
Improving Blocking Operation Support in Intel TBB
Jiri Dokulil, Siegfried Benkner, and Martin Sandrieser

Research Group Scientific Computing
University of Vienna, Austria

Email: jiri.dokulil@univie.ac.at

Abstract—The Intel Threading Building Blocks (TBB) template
library has become a popular tool for programming many-core
systems. However, it is not suitable in situations where a large
number of potentially blocking calls has to be made to handle
long-running operations like disk access or remote data access.
We have designed and implemented an add-on for the TBB that
allows developers to better integrate long-running operations into
their applications. We have extended TBB’s task dependencies
to also include blocking operations and implemented a run-time
that efficiently manages these dependencies.

I. INTRODUCTION

The Intel Threading Building Blocks (TBB) C++ template
library [1] has become a popular tool for programming many-
core systems. Based on work-stealing techniques, it enables
efficient parallel execution of a set of computational tasks
with dependencies. The library is suitable for a wide range of
applications and enables even mainstream developers to utilize
the power of multi-core systems.

However, the use of blocking operations within TBB tasks
is not advised and it should be avoided whenever possible.
Despite that, there are situations where it is necessary to wait
for completion of potentially blocking operations. Examples
for such situations could be I/O tasks such as reading a file or
communication over a network.

Another situation where blocking may be required is when
a conventional general-purpose CPU is used in conjunction
with accelerators or coprocessors specialized in highly parallel
execution or specific workloads. Examples of such heteroge-
neous computing include the utilization of GPUs via CUDA
[2] or OpenCL [3], or using highly parallel Intel Xeon Phi
coprocessors [4]. Programming such heterogeneous systems is
often based on an offloading model where a general-purpose
host-CPU offloads data and computations to an attached ac-
celerator or coprocessor. Offloading usually requires executing
operations on the host that wait for the completion of data
transfers or computations on the accelerator or coprocessor.

We have developed the HyPHI heterogeneous program-
ming library for Intel Xeon Phi that utilizes many TBB
programming concepts [5]. This library automates offloading
of computational tasks to multiple Xeon Phi coprocessors
while at the same time utilizing all of the CPUs on the host for
computations. The host-portion of such fully-hybrid execution
can suffer from significant performance degradation caused by
blocking operations associated with data-management and task
execution for the coprocessors. Since we built our library on
TBB tasks, we wanted to implement a convenient and efficient
method to support the required blocking operations.

Even though many current programming frameworks allow
potentially blocking operations to be executed asynchronously,
querying for operation completion and possible overlap with
other work has to be implemented by the user inside a task, if
a pure task-parallel environment is used. When external task-
based libraries are used, this may significantly affect task-
scheduling performance since the framework might not be
aware of the blocking calls made by the tasks. We believe,
that it can be more beneficial to describe blocking operations
more explicitly, to make the task scheduler aware of them.

In this paper, we present a TBB extension (add-on) designed
to support blocking operations. Our approach is based on an
extension of the TBB task graph. Instead of blocking TBB
tasks, we utilize a separate service thread for asynchronous
execution of waiting operations. This external mechanism
interacts with TBB by spawning successor tasks of blocking
operations as soon as their dependencies are fulfilled. Hence,
the blocking operations effectively become new nodes in the
TBB task graph and the new operation-task dependencies are
handled in a way that is consistent with normal TBB task-task
dependencies. We show that even though our approach relies
on an additional thread, its overhead is negligible. In addition,
we provide different strategies that allow the user to select
whether it is more important to get an immediate response to
a finished blocking call or to reduce the total overhead caused
by blocking calls.

This paper is structured as follows: Section II provides
an introduction to the problem and the main points of our
solution. Section III discusses the application of the proposed
concepts within the HyPHI library. Section IV provides more
detailed information about our work, first showing the archi-
tecture of our software in the context of TBB. Then, we point
out relevant details of the TBB implementation and show the
way they are used to implement our extension. Section V
investigates the latency encountered when spawning successor
tasks and shows the different strategies we provide to deal with
it. Experimental results are presented in Section VI. Related
work is discussed in Section VII. Section VIII concludes the
paper.

