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Abstract

In this paper we present an approach for supporting the semi-automated archi-
tectural abstraction of architectural models throughout the software lifecycle. It
addresses the problem that the design and implementation of a software system
often drift apart as software systems evolve, leading to architectural knowledge
evaporation. Our approach provides concepts and tool support for the semi-
automatic abstraction of architecture component and connector views from im-
plemented systems and keeping the abstracted architecture models up-to-date
during software evolution. In particular, we propose architecture abstraction
concepts that are supported through a domain-specific language (DSL). Our
main focus is on providing architectural abstraction specifications in the DSL
that only need to be changed, if the architecture changes, but can tolerate non-
architectural changes in the underlying source code. Once the software architect
has defined an architectural abstraction in the DSL, we can automatically gen-
erate architectural component views from the source code using model-driven
development (MDD) techniques and check whether architectural design con-
straints are fulfilled by these models. Our approach supports the automatic
generation of traceability links between source code elements and architectural
abstractions using MDD techniques to enable software architects to easily link
between components and the source code elements that realize them. It enables
software architects to compare different versions of the generated architectural
component view with each other. We evaluate our research results by studying
the evolution of architectural abstractions in different consecutive versions of
five open source systems and by analyzing the performance of our approach in
these cases.
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1. Introduction

In many software projects the design and the implementation drift apart dur-
ing development and system evolution [1]. In some small projects this problem
can be avoided, as it might be possible to understand and maintain a well written
source code without additional architectural documentation. For many larger
systems, this is not an option, and additional architectural documentation is re-
quired to aid the understanding of the system and especially to comprehend the
“big picture” by providing architectural knowledge about a system’s design [2].
One way to provide this information are automatically generated diagrams of
the systems (e.g. in form of class diagrams) [3]. However these diagrams usually
do not represent higher-level abstractions, and hence they hardly support the
understanding of the big picture. First of all, the sheer size of the automatically
generated diagrams is often a problem. In addition, creating an automatic lay-
out or partitioning that is understandable is still an open research topic [4, 5].
Clustering approaches from the reengineering research literature (e.g. [6, 7, 8])
can help to obtain an initial understanding and make sense of such diagrams.
However the case study by Corazza et al. [9] shows that in five out of seven
cases it is necessary to make manual corrections for about half of the entities of
the analyzed source code.

As a consequence, today the documentation of the system’s architecture is
usually maintained manually. To model architectural knowledge, often models
using box-and-line-diagrams [10], UML [11], architecture description languages
(ADLs) [12], or similar modeling approaches are used. In many cases, such mod-
els are created before the actual implementation begins. Later, during imple-
mentation and system evolution, they loose touch with reality because changes
to the software design are only made in the source code while the architectural
models are not updated [13]. This problem is known as architectural knowledge
evaporation [1].

Our approach focuses on architectural abstractions from the source code
in a changing environment while still supporting traceability. It was initially
introduced in a paper at the QoSA 2012 conference [14]. In this article we further
extend our approach with respect to its traceability and consistency checking
capabilities. We describe in detail how the approach provides these features to
the software architect. Furthermore we provide extended case studies of our
approach which also include additional information regarding traceability and
consistency.

A considerable number of works exist that focus on abstractions from source
code [15, 16, 8, 17]. However, to the best of our knowledge, so far none of
these approaches targets architectural abstractions at different levels of granu-
larity, traceability between architectural models and the code, and the ability to
cope with the constant evolution of software systems. Our approach introduces
the semi-automatic abstraction of architectural component and connector view
models from the source code based on an architectural abstraction specified in
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a domain specific language (DSL) [18, 19]. In contrast to the related works, our
approach specifically targets architectural abstractions and requires changes to
the architectural abstraction specifications only in the rare case that the archi-
tecture of the system changes, but not for the vast majority of non-architectural
changes we see during a software system’s evolution (see Section 2). Please note
that in the literature the term “component model” is often used to describe
metamodels for component-based development [20]. In this paper, we (only)
use the term architectural component and connector view (or component view
for short) to describe a model that contains architectural components (as in
[21]).

