least δ
and the sum of all distances from s has increased by Ω(δ2). An exception is the situation that the
source s is contained in the ES-tree of c in which we make s the parent of u in T and mark this
edge with s.

The algorithm answers distance and path queries as follows. A query for the approximate
distance between a node x and s is answered by returning l(x), the level computed at the beginning
of the current phase.5 An approximate shortest path of x to s is generated by following the path
from x to s in T . Every tree edge of T traversed in this process is either also contained in the
tree computed at the beginning of the current phase or has been introduced in the reconnection
procedure. In the first case, we simply output (u, v) as the next part of the approximate shortest
path and then proceed with the node v. In the second case, this edge is marked with a center c.
In that case we output the shortest paths from u to c and from c to v that can be obtained from
the ES-tree of c and then proceed with the node v.

Obviously, the algorithm builds an exact SSSP tree each time a new phase starts. We can show
that we introduce an additive error of at most 10δ every time we connect a node u ∈ U to a node
v of lower level by going over one of the centers. As there are at most κ deletions in each phase,
the additive error is at most 10κδ at any time.

Lemma 3.2. After every update processed by the algorithm the graph T is a tree and, for every
node x, d(x, s)− 10κδ ≤ l(x) ≤ d(x, s).

Proof. The second inequality is true by the definition of the level as the distance between x and
s at the beginning of the current phase: since distances never decrease under edge deletions, the
inequality d(x, s) ≥ l(x) always holds.

For the first inequality, consider the tree T built by the algorithm and the (unique) path P
from x to s in T that contains for every node, starting from x, the edge to its parent in T . Let
u and v be nodes in T such that v is the parent of u. If u /∈ U , then v also was the parent of u
in the BFS tree computed at the beginning of the current phase and thus l(v) < l(u). If u ∈ U ,
then either v = s or L(v) < l(u)− δ. If v = s, then l(v) = 0 and thus l(v) < l(u) because 0 is the
minimum level and is reached only by s. If L(v) < l(u) − δ, then because of l(v) ≤ L(v) + δ we
also get l(v) < l(u). Since every parent has smaller level than its children (and every node has a
parent), we infer that T is indeed a tree. This fact also implies that l(x) is an upper bound on the
number of edges of P .

Now let (u, v) be an edge of the path P , which means that v is the parent of u in T . If u /∈ U ,
then the edge (u, v) is contained in G. As argued above, this case can happen at most l(x) times.
If u ∈ U , then the edge is marked with a center c in T ′ such that the following holds:

• Either c is a rich center such that u is 4δ-covered by c and v is in the ES-tree of depth 6δ of c

• or c is a poor center such that u is δ-covered by c and v is in the ES-tree of depth 3δ of c

In any case we have d(u, v) ≤ d(u, c) + d(c, v) ≤ 10δ. Note that there are at most κ nodes in U .
Therefore the path P in the tree T corresponds to a path from x to s in G that has length at

4Note that the level of v refers to the distance between v and s in the initial BFS tree and not to the distance
between v and c in the ES-tree of c.

5To be precise, we return, for a node x, the distance estimate l(x) + 10κδ since we demand that the returned
distance estimate does not underestimate the real distance.
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most l(x) + 10κδ. Since the length of this path is at least the length of a shortest path we get
d(x, s) ≤ l(x) + 10κδ.

We finally explain how to implement the priority queues. We could simply implement them
by min-heaps, but there also is a more efficient data structure since the keys L(v) never decrease
and only have O(n/δ) different values. For each i we maintain a doubly linked list Li of elements
corresponding to nodes for which L(v) = iδ and for each node we maintain a pointer to its list
element. If the key of a node v increases from iδ to jδ, we first use the pointer to find its list
element in Li, remove it from Li, and insert it into Lj . Furthermore, we maintain a pointer p to
the first non-empty list. Every time the list to which p points becomes empty, we move p “to the
right” until we find the first non-empty list again. Using the pointer p, we can always return a
node of minimum key in the priority queue.

3.2 Running Time Analysis

We now analyze the expected running time of the algorithm and explain how to obtain a multiplica-
tive (1 + ε)-approximation from the additive approximation. Our algorithm incurs the following
(expected) costs over all deletions:

(1) Maintaining the ES-trees of the rich centers takes timeO(mδ·m logm
ρ ) since there areO(m logm

ρ )
rich centers in expectation.

(2) Maintaining the priority queue of a rich center takes total time O(nτ/δ): increasing the key
L(v) of a node v takes constant time and each key L(v) increases at most O(τ/δ) times; sim-
ilarly, the pointer to the list of minimum elements is moved at most O(τ/δ) times. Therefore
the total time needed for maintaining the priority queues of all rich centers is O(n · τδ ·

m logm
ρ ).

(Note that this step would be less efficient if we used exact levels instead of rounded levels.)

(3) Similarly, the time needed for maintaining the priority queues of all poor centers is O(n · τδ ·
n logn
δ ).

(4) The running time of the reconnection procedure after a deletion is O(1) for every node in U .
As there are at most κ nodes in U and at most m deletions this takes time O(mκ) in total.

It remains to bound the costs of maintaining the ES-trees of the poor centers and of doing the
re-initialization at the beginning of each phase. The first cost can be bounded by showing that
poor centers have a sparse neighborhood. If there were more than ρ edges in the neighborhood of
a poor center, then one of them would have been selected in the sampling step whp and thus some
rich center would cover this poor center and make it inactive.

Lemma 3.3. For every active poor center c, the number of edges incident to the ES-tree of c is at
most ρ whp.

Proof. Assume by contradiction that the number of edges incident to the ES-tree of c is more than
ρ. We will argue that whp c is 3δ-covered by a rich center which contradicts the assumption that c
is active. The ES-tree of c has depth 3δ. Since there are more than ρ edges incident to the ES-tree
of c, one of them has been sampled whp. Therefore, there is some rich center c′ in the ES-tree of
c. But this means that c is 3δ-covered by c′ and thus c would not be active, which contradicts the
assumptions.

(5) Maintaining the ES-trees of active poor centers takes time O(ρδ · n logn
δ ) = O(nρ log n) since

there are O(n logn
δ ) poor centers in expectation.
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For the second remaining cost we want to bound the number of phases of the algorithm. To do
this we first show that every time the reconnection fails for some node u (i.e., L(v) ≥ l(u)− δ) the
distance between u and s has increased by at least δ since the beginning of the current phase. The
intuition is as follows: Consider the node x at distance exactly 2δ from u on the shortest path from
u to s. This node is contained in the ES-tree that covers u. Thus L(v) ≤ L(x). If L(v) ≥ l(u)− δ,
then also L(x) ≥ l(u)− δ, which implies that x is at distance 2δ from the current level of u but at
distance at most δ from the “old” level l(u) of u. It follows that the level of u must have increased
by at least δ.

Lemma 3.4. Let u ∈ U be a node whose edge to its parent has been deleted since the beginning of
the current phase. Let c be a rich center that 4δ-covers u or an active poor center that δ-covers
u. Let v be a node of minimum rounded level L(v) in the ES-tree of c and assume that s is not
contained in the ES-tree of c. If L(v) ≥ l(u)− δ, then d(u, s) ≥ l(u) + δ.

Proof. We give a proof by contradiction. Assume that L(v) ≥ l(u) − δ and d(u, s) < l(u) + δ.
Consider first the case that d(u, s) ≥ 2δ. Let x be a node on a shortest path from u to s in
distance 2δ to u, i.e., d(u, s) = d(u, x) +d(x, s) and d(u, x) = 2δ. By our assumption it follows that
d(x, s) + 2δ = d(u, s) < l(u) + δ and thus d(x, s) < l(u) − δ. Since distances are non-decreasing
under edge deletions we have l(x) ≤ d(x, s) and thus l(x) < l(u)− δ.

We now argue that x is in the ES-tree of c. If c is a rich center, then u is 4δ-covered by c.
Since d(u, x) = 2δ, we get that d(c, x) ≤ 6δ and thus x is contained in the ES-tree of c which has
depth 6δ. If c is an active poor center, then u is δ-covered by c. Since d(u, x) = 2δ, we get that
d(c, x) ≤ 3δ and thus x is contained in the ES-tree of c which has depth 3δ.

Since x is contained in the ES-tree of c we have L(v) ≤ L(x) because v is a node with minimum
rounded level L(v) in the ES-tree of c. Furthermore, by the definition of the rounded level we have
L(x) ≤ l(x). Therefore we get

L(v) ≤ L(x) ≤ l(x) < l(u)− δ

which contradicts the assumption L(v) ≥ l(u)− δ.
Finally, observe that the case d(u, s) < 2δ is not possible because by the same argument as

above we would get that s is contained in the ES-tree of c, which contradicts the assumption.

Thus, every time the reconnection fails (which leads to a new phase being started), we can be
sure that there is a node u such that the distance between u and s has increased a lot. We can now
bound the number of phases by using our previous technique [17]. First of all, since we are given
an unweighted undirected graph the distance from s does not only increase for u but also for other
nodes in the “neighborhood” of u.

Lemma 3.5 ([17]). If there is a node u such that∞ > d(u, s) > l(u)+δ, then
∑

v∈V (d(v, s)−l(v)) =
Ω(δ2).

Second, since the distance from s is bounded by τ for every node and the sum of these distances
over all nodes is bounded by nτ , we can bound the number of this type of phase restarts by
O(nτ/δ2).

Lemma 3.6. The number of phases is O(m/κ+ nτ/δ2).

Proof. There are two conditions in the algorithm that cause a new phase to be started. The first
condition is that κ edges have been deleted since the beginning of the current phase. As there
are at most m edge deletions, this can happen O(m/κ) times. The second condition is that the
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reconnection procedure fails for some node u ∈ U . By Lemma 3.4 this implies that the distance
between u and s has increased by at least δ since the beginning of the current phase. By Lemma 3.5
this means that the sum of all distances from s has increased by Ω(δ2). Note that there are n nodes
and the distance from s is bounded by τ . Therefore the sum of all distances from s is bounded by
nτ . Thus, the second condition can happen O(nτ/δ2) times and in total there are O(m/κ+nτ/δ2)
phases.

We can now bound the cost of the re-initializations as follows:

(6) The total time needed for re-initializations at the beginning of a phase is O(m·(m/κ+nτ/δ2))
because computing a BFS tree takes time O(m).

Having analyzed the individual components of the additive approximation algorithm, we now bound
its overall running time. By appropriate choices of the parameters δ, κ, and ρ we can balance some
of the terms in the running times listed above and can also show that some terms are dominated
by others.

Lemma 3.7. There is an algorithm that maintains approximate shortest paths under edge deletions
up to depth τ ≤ n with an additive error of α ≤ τ in total time

O

(
m5/3n1/3τ1/3 log n

α2/3
+m5/6n2/3τ1/6α1/6 log n

)
.

Proof. We simply have to give a choice of parameters that guarantees the desired running time.
We choose the parameters as follows:

δ =
n1/3τ1/3α1/3

m1/3
κ =

m1/3α2/3

10n1/3τ1/3
ρ =

m5/6τ1/6α1/6

n1/3
.

It can easily be checked that δ ≤ n, κ ≤ m, ρ ≤ m and that the additive error of 10κδ is equal to
α.