II. PROBLEM AND SOLUTION OVERVIEW

There are situations, where a program needs some data
to continue, but the data is not immediately available and it
cannot be generated by the CPU. An example may be reading
a file from disk, since the disk is not able to keep up with the
performance of the CPU and loading a file takes extremely



(a) Normal – task is submitted to TBB (b) Short – executed by the service thread (c) ASAP – executed by an aux. thread

Fig. 1: Different strategies used to start a task that follows a blocking operation. The circle marks the time when the asynchronous
operation finishes (operation1 ends), the black bar represents the task that depends on the operation (task3).

long from the perspective of a CPU. Another example may be
a remote procedure call or another kind of network operation.
In such situations, the network latency is combined with the
time required by the remote machine to process the request. A
similar case is transferring data or executing a computational
kernel on an accelerator (like a GPU) or a coprocessor (Intel
Xeon Phi). An interesting property of such actions is that they
often can run asynchronously. That is, once the CPU issues
the command, it can move on to do something else and the
remote command keeps executing (within operating system,
hard-drive hardware, network hardware, remote machine etc.).

There are several ways in which the process that issued the
asynchronous command can be made aware of its completion.
These include callbacks, polling, and blocking calls. Callback
is a function that gets called once the operation finishes.
Generally, callbacks require careful design and implementation
to avoid race conditions. Polling means that the waiting
process has to keep checking whether a flag has been set or
not. If they test the flag often, it is a waste of resources, if they
test the flag rarely, there may be a significant delay between
the time the operation finishes and the moment the process
becomes aware of this fact. Blocking call is an operating
system function that is called by the process and the call
returns once the asynchronous operation finishes. The calling
process (thread) is suspended while the blocking call lasts and
does not waste any CPU cycles. A typical example that uses
a blocking call may look like this:

do_some_work1();
op=initiate_asynchronous_operation();
do_some_work2();//optional
res=block_and_wait(op);
do_some_work3(res);

This approach does not work well when used inside a
TBB task. The reason is, that TBB maintains a fixed size
pool of worker threads. The number of threads is usually
the same as the number of threads that can be executed by
all of the machine’s CPUs at one time, i.e., the number of
CPUs multiplied by the hyper-threading (HT) factor, if HT
is enabled. If a thread gets blocked inside a task, it cannot
be used for any other purpose, since a TBB task cannot be
preempted by the scheduler. This leads to sub-optimal CPU
utilization. As a result, it is usually recommended to avoid
blocking calls [6].

However, we can slightly restructure the original example
to make it look like this:

task1 {
do_some_work1();
op=initiate_asynchronous_operation();
do_some_work2();//optional

}
task2 { res=block_and_wait(op); }
task3 { do_some_work3(res); }
task1 => task2 => task3 //dependencies

When split into these three tasks, there is a dependency
forcing that task3 can only run after task2 finishes. Tasks
task1 and task3 are not a problem for the TBB library,
since they do not block. However, task2 is still a problem
that cannot be overcome with the TBB scheduler and the
worker thread pool. Our solution was to move this task outside
of TBB and make the blocking calls a special entity that is
handled differently from the “normal” computational tasks. So,
task2 becomes operation1 and task3 now depends on
operation1 rather than task2. Only task1 and task3
are handled by the TBB, operation1 is handled by an
external entity (we call this entity engine in the following
text) that does not use TBB worker threads, so they do not
get blocked. Instead, a dedicated service thread is used by the
engine to make the blocking calls.