We chose a semi-automatic approach to enable the software architect to pro-
vide information which system details are relevant for getting the right level of
abstraction – as software architecture is usually described in different views at
different levels of abstraction. Our goal is to let the software architect spec-
ify this information with minimal effort in an easy-to-comprehend DSL that
provides good tool support. Our approach allows architects to create differ-
ent architectural abstraction specifications that represent different levels of ab-
straction and thus supports views ranging from high-level software architectural
views to more low-level software design views. Once the software architect has
defined an architectural abstraction in the DSL, we can automatically generate
architectural component views from the source code using model-driven devel-
opment (MDD) techniques and check whether architectural design constraints
are fulfilled by these models.

As our approach focuses on defining stable abstractions in the architectural
abstraction specification, it can cope with many changes to the underlying source
code without changing the architecture description (i.e., an instance of the DSL).
Only changes to the architecture itself, which usually require a substantial mod-
ification of the source code, require the architectural abstraction specification
to be updated. By creating different versions of the architectural component
view over time, we are able to use a delta comparison to check and reason about
the changes of the architectural component view. The generated models can be
compared to a design model, to check the consistency of an implementation and
its design, and to analyze the differences. To support the iterative nature of our
approach, it also supports automatically checking the consistency between the
source code model and the architecture abstraction specification on the fly.

Once the architectural component views have been abstracted, another prob-
lem is to identify which parts of the source code contribute to a specific com-
ponent, i.e., to support traceability between architectural models and code.
Today, this usually requires substantial and non-trivial manual effort to identify
which code elements are related to which model elements. In contrast, in our
approach, traceability can be automatically ensured, as model-driven develop-
ment (MDD) [22] is used to generate the required traceability links between the
model elements and the source code directly from the architectural abstraction
specification.

The remainder of the paper is organized as follows: Section 2 explains the
research problem addressed by this paper in more detail, as well as the research
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method that was applied to design and evaluate the DSL. Section 3 gives an
overview of our approach. Section 4 provides details about our architectural
abstraction DSL and its implementation. In Section 5 we present the evaluation
of our approach based on five cases and a performance evaluation. In Section
6 we discuss open issues and lessons learned. Section 7 compares our approach
to the related work, and we conclude in Section 8.

2. Research Problem and Research Method

During the software development life-cycle, the source code and the architec-
ture of a system evolve and change. This often results in architectural knowledge
evaporation [1]. One of the reasons for this is that in today’s software devel-
opment processes the software architects often have to manually capture and
maintain the architectural knowledge, which is a tedious task that is often for-
gotten in the daily business [13]. Additionally, when using conventional means
for architecture documentation like abstracted UML models or box-and-line di-
agrams, the traceability between the architecture and the source code is lost.
This can also lead to architectural knowledge evaporation, when architects and
developers lose track of the correspondences between code and architecture.

A number of approaches have been proposed to address this research problem
by providing automatically or semi-automatically produced abstractions from
the source code [15, 16, 8, 17]. In contrast to these related works, our approach
specifically targets architectural abstractions. That is, we have designed our DSL
to only require changes of the architecture abstraction specification once the
architecture of the underlying software system has changed, but not for other
kinds of changes. In case of non-architectural changes, an updated architectural
documentation can automatically be re-generated from the altered source code
without manual changes in the architectural abstraction specification.

To reach this goal we have designed and implemented the DSL using an
incremental refinement process, following the design science research method
[23]. In design science research, first a research question is posed, and then
the develop/evaluate cycle is continuously repeated until a satisfactory solution
for the research question has been obtained. In the course of this research,
the research question can be altered or refined. In the first iterations, usually
simplifying assumptions are made, which are stepwise removed during later
iterations.

For this approach, we formulated the following research questions:

RQ1 Is it possible to create architectural abstractions based on generic filters
that are stable and that only have to be changed when architectural
changes occur but do not have to be changed when non-architectural
changes occur in order prevent knowledge evaporation and providing up-
to-date architecture documentation throughout the evolution of a software
system?