It is also simple to verify that by our choice of parameters the running time of item (6) is
O(m5/3n1/3τ1/3/α2/3), the running time of item (1) is O(m5/6n2/3τ1/6α1/6 log n) and the running
time of item (5) is O(m5/6n2/3τ1/6α1/6 log n).

It can easily be checked that δ ≤ ρ due to τ ≤ n and α ≤ n. Now observe that the term
mnτ/(ρδ) in the running time of item (2) is bounded by the term O(mnτ/δ2) that appears in the
running time of item (6). Therefore the running time of item (2) is O(m5/3n1/3τ1/3 log n/α2/3). The
term n2τ/δ2 in the running time of item (3) is also dominated by the term mnτ/δ2 because n ≤ m.
Therefore the running time of item (3) is O(m5/3n1/3τ1/3 log n/α2/3). Finally, since 10κδ = α ≤ τ
and δ ≤ n, we get mκ ≤ mα/(10δ) ≤ mτ/(10δ) ≤ mnτ/(10δ2) which is also O(mnτ/δ2). Thus,
the running time of item (4) is O(m5/3n1/3τ1/3 log n/α2/3). We now have bounded all operations
that we listed above by the desired running time.

Finally, we turn the additive approximation into a multiplicative (1+ε)-approximation. Observe
that the running time of the additive algorithm has two terms. Thus, we want to distinguish between
choices of τ that make the first term dominant and those that make the second term dominant.
We first devise a (1 + ε)-approximation for distances up to depth τ ≤ m5/4/n1/2 as follows. We
run multiple instances of the additive approximation algorithm where the i-th instance, with depth
τi and additive approximation αi is responsible for providing (1 + ε)-approximate distances for
the range from 2i to 2i+1. In this first step we deal with values of τi ≤ τ that make the first
term dominant. In each of the multiple instances of the algorithm we set αi to be a fraction of τi
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such that one factor of τ
1/3
i disappears in the term m5/3n1/3τ

1/3
i log n/α

2/3
i . For small depths the

additive approximation algorithm will be inefficient and we use the exact algorithm of Even and
Shiloach instead.

Lemma 3.8. Given τ ≤ m5/4/n1/2, there is an algorithm that maintains (1 + ε)-approximate
single-source shortest paths up to depth τ in total time O(m3/2n1/4 log n/ε).

Proof. We maintain an exact ES-tree rooted at s up to depth τ0 = m1/2n1/4. For every node v let
d̂0(v, s) denote the distance returned by this algorithm (which is ∞ for nodes that are in distance
greater than τ0 from s).

Additionally, we run multiple instances of the additive approximation algorithm of Lemma 3.7.
For each 1 ≤ i ≤ dlog (τ/τ0)e we use the parameters τi = 2iτ0 and αi = ετi−1 to compute an additive
αi-approximation of shortest paths from s up to depth τi. For every node v let d̂i(v) denote the
approximate distance between v and s returned by this algorithm. If τi−1 ≤ d(v, s) ≤ τi, we get by
Lemma 3.7:6

d(v, s) ≤ d̂i(v, s) ≤ d(v, s) + αi = d(v, s) + ετi−1 ≤ d(v, s) + εd(v, s) = (1 + ε)d(v, s) .

Now the whole distance range is covered and we simply have to return the minimum of d̂0(v) and
all d̂i(v) to obtain a (1 + ε)-approximation of d(v, s).

Maintaining an ES-tree up to depth τ0 takes time O(mτ0) = O(m3/2n1/4). By Lemma 3.7,
running the additive approximation algorithm with parameters αi = ετi−1 and τi = 2τi−1 takes
time

O

(
m5/3n1/3τ

1/3
i−1 log n

α
2/3
i

+m5/6n2/3τ
1/6
i−1α

1/6
i log n

)
which is

O

(
m5/3n1/3 log n

τ
1/3
i ε

+m5/6n2/3τ
1/3
i log n

)
.

(Note that ti−1 = O(ti).) Now we bound the running time for all multiple instances of this
algorithm. Observe that

dlog (τ/τ0)e∑
i=1

τ
1/3
i = τ

1/3
0

dlog (τ/τ0)e∑
i=1

2i/3 = τ
1/3
0

21/3
(

2dlog (τ/τ0)e
1/3 − 1

)
21/3 − 1

= O(τ1/3)

and similarly
∑dlog (τ/τ0)e

i=1 1/τ
1/3
i = O(1/τ1/3). Thus, using the bounds m1/2n1/4 ≤ τ ≤ m5/4/n1/2,

the running time of all multiple instances of the algorithm is

O

(
m5/3n1/3 log n

τ1/3ε
+m5/6n2/3τ1/3 log n

)
= O(m3/2n1/4 log n/ε) .

As we want to answer distance queries in constant time, we keep a heap for every node that main-
tains the minimum of the distance estimates of all multiple instances of the additive approximation
algorithm. In the additive algorithm, the distance estimate changes only at the beginning of a new
phase. The running time for updating the distance estimates in the heaps is O(log log n) per node
as every heap has O(log n) elements. We charge this additional running time of O(n log log n) to
the beginning of the new phase. This does not affect the worst-case time bound of Lemma 3.7.

6Precisely speaking, the algorithm returns a distance estimate d̂′i(v, s) such that d(v, s) − α ≤ d̂′i(v, s) ≤ d(v, s).
By defining d̂i(v, s) = d̂′i(v, s) + α we get d(v, s) ≤ d̂i(v, s) ≤ d(v, s) + α.
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We obtain a (1 + ε)-approximation for arbitrary depth by using the algorithm above for small
depth and repeating the idea of multiple instances of the additive approximation algorithm. In this
second step, the second term in the running time of Lemma 3.7 is the dominating one. Note that
here we will set the additive approximation αi of the i-th instance of the algorithm in a way that
balances the running times of Lemma 3.7 and Lemma 3.8.

Theorem 3.9. There is an algorithm that maintains (1 + ε)-approximate single-source shortest
paths under edge deletions up to depth τ in total time O(mn3/5τ1/5 log n/ε+m3/2n1/4 log n/ε).

Proof. We use the algorithm of Lemma 3.8 to compute a (1 + ε)-approximation up to depth τ0 =
m5/4/n1/2. For every node v let d̂0(v, s) denote the approximate distance between v and s returned
by this algorithm. By Lemma 3.8 we have d(v, s) ≤ d̂0(v, s) ≤ (1 + ε)d(v, s) for every node v such
that d(v, s) ≤ τ0.

We now run multiple instances of the additive approximation algorithm of Lemma 3.7. For each

1 ≤ i ≤ dlog (τ/τ0)e we use the parameters τi = 2iτ0 and αi = εmτ
1/5
i−1/n

2/5 to compute an additive

αi-approximation of shortest paths from s up to depth τi. For every node v let d̂i(v) denote the
approximate distance between v and s returned by this algorithm. Note that τi ≥ τ0 = m5/4/n1/2

for all i ≥ 0. Thus, τ
4/5
i ≥ m/n2/5 and τi ≥ mτ

1/5
i /n2/5. If τi−1 ≤ d(v, s) < τi, we get by

Lemma 3.7:

d(v, s) ≤ d̂i(v, s) ≤ d(v, s) + αi = d(v, s) + εmτ
1/5
i−1/n

2/5

≤ d(v, s) + ετi−1

≤ d(v, s) + εd(v, s) = (1 + ε)d(v, s) .

Now we simply have to return the minimum of d̂0(v, s) and all d̂i(v, s) to get a (1+ε)-approximation
of d(v, s).

The first algorithm runs in time O(m3/2n1/4 log n/ε) by Lemma 3.8. Running the additive

approximation algorithm with parameters αi = εmτ
1/5
i−1/n

2/5 and τi = 2τi−1 takes time

O

(
m5/3n1/3τ

1/3
i log n

α
2/3
i

+m5/6n2/3τ
1/6
i α

1/6
i log n

)
= O

(
mn3/5τ

1/5
i log n/ε

)
(By our choice of αi the two terms in the running time are balanced.) Since

∑dlog (τ/τ0)e
i=1 τ

1/5
i =

O(τ1/5), the total time needed to run all multiple instances the additive approximation algorithm
is O(mn3/5τ1/5 log n/ε). It follows that the total time for the (1 + ε)-approximation algorithm is
O(mn3/5τ1/5 log n/ε+m3/2n1/4 log n/ε). As we want to answer distance queries in constant time,
we also maintain, for every node, the minimum of the distance estimates of all multiple instances
of the additive approximation algorithm in a heap. This does not affect the running time bound we
gave because the distance estimate of one of the multiple instances changes only when this instance
starts a new phase.

Our (1 + ε)-approximate decremental SSSP algorithm for full depth sets τ = n and thus has a
total update time of O(mn4/5 log n/ε+m3/2n1/4 log n/ε).

3.3 Removing the Connectedness Assumption

The algorithm presented above only works when the graph stays connected. If a nodes gets dis-
connected from s, then we cannot guarantee any distance increases of other nodes (i.e., Lemma 3.5
does not work anymore). If we would simply run the algorithm above, we would have to start a
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new phase every time a node gets disconnected from s which would lead to an O(mn) time bound.
There is a simple way to avoid this problem.

We run our (1 + ε)-approximate decremental SSSP algorithm on a graph G′ that, in addition
to the nodes and edges of G, contains the following nodes and edges: nodes ui for 1 ≤ i ≤ 2n− 1,
an edge (u1, s), edges (ui+1, ui) for 1 ≤ i ≤ 2n− 2, and edges (v, u2n−1) for every node v. Thus, we
have added to G′ a path of length 2n between s and every node of G. As we only have to consider
deletions of the original edges of G, G′ is always connected. If a node v of G is connected to s in
G, then clearly dG′(v, s) = dG(v, s). Otherwise we have dG(v, s) = 2n. We answer a query for the
distance between s and a node v as follows. We first query the algorithm on G′ to obtain a distance
estimate δ(v, s) such that dG′(v, s) ≤ δ(v, s) ≤ (1 + ε)dG′(v, s). If δ(v, s) < 2n, then dG′(v, s) < 2n
and therefore also dG′(v, s) = dG(v, s). Thus, we correctly answer the query by returning δ(v, s).
If δ(v, s) ≥ 2n, then dG′(v, s) ≥ 2n/(1 + ε) ≥ n because ε ≤ 1. As all nodes and edges of G are
contained in G′ we have dG(v, s) ≥ dG′(v, s) and therefore dG(v, s) ≥ n. As every path in G has
length at most n − 1 this actually means that dG(v, s) = ∞, i.e., v and s are not connected in G.
Thus, we correctly answer the query by returning ∞. Clearly, this approach gives constant query
time and, as G′ has O(n) nodes and O(m) edges, does not worsen the running time bound.

4 Running Decremental SSSP Algorithm on an Emulator

In the following we run our algorithm on the Thorup-Zwick emulator H which is a sparse graph
that has the same nodes as G and approximates distances in G. This is non-trivial as we have to
adopt our algorithm to deal with several complications. To avoid confusion we denote the current
distance between x and y in G by dG(x, y) and the current distance between x and y in H by
dH(x, y).

4.1 The Thorup-Zwick Emulator

We first review the central notions of Thorup and Zwick [24, 25] and define an (undirected) emulator
H of the graph G. This emulator has also been used in the decremental shortest-paths algorithms
of Bernstein [6] and Bernstein and Roditty [8]. Given an integer k such that 2 ≤ k ≤ log n, we
define a hierarchy of centers A0 ⊇ A1 ⊇ . . . ⊇ Ak as follows. We let A0 = V and Ak = ∅, and for
1 ≤ i < k we obtain Ai by picking each node from Ai−1 with probability (lnn/n)1/k. We say that
a node v has priority i if v ∈ Ai \Ai+1 (for 0 ≤ i ≤ k − 1).

