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Abstract. Parallel architectures with node-level accelerators promise sig-

nificant performance improvements over conventional homogeneous sys-
tems. To cope with the increased complexity of programming such sys-

tems various pattern-based programming libraries have become avail-

able. In this paper we present our work on providing autotuning ca-
pabilities for two runtime libraries that provide parallel programming

patterns on state-of-the-art heterogeneous hardware. We present a brief

overview of these runtime libraries, outline possible integration with ex-
isting tuning frameworks and present initial experimental results.
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Introduction

Parallel computing systems featuring node-level accelerators are increasingly be-
ing used for high-performance computing applications since such systems often
deliver significant performance improvements compared to conventional homoge-
neous systems. However, the increased heterogeneity resulting from the utilization
of different processing units makes efficient programming of such architectures a
challenging task. One established way to tackle the high programming complexity
of parallel systems is the use of well-defined parallel programming patterns for
application development. This methodology has already been applied successfully
by various library-based approaches targeting accelerated parallel systems (e.g.,
Thrust [1], SkePU [2], HyPHI [3]). However, even though pattern-based program-
ming libraries may significantly improve programmability for the end-user, the
portable and efficient implementation of pattern libraries themselves is very de-
manding. In order to achieve good performance with such libraries on different
heterogeneous systems, multiple application or platform-specific decisions must
be made that may require automatic tuning support.

In this paper, we present our work on providing autotuning capabilities for
two runtime libraries that provide parallel programming patterns on state-of-the-
art heterogeneous hardware. We present a brief overview of these runtime libraries
and outline possible integration with existing tuning frameworks.
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1. HyPHI Library

The HyPHI library[3] is a C++ template library that provides high-level parallel
patterns that are executed in a hybrid fashion on the host and (possibly several)
Xeon Phi coprocessors simultaneously. An example pattern is hybrid for-each,
that applies a function to every item in a container, processing some items on the
host and some on a coprocessor. The following code example quickly demonstrates
the way the library is used to apply a functor to each element in a sequence.

struct functor {

int factor;

functor(int f) { factor=f; }

void operator ()(int& x) const { x=x*factor; }

};

std::vector <int > data;

fill_data(data);

functor f(2);

hybrid_for_each(data.begin (),data.end(),f);

The hybrid execution model used by HyPHI has important implications on
the autotuning process. We have to address the issue that the library splits the
work between two machines with different characteristics. The Phi has different
vector units (wider, different instruction set), higher number of cores (and 4-way
hyper-threading), and different memory architecture. Both systems provide fully
cache coherent random memory access, but the details differ significantly. For
example, the host will probably be a NUMA machine, while the Phi uses a ring
bus to connect the cores to the memory. As a result, executing the same operation
on the host and on the coprocessor can result in very different performance. In
extreme cases, the difference can be over an order of magnitude.

1.1. Tuning Parameters

A very important factor from the tuning point of view is how work is distributed
among host processors and coprocessors. With the HyPHI library work distribu-
tion is performed at runtime depending on five parameters: (1) the host batch size,
which specifies the number of items allocated to the host in one batch, (2/3) the
minimal/maximal coprocessor batch size, which specifies the minimal/maximal
number of items allocated to a coprocessor in one batch, (4) the coprocessor buffer
count, which is the number (per coprocessor) of buffers used for data offloading,
and (5) the coprocessor count, which designates the number of coprocessors to be
used during execution.

Choosing these parameters such that overall execution time is minimized
depends on the properties of the function provided by the user of the library and
possibly also the values of the data, so it is usually not possible to determine
the optimum at compile time. For example, if the workload runs very well on
the coprocessor and the data set contains a large number of items, it is best
to use a large batch for the coprocessor, multiple (usually 3-5) buffers and all
available coprocessors. However, if the data set contains just a few items, it may
be best to reduce the overhead to a minimum and not use any coprocessors, i.e.,



completely switch off data offloading. Or, if the coprocessor is not that efficient at
processing a workload, offloading smaller batches may allow the library to better
use the power of the host near the end of the execution, providing better overall
performance. As a result, we tune each combination of algorithm, functor and
data size (rounded up to the nearest power of two) individually as completely
different entities.