A potential problem with this solution is demonstrated by
Figure 1a. Once operation1 finishes, task3 is ready to
run. But to run a task, a TBB worker thread must first become
available (i.e., not executing a task). However, if all TBB
threads are currently busy executing long running tasks, no
thread is available to execute task3. As a result, a long time
may pass between operation1 finishes and task3 starts –
we call this timespan latency. Depending on the application,
this may or may not be a problem.

To improve flexibility of our solution, we have implemented
different strategies that may be used to start task3. These
provide different tradeoffs between minimizing the latency
and minimizing the total overhead. It is possible to specify a
strategy separately for each task. The available strategies are
illustrated in Figure 1. The normal strategy just submits the
task to TBB, the short task strategy executes the task within
the service thread of the engine, and the ASAP strategy uses
an auxiliary thread pool to execute the tasks.



(a) TBB and the extension – overview of the architecture

(b) Combined dependency graph. Note that arrows going from
tasks to operations represent creation, not dependencies.

(c) One of the possible execution timelines

Fig. 2: Overview of the extension showing a single dependency graph distributed between the individual software components,
combined into a single graph, and one of the valid execution timelines that observes all of the dependencies.

III. APPLICATION IN HYPHI

We have implemented a library called HyPHI [5] which
provides TBB-like algorithms that execute hybridly on the
host and Intel Xeon Phi coprocessors. Since (by design) the
host part of the library is very similar to TBB, we wanted to
use the TBB scheduler in the implementation. However, data
and execution offloading requires long-running operations that
potentially block. The initial versions of our library used TBB
for host execution and a set of dedicated threads for offloading.
This solution was hard to maintain and extend. Hence, we have
developed a TBB extension and different engines. The engines
used by HyPHI are: SCI messaging (very similar to network
sockets), SCI-provided DMA transfers, and standard network
sockets.

For example, to offload a batch of items for processing, the
host initiates a DMA transfer to send the data and creates a
task that executes once the DMA finishes. This continuation
task sends a SCI message to the coprocessor to start processing
the data. Another task is created on the host and set up to start
after the host receives a message from the coprocessor saying
that the data was processed. This task initiates a second DMA
transfer to copy the processed data back to the host and creates
yet another task that is a successor to the DMA transfer. All
communication with the coprocessors is handled like this.

One of the advantages of this approach is that it makes it
easy to start multiple tasks in parallel and use dependencies
to synchronize them. For example, in HyPHI it is possible
that a buffer that is selected to receive offloaded data on the
coprocessor is not large enough to contain all of the data. In
this case, a message is sent to the coprocessor to increase the
size of the buffer, but at the same time a new task is created
on the host to prepare (serialize) the data for offloading. The
DMA operation that sends the data to the coprocessor is started
in a task that can start only after both the serialization and

buffer size increase are done. So, this task is a successor of
the serialization task and the “buffer expanded” response from
the coprocessor.

IV. ARCHITECTURE OVERVIEW

The overall architecture of TBB and our extension is shown
in Figure 2. The extension is completely outside of TBB, so
the user can use the TBB library without any modification and
optionally also include our extension. The extension consists
of two parts: the individual engines that deal with blocking
operations and an optional auxiliary worker thread pool. Each
engine should deal with all blocking operations that can be
served by a single service thread. For example, one engine can
deal with all operations that provide a file descriptor that can
be supplied to a select blocking call, like network sockets.
A different engine (and associated service thread) can deal
with SCI communication channels (used by the Intel Xeon Phi
Coprocessor) or with OpenCL calls. Each engine also tracks
all dependencies that have a blocking operation handled by
the engine as the predecessor. As shown in Figure 2, a single
task (T2) may be a successor in dependencies maintained by
multiple engines, but also in the original TBB dependency
graph. This is made possible by a common software compo-
nent (supplementary task scheduler) that is used by all engines
when a task’s predecessor (blocking) operation finishes. This
piece of code determines whether the task is ready to be
executed and if so, makes sure that it gets executed at some
point in time, which is not necessarily immediate.