The central notion of Thorup and Zwick is the bunch of a node u. As usual, we denote by
dG(u,Ai) = minv∈Ai dG(u, v) the distance between the node u and the set of nodes Ai. Now the
bunch of u is defined as

Bunch(u) =
⋃

0≤i≤k−1
{v ∈ Ai \Ai+1 | dG(u, v) < dG(u,Ai+1)} .

Intuitively, a node v of priority i is in the bunch of u if v is closer to u than any node of priority
greater than i. We will only need the following “truncated” version of the bunches: Bunchγ(u) =
{v ∈ Bunch(v) | dG(u, v) ≤ γ} where γ = 2/ε · (1 + 2/ε)k−2. We may assume that γ ≤ n. The
relevance of this parameter choice will become clear later on. Given nodes u and v, the emulator
H contains an edge (u, v) if and only if v ∈ Bunchγ(u). The weight of each edge (u, v) in H is set
to dG(u, v), the distance between u and v in G. Thus each edge in H has weight at most γ.

Lemma 4.1 ([24]). At any time, the size of the bunch Bunch(v) of every node v is at most
20n1/k ln1−1/k n = O(n1/k log1−1/k n) whp. Therefore H has O(n1+1/k log1−1/k n) edges whp.

It has been shown that H is a (1 + ε, εγ)-emulator [25]7, which means that H has the same set
of nodes as G and dG(x, y) ≤ dH(x, y) ≤ (1 + ε)dG(x, y) + (1 + 2/ε)k−2 for all pairs of nodes x and

7Thorup and Zwick [25] only considered the static setting and gave a (1+ε, εγ)-spanner. A spanner is an emulator
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y. As the graph G undergoes edge deletions, three types of updates can occur in H: edge deletions,
edge insertions, and edge weight increases. The edge insertions are the reason why it is challenging
to use this emulator in the decremental setting. By a result of Roditty and Zwick [22] the emulator
can be efficiently maintained in the sense that after each deletion in G the corresponding updates
in H are computed.

Lemma 4.2 ([22]). The emulator H can be maintained in expected total time O(γmn1/k).

Although the emulator is not purely decremental, the edge insertions into H are not completely
arbitrary. Specifically, there are strong bounds on the total number of edges inserted into the
emulator and on the total number of update operations on the emulator.

Lemma 4.3 ([8]). The number of nodes inserted into the bunch Bunch(v) of a node v is at most
20kγn1/k lnn = O(kγn1/k log n) whp. Thus, the number of edges inserted into H is O(kγn1+1/k log n)
whp.

Lemma 4.4. The number of updates in H is O(kγ2n1+1/k log n) whp.

Another useful observation bounds the maximum distance between the two endpoints of an
inserted edge by 3γ. This implies that each edge insertion can reduce the distance between any
two nodes in H by at most 3γ.

Lemma 4.5 ([8]). If an edge (x, y) is inserted into H, then before the insertion dH(x, y) ≤ 3γ.

4.2 Monotone Even-Shiloach Tree

In a previous paper [16], we introduced a data structure called monotone Even-Shiloach tree (mono-
tone ES-tree), which is a modification of the well-known algorithm of Even and Shiloach [14]. The
standard ES-tree allows edge deletions [14] and weight increases [19]. Our modification also allows
edge insertions and is suited for certain dynamic weighted emulators of decremental graphs where
the insertions are the result of edge deletions in the original graph. Previously we gave an emulator
such that the monotone ES-tree maintains (1 + ε, 2)-approximate distances in time Õ(n2.5) [16]. In
the following we provide a generalization of this result. By running the monotone ES-tree on the
Thorup-Zwick emulator H it can provide (1 + ε, 2(1 + 2/ε)k−2)-approximate distances.

Theorem 4.6. Let 0 < ε < 1, let k be an integer such that 2 ≤ k ≤ log n and set γ = 2/ε ·
(1 + 2/ε)k−2. The monotone ES-tree with root r up to depth τ on the Thorup-Zwick emulator H
maintains, for every node v, a (non-decreasing) distance estimate d̂(v, r) ∈ {0, 1, . . . , b(1 + ε)τ +
εγc,∞} such that dG(v, r) ≤ d̂(v, r). If dG(v, r) ≤ τ , then d̂(v, r) ≤ (1+ε)dG(v, r)+2(1+2/ε)k−2 =
(1 + ε)dG(v, r) + εγ. Its total update time is O((τ + γ)|E′| log n + #up). Here #up is the total
number of updates in H and E′ ⊆ E(H) is the set of edges incident to nodes that are contained in
the monotone ES-tree at some time (i.e., all nodes v for which d̂(v, r) 6=∞ at some time).

The running time analysis of the monotone ES-tree follows standard arguments (see Lemma A.1
in Appendix A and [16] for details). Note that a useful bound on |E′| is the number of initial edges
in H plus the number of edges inserted into H. We now give a short description of the monotone
ES-tree for completeness and afterwards prove the claimed approximation guarantee, which is a
new contribution of this paper.

that is a subgraph of the original graph. Bernstein [6], who worked in the dynamic setting, slightly modified their
construction and obtained an emulator with the same approximation guarantee. In particular, he observed that edges
of weight greater than γ can be ignored without affecting the approximation guarantee, which has advantages in the
dynamic setting.
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Algorithm Description. The monotone ES-tree maintains an approximate shortest paths tree
up to depth τ to a given root node r (see Algorithm 3 in Appendix A for the pseudocode). For
every node x, the algorithm keeps a label l(x), called the level of x, which is intended to provide
the approximate distance between x and the root r. Note that l(x) is not necessarily equal to
the distance between x and r in H. We set the maximum allowed level of a node in the tree
to (1 + ε)τ + εγ as we are interested in (1 + ε, εγ)-approximate distances. For all nodes that are
not connected to the tree we set the level to ∞. After the deletion of an edge in G, we report
the corresponding updates in H to the ES-tree in the following order: first we pass on the edge
insertions, then we pass on the edge deletions and weight increases.8

Our algorithm now proceeds just like the usual Even-Shiloach algorithm, except for the case
of insertions. In the monotone ES-tree we process the insertion of an edge (u, v) as follows. The
current level l(u) of u is compared to the value l′(u) = l(v) + w(u, v) that could be achieved by
connecting u to v in the tree using the new edge (u, v). If l′(u) < l(u), then the algorithm makes
v the parent of u in the tree, otherwise the tree is not changed. In either case the level l(u) of u is
not changed. Edge deletions and edge weight increases are handled just like in the usual ES-tree
by running a reconnection procedure that tries to connect every node u to a neighbor v in G such
that l(v) + w(u, v) is minimized.

Approximation guarantee. The proof of Thorup and Zwick [25] shows that H (without any
updates) is a (1+ε, 2(1+2/ε)k−2)-emulator. We want to prove that the level l(v) of a node v in our
monotone ES-tree provides the same approximation guarantee for the distance between v and the
root r. In principle we apply the same proof idea as Thorup and Zwick. There is however a technical
challenge. The proof of Thorup and Zwick goes by induction on the distance between v and r.
To make their approach work for the monotone ES-tree, we use “double induction” increasing the
distance between v and r and decreasing the priority of v, where the priority of a node in H is
defined as in Section 4.1.

For our proof, we define the numbers ai and bi and for 1 ≤ i ≤ k − 1 as follows:

a0 = 1 ai =
2

ε

(
1 +

2

ε

)i−1
(if i ≥ 1)

b0 = 2

(
1 +

2

ε

)k−2
bi = b0 − 2

(
1 +

2

ε

)i−1
(if i ≥ 1)

We will show that for a node of priority i, the monotone ES-tree provides a (1+ε, bi)-approximation.
This implies that the approximation guarantee is (1 + ε, εγ) for every node because b0 = εγ and
bi ≤ b0 for every i ≤ k − 1.

Let us first briefly sketch the proof idea. Consider a node x that is by distance ai nearer to the
root than v. If H contains the edge (v, x), then we argue as follows. By properties of the monotone
ES-tree we may assume that l(v) ≤ l(x) + w(v, x), where w(v, x) = dG(v, x) is the weight of the
edge (v, x) in H. We then only have to apply induction on x (distance to r has decreased) because
we add no further error by going from v to x. If the edge (x, y) is not contained in H, then the
properties of H guarantee that there is a node y of priority at least i+ 1 in distance at most 2ai to
v. Therefore we can apply induction on y (priority has increased). We then have to show that the
error introduced by going from v to y is within the bounds we claim.

To carry out the proof in full detail we introduce the concept of stretched nodes and provide
a few simple observations about the monotone ES-tree (see also [16]). We say that a node u is

8If the edge deletions or edge weight increases were reported first, some nodes might undergo unnecessary level
increases as the inserted edges might justify lower levels. Clearly, this should be avoided since the algorithm never
performs any level decreases.
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stretched if l(u) > l(v) + w(u, v) for some edge (u, v). Note that for a node u that is not stretched
we have l(u) ≤ l(v) + w(u, v) for every edge (u, v) ∈ E(Hi). It is easy to see that the following
holds for the monotone ES-tree:

• The level of a node never decreases.

• A node x can only become stretched after the insertion of an edge (x, y) into H.

• As long as a node is stretched, its level does not change.

• For every tree edge (u, v) (where v is the parent of u), l(u) ≥ l(v) + w(u, v).

The formal statement of the approximation guarantee in the next lemma assumes that 1/ε is
integer. However, this restriction does not limit our algorithms at all because given any ε ≤ 1 we
can quickly find the largest ε′ smaller than ε that satisfies our restriction.

Lemma 4.7. Let 0 < ε < 1 such that 1/ε is integer. For every node v of priority i, we have
l(v) ≤ (1 + ε)dG(v, r) + bi.

Proof. Note that we have set the ai’s and bi’s in a way such that a0 < a1 < . . . < ak−1 = γ,
εγ = b0 > b1 > . . . > bk−1 and three useful inequalities hold.

Lemma 4.8. If ε ≤ 1, then the following inequalities hold:

b0 ≤ bi + εai (1)

bi+1 + 2ai = bi (2)

bi+2 + (4 + 2ε)ai ≤ bi (3)

The claim that l(v) ≤ (1 + ε)dG(v, r) + bi is certainly true after the initialization and we show
that it also holds every time the algorithm has processed an edge deletion (assuming it was true
before the deletion). If v is stretched, then the claim is trivially true because the level of v has not
changed since before the edge deletion and the distance between v and r did not decrease since
then. Thus, we assume in the following that v is not stretched. We prove the claim by induction
on the priority i of v and the distance dG(v, r) between v and r. To be precise, our proof is by
induction on the following function f . For every node u and each priority j we define f(u, j) = 0
if u = r and f(u, j) = dG(u, r) + bj otherwise. Note that f(u, j) will only assume integer values
and if u 6= r, then f is monotonically decreasing in its second parameter. In our proof we will
argue that for every node u with priority j to which we apply the induction hypothesis we have
f(u, j) < f(v, i).