We have designed the HyPHI library in such a way that all tuning parameters
may be changed “on the fly” – a running HyPHI algorithm can be reconfigured
at any time by providing a new set of parameter values. The new values take
effect as soon as possible. For example, if the buffer size parameter is increased,
then the next time a buffer is offloaded it uses the new size. This allows us to
implement a watchdog that observes the library and if a set of tuning parameters
turns out to be especially bad, it can change the parameters to a different set.

Another reason why dynamic reconfiguration is important for autotuning is
the fact that information used as input for the tuning process (like workload
characteristics or performance of previous executions) or the tuning module may
not always be available. We use a separate process (in the operating system sense)
to make the tuning decisions. This process is called agent. This makes it easier
to include HyPHI in an application, since the library has almost no external
dependencies when done like this. Also the agent can track all running HyPHI
instances and take concurrent execution into consideration. However, the agent
may not always be available, it may take too long to respond, or it may not have
enough data (yet) to use as an input for the tuning.

1.2. Tuning Strategies

To deal with the fact that tuning data or decision may not be available, we have
implemented multiple tuning strategies that form a sequence from the simplest
to the most sophisticated. If a higher-level tuner is unable to make a decision
(provide a set of tuning parameter values), it is possible to fall back to a simpler
tuner until the lowest level, which is always able to make a decision. The following
sections describe the individual levels.

Default The simplest strategy is to provide a fixed default set of parameter
values. These values have been selected based on our previous experiments to
provide reasonable performance in most cases, except for the most pathological
ones. However, the performance is usually not optimal and a better set of values
may provide significant performance increases.

Cached values It is possible to store a set of values locally on disc in a file. These
values are a result produced by a higher-level tuner. The tuner must explicitly
report the values as being “the best” (rather than an experimental set of val-
ues) to have them stored in the file. Currently, only the highest-level tuner uses
experimental sets. Other tuners provide only “the best” values.

Observers and heuristics While the HyPHI algorithm is executing, simple log-
ging mechanisms are used to observe the properties of the current workload. Cur-
rently, the average times needed by the host/coprocessor to execute the functor
(process a single item) are logged. These observations are sent to the host even



while the execution is still running. Once the algorithm finishes, the aggregated
results are stored in a file. If the file already exists, the new results are combined
with the older data to provide average values.

The tuning decisions are made by a simple heuristic that classifies the work-
load into one of predefined classes (currently three classes are used) and returns
a set of tuning parameter values that should work with the selected class. The
values are hard-coded for each class. The classification uses observed characteris-
tics of the workload as its input. If there is a set of historical observations avail-
able, they are used at the start of the execution of a HyPHI algorithm to classify
the workload and configure the parameters. If no historical data is available, the
tuner waits until real-time observer data for the host and coprocessors becomes
available and makes the decision on that data. It may take some time for the co-
processor data to become available, since it is sent to the host piggybacked to the
processed data, so it is only available after an offloaded batch has been processed,
re-serialized and sent back to the host. After the workload has been classified, no
further tuning decisions are made – reconfiguration is not used by this tuner.

Tuning agent This is the highest-level tuner. It connects to the tuning agent
(separate process that provides tuning decisions to all HyPHI instances), requests
a set of tuning parameter values, and uses the set. Then, it waits on the con-
nection, in case a different set of values gets sent by the agent. In that case, the
HyPHI parameters get updated to the new set – dynamic reconfiguration takes
place. At the end of the execution, the tuner reports the total execution time to
the agent. All decisions take place in the agent, the tuner only provides the basic
data and forwards the tuning decisions to the runtime.

The agent is in fact a network server that listens for incoming connections
from the HyPHI instances. Each instance sends over the identification of the
running workload (algorithm, functor, and data size). The HyPHI uses the SPOT
[4] tuning library to first generate an initial set of experiments – sets of parameter
values. The agent then uses the experiments and sends the values to consecutive
instances of the corresponding HyPHI workload. For each set, the instance returns
the total running time. These times are stored and after all experiments have
finished, they are sent to the SPOT library. The library builds a model based
on these data and creates a new set of experiments that explore the promising
parts of the model in greater detail. As a result, after the initial experiment set
is finished, the agent tends to only send out configurations that provide good
performance – there are no further “bad tuning decisions”.

This setup also allows the agent to see, whether multiple HyPHI algorithms
run concurrently on the same machine or not. At the moment, we use this infor-
mation to reject performance results returned by HyPHI instances that executed
concurrently with one another.