RQ2 Is it possible to automatically generate traceability links that can be used
to support the architects in the definition of the architectural abstractions?
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RQ3 Is it possible to automatically check the consistency between design and
code for different versions to support the architect during evolution of a
system?

RQ4 What is the effort to create and maintain architectural abstractions un-
der the assumption that knowledge about a system’s architecture already
exists?

RQ5 Is it possible to do consistency checking and generate an architectural
component view with traceability links in an acceptable amount of time
on a development machine?

In our design science research, these research questions emerged incremen-
tally. We started with RQ1 and incrementally refined it through the other
research questions. In particular, we learned during our research that traceabil-
ity links (RQ2) are important for creating architectural abstractions. Our focus
on evolution in RQ1 later led us to also study consistency checking problems
during system evolution (RQ3). Finally, our early prototype and use experiences
showed that development effort (RQ4) and execution time (RQ5) are important
for acceptance and usability of our approach.

To address the research questions, while developing our DSL, we have stud-
ied the evolution of various software systems and their architecture documen-
tations. We have classified changes in these systems into architectural changes
and non-architectural changes. In an incremental refinement process, we have
improved the DSL and its DSL tools to only require changes to the architec-
tural abstraction code for changes classified as architectural abstractions in the
studied samples of architectural evolution. In each incremental design cycle we
have added more samples of architectural evolution and continued the iterations
until only architectural changes required changes in the architecture abstraction
specification.

Finally, we have evaluated the resulting DSL for all changes that can be
observed in a number of consecutive versions of five open source projects. As
can be seen in this study, reported in Section 5, the vast majority of changes are
non-architectural changes, and they can be tolerated by the architectural ab-
stractions defined in our DSL without changes to the architectural abstractions.
Only when changes that are classified as architectural changes are introduced
in the open source systems, updates to the architectural abstraction code in the
DSL are necessary.

3. Approach Overview

In this section we present an overview of our approach for supporting the
semi-automated architectural abstraction of architectural component views
throughout the software life-cycle. Our approach allows software architects to
compare the abstract model with a previously defined architectural model and
to maintain that model in correspondence with the source code over time. For
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this purpose we have introduced a DSL that defines architectural abstractions
from class models, which can be automatically extracted from the source
code, into architectural component views. We believe that in a lot of cases it
should be possible to create architectural abstractions that are stable during
the implementation process and only needs to be changed when architectural
changes occur (e.g., leading to significant restructuring of the architectural
design).

Once an architectural abstraction specification is defined, we can automat-
ically generate the architectural component view. The workflow for the gen-
eration process is depicted in Figure 1. First, a class model is extracted from
the source code. The extraction of a class model from source code decouples
our approach from a specific source language since the approach works on lan-
guage independent UML class models. For instance, for Java different tools
exist that can perform this extraction [24, 25]. Then, a model transformation
is used to generate a UML component view. This model transformation uses
the architectural abstraction specification defined in the DSL code and the class
model as inputs, and it generates UML component views from this input. The
architectural abstraction specification is needed here as it describes the relation
between the abstract model and the source code. The model transformation also
generates bi-directional traceability information that links the DSL, the class
models, and the architectural component views. During the model transforma-
tion, consistency checks are applied to identify potential discrepancies between
design and code.

As the software system evolves over time, we use our architectural abstrac-
tion in the DSL to create multiple architectural component views, e.g. one for
each version of the software systems. Our approach can also be used to compare
the created models to each other and to architectural component views created
manually during early software architecture design by the software architects.
This way, software architects can identify where the implementation differs from
the original design or from previous versions. They can then argue whether these
changes are intended (e.g. flaws in the design) or not (e.g. the implementation
is not in accordance with the design). The comparison of these very similar
models with only minor differences is a straightforward task. Approaches for
advanced model comparison and a variety of frameworks that implement this
functionality already exist (see e.g. [26, 27]). Based on this comparison, model
consistency between a model and consecutive versions can be checked. For ex-
ample, if the original design model is compared to models that were generated
based on the existing implementation, the comparison can indicate which com-
ponents are not yet implemented or how communication between components
works in the current implementation with respect to the intended design.