We define the node x as follows. If dG(v, r) < ai, then we set x = r. If dG(v, r) ≥ ai, then let x
be a node on a shortest path from v to r in G such that dG(v, x) = ai. (Note that we assume that
1/ε is integer and therefore also ai is integer which means that such a node x always exists.)

Case 1: The edge (v, x) is contained in the emulator H. We then have l(v) ≤ l(x) + dG(v, x)
because v is not stretched and the edge (v, x) in H has weight dG(v, x). If x = r, then we are
done because l(r) = 0 and thus we trivially get l(v) ≤ dG(v, r) ≤ (1 + ε)dG(v, x) + bi. We show
below that we can apply the induction hypothesis, which gives l(x) ≤ (1 + ε)dG(x, r) + b0 (x does
not necessarily have priority 0, but the bound still holds for any priority). By combining both
inequalities we get

l(v) ≤ (1 + ε)dG(x, r) + b0 + dG(v, x) .

By Lemma 4.8 we have b0 ≤ bi + εai. Since ai = dG(v, x) (because x 6= r) and dG(v, r) =
dG(v, x) + dG(x, r) we get l(v) ≤ (1 + ε)dG(v, r) + bi. We now argue that we actually may apply
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the induction hypothesis on the node x with priority jx ≥ 0 by showing that f(x, jx) < f(v, j). If
x is the root node r, then trivially f(x, jx) = 0 < f(v, i). If x 6= r, then dG(v, x) = ai and we get
the following chain of inequalities:

f(x, jx) ≤ f(x, 0) = dG(x, r) + b0

≤ dG(x, r) + bi + εai

= dG(x, r) + bi + εd(v, x)

< dG(x, r) + bi + d(v, x)

= dG(v, r) + bi = f(v, i) .

Case 2: The edge (v, x) is not contained in H. Since dG(x, v) ≤ ai ≤ γ, this implies that the
node v of priority i is not in the bunch of x. Thus dG(x, v) ≥ dG(x,Ai+1) and there must be some
node y ∈ Ai+1 of priority at least i+ 1 such that dG(x, y) ≤ dG(x, v).

Case 2.1: The edge (v, y) is contained in H. We can then bound l(v) as follows. Since v is
not stretched, we have l(v) ≤ l(y) + dG(v, y). We show below that we can apply the induction
hypothesis, which gives l(y) ≤ (1 + ε)dG(y, r) + bi+1 because y has priority at least i + 1. By the
triangle inequality we have

dG(v, y) ≤ dG(v, x) + dG(x, y) ≤ 2dG(v, x) ≤ 2ai

as well as
dG(y, r) ≤ dG(y, x) + dG(x, r) ≤ dG(v, x) + dG(x, r) = dG(v, r) .

By combining these inequalities we get

l(v) ≤ (1 + ε)dG(v, r) + bi+1 + 2ai .

Note that by Lemma 4.8 we have bi+1 +2ai ≤ bi. Therefore, the desired inequality follows. We now
argue that we actually may apply the induction hypothesis on the node y with priority jy ≥ i+ 1
by showing that f(y, jy) < f(v, i). Simply consider the following inequalities:

f(y, jy) ≤ f(y, i+ 1) = dG(y, r) + bi+1 ≤ dG(v, r) + bi+1 < dG(v, r) + bi = f(v, i) .

Case 2.2: The edge (v, y) is not contained in H. Then y is not in the bunch of v and there
must be some node z of priority at least i+ 2 such that dG(v, z) ≤ dG(v, y) (where dG(v, y) ≤ 2ai).
Since v is not stretched, we have l(v) ≤ l(z) + dG(v, z). We show below that we can apply the
induction hypothesis, which gives l(z) ≤ (1 + ε)dG(z, r) + bi+2 because z has priority at least i+ 2.
By combining these inequalities we get

l(v) ≤ (1 + ε)dG(z, r) + bi+2 + 2ai .

We now use the triangle inequality to obtain

dG(z, r) ≤ dG(z, v) + dG(v, r) ≤ dG(v, r) + 2ai .

Therefore we get
l(v) ≤ (1 + ε)dG(v, r) + bi+2 + (4 + 2ε)ai

Since bi+2 + (4 + 2ε)ai ≤ bi by Lemma 4.8, the desired inequality follows. Finally, we argue that
we actually may apply the induction hypothesis on the node z with priority jz ≥ i+ 2 by showing
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that f(y, jz) < f(v, j). We get the following chain of inequalities:

f(z, jz) ≤ f(z, i+ 2) = dG(z, r) + bi+2

≤ dG(v, r) + dG(z, v) + bi+2

≤ dG(v, r) + 2ai + bi+2

< dG(v, r) + (4 + 2ε)ai + bi+2

≤ dG(v, r) + bi = f(v, i) .

Now that we have proved the approximation guarantee of the monotone ES tree, it almost
immediately follows from the techniques in [16] that there is a decremental all-pairs shortest paths
algorithm with nearly the same approximation guarantee. We restate Theorem 1.3.

Theorem 1.3 (Trade-off for APSP). For any constant 0 < ε < 1 and integer 2 ≤ k ≤ log n, there
is a (1 + ε, 2(1 + 2/ε)k−2)-approximation algorithm for decremental APSP with constant worst-case
query time and expected total update time of Õ(n2+1/k(37/ε)k−1).

Proof Sketch. We use the Thorup-Zwick emulator H with the given value of k. Following [16],
an (α, β)-approximate decremental SSSP data structure, such as the monotone ES-tree, can be
converted into an (α+2α2ε, 2β+2αβ)-approximate decremental APSP data structure by modifying
the framework of Roditty and Zwick [22]. In this modified framework, monotone ES-trees with
different depths τ are used for maintaining approximate distances in different distance ranges. If
τ ≥ γ, then a single monotone ES-tree on the Thorup-Zwick emulator can be maintained in time
Õ(τn1+1/k) by Theorem 4.6, i.e., with a linear dependence on τ . This leads to a total update time
of Õ(n2+1/k) for the approximate decremental APSP data structure for distances larger than γ
(see [16] for details). Therefore the total update time of this decremental APSP data structure (for
distances larger than γ) is Õ(n2+1/k). Its query time can be reduced to O(1) (see [22], Section 4).

We use the approximate decremental APSP data structure to deal with distances that are larger
than 12(1 + 36/ε)k−2 ε. Using ε′ = ε/18, α = 1 + ε′, and β = 2(1 + 2/ε′)k−2), we get that the
decremental APSP data structure provides a (1 + 9ε′, 12(1 + 2/ε′)k−2)-approximation, which is a
(1 + ε/2, 12(1 + 36/ε)k−2)-approximation. If d(x, y) ≥ 12(1 + 36/ε)k−2 ε, then (1 + ε/2)d(x, s) +
12(1 + 36/ε)k−2 ≤ (1 + ε)d(x, s). To deal with small distances, our algorithm also maintains
a monotone ES-tree of depth max(γ, 12(1 + 36/ε)k−2 ε) for every node. This gives the desired
(1 + ε, 2(1 + 2/ε)k−2)-approximation and a total update time of Õ(n2+1/k(1 + 37/ε)k−2/ε).

4.3 Modified Decremental SSSP Algorithm

To speed up the approximate decremental SSSP algorithm of Section 3.1 we want to run it on
the emulator H described in Sections 4.1 and 4.2 and not on G. The main challenge is to deal
with edges that are inserted into H. The fact that H is a weighted graph is only a minor obstacle
because the maximum edge weight is bounded by γ. Remember that the algorithm has parameters
κ, δ, and ρ and that the Thorup-Zwick emulator has parameters has parameters ε and κ, which
determine its approximation guarantee and the maximum edge weight γ.

To formulate and analyze the modified algorithm we will use the following terminology. The
algorithm uses distinguished nodes called centers. For each center we maintain a monotone ES-tree
on the emulator H. We say that a node v is contained in the monotone ES-tree of c up to depth
t, if the distance estimate d̂(c, v) of the monotone ES-tree satisfies d̂(c, v) ≤ (1 + ε)t + εγ (these
values correspond to the approximation guarantee of the monotone ES-tree). By this definition we
guarantee that dG(v, c) ≤ t implies that v is contained in the monotone ES-tree of c up to depth t.
We say that a node v is contained in the monotone ES-tree of c if the distance estimate of v to c
given by the monotone ES-tree is finite (and not ∞). An edge (u, v) is incident to the monotone
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ES-tree of c if u or v is contained in the monotone ES-tree of c and the edge (u, v) exists in H.
Furthermore we say that a node v is t-covered by a center c if v is contained in the monotone
ES-tree of c up to depth t. Note that this definition of being t-covered deviates from the definition
in Section 3.1.

To deal with the new setting we modify the algorithm of Section 3.1 as follows:

• Since the emulator H is a weighted graph, we initialize each phase by computing a shortest
paths tree rooted at s in the emulator H (and not in G) by running Dijkstra’s algorithm.

• The following types of updates are possible in the emulator H: edge deletions, edge insertions,
and edge weight increases. All of them could change the distances from s in H. Thus, we
start a new phase every time the algorithm has seen κ updates in H.

• Due to the edge insertions the level of a node might sometimes decrease. Therefore we
implement the priority queues of the centers by min-heaps.

• We replace, for each node v, the rounded level by the delayed rounded level L′(v). Due to
insertions of edges into the emulator it can happen that the rounded level L(v) of a node
decreases. The delayed rounded level L′(v) will not undergo all these decreases. It is defined
as follows: If L(v) increases we set L′(v) = L(v). If L(v) decreases by only δ we do not change
L′(v). If L(v) decreases by at least 2δ9, we set L′(v) = L(v). Thus L(v) ≤ L′(v) ≤ L(v) + δ.

• As edges are inserted into H, we cannot determine the centers by sampling from the initial

edges. Instead, we sample each node with probability a20kγn1/k ln2 n
ρ for a large enough constant

a and use the corresponding nodes as rich centers. We also sample each node with probability
a lnn
δ and use the corresponding nodes as poor centers.

• Since H is not purely decremental we use monotone ES-trees instead of ES-trees. To deal
with the approximate nature of H we also have to change the depths of these trees. For every
rich center c we maintain a monotone ES-tree rooted at c up to depth 45δ + 27κγ + 28γ.
A poor center is active if it is not (10δ + 6κγ + 6γ)-covered by any rich center. For every
active poor center we maintain a monotone ES-tree up to depth 5δ + 3κγ + 2γ. Note that
the distance estimates returned by monotone ES-trees are non-decreasing. Thus, as soon as
a poor center becomes active it will remain active.

The pseudocode of the modified algorithm is given in Algorithm 2.
Having modified the algorithm as above, we now analyze its running time and approximation

guarantee. This analysis closely follows the analysis of the original algorithm in Section 3. First,
we show that the sampling process guarantees that every node is covered by a center.

Lemma 4.9. Every node is either (21δ + 12κγ + 13γ)-covered by a rich center or δ-covered by an
active poor center whp.

Just as before, this lemma is needed for the correctness of the algorithm. We can state its
approximation guarantee as follows.

Lemma 4.10. After every update processed by the algorithm the graph T is a tree and, for every
node x, dG(x, s)− (132κδ + 78κ2γ + κγ + 84γ) ≤ l(x) ≤ (1 + ε)dG(x, s) + εγ.

We now show that the set of edges incident to the monotone ES-tree of an active poor center
is at most ρ. This needs an argument involving the size of each bunch because we are sampling
nodes instead of edges.