2. PEPPHER Pipeline Coordination Library

In the context of the European PEPPHER project [5], we have developed lan-
guage, compiler and runtime support for optimizing pipeline patterns for hetero-
geneous many-core architectures [6]. Within the PEPPHER framework, pipelines



are realized based on while-loops with source-code annotations. Pipeline stages
usually correspond to calls to multi-architectural components, for which multi-
ple implementation variants may be provided. Such component implementation
variants may be optimized for different execution units of a heterogeneous target
architecture, e.g., for a homogeneous multi-core CPU, for a GPU, or for other
types of accelerators.

An example of a high-level C++ pipeline code for face detection in a stream
of images is shown below. The first pipeline stage reads images from an input file,
the middle stages perform image transformation and face detection by means of
calls to multi-architectural PEPPHER components, and the last stage writes an
image with all detected faces marked with rectangles to an output file. For the
two middle stages, two different component implementation variants are provided
within the PEPPHER framework, one optimized for execution on a conventional
CPU core and one optimized for GPUs. These implementation variants have been
re-engineered from the OpenCV image processing library. By means of annota-
tions, the user can specify what kind and size of buffers should be generated for
passing data between pipeline stages. Moreover, the user can specify a replication
factor for individual pipeline stages in order to influence the degree of parallelism
during execution.

#pragma pph pipeline with buffer (UNORDERED , N*2)

while ( inputstream >> file ) {

ReadImage(file , image);

ResizeAndColorConvert (image , outimage);

#pragma pph stage replication(rfactor)

DetectFace(outimage);

#pragma pph stage with buffer (PRIORITY , N*2)

WriteFaceDetectedImage(file , outimage);

}

This annotated high-level code is then transformed by a source-to-source com-
piler into code that utilizes a pattern coordination runtime library for parallel
execution on heterogeneous many-core architectures. The pattern coordination li-
brary manages all aspects of execution on a heterogeneous many-core architecture,
including the automatic management of buffers for data passed between pipeline
stages, the replication of individual stages, and the coordination of task-parallel
execution of pipeline stages. Internally, the pipeline coordination library utilizes
the StarPU [7] heterogeneous runtime system, which is responsible for dynam-
ically selecting suitable component implementation variants for pipeline stages
and for scheduling their execution to the different execution units of a hetero-
geneous many-core system in a performance- and resource-efficient way. StarPU
also manages data transfers between execution units, and provides support for
different scheduling strategies, with the goal of utilizing all execution units of the
target architecture.

Within the AutoTune project our goal is to develop autotuning techniques
for optimizing such high-level pipeline applications for CPU/GPU-based systems.
For this purpose, the pipeline coordination library exposes different parameters
that are amenable to autotuning.



2.1. Tuning Parameters

The pipeline coordination library enables dynamic reconfiguration by exposing
a set of tuning parameters, thus allowing users or external tools to tune the
execution of the pipeline in order to achieve a desired goal (e.g., to maximize
pipeline throughput). Currently we support the following tuning parameters: (1)
the stage replication factor, which determines the number of stage instances that
may be executed in parallel, (2) the sizes of buffers to hold data packets passed
between pipeline stages, (3) the number of CPU cores and (4) the number of
GPUS to be used, and (5) the scheduling strategy used by StarPU for scheduling
component calls to free execution units of the target system.

All these parameters have a profound influence on the performance of appli-
cations that rely on pipeline patterns. Finding the best parameter combination
for a given application, problem size, and machine configuration is a challenging
task that we tackle in the context of the AutoTune project with the Periscope
Tuning Framework (PTF) [8].

2.2. Integration with Periscope Tuning Framework

The Periscope Tuning Framework (PTF) [8] is an extension of the Periscope on-
line performance analysis tool [9]. PTF aims at providing an infrastructure for
automated code-tuning based on expert knowledge about performance charac-
teristics of target applications and computational patterns. Hence, it features an
extensible architecture based on tuning-plugins that enable external developers to
guide tuning decisions. For evaluation of possible tuning variants, the framework
provides highly-distributed monitoring and measurement facilities enabling the
detailed assessment of runtime-specific performance characteristics.