This approach enables developers to maintain an architecture documenta-
tion by providing an “up-to-date” architectural component view that reflects
the source code. In order to support the developers in the definition of archi-
tectural abstractions and throughout the development our approach generates
traceability links between the source model and all generated artifacts. These
links provide direct navigation between the different artifacts in our tool.
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Figure 1: Generating architectural component views from source code and comparing different
model versions

In addition to the already mentioned consistency checking between different
versions of the software, our approach provides automatic consistency checking
between the different artifacts of the same version. These checks are based on
the automatically generated traceability links and are automatically triggered
whenever one of the artifacts is changed. The implemented consistency checks
cover the following artifacts: source model, the architectural abstraction speci-
fication, and the architectural component view.

If this approach is used in a software development project from the begin-
ning, the software architect drafts an architecture of the system as an abstrac-
tion specification that describes components that do not yet exist and that will
be implemented over time. This way the architect can keep track of the al-
ready implemented components using consistency checks as well as generate an
abstraction model whenever she desires to do so. As the architecture of the sys-
tem evolves, adjustments to the architecture abstraction specification are likely,
while non-architectural changes should not have an effect on our architecture
abstraction specification.

Our approach also eases another frequently discussed problem in software
projects: Often, the connection between design and source code is lost dur-
ing development. Using our architectural abstraction approach, developers can
keep track of which parts of the source code correspond to which architectural
components, introducing traceability links from the architectural model to the
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source code and vice versa.
Multiple architectural abstractions can be defined for the same source code

to create different views at different levels of abstraction, where one architectural
abstraction provides an overview of a system and other architectural abstrac-
tions provide detailed views of different parts of the system on varying levels of
abstraction.

Our proof-of-concept implementation1 uses the EMF implementation of
UML [11] for its class and architectural component view. This way it is possible
to leverage architectural component views created during design time and
repeatedly compare them to the current status of the implementation.

4. Domain specific language for specifying architectural abstractions

To support the architectural abstraction from the automatically created
class models to the architectural component views, we define a DSL based on
Xtext 2.3 [28]. This DSL provides rules for abstracting the detailed UML classes
into architectural components. The rules for defining the abstractions can be
grouped into three categories:

• Name- or ID-based filters: This category of filters selects classes based
on the name or ID of an object; for example all classes that reside in a
specific package or all classes that contain the string “message” in their
name.

• Relation-based filters: These filters select classes based on their relation-
ships to a selected class or interface; for example all classes implementing
a specific interface.

• Compositions: This category contains set operations instead of actual
filters. Using set operations one can manipulate the result sets from other
filters in order to combine a number of resource sets or define exclusions
from more general filters.

ComponentDef returns ComponentDef:

’Component ’ name=ID

’consists of’ (expr=OrComposition)

connectors += ConnectorAnnotation *;

ConnectorAnnotation:

{ConnectorAnnotation}

’connector to’ targets +=[ ComponentDef] (’,’ targets +=[

ComponentDef ])*

(’implemented by’

(implementingExpression += OrComposition)?

(’relation: ’ implementingRelations +=[ umlMM :: Dependency|

QUALIFIED_NAME]

1This prototype is available at https://swa.univie.ac.at/ArchitectureAbstractionDSL.
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(’,’ implementingRelations +=[ umlMM:: Dependency|QUALIFIED_NAME ])*)

?)?

;

OrComposition returns Expression:

ExcludeComposition (

{OrComposition.left=current} ’or’ right=ExcludeComposition)*;

ExcludeComposition returns Expression:

AndComposition (

{ExcludeComposition.left=current}

’and not’

right=Primary

)*;

AndComposition returns Expression:

Primary ({ AndComposition.left=current}

’and’

right=Primary)*;

Primary returns Expression:

NameFilter | RelationFilter |

ExtensionFilter | ’{’ OrComposition ’}’;

[...]