9Remember that the rounded level L(v) is a multiple of δ.
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Algorithm 2: Additive approximation algorithm on emulator

// After updating an edge (x, y), the corresponding update procedure has to be

executed for both (x, y) and (y, x).

1 initialize()

// First initialization and re-initialization at beginning of new phase

2 Compute the shortest-paths tree T rooted at s in H
3 foreach node v do set level l(v) to current distance between v and s in H and L(v) to

bl(v)/δc · δ
4 foreach node v such that L(v) has decreased by at least 2δ in line 3 do
5 L′(v)← L(v)
6 foreach center c do set key of v in heap of c to L′(v)

7 U ← ∅

8 update(x, y)
// Update of edge (x, y) in H (insertion, deletion, or weight increase)

9 if (x, y) is deleted and y is parent of x in tree T then add x to U
10 if there were κ updates since the beginning of the current phase then
11 initialize() // start new phase

12 else
13 foreach u ∈ U do
14 Find rich center c that (21δ + 12κγ + 13γ)-covers u or active poor center c that

δ-covers u
15 Find node v with minimum delayed rounded level L′(v) in monotone ES-tree of c
16 if s is contained in monotone ES-tree of c then
17 Make s the parent of u in T
18 else
19 if L′(v) < l(u)− δ then
20 Make v the parent of u in T
21 else
22 initialize() // start new phase
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Lemma 4.11. Consider an active poor center c and its monotone ES-tree. The number of edges
ever incident to this monotone ES-tree since c became active is at most ρ whp.

Proof. Consider the set of edges E′ ever incident to the monotone ES-tree of c and suppose for the
sake of contradiction that |E′| ≥ ρ. Define V ′ as the set of endpoints of E′ and let B′ contain all
pairs of nodes (u, v) such that u ∈ V ′ and v is in the bunch of u at some point in time. We first
show that E′ ⊆ B′ which implies that |E′| ≤ |B′|. Let (u, v) be an edge in E′. Without loss of
generality, let u be contained in the monotone ES-tree of c at some point in time. Since at that
point in time the edge (u, v) exists in H, it is either the case that v ∈ Bunch(u) or u ∈ Bunch(v).
As both u and v are contained in V ′ we get that (u, v) ∈ B′.

For every node v, the number of nodes that are ever in the bunch of v is at most 20kγn1/k lnn
whp by Lemma 4.3. Thus the size of B′ is at most |V ′|20kγn1/k lnn whp. Now we have ρ ≤ |E′| ≤
|B′| ≤ |V ′|20kγn1/k lnn and therefore |V ′| ≥ ρ/(20kγn1/k lnn) whp. Since we have sampled each

rich center with probability a20kγn1/k ln2 n
ρ , the set V ′ contains a rich center c′ whp. Now c′ is the

endpoint of an edge (c′, x) in H that is incident to a node x contained in the monotone ES-tree
of c (which has depth 5δ + 3κγ + 2γ) at some point in time. At that point in time the distance
between c and x is (1 + ε)(5δ+ 3κγ+ 2γ) + εγ. As the weight of (c′, x) in H is at most γ, it follows
that the distance between c′ and c is at most (1 + ε)(5δ + 3κγ + 2γ) + εγ + γ ≤ 10δ + 6κγ + 6γ.
This implies that c is (10δ + 6κγ + 6γ)-covered by c′ and thus c is inactive. Thus, there is a point
in time after c became active where c is inactive, which is a contradiction.

We already explained that the delayed rounded level does not change as often as the rounded
level. We now give an upper bound on this number of changes, which will make updating the levels
in the priority queues of the centers efficient.

Lemma 4.12. The delayed rounded level L′(v) of a node v changes at most O(kγ2n1+1/k log n/δ)
times.

Proof. Consider the case that L′(v) decreases for some node v. This only happens when L(v) has
decreased by at least 2δ, which implies that l(v) has decreased by at least δ due to the inequalities
L(v) ≤ l(v) ≤ L(v) + δ. Distances in H can only decrease after edge insertions. By Lemma 4.5
each insertion decreases the distance between every pair of nodes by at most 3γ. Therefore at
least dδ/(3γ)e insertions are necessary to decrease L′(v) once by 2δ. The number of edges inserted
into H over all deletions is O(kγn1+1/k log n) whp. Thus, whp the number of increases of L′(v) is
bounded by

#inc = O

(
kγn1+1/k log n

δ
3γ

)
= O

(
kγ2n1+1/k log n

δ

)
.

Note that for every node v we have dG(v, s) ≤ n and thus dH(v, s) ≤ (1+ε)n+εγ ≤ 2n+γ ≤ 3n.
Thus, if L′(v) would never decrease, it could increase at most d3n/δe times. Every decrease adds
one more possible increase. Therefore the number of decreases of L′(v) is bounded by #dec ≤
d3n/δe + #inc. Thus, the number of changes of L′(v) (which is the number of increases plus the
number of decreases) is O(kγ2n1+1/k log n/δ).

There is one complication left that we have to consider. Due to the edge insertions the level of
a node v computed at the beginning of the current phase might actually underestimate the current
distance between v and s in H. However, we can show that this difference is bounded by the
number of insertions since the beginning of the phase.

Lemma 4.13. At any time, for every node v it holds that l(v) ≤ dH(v, s) + 3κγ.
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With the help of this lemma it can be shown that when the reconnection procedure fails for a
node u, the distance between u and s has increased by at least δ.

Lemma 4.14. Let u ∈ U be a node whose edge to its parent has been deleted in the current phase.
Let c be a rich center that (21δ+12κγ+13γ)-covers u or an active poor center that δ-covers u. Let
v be a node of minimum delayed rounded level L′(v) in the monotone ES-tree of c and assume that
s is not contained in the monotone ES-tree tree of c. If L′(v) ≥ l(u)− δ, then dH(u, s) ≥ l(u) + δ.

Again, this implies that also the distance from s of other nodes increases. In particular there
is a set of nodes whose sum of distances from s increases by Ω((δ2/γ) − δ) (as γ is the maximum
edge weight in H).

Lemma 4.15. If there is a node u such that dH(u, s) ≥ l(u) + δ, then there is a set of nodes V ′

such that
∑

v∈V ′(dH(v, s)− l(v)) = Ω((δ2/γ)− δ).

These increases might later on be revoked due to edge insertions, but this cannot happen too
often as the number of edge insertions and the distance increase per insertion are limited. Thus,
we can bound the number of phases as follows.

Lemma 4.16. Whp the number of phases is

O

(
kγ2n1+1/k log n

κ
+
kγ3n2+1/k log n

δ2 − γδ

)
.

The overall running time analysis now is very similar to the original algorithm of Section 3.1
and is done with the parameter choice k =

√
log n/

√
log (3/ε), κ = n1/5, δ = n3/5, and ρ = n4/5.

Proposition 4.17. There is an algorithm that maintains a distance estimate d̂(v, s) for every node
v under edge deletions such that dG(v, s) ≤ d̂(v, s) ≤ (1 + ε)dG(v, s) + O(n4/5+1/k). If ε ≥ 3/n1/4,
its total update time is O(k2n9/5+5/k log4 n+mn2/k) in expectation where k =

√
log n/ log (3/ε).

Proof. We will prove the following approximation guarantee:

dG(v, s) ≤ d̂(v, s) ≤ (1 + ε)dG(v, s) + 132n4/5 + 78n2/5+1/k + n1/5+1/k + 85n1/k

We use the parameters κ = n1/5, δ = n3/5, and ρ = n4/5 to obtain an additive approximation. (We
will later on use the inequality κ ≤ δ.) We now explain how to set the parameter k (which will also
determine γ). For simplicity we will use the following rough bound:

γ = 2/ε (1 + 2/ε)k−2 ≤ (1 + 2/ε) (1 + 2/ε)k−2 ≤ (1 + 2/ε)k ≤ (3/ε)k .

The last inequality holds because ε ≤ 1. In our algorithm we set k =
√

log n/ log (3/ε). With this
choice of k we have n1/k = (3/ε)k and therefore also γ ≤ n1/k and δγ ≤ n3/5+1/k. We use the
technical assumption ε ≥ 12/n1/4 to guarantee that 1/k ≤ 1/2.

Using these values, we get the following bounds on important quantities of the algorithm:

• At any time, the number of edges of H is O(n1+1/k log n) (Lemma 4.1)

• The number of insertions into H is O(kn1+2/k log n) (Lemma 4.3)

• The number of updates on H is O(kn1+3/k log n) (Lemma 4.4)

• The number of phases of the algorithm is O(kn4/5+4/k log n) (Lemma 4.16)10

10Note that the term γδ = n1/k+3/5 is dominated by δ2 = n6/5 because 1/k ≤ 1/2.
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• The expected number of rich centers is O(kn1/5+2/k log2 n).

• The expected number of poor centers is O(n2/5 log n).

The costs of our algorithm can now be bounded as follows:

(1) Computing a shortest paths tree in H at the beginning of each phase takes time O(|E(H)|+
n log n) with Dijkstra’s algorithm where |E(H)| is the current number of edges of H. The
number of edges is O(n1+1/k log n) and therefore the first term dominates the second term.
Since we do this at the beginning of every phase, this takes time O(kn9/5+5/k log2 n) in total.

(2) We have to maintain the monotone ES-trees of rich centers up to depth 45δ+27κγ+28γ which
is O(δγ) because κ ≤ δ. We bound |E′| in Theorem 4.6 by the number of initial edges in H
plus the number of edges inserted into H, which is |E′| ≤ O(kn1+2/k log n). By Theorem 4.6
maintaining one such tree takes time O((δγ + γ)kn1+2/k log2 n + kn1+3/k log n), where the
second term comes from the number of updates in H. As the second term is dominated by
the first term, this is O(kn8/5+3/k log2 n). Thus, the total running time of this task for all
rich centers is O(k2n9/5+5/k log4 n).

(3) The number of edges ever incident to the monotone ES-tree of each active poor center is
at most ρ (Lemma 4.11). By Theorem 4.6 maintaining one ES-tree of a poor center up to
depth 5δ+ 3κγ+ 2γ (which is O(δγ)) therefore takes time O((δγ+ γ)ρ log n+ kn1+3/k log n),
which is O(n7/5+1/k log n) (the second term comes from the number of updates in H and is
dominated by the first term). Thus, the total running time of this task for all active poor
centers is O(n9/5+1/k log2 n).

(4) For every node v, the total time needed for updating the value of L′(v) in the heap of a
center is O(kγ2n1+1/k log2 n/δ) (which is O(kn2/5+3/k log2 n)) because L(v) changes at most
O(kγ2n1+1/k log n/δ) times (Lemma 4.12) and each update takes time O(log n). Therefore
the total time needed for updating the values L(v) of all nodes v in the heaps of all rich
centers is O(k2n8/5+5/k log4 n).

(5) Similarly, the time needed for maintaining the values L(v) of all nodes v in the heaps of all
poor centers is O(kn9/5+3/k log3 n).

(6) The running time of the reconnection procedure after an update is O(1) for every node in U .
As there are at most κ nodes in U this takes time O(κ) = O(n1/5) after every update in H
and thus time O(kn6/5+3/k log n) in total.