Instead of integrating autotuning functionality into pattern-based libraries
solely internally, we aim at implementing a generic mechanism for utilization of
external tuning frameworks such as PTF. Since tuning objectives and decisions
should be adaptable and might change depending on target hardware or applica-
tion requirements, we believe that this approach can provide the required flexi-
bility. For example, our approach could be combined with other PTF plugins or
a variety of different external tuning frameworks and optimization strategies. In
the following we outline the steps required for integrating our pipeline pattern
runtime library with the Periscope Tuning Framework:

(1) Exposure of metrics – To evaluate tuning objectives, several library- and
application-specific performance characteristics need to be defined within PTF
and measured. Such metrics can be pattern-specific (e.g., buffer occupancy of
pipeline stages) or generic (e.g., wall-clock time). The Periscope framework al-
ready provides a wide variety of different metrics which are organized in measure-
ment groups. New metrics (e.g., pipeline-stage execution time) representing mea-
surements done by the pipeline coordination layer were added to the appropriate
Periscope source files.

(2) Definition of performance properties – Based on the measured metrics,
performance properties indicate relevant performance characteristics of an appli-
cation or library under investigation. For each computational pattern provided



by the runtime library, performance properties with high significance regarding
the tuning objective should exist. Therefore, we added performance properties
relevant for our pipeline coordination library. Such property classes have been de-
rived from a Property class available in the Periscope framework and were added
to the Periscope build system.

(3) Runtime measurements – The Periscope framework is based on the idea
of selective monitoring. This aims at reducing the amount of acquired data for
an experiment. Therefore, the framework employs a Monitoring Request Interface
(MRI) used to retrieve information. This mechanism is based on instrumenta-
tion of the investigated application using a hierarchical identification scheme of
program regions. [10]

To enable the measurement of pipeline specific metrics, we added special
pipeline region identifiers to Periscope. In addition, we extended the pipeline
coordination layer with functions to start/stop performance measurements and to
deliver the acquired data to the Periscope framework on it’s request. The support
for pipeline region measurements can be enabled at compile time.

(4) PTF tuning plugin development – For each tuning case, a PTF tuning
plugin needs to be provided that guides the search for good tuning variants (i.e.,
concrete set of tuning parameters). This search may incorporate knowledge about
problem-, platform- or pattern-specific properties that may help to prune the
search space or find good solutions in reasonable time. For a first prototypical
implementation, we developed a basic tuning plugin that employs an exhaustive
search. The plugin uses the execution time of a pipeline region, that was previously
measured by the coordination layer (see (3)), to evaluate performance and find
good tuning decisions.

(5) Tuning parameter setting – Actual tuning variants for execution (i.e., con-
crete set of tuning parameters) must be communicated to all library instances.
The PTF provides routines for dynamically setting values of tuning variables as
well as for calling special tuning functions. Hence, the pipeline coordination layer
supports reconfiguration at runtime. In the current implementation, reconfigura-
tion is based on integer variables whose values are set at runtime by the PTF. This
happens before the according reconfiguration calls to the pipeline coordination
library.

3. Experiments

3.1. HyPHI Library

The results for the HyPHI library were obtained on a server machine with four
Intel Xeon Phi 5110P coprocessors (60 cores, 1.053GHz, 8GB RAM). The ma-
chine itself had two E5-2650 CPUs (2GHz, 20MB cache) and 128GB RAM. The
experiment executed an artificial workload that performed identical work on a
sequence of 50 000 items. We have performed one test with the agent and the
SPOT library [4] and one test that did an exhaustive search of the parameter
space. The SPOT library was set up to use Latin hypercube for the initial de-
sign (10 configurations, each to be executed 2 times) and random forest as the
prediction model. The exhaustive search explored 33788 possible configurations.



The exhaustive search found the best configuration to provide the run time
of 2.19754 seconds. With three exceptions, the run times were below 10 seconds.
All run times add up to 98404 seconds (27.33 hours).

With SPOT, the initial set of experiments (the initial design) contains some
sets of parameter values that are far from ideal, resulting in a long execution time.
In our experiment, that meant almost 5 times longer than the best time, similar
to the worst options discovered by the exhaustive search. However, the initial
experiments did provide enough data to make the next set (5 configurations, each
with 2 repetitions) perform much better, with runtimes less than double of the
overall best. In the following iterations, all run times were within 20% of the
best time. After four sets of experiments (total of 50 executions of the HyPHI
algorithm), the average time of the best configuration discovered by SPOT was
2.24007. The number is an average of four executions of that configuration.