Listing 1: Excerpt of the Xtext grammar of our architectural abstraction DSL

We provide a number of different clauses that map groups of class model
elements to components in the architectural component view and to define ex-
ceptions to these rules. For the manipulation of sets we provide three basic
operations (union, intersection, and complement). For more flexibility, we
also added custom filters implemented in Java or Xtend [29]. For this purpose
we introduce two special clauses. The Java extension is supported using a filter
that is implemented as a static Java method. This method has to accept two pa-
rameters: the DSL object of type JavaExtensionFilter and a List of Package
objects. The method is expected to return all UML classifiers that passed the
filter. A similar clause exists for using custom filters defined in Xtend.

A complete list of all the clauses that we defined for architectural abstrac-
tions can be found in Table 1.

The required and provided interfaces of a component are automatically de-
duced from the UML-class model by defining all external interfaces, used by the
component’s implementing classes, as required interfaces. All interfaces that
are implemented by a component’s implementing classes and used by another
component are deduced as provided interfaces. The interface details can be hid-
den by aggregating interfaces in ports as dedicated interaction points and using
assembly connectors between the ports.

Additionally our DSL supports the definition of connectors between compo-
nents. A connector in the architectural abstraction specification supports the
definition of realizing objects by using a) the same clauses that are available for
components and or b) by specifying a UML dependency relation from the UML
class model as the implementing realization. If realizing objects are specified
they are stored in the generated UML component view in the form of a UML
Realization relation that can later be used for consistency checking.
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Filter Parameters Description

class name String all classes, who’s name matches the regular expression

package
name

String all classes residing in packages with names matching
the regular expression

contained in
package

ID all classes residing in the package identified by the ID

uses ID all classes using the class identified by the ID

used by ID all classes used by the class identified by the ID

child of ID all child classes of the class identified by the ID

super type ID all super classes of the class identified by the ID

instance of ID all instances of the interface identified by the ID

Java exten-
sion

String String that points to a static Java method which takes
the filter object and a List of UML packages as pa-
rameters and returns a list of matching classifiers

Xtend ex-
tension

String String that identifies an Xtend function which has the
same as the aforementioned Java method.

and two clauses infix operator for intersecting the results from two
clauses

or two clauses infix operator for uniting the results from two clauses

and not two clauses infix operator for the difference between two results

Table 1: Architectural abstraction DSL clauses

In our examples and studies that we have used to incrementally refine and
evaluate the DSL, this set of language elements has been proven to be sufficient
to express architectural abstractions in a way that tolerates all kinds of non-
architectural changes (see Sections 5.1 and 5.2 for details on five cases of open
source projects).

An excerpt of the DSL specification is depicted in Listing 1 as an Xtext
grammar. It shows the definition of the infix operators for union (and), in-
tersection (or), and complement (and not). {,} can be used to change the
operator precedence. The complete Xtext grammar can be found in Appendix
A.

The transformation is implemented in Xtend [29] which is first defined for
the abstract type Expression and then refined for each of the DSL’s clauses.

4.1. Illustrative example

Let us illustrate the use of our architectural abstraction DSL with a simple
example. Figure 2 shows a high-level architectural component view for the Frag
project [30]. Frag is a dynamic programming language implemented in Java,
specifically designed for supporting building DSLs and supporting MDD. An
excerpt of an architectural abstraction specification in the DSL which is used
to generate the component view depicted in Figure 2 can be found in Listing 2.
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Figure 2: Visualization of the Frag (v0.91) example for an architectural component view gener-
ated from an architectural abstraction specification. Components that were newly introduced
between Frag (v0.6) and Frag(v0.9) are colored in grey
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Component Interpreter

consists of {

Class (".* Interp") or {

{ // all classes the interpreter uses

// that reside within the core package

UsedBy (root.frag.core.Interp)

and Package (root.frag.core)