All these running times are dominated by O(k2n9/5+5/k log4 n). Independently of our algorithm we
have to maintain the emulator H under edge deletions in G. By Lemma 4.2 this takes total time
O(mγn1/k) = O(mn2/k) in expectation. By plugging in the values for κ, δ, and γ in Lemma 4.10
we can state the approximation guarantee of our algorithm as given above.

For turning the additive approximation into a multiplicative (1 + ε)-approximation we use
the same standard technique as in Section 3. The above algorithm already provides a (1 + ε)-
approximation for distances that are large enough. To deal with small distances, we separately run
a monotone ES-tree rooted at s up to depth O(n4/5+1/k/ε). This leaves us with an additive error
of n1/k.

Proposition 4.18. There is an algorithm that maintains a distance estimate d̂(v, s) for every node
v under edge deletions such that dG(v, s) ≤ d̂(v, s) ≤ (1 + ε)dG(v, s) + n1/k. If ε ≥ 6/n1/4, its total
update time is O(k2n9/5+5/k log4 n/ε+mn2/k) in expectation where k =

√
log n/ log (6/ε).
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We combine this algorithm with an exact ES-tree up to depth n1/k/ε on the original graph G
to get the desired (1 + ε)-approximation.

Theorem 4.19. There is an algorithm that maintains a distance estimate d̂(v, s) for every node v
under edge deletions such that dG(v, s) ≤ d̂(v, s) ≤ (1 + ε)dG(v, s). If ε ≥ 12/n1/4, its total update
time is O(k2n9/5+5/k log4 n/ε+mn2/k/ε) in expectation where k =

√
log n/ log (12/ε).

If ε is a constant then the total running time of the algorithm is O(n9/5+O(1/
√
logn)+mO(1/

√
logn))

as stated in Theorem 1.1.

5 (3 + ε)-approximate Decremental APSP

We now prove that our techniques also lead to a faster algorithm for decremental APSP, with a (3+
ε) approximation guarantee11. Recall that, as outlined in Section 1 (see Claim 1.4 and the following
paragraph), we have a Õ(mn/

√
h)-time center cover data structure. Additionally, by Theorem 1.1,

we can (1+ε)-approximately solve decremental SSSP from Õ(h) centers in Õ(hn1.8+O(1/
√
logn)) total

update time. The main idea is that, by using the Õ(mn/
√
h)-time algorithm when h ≥ (m/n0.8)2/3

and the Õ(hn1.8+O(1/
√
logn)) algorithm in other cases, we can always maintain the center cover data

structure in Õ(m2/3n3.8/3+O(1/
√
logn)) total update time, which is faster than Õ(mn). We then plug

this data structure into the framework of Roditty and Zwick [22] to solve decremental APSP with
the same total update time. We now describe this idea in more detail. (For more details on the
framework of Roditty and Zwick, especially how the center cover data structure plays a role, see
[16].)

Let h∗ = (m/n0.8)2/3, hi = (1 + ε)i and α = (1 + ε)2/(ε − ε2). For any integer i ≥ 0 such
that hi ≥ h∗, we maintain a Õ(mn/

√
hi)-time center cover data structure denoted by Ci with

parameters α and hi. Additionally, we use the Õ(n1.8+O(1/
√
logn))-time algorithm to maintain

(1 + ε)-approximate distances between every node and Õ(h∗) randomly selected centers, which we
will call super centers. For each node u and integer i, we let cu,i be a center in Ci that covers u in
the sense of Claim 1.4; i.e., either

• ci,u is an active poor center of distance at most n/hi from u and ci,u is the root of an ES-tree
of depth αn/hi or

• ci,u is a rich center of distance at most (α+ 1)n/hi from u and ci,u is the root of an ES-tree
of depth 2αn/hi.

We also let c′u be a super center of distance at most n/h∗ from u (which exists with high probability).
We can maintain ci,u and c′u without an additional cost since we already maintain an ES-tree from
these centers.

When we get a query for a distance between two nodes u and v, we use

d̂(u, v) = min

{
mini dG(u, ci,u) + dG(ci,u, v)

dG(u, c′u) + dG(c′u, v)

as an answer to the query, where G is the current graph. We note the following.

• It is possible that, for some i, we do not know the value of dG(ci,u, v) since v is not contained
in the ES-tree rooted at ci,u. In this case, we treat dG(ci,u, v) as ∞.

11To simplify the presentation, we assume in this section that ε is a constant such that 0 < ε ≤ 1.
Our O(·) in the running time will hide poly(1/ε); e.g., the running time of Õ(hn1.8+O(1/

√
logn)) is in fact

Õ(hn1.8+O(poly(1/ε)/
√
logn) poly(1/ε)).
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• We cannot compute dG(u, c′u) and dG(c′u, v) exactly but we can get (1+ε)-approximate values
of them since our algorithm maintains a (1 + ε)-approximate solution of SSSP using c′u as a
source. Thus, we will get a (1 + ε)-approximate solution of d̂(u, v).

• We need O(log n) time to compute d̂(u, v) and thus obtain an O(log n) query time. By using
a standard technique we can slightly change the definition of d̂(u, v) to improve the query
time to O(log log n)12. We omit the detail of this improvement here to keep the argument
simple (for the details of this argument, see e.g. [22, 16]).

We end our proof with the following approximation guarantee.

Claim 5.1. If 0 ≤ ε ≤ 1/2, then dG(u, v) ≤ d̂(u, v) ≤ (3 + 16ε)dG(u, v).

Proof. The first inequality is simply by the triangle inequality. We now prove the second inequality.

Case 1: When n/h∗ ≤ εdG(u, v). In this case, we know that dG(u, c′u) ≤ n/h∗ ≤ εdG(u, v). It
then follows that dG(c′u, v) ≤ dG(u, c′u) + dG(u, v) ≤ (1 + ε)dG(u, v). Thus, d̂(u, v) ≤ dG(u, c′u) +
dG(c′u, v) ≤ (1 + 2ε)dG(u, v).

Case 2: When n/h∗ > εdG(u, v). Let i∗ be such that εdG(u, v)/(1 + ε) < n/hi∗ ≤ εdG(u, v). Note
that hi∗ ≥ h∗ since n/h∗ > εdG(u, v) ≥ n/hi∗ ; thus, our algorithm maintains a center cover data
structure Ci∗ . Let ci∗,u be the center in Ci∗ covering u. Consider two subcases.

Case 2.1: If ci∗,u is an active poor center, then we know that dG(ci∗,u, u) ≤ n/hi∗ ≤ εdG(u, v). As
in Case 1, it follows that

dG(ci∗,u, v) ≤ dG(ci∗,u, u) + dG(u, v) ≤ (1 + ε)dG(u, v).

Note that our algorithm maintains an ES-tree rooted at ci∗,u of depth τ = αn/hi∗ . Using n/hi∗ >
εdG(u, v)/(1 + ε) and α = (1 + ε)2/(ε− ε2), we have

τ >
1 + ε

1− ε
dG(u, v) ≥ (1 + ε)dG(u, v).

Thus, this ES-tree contains v and we can compute dG(ci∗,u, v). It follows that d̂(u, v) ≤ dG(u, ci∗,u)+
dG(ci∗,u, v) ≤ (1 + 2ε)dG(u, v).

Case 2.2: If ci∗,u is a rich center, then we know that ci∗,u is of distance at most (α+ 1)n/hi∗ from
u, which can be bounded as

dG(ci∗,u, u) ≤ (α+ 1)n/hi∗ ≤ (εα+ ε)dG(u, v)

using n/hi∗ ≤ εdG(u, v). It follows that

dG(ci∗,u, v) ≤ dG(ci∗,u, u) + dG(u, v) ≤ (1 + εα+ ε)dG(u, v) =

(
1 + ε+

(1 + ε)2

1− ε

)
dG(u, v)

using α = (1 + ε)2/(ε− ε2). Note that our algorithm maintains an ES-tree rooted at ci∗,u of depth
τ = 2αn/hi∗ . Using n/hi∗ > εdG(u, v)/(1 + ε) and α = (1 + ε)2/(ε− ε2), we have

τ > 2
1 + ε

1− ε
dG(u, v) =

(
1 + ε+

(1 + ε)2

1− ε

)
dG(u, v) ≥ dG(ci∗,u, v) .

12In particular, we can define i′ to be the minimum i such that the ES-tree rooted at ci,u contains v and use
d̂′(u, v) = min (dG(u, ci′,u) + dG(ci′,u, v), dG(u, c′u) + dG(c′u, v)) as the query answer. We can find i′, and thus compute

d̂′(u, v), in O(log logn) time using binary search.
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The equation 2(1 + ε)/(1 − ε) = 1 + ε + (1 + ε)2/(1 − ε) can easily be verified by multiplying
(1− ε)/(1 + ε) on both sides. Thus, this ES-tree contains v. It follows that

d̂(u, v) ≤ dG(u, ci∗,u) + dG(ci∗,u, v) ≤ (1 + 2ε+ 2εα)dG(u, v)

=

(
1 + 2ε+ 2

(1 + ε)2

1− ε

)
dG(u, v)

≤ (1 + 2ε+ 2(1 + 7ε))dG(u, v) ≤ (3 + 16ε)dG(u, v) .

Note that the inequality (1 + ε)2/(1− ε) ≤ 1 + 7ε follows from ε ≤ 1/2.

We conclude the discussion of the (3+ε)-approximate decremental APSP algorithm by restating
Theorem 1.2.

Theorem 1.2 ((3 + ε)-Approximation for APSP). For any constant 0 < ε < 1, there is a (3 +
ε)-approximation algorithm for decremental APSP with O(log log n) worst-case query time and

expected total update time of Õ(m2/3n3.8/3+O(1/
√
logn)).

Proof. The correctness of the algorithm follows immediately from Claim 5.1. As usual, we run
the algorithm described above with ε′ = ε/16, to obtain a (1 + ε)-approximation (instead of the
(1 + 16ε)-approximation of Claim 5.1).

To prove the running time bound, remember that for every integer i ≥ 0 such that hi ≥ h∗ =
(m/n0.8)2/3, we maintain a center cover data structure Ci with parameters α = (1+ ε)2/(ε− ε2) and
hi = (1 + ε)i. Maintaining Ci takes time Õ(αmn/

√
hi) (see Section 1.2), which is Õ(mn/

√
h∗) as

hi ≥ h∗ and we assume that ε is a constant. As the algorithm uses only a logarithmic number of cen-
ter cover data structures, they can all be maintained in time Õ(mn/

√
h∗), which is Õ(m2/3n3.8/3)

by our choice of h∗. We also run the (1 + ε)-approximate decremental SSSP algorithm of The-

orem 4.19 for Õ(h∗) randomly selected centers. This takes time Õ(h∗n1.8+O(1/
√
logn)) which is

Õ(m2/3n3.8/3+O(1/
√
logn)) by our choice of h∗. This dominates the time needed for maintaining the

center cover data structures.

6 Conclusion

We presented a decremental (1 + ε)-approximate SSSP algorithm for sparse undirected unweighted
graphs that is faster than the O(mn) algorithm of Even and Shiloach [14] using a new center cover
data structure and extending our previous lazy-update ES-tree [17]. By sparsifying graphs with
the Thorup-Zwick emulator [24, 25] and extending our monotone ES-tree technique from [16], we
can also use this new algorithm on dense graphs and ultimately obtain subquadratic total update
time.