A. TBB scheduler and task graph

The TBB scheduler maintains a fixed size thread pool. In
fact, each thread has a local scheduler and these together play
the role of a global scheduler, but very little shared data is actu-
ally used in order to avoid bottlenecks and scalability issues.
Usually, the number of threads is equivalent to the number



of logical cores (i.e., number of physical cores multiplied by
the hyper-threading degree). It is possible to set the number of
threads manually when the scheduler is initialized to any value.
The number of threads may even be larger than the number
of logical cores. This could be used to somewhat reduce the
negative impact of blocking calls, but obviously only to some
degree and if the number of such concurrent calls is small.
Each local (per-thread) scheduler maintains a queue of tasks
to be executed. There is also a global (shared) queue of tasks
to be executed, which is served by all local schedulers. [1]

There exist several groups of tasks. First, there are tasks
that have dependencies that have not been fulfilled. Such tasks
are waiting or not ready. The second group are tasks without
pending dependencies but they are not yet executing. These
tasks are spawned (in local scheduler’s queue) or enqueued
(in global queue). The third group are currently running tasks.
A task is thread-bound (if it starts executing on a thread, it
executes only on that thread) and non-preemptive. Tasks can
only be separated from a thread (stop executing) by an explicit
call to a TBB-provided function that the thread makes.

The task dependency graph is implemented by assigning one
pointer and one (atomic) counter to each task. The pointer
points to a successor – a task that depends on the current
task. The counter is in fact a reference counter. It reflects the
number of predecessors – tasks that have the current task as
their successor. The pointer can be a null pointer, meaning
that no other task depends on this task. An important feature
of the reference counter is that it can be (and often needs to
be) adjusted by the user. It is not required for the counter
to be equivalent to the actual number of predecessors. For
example, setting the counter to be one more than the number
of predecessors (N+1) means that the task cannot start even if
all predecessors finish. To allow the task to start, the reference
count must be decremented by calling the appropriate method.

When a task finishes, the scheduler automatically decre-
ments the counter of its successor. If the counter reaches zero,
the successor is transferred to the queue of tasks to execute –
the task is spawned. If some code outside of TBB decrements
the counter, for example to reflect the fact that a task with
N + 1 reference count can start executing as soon as all
predecessors have finished, it must check whether the counter
has reached zero and if so, spawn the task.

B. Task graph extension

The way TBB tracks task dependencies provides a large
degree of freedom to the library user. This gave us an idea
that we could incorporate blocking operations into TBB, but
not by allowing the user to make blocking calls. We decided
to add a new node and edge type into the task graph. So far,
only task-to-task (predecessor-to-successor) edges have been
supported. We want to provide another type of dependency,
when a task depends on a blocking operation. So, the blocking
operation becomes a new node in the graph and it is linked
to a task that should not run before the blocking operation
finishes.

C. Implementation

As we have already mentioned, the blocking call is not
made as part of a task’s execution. The task just initiates an
asynchronous operation. It is not the task’s responsibility to
wait for the operation to finish. That would probably require
the task to block, which we want to avoid. But someone has to
do the waiting. This means that there must be a thread, since
a thread is required for anything to run. The thread cannot be
part of the TBB thread pool, since those threads should not
be blocked. So, as a result, we created an extra thread, called
service thread, to invoke the blocking operation.

This service thread can block. In fact, it should be suspended
(blocked) most of the time, to minimize the amount of CPU
cycles it “steals” from the TBB threads. If the service thread is
woken up, it means that a blocking operation has finished. The
service thread should quickly handle this situation and suspend
again. In our setup, the service thread needs to decrement the
reference counter of the successor of the finished operation
and spawn the successor if its reference count reached zero.
Fortunately, these are very simple and fast operations.