An important factor that comes into play with these numbers is the
(in)stability of the HyPHI execution time. Due to complex scheduling and work
distribution used by the library, the execution times generally vary by around
10%, with rare outliers being much further away (generally within double of the
average value). Second important factor is the fact, that the performance of the
library is “stable” with regards to the configuration, which means that small
change of the configuration (especially the batch and buffer sizes) has no or very
little effect on the performance. Last thing to note is that SPOT always requires
each configuration to be executed at least twice. The number of repetitions is
provided by the library and it also sometimes requests further experiments for an
already tested configuration. This happens if the configuration looks promising,
in order to verify that the good result was not caused by random fluctuation.

These factors together explain our experimental results, where we had 4 exe-
cutions of the best option found by SPOT and the average time was longer than
the best performer found by the exhaustive search. After executing the configu-
ration found by the exhaustive search 4 times, the average time was 2.30539 sec-
onds, much worse than the one found by SPOT. Due to the nature of the HyPHI
library, the SPOT is able to quickly eliminate the bad options and after one or
two iterations, it ends up just fine-tuning the buffer sizes.

3.2. Pipeline Coordination Library

For demonstration we use the face detection example described in Section 2.
The application processes a set of 350 images of nHD (640x360) resolution, each
containing an arbitrary number of human faces. Performance measurements were
performed on a machine with two quad-core Intel Xeon X5550 CPUs (2.66GHz,
24GB RAM) and NVIDIA Tesla C2050 and C1060 GPUs, respectively.

Using the PTF tuning plugin, we used exhaustive search to find the best con-
figuration for the available tuning parameters. We considered structural proper-
ties of pipelines and runtime parameters. This resulted in five tuning points (1)
stage replication factor of the most performance demanding stage (DetectFace()),
(2) size of the input buffer of the DetectFace() stage, (3) number of CPU cores,
(4) number of GPUs, and (5) the scheduling policy - EAGER (simple greedy
scheduler) versus HEFT (Heterogeneous Earliest Finish Time) [7]. In total PTF



explored 360 possible configurations, spending almost 6.2 hours in doing so. In
Table 1, we summarize the explored values for each tuning parameter.

Tuning Parameter Possible values Best Configuration Variant

Replication Factor 1, 2, 4, 8 8

Number of CPU cores in use 1, 2, 4, 6, 8 6

Number of GPUs in use 0, 1, 2 2

Scheduling Policy “eager”, “heft” “heft”

Buffer Size 1, 8, 16 8

Table 1. Possible values of tuning parameters.

The desired outcome is the maximization of the pipeline throughput, which
translates to minimization of the overall execution time. The best configuration
set performed face detection over the complete data set in 9.1 seconds. It used
replication factor of 8, 6 CPU cores, 2 GPUs, buffer size of 8 and HEFT scheduling
policy. The slowest configuration set utilized only 1 CPU core, which resulted in
execution time of 95.4 seconds. The slowest configuration that utilized the whole
system resulted in the execution time of 20.2 seconds.

4. Related Work

Existing autotuning efforts include (1) self-tuning specialized libraries (e.g., lin-
ear algebra or signal processing) like ATLAS[11] or FFTW[12], (2) tools that
automatically search for best combination of compiler optimization parameters
[13,14], and (3) tools that search for best values of application-level parameters
[15,16]. Even though both of our solutions are in fact libraries and the tuning
parameters control the behavior of those libraries, our work is closer to the third
group (application tuning) than the first one (self-tuning libraries), because we
execute computational kernels that are not part of the library and can behave
very differently from each other. Our efforts are close to the emerging area of
(possibly automated) tuning of OpenCL or CUDA parameters [17,18].

5. Conclusion and Future Work

In this paper we presented our ongoing work of autotuning support for pattern-
based runtime libraries for programming heterogeneous many-core architectures.
Currently, the HyPHI library and the pipeline coordination library use different
autotuning facilities. We plan to integrate both libraries with the Periscope Tun-
ing Framework, which is currently under development in the European AutoTune
project, and investigate the use of more intelligent search strategies.
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