One direction of improving our SSSP result would be to improve the running time of our Õ(n1.8)
algorithm for very sparse graphs with m = O(n). We are not aware of any lower bound for this
problem. Another direction of improving our result would be to extend it to weighted graphs.
Similar to the unweighted case, decremental SSSP can be maintained in Õ(mn logW ) total update
time on weighted graphs by using Bernstein’s rounding technique [6, 7] to modify the edge weights
in such a way that we only have to maintain ES-trees up to depth O(n) (instead of nW ). However,
unlike the unweighted case, we cannot replace the ES-tree by our lazy-update ES-tree to get a
better running time. This is because the analysis of our lazy-update ES-tree relies on the following
property of unweighted graphs: if the distance from the source increases for some node v by δ it
also has to increase by at least δ − 1 for some neighbor of v.

For decremental APSP, it would be interesting to get a trade-off between total update time and
approximation guarantee on weighted graphs. Currently we can achieve this for unweighted graphs
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using the algorithm of Bernstein and Roditty [8] ((2k − 1 + ε)-approximation in Õ(n2+1/k+o(1))
time) and the algorithm in this paper ((1 + ε, O(1/ε)k)-approximation in Õ(n2+1/k) time). Both
algorithms use a similar approach where we run some Õ(mn)-time algorithm on a sparse emulator
that approximates the distances of the original graph. Since we can also maintain such an emulator
on weighted graphs, it is possible that the same approach will work on weighted graphs.

It would also be interesting to improve the running time of our (3+ε)-approximation Õ(m2/3n3.8/3)-
time algorithm for APSP. One direction for doing this is to relax the approximation guarantee for
the sake of a better running time13. A more challenging direction is to keep the approximation
ratio the same and improve the running time further.
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A Appendix

To make the paper self-contained we provide in the following the pseudocode of the monotone
ES-tree algorithm (Algorithm 3) and its running time analysis (Lemma A.1). More details can be
found in [16].

Lemma A.1. The monotone ES-tree algorithm on H has a total update time of O((τ+γ)|E′| log n+
#up). Here #up is the total number of updates in H and E′ ⊆ E(H) is the set of edges incident to
nodes that are contained in the monotone ES-tree at some time (i.e., all nodes v for which l(v) 6=∞
at some time).

Proof. Besides constant time for each update, all costs can be charged to level increases of nodes.
In particular, the algorithm incurs a cost of O(deg(v) log n) every time the level of the node v
increases, where deg(v) is the degree of v at the time of the level increase. Let V ′ be the set of all
nodes ever contained in the monotone ES-tree, i.e., all nodes v for which l(v) 6= ∞ at some point
in time. Let E′ be the set of all edges ever incident to a node in V ′. For every node v ∈ V ′ we
define the dynamic degree deg′(v) to be deg′(v) = |{u ∈ V | (u, v) ∈ E′}|. Since deg(v) ≤ deg′(v)
for every node v ∈ V ′, the work charged to v for each of its level increases is O(deg′(v) log n). As
the maximum finite level is bounded by (1 + ε)τ + εγ = O(τ + γ), the total running time of the
ES-tree algorithm is proportional to∑

v∈V ′
(τ + γ) deg′(v) log n = (τ + γ) log n

∑
v∈V ′

deg′(v) ≤ 2(τ + γ)|E′| log n .

We now provide all proofs that we omitted in the main paper.

Lemma 4.2 ([22]). The emulator H can be maintained in expected total time O(γmn1/k).

Proof. To efficiently maintain the emulator H we would like to maintain the bunch of every node.
This can be done by maintaining the cluster of every node which is the “dual” of the bunch.
Formally the cluster of a node v ∈ Ai − Ai+1 is defined as Clust(v) = {u ∈ V | dG(v, u) <
dG(u,Ai+1)} and the cluster up to depth γ is defined as Clustγ(v) = {u ∈ Clust(v) | dG(v, u) ≤ γ}.
Note that (i) v ∈ Bunch(u) if and only if u ∈ Clust(v) and (ii) v ∈ Bunchγ(u) if and only if
u ∈ Clustγ(v). It has been shown by Roditty and Zwick [22] that in unweighted graphs the clusters
of all nodes u up to depth γ (and the distances between u and all nodes in Clust(u)) can be
maintained efficiently in total time O(γmn1/k). Since the edges of the emulator H are defined by
the bunches and the bunches correspond to clusters, the cluster maintenance algorithm also can be
used for maintaining H.

Lemma 4.4. The number of updates in H is O(kγ2n1+1/k log n) whp.

Proof. Initially H has O(n1+1/k log n) edges by Lemma 4.1 and the number of edges inserted into
H is O(kγn1+1/k log n) by Lemma 4.3. Thus the total number of edges ever appearing in H is
O(kγn1+1/k log n). The total number of deletions is also bounded by this number because we
can only delete edges that exist at some time in H. Since the maximum edge weight in H is γ,
the number of edge weight increases for every edge is bounded by γ. Thus, the total number of
edge weight increases is O(kγ2n1+1/k log n), which also dominates the number of insertions and
deletions.

Lemma 4.8. If ε ≤ 1, then the following inequalities hold:

b0 ≤ bi + εai (1)

bi+1 + 2ai = bi (2)

bi+2 + (4 + 2ε)ai ≤ bi (3)
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Algorithm 3: Monotone Even-Shiloach tree algorithm

// After updating an edge (u, v), the corresponding update procedure has to be

executed for both (u, v) and (v, u).

// Internal data structures

1 N(x): for every node x a heap N(x) whose intended use is to store for every neighbor y of x
in the current graph the value of l(y) + w(x, y) where w(x, y) is the weight of the edge (x, y)
in the current graph

2 H: global heap used to determine order in reconnection procedure

3 insert(u, v)
4 if l(v) + w(u, v) < l(u) then
5 Make v the parent of u in the tree
6 Update key of v in heap N(u) of u to l(v) + w(u, v)

7 increase(u, v, w)

// Increase weight of edge (u, v) to w
8 if (u, v) is a tree edge then
9 Remove tree edge (u, v)

10 Update key of v in heap N(u) of u
11 Put u into heap H with key l(u)
12 reconnect()

13 delete(u, v)
14 increase(u, v, ∞)

15 reconnect(u, v)
16 while heap H is not empty do
17 Take node y with minimum key l(y) from heap H (and remove y from H)
18 l′(y) = minz(l(z) + w(y, z)) (can be retrieved from the heap N(y) of y)
19 if l(y) ≥ l′(y) then
20 z = arg minz(l(z) + w(y, z)) (can be retrieved from the heap N(y) of y)
21 Make z the parent of y in the tree

22 else
23 l(y)← l′(y)
24 if l(y) > (1 + ε)τ + εγ then
25 l(y)←∞
26 else
27 Put y into heap H with key l(y)

28 for every edge (x, y) do
29 update key of y in heap N(x) to l(y) + w(x, y)

30 for every child x of y in the tree do
31 Remove tree edge (x, y)
32 Put x into heap H with key l(x)
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Proof. If i ≥ 1, then clearly bi = b0 − εai. Therefore, inequality (1) holds with equality for i ≥ 1
and for i = 0 it is trivially true.

We now show that bi+1 + 2ai = bi (2). If i ≥ 1, then we just have to show that 2ai+ εai = εai+1

as can be seen by using bi+1 = b0 − εai+1 and bi = b0 − εai. An equivalent formulation of this
equation is 2/ε + 1 = ai+1/ai which is true by the definitions of ai and ai+1. If i = 0, then we
have to show that b1 + 2a0 = b0. By plugging in the definitions of a0 and b1 this is equivalent to
2a0 = 2(1 + 2/ε)0 which is true because we defined a0 to be equal to 1.

Finally, we prove inequality (3). If i ≥ 1, then by using bi = b0 − εai and bi+1 = b0 − εai+1 it
can be seen that inequality (3) is equivalent to (4 + 2ε)ai + εai ≤ εai+2. By the definitions of ai
and ai+2 we have

ε · ai+2

ai
= ε

(
1 +

2

ε

)2

= ε+ 4 +
4

ε
.

Thus, inequality (3) is equivalent to 4 + 3ε ≤ ε + 4 + 4/ε. This is equivalent to ε2 ≤ 2, which is
true because of the assumption ε ≤ 1. If i = 0, then we have to show that b2 + (4 + 2ε)a0 ≤ b0.
Due to a0 = 1 and b2 = b0 − εa2 this is equivalent to 4 + 2ε ≤ εa2. Since a2 = (1 + 2/ε)2/ε, this is
equivalent to 2ε+ 2ε2 ≤ 4 which is true because of the assumption ε ≤ 1.

Lemma 4.9. Every node is either (21δ + 12κγ + 13γ)-covered by a rich center or δ-covered by an
active poor center whp.

Proof. Suppose that v is not δ-covered by a rich center. (If it is δ-covered by a rich center, it is
also (21δ + 12κγ + 13γ)-covered.) Let c be the closest rich center to v . Since c does not δ-cover
v we have dG(v, c) > δ. Therefore the shortest path from v to c contains at least δ nodes (Note
that the shortest path exists because we assume that the graph stays connected). By our sampling
process one of the first δ nodes on this path is a poor center whp. Thus, v is δ-covered by a poor
center c. If c is inactive, then it is (10δ+6κγ+6γ)-covered by a rich center c′. In that case we have
dG(c, c′) ≤ (1+ε)(10δ+6κγ+6γ)+γ ≤ 20δ+12κγ+13γ. It follows that dG(v, c′) ≤ 21δ+12κγ+13γ
which means that v is (21δ + 12κγ + 13γ)-covered by c′.

Lemma 4.10. After every update processed by the algorithm the graph T is a tree and, for every
node x, dG(x, s)− (132κδ + 78κ2γ + κγ + 84γ) ≤ l(x) ≤ (1 + ε)dG(x, s) + εγ.

Proof. Consider the graph T built by the algorithm and the (unique) path P from x to s in T that
contains for every node, starting from x, the edge to its parent in T . Let u and v be nodes in T
such that v is the parent of u. If u /∈ U , then v also was the parent of u in the shortest paths tree
computed at the beginning of the current phase and thus l(v) < l(u). If u ∈ U , then either v = s
or L′(v) < l(u)− δ. If v = s, then l(v) = 0 and thus l(v) < l(u) because 0 is the minimum level and
is reached only by s. If L′(v) < l(u) − δ, then because of l(v) ≤ L(v) + δ ≤ L′(v) + δ we also get
l(v) < l(u). Thus every parent has smaller level than its children, which implies that T is indeed
acyclic. As every node in T has a parent, T is a tree.

The second inequality in the lemma is true by the definition of the level as the distance between
x and s in H at the beginning of the current phase. This distance is a (1 + ε, εγ) approximation of
the distance between x and s in G at the beginning of the current phase. Since the distance in G
never decreases under edge deletions, the inequality l(x) ≤ (1 + ε)dG(x, s) + εγ always holds.

For the first inequality, let (u, v) be an edge of the path P which implies that v is the parent of
u in T . If u /∈ U , then the edge (u, v) is contained in H since the beginning of the current phase.
The total weight of all such edges is l(x) at the beginning of the current phase. The weight of such
an edge has increased by at most γ because γ is the maximum edge weight in H. Since there have
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been at most κ edge weight increases since the beginning of the current phase, l(x)+κγ is an upper
bound on the current weight of all these edges.