Ideally, one service thread should be enough to service
multiple concurrent asynchronous operations. This should be
possible since the operating system usually provides a call that
can be used to specify multiple operations and wait for any
of them to finish, e.g., select or poll on Linux or an I/O
completion port on Windows [7]. The amount of work that
has to be done by the service thread upon completion of an
operation is very small. One service thread is easily capable of
spawning tasks for many TBB worker threads. This is because
an average TBB task is expected to do non-trivial amount of
work to keep the total overhead small.

D. Task spawning

In the previous description, we said that the task has to be
spawned by the service thread, if the reference count reaches
zero. However, spawning a task in TBB means adding it to
the queue of ready tasks maintained by the task scheduler
assigned to the current thread. Since the service thread is not
a TBB thread, there is no scheduler and no task queue. An
easy way to get around this problem is to enqueue the task.
When enqueued, the task is added to the shared task queue, so
no local scheduler is needed. The task will then eventually be
executed by a TBB thread. The shared queue is being served
by all worker threads, if they have no work of their own. In
such case, the scheduler of such thread first looks for a task
in the shared queue and if no task is present, it steals a task
from another thread.

A scheduler looks at the shared queue if its local queue is
empty. However, if the thread is executing a long running task,
the scheduler is not active at all until the task finishes. So, if
all TBB worker threads are busy with long running tasks, if
their local queues are full of tasks, or if the running tasks keep
spawning new tasks (creating new tasks is not enough, they
have to be marked “ready to run” as well) then the shared
queue may not be served for a long time. In that case, we
may get a large latency.



E. Code examples

The following code examples demonstrate an example en-
gine. SCI messages are used as the example. The following
code shows a way in which a task issues a command to the
Xeon Phi coprocessor and creates a task that processes the
response. Note that constructors and other non-essential code
have been omitted for brevity.

struct initiator : public tbb::task
{

task* execute()
{

//create a task to handle the response
task* t=new(allocate_continuation)processor(s);
//set t’s number of predecessors to 1
t->set_ref_count(1);
//create dependency from s to t
engine::register_successor(s,t);
//issue the command
send_command_over_sci(s);
//note that t can start executing at any point
//after the command is sent, so the preferred
//way is to first set up all dependencies and
//then start the blocking operation
return 0;

}
sci_endpoint s;

};
struct processor : public tbb::task
{
task* execute()
{

//we know that data is ready on the endpoint s
process_response(s);

}
sci_endpoint s;

};

V. LATENCY REDUCTION

The main sources of latency are tasks that have been
enqueued by a service thread. If all TBB threads are occupied,
the task may spend a long time in the shared queue, waiting
for a thread to run out of tasks, because only then the thread
checks the shared queue for work to do.

To better understand different strategies for reduction of
latency, we describe the following situation: the service thread
is currently running – it is outside the blocking call. There is
a task Trun ready to be executed. All TBB threads are busy.

a) Normal strategy: Even though it may result in a
long latency, enqueuing the task is still a viable option.
The advantage of this solution is that it provides the best
environment for the TBB scheduler to work as efficiently as
possible.

b) Service thread strategy: One option is to have the
service thread execute Trun. This has the advantage of getting
Trun to run as soon as possible. But there are several issues.
First, while Trun is running, the service thread is unable to
check whether other operations have finished. Second, this
solution also does not scale, since there is just one service
thread. Third, Trun may specify (return) another task to be
executed, the successor’s reference count may reach 0, or it
may spawn other tasks. These tasks also have to be executed
which then results in a similar situation as with the original

Trun, but possibly with more tasks to deal with. These issues
make the approach only suitable if Trun is very short and if
it does not spawn any additional tasks.

c) Auxiliary thread pool strategy: Another option is to
create extra threads specifically to handle task execution.
This supplementary thread pool can be used to run Trun

plus additional successor tasks. If no tasks are present for
execution, the threads are suspended. This means we may have
more running threads than (logical) cores in the system. This
oversubscription may not be ideal, but it allows us to trade
some of the efficiency for reduction of latency. This solution
does not prevent the service thread from doing it’s core work
and it is also able to scale better, since the thread pool may
contain more than just one thread. On the other hand, if Trun