If u ∈ U , then the edge is marked with a center c in T ′ such that the following holds:

• Either c is a rich center such that u is (21δ+ 12κγ+ 13γ)-covered by c and v is in the ES-tree
of depth 45δ + 27κγ + 28γ of c

• or c is a poor center such that u is δ-covered by c and v is in the ES-tree of depth 5δ+3κγ+2γ
of c.

In any case we have dG(u, c) ≤ (1 + ε)(21δ + 12κγ + 13γ) + εγ ≤ 42δ + 24κγ + 27γ and dG(c, v) ≤
(1+ε)(45δ+27κγ+28γ)+εγ ≤ 90δ+54κγ+57γ. Therefore we get dG(u, v) ≤ dG(u, c)+dG(c, v) ≤
132δ + 78κγ + 84γ. Note that there are at most κ nodes in U . Therefore the path P in the tree T
corresponds to a path from x to s in G that has length at most l(x) + κγ + κ(132δ + 78κγ + 84γ).
Since the shortest path is not longer, we get dG(x, s) ≤ l(x) + 132κδ + 78κ2γ + κγ + 84γ.

Lemma 4.13. At any time, for every node v it holds that l(v) ≤ dH(v, s) + 3κγ.

Proof. The level l(v) is defined as the distance between v and s in H at the beginning of the current
phase. This distance only decreases due to edge insertions in H. Consider an edge (x, y) that is
inserted into H. By Lemma 4.5 the distance between x and y in H is at most 3γ. Therefore
this insertion decreases the distance between each pair of nodes by at most 3γ. Since there are at
most κ edge insertions, the distance between v and s in H has decreased by at most 3κγ since the
beginning of the current phase and thus dH(v, s) ≥ l(v)− 3κγ.

Lemma 4.14. Let u ∈ U be a node whose edge to its parent has been deleted in the current phase.
Let c be a rich center that (21δ+12κγ+13γ)-covers u or an active poor center that δ-covers u. Let
v be a node of minimum delayed rounded level L′(v) in the monotone ES-tree of c and assume that
s is not contained in the monotone ES-tree tree of c. If L′(v) ≥ l(u)− δ, then dH(u, s) ≥ l(u) + δ.

Proof. We give a proof by contradiction. Assume that L′(v) ≥ l(u) − δ and dH(u, s) < l(u) + δ.
First, assume that dH(u, s) ≥ 3(δ+κγ). Consider the first node x on a shortest path from u to s in
H in distance at least 3(δ+κγ) to u, i.e., dH(u, s) = dH(u, x)+dH(x, s) and dH(u, x) ≥ 3(δ+κγ).14

By our assumption it follows that dH(x, s) + 3(δ + κγ) ≤ dH(u, s) < l(u) + δ and thus dH(x, s) <
l(u)− 3κγ − 2δ.

We now argue that x is contained in the monotone ES-tree of c. Remember that x is the first
node on a shortest path from u to s in H in distance at least 3(δ + κγ) to u. Since every edge in
H has weight at most γ we have dG(u, x) ≤ dH(u, x) ≤ 3(δ + κγ) + γ. If c is a rich center, then u
is (21δ + 12κγ + 13γ)-covered by c which means that dG(c, u) ≤ (1 + ε)(21δ + 12κγ + 13γ) + εγ ≤
42δ + 24κγ + 27γ. Since dG(u, x) ≤ 3(δ + κγ) + γ, we get that dG(c, x) ≤ 45δ + 27κγ + 28γ and
thus x is contained in the monotone ES-tree of c (which has depth 45δ + 27κγ + 28γ). If c is an
active poor center, then u is δ-covered by c which means that dG(c, u) ≤ (1 + ε)δ + εγ ≤ 2δ + γ.
Since dG(u, x) ≤ 3(δ + κγ) + γ, we get that dG(c, x) ≤ 5δ + 3κγ + 2γ and thus x is contained in
the monotone ES-tree of c (which has depth 5δ + 3κγ + 2γ).

Since x is contained in the monotone ES-tree of c we have L′(v) ≤ L′(x) where v is a node with
minimum delayed rounded level L′(v) in the ES-tree of c. Furthermore, by the definitions of the
rounded level and the delayed rounded level we have L(x) ≤ l(x) and L′(x) ≤ L(x) + δ. With the

14Note that we cannot guarantee that the distance between x and u is exactly 3(δ + κγ) because H has weighted
edges and x cannot lie “in the middle” of an edge.
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inequality l(x) ≤ dH(x, s) + 3κγ of Lemma 4.13 and the inequality dH(x, s) < l(u)− 3κγ− 2δ from
above we get

L′(v) ≤ L′(x) ≤ L(x) + δ ≤ l(x) + δ ≤ dH(x, s) + 3κγ + δ

< l(u)− 3κγ − 2δ + 3κγ + δ = l(u)− δ

which contradicts the assumption L′(v) ≥ l(u)− δ.
Finally, observe that the case dH(u, s) ≥ 3(δ+κγ) is not possible because by the same argument

as above we would get that s is contained in the ES-tree of c, which contradicts the assumption.

Lemma 4.15. If there is a node u such that dH(u, s) ≥ l(u) + δ, then there is a set of nodes V ′

such that
∑

v∈V ′(dH(v, s)− l(v)) = Ω((δ2/γ)− δ).

Proof. Consider a shortest path P = 〈u = v0, v1, . . . , vp = s〉 from u to s in H. (Note that this
path has total weight at least δ). The largest possible edge weight in H is γ. Therefore, for
every 0 ≤ i ≤ p we have l(vi) ≤ l(u) + γ. Since vi is on a shortest path we have dH(vi, s) =
dH(u, s)−dH(u, vi) ≥ dH(u, s)− iγ. Thus, we get dH(vi, s)− l(vi) ≥ dH(u, s)− l(u)−2iγ ≥ δ−2iγ.
Note that for 0 ≤ i ≤ bδ/(2γ)c we have 2iγ ≤ δ. Now we get the following:

bδ/(2γ)c∑
i=0

(dH(vi, s)− l(vi)) ≥
bδ/(2γ)c∑
i=0

(δ − 2iγ) =

bδ/(2γ)c∑
i=0

δ − 2γ

bδ/(2γ)c∑
i=0

i

= δ(bδ/(2γ)c+ 1)− 2γ
(bδ/(2γ)c)2 + bδ/(2γ)c

2

≥ δ2

2γ
− δ2

4γ
− δ

2
= Ω

(
δ2

γ
− δ
)
.

Thus, V ′ = {vi | 0 ≤ i ≤ bδ/(2γ)c} is the desired set of nodes.

Lemma 4.16. Whp the number of phases is

O

(
kγ2n1+1/k log n

κ
+
kγ3n2+1/k log n

δ2 − γδ

)
.

Proof. There are two causes for starting a new phase. The first cause is that there were κ up-
date operations in the emulator H since the last phase. As there are O(kγ2n1+1/k log n) update
operations in total (Lemma 4.4), this can happen O(kγ2n1+1/k log n/κ) times.

The second cause for starting a new phase is that the reconnection procedure has not been

successful. If there were no insertions in the emulator H, this could happen O(n(n+γ)γ
δ2−γδ ) times

because for every node v the maximum distance between v and s in H is bounded by (1 + ε)n+ γ
and by Lemma 4.15 there is a set of nodes for which the sum of the distances from s increases
by Ω(δ2/γ − δ) every time the reconnection procedure is not successful. However, due to edge
insertions the distance between v and s in H can also decrease which adds additional possibilities
for distance increases. By Lemma 4.3 the number of edges inserted into H is O(kγn1+1/k log n)
and for every node v each inserted edge decreases the distance between v and s by at most 3γ (see
Lemma 4.5). Thus, for every node v the sum of the additional distance increases to be considered
is O(kγ2n1+1/k log n). Thus, the number of times a new phase starts because the reconnection
procedure fails is

O

(
n(n+ γ + kγ2n1+1/k log n)γ

δ2

)
= O

(
kγ3n2+1/k log n

δ2

)
.
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Proposition 4.18. There is an algorithm that maintains a distance estimate d̂(v, s) for every node
v under edge deletions such that dG(v, s) ≤ d̂(v, s) ≤ (1 + ε)dG(v, s) + n1/k. If ε ≥ 6/n1/4, its total
update time is O(k2n9/5+5/k log4 n/ε+mn2/k) in expectation where k =

√
log n/ log (6/ε).

Proof. We run two algorithms in parallel. There first algorithm is the algorithm of Proposition 4.17
that maintains a distance estimate d̂1(v, s) for every node v such that dG(v, s) ≤ d̂1(v, s) ≤ (1 +
ε)dG(v, s) + 296n4/5+1/k. If dG(v, s) ≥ 296n4/5+1/k/ε, we get

d̂1(v, s) ≤ (1 + ε)dG(v, s) + 296n4/5+1/k ≤ (1 + ε)dG(v, s)εdG(v, s) ≤ (1 + 2ε)dG(v, s) .

By running this algorithm with ε′ = ε/2 we get dG(v, s) ≤ (1+ε)dG(v, s) if dG(v, s) ≥ 296n4/5+1/k/ε.
The second algorithm is a monotone ES-tree on H rooted at s up to depth 296n4/5+1/k/ε. This
algorithm maintains a distance estimate d̂2(v, s) for every node v such that dG(v, s) ≤ d̂2(v, s) and
if dG(v, s) ≤ 296n4/5+1/k/ε, then dG(v, s) ≤ (1 + ε)dG(v, s) + γ ≤ (1 + ε)dG(v, s) + n1/k. Thus we
simply have to return the minimum between d̂1(v, s) and d̂2(v, s) to get a (1+ε, n1/k)-approximation
of dG(v, s) for every node v.

Maintaining the monotone ES-tree (second algorithm) takes total time O(kn9/5+3/k log2 n/ε),
which can be seen by using the bounds on the initial number of edges in H and the number of
edges inserted into H. As the running time of the first algorithm is O(k2n9/5+5/k log4 n + mn2/k)
by Proposition 4.17 and we maintain the same emulator, we get the desired running time.

Theorem 4.19. There is an algorithm that maintains a distance estimate d̂(v, s) for every node v
under edge deletions such that dG(v, s) ≤ d̂(v, s) ≤ (1 + ε)dG(v, s). If ε ≥ 12/n1/4, its total update
time is O(k2n9/5+5/k log4 n/ε+mn2/k/ε) in expectation where k =

√
log n/ log (12/ε).

Proof. We run two algorithms in parallel. The first algorithm is the algorithm of Proposition 4.18
that maintains a distance estimate d̂1(v, s) for every node v such that dG(v, s) ≤ d̂1(v, s) ≤ (1 +
ε)dG(v, s) + n1/k. If dG(v, s) ≥ n1/k/ε, then d̂1(v, s) ≤ (1 + 2ε)dG(v, s). We run the algorithm with
ε′ = ε/2 to get d̂1(v, s) ≤ (1 + ε)dG(v, s) for dG(v, s) ≥ n1/k/ε. The second algorithm is an ES-tree
rooted at s up to depth n1/k/ε in the original graph G. This algorithm computes dG(v, s) exactly
if dG(v, s) ≥ n1/k/ε (otherwise it returns ∞). In this way we obtain a (1 + ε)-approximation for
the whole distance range. The first algorithm runs in time O(k2n9/5+5/k log4 n/ε+mn2/k) and the
second algorithm runs in time O(mn1/k/ε), which gives the desired running time
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