(or the other tasks it spawns) takes very long to finish, the
system would still get congested and the latency will increase.
So, this approach is suitable if the work done by Trun and its
successors is small compared to the work being done by tasks
executed on the normal TBB threads.

d) ASAP strategy: The previous three strategies can be
combined to create new strategies. For example, it is possible
to combine TBB and non-TBB thread pools like this: instead
of enqueuing Trun, two new tasks Tproxy are created. Both
proxy tasks contain a pointer to Trun. First of them is
enqueued with TBB, the other one is submitted for execution
by the non-TBB thread pool. Using atomic operations, we
make sure that (only) the first copy of Tproxy that gets started
runs the Trun task. This way, we maximize the chances of
running Trun as soon as possible, but the added overhead is
still small and also constant for any task.

e) Short task strategy: Another option is to execute the
Trun on the service thread and handle all new tasks spawned
by Trun according to the ASAP strategy.

When a operation-task dependency is added, the call has
an argument where the user specifies the strategy. The service
thread and auxiliary thread pool strategies are not provided
by our implementation, since in our experience the more
advanced alternatives (short task and ASAP) have proven to
be more suitable.

VI. EXPERIMENTS

We have executed a set of experiments to evaluate the
performance of our TBB extension. To minimize noise, we
decided not to use disk or network operations. Similarly, the
overhead created by blocking operations (with the TBB add-
on) in HyPHI is much lower than effects caused by other fac-
tors. Hence, for better assessment of our extension, we created
a special engine that issues a blocking sleep operation. The
engine allows the developer to specify that a task can only start
after a certain amount of time has elapsed. The experiment
executed two different types of chains of tasks (a sequence
of tasks that have predecessor-successor relationships). The
first type consists of 8 tasks, each performing a CPU-intensive
computation. No blocking operations are used. The other type
consists of 4 tasks, each executing only 1% of the work
(compared to the first type), but a successor in the chain



TABLE I: Performance of different solutions and strategies

variant time (s) latency (ms)

TBB – no blocking operations 6.71 N/A
TBB – blocking calls in TBB tasks 9.71 N/A
TBB ext. – ASAP strategy 6.96 5.53
TBB ext. – short task strategy 7.13 0.00
TBB ext. – normal enqueue strategy 6.94 426.49

can only start running 1 second after its predecessor started
running. As a result, the second type of task chain cannot
finish in less than 4 seconds. On the other hand, the tasks do
such a small amount of work, that it is possible to finish the
whole chain in little over 4 seconds, while the first type of
task chain takes well over 6 seconds. We have used 32 chains
of the first type and 4 chains of the second type, to simulate
an application that does some heavy computation and a bit of
communication or synchronization. We consider this to be the
main use-case for our TBB extension. The experiments were
performed on a server with two Intel Xeon E5-2650 CPUs,
featuring a total of 16 physical CPU cores and 32 hardware
threads (hyperthreading was enabled on the machine). The
TBB thread pool consisted of 32 threads. There was one
service thread for the engine and the auxiliary thread pool
contained one additional thread. We executed each experiment
14 times in a row. The first four runs were used to “warm up”
the runtime. The results from the next ten runs were averaged
to produce the final numbers.

Table I shows the performance of the different approaches.
It shows the average run-time of the ten runs and average
latency of all operation-task dependencies from these ten runs.
The first row is provided for comparison and shows the perfor-
mance when all blocking operations are removed. The second
row demonstrates that invoking blocking operations directly
from a TBB task significantly reduces the performance. The
last three rows show the performance achieved by our TBB
extensions when different task spawning strategies are used.
As observable in Table I, using enqueue and the TBB
thread pool achieved the best performance. Launching the task
directly in the service thread (short task strategy) eliminates
latency but also reduces performance. The ASAP strategy is
a tradeoff between performance and latency.

It is important to note, that the concrete results depend on
the experimental setup. With an experiment setup like we did,
the normal enqueue strategy provides the best performance.
However, the experiment was designed in such a way that
the long latency did not affect the overall performance. If
we carefully increased the sleep interval, we would eventually
reach a point where the latency starts to play a major role and
the ASAP strategy would outperform the normal strategy. On
the other hand, if the tasks that follow the blocking operation
are trivial, the short task strategy can outperform the others.

VII. RELATED WORK

There are multiple libraries that provide asynchronous I/O
operations. However, they were mostly designed to be used in

conjunction with process-based or thread-based parallelism.
Operating system support or Boost.Asio [8] fall into this
category. These libraries would typically be used to build
an engine in our framework. They do not deal with task
dependencies and task spawning.

The Microsoft .NET framework now supports the task-based
Asynchronous Pattern (TAP) [9], which is much closer to our
problem area. This solution is similar to ours since starting an
asynchronous operation returns a Task object that can then be
used to create dependencies. E.g., tasks can be set to run after
the asynchronous operation has finished. Our extension does
not provide a task object since tasks and dependencies in TBB
are created and managed in a different way than in .NET. In
addition, explicit engines as in our approach are not used by
the .NET solution. This is possible thanks to the sophisticated
support that .NET provides for asynchronous operations (the
async and await keywords) in the compiler, runtime and
I/O libraries. For example, if the asynchronous operation
provides a callback, the callback can be easily transformed
into a task that executes when the operation finishes.

VIII. CONCLUSION

We have designed and implemented a TBB extension that
allows asynchronous operations to be included in TBB task
dependencies. This way, it is much easier to implement
applications that use TBB extensively to handle computation,
but also need to perform I/O operations. Our experiments show
that there is some added overhead, but it is reasonable. Com-
pared to blocking calls, however, our extension can achieve
significant performance improvements. The extension has been
successfully used by the HyPHI library, which automates fully
hybrid execution of parallel patterns on systems with Xeon Phi
coprocessors.

ACKNOWLEDGMENT

This work was partially supported by the European Com-
mission’s FP7, grant no. 288038, AutoTune.

REFERENCES

[1] A. Kukanov and M. J. Voss, “The foundations for scalable multi-core
software in Intel Threading Building Blocks,” Intel Technology Journal,
vol. 11, no. 04, pp. 309–322, November 2007.

[2] R. Farber, CUDA Application Design and Development, ser. Applications
of GPU computing series. Morgan Kaufmann, 2011.

[3] A. Munshi et al., “The OpenCL Specification version 1.2,” 2012,
khronos OpenCL Working Group, http://www.khronos.org/registry/cl/
specs/opencl-1.2.pdf (last visited July 2013).

[4] J. Jeffers and J. Reinders, Intel Xeon Phi Coprocessor High Performance
Programming. Elsevier Science & Technology Books, 2013. [Online].
Available: http://www.sciencedirect.com/science/book/9780124104143

[5] J. Dokulil, E. Bajrovic, S. Benkner, M. Sandrieser, and B. Bachmayer,
“HyPHI – task based hybrid execution C++ library for the Intel Xeon Phi
coprocessor (to appear),” in 42nd International Conference on Parallel
Processing (ICPP-2013), Lyon, France, 2013.

[6] “Threading Building Blocks Documentation.” [Online]. Available: http:
//software.intel.com/sites/products/documentation/doclib/tbb sa/help/

[7] “I/O completion ports.” [Online]. Available: msdn.microsoft.com/en-us/
library/aa365198.aspx

[8] C. Kohlhoff, “Boost.Asio.” [Online]. Available: http://www.boost.org/
doc/libs/1 54 0/doc/html/boost asio.html

[9] “Task-based asynchronous pattern (TAP).” [Online]. Available: http:
//msdn.microsoft.com/en-us/library/hh873175.aspx