} and not Class (root.frag.core.Dual)

}

}

connector to Parser

connector to CommandObjects

implemented by Class(root.frag.core.CommandDispatcher)

connector to FileCommandObjects

implemented by Class(root.frag.core.CommandDispatcher)

Component CommandObjects

consists of Package (root.frag.objs)

Component Shell

consists of

Class (".*Shell") or {

{ UsedBy (root.frag.Shell)

and Package (root.frag.core)

}

and not {

Class (root.frag.core.Interp)

or Class(root.frag.core.Dual)

}

}

connector to Interpreter

Listing 2: Code samples for architectural abstraction of the three main components of the
Frag (v0.91) example
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4.2. Automatic generation of traceability links

The generation of traceability links is integrated in the architectural compo-
nent view transformation. As the transformation is executed, the architectural
abstraction specification (i.e., the DSL code) is evaluated for each component.
This evaluation yields a set of realizing classes and interfaces for each compo-
nent. This set is stored in the generated UML component view using a UML
Realization relation which is defined by the UML-Standard [11], as a relation
between two sets of model elements: The supplier (component) specifies the
behavior that is realized by the client (a set of classes and interfaces). This
relationship is navigable in both directions and thus able to provide the an-
swers to the question “Which classes and interfaces realize component X?” as
well as to the question “Which component does this class (partially) realize?”.
For example, when looking at the “Interpreter” component shown in Figure 2
the list of realizing source code elements that are stored in the component re-
alization contains 5 classes (Interp, FragObject, FragMethod, CodeLine,

Callframe).
Using traceability links, our prototype provides navigable links from the

architecture specifications to the source model and vice versa. For example,
when the user clicks on root.frag.objs in Line 4 of Listing 2, the according
element in the source model is automatically opened and the clicked element is
highlighted.

The traceability links are used in our prototype to provide the developer
with a direct navigation from the source model to a generated architectural
component view. For instance, when the developer opens the context menu for
the Interp class in the Eclipse UML2 editor our prototype provides a context-
menu entry that, when clicked, opens the according component in architecture
abstraction specification as well as the generated component in the generated
UML2 component view.

While the automatic generation of traceability links from source code is
nothing new, our approach uses them specifically to provide interactive tool
support to aid the developers and architects in the definition of the architectural
abstractions. In addition, the traceability links are the basis for most of our
consistency checks, as explained in the next section.

4.3. Consistency checking during model transformation

Once an architectural abstraction is defined, it is important to identify dis-
crepancies between design and code. To aid this task, our approach supports
design constraint checking. Constraints that have to hold for the class model
and the architectural component view can be checked, and then discrepancies
can be identified by determining which parts of an implementation are not vis-
ible in the design and vice versa. At the moment we have implemented checks
for the following constraints and plan on implementing further checks in the
future:

• Mapping of a particular class to multiple components
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• Components where the DSL clauses do not map to any realizing elements
in the source model

• DSL clauses not matching any classes in the class model

• Particular classes that are not mapped to any component

• Components that have a connector in the architecture abstraction speci-
fication but do not have a relation in the source model

• Components that have a relation in the source model but do not have a
connector in the architecture abstraction specification. E.g. components
that make use of an interface that is defined in another component.

Constraint checking is realized in our prototype using Xtext2’s [29] validation
framework. This framework distinguishes between cheap, normal, and expensive
constraint checks. While cheap checks are automatically executed whenever a
change in DSL-editor happens, normal checks are executed when the model
is saved, and expensive checks are manually triggered. The majority of our
consistency checking constraints are realized as cheap checks, and a few more
expensive constraints are realized as normal checks; expensive constraints are
not used.

For a number of constraints our prototype automatically provides possible
solution options. This ranges from the creation of a new component for classes
that are not mapped to any component, over modifying clauses that do not
match any source code elements in a way that they possible target a larger
number of source code elements, to removing classes that are mapped by mul-
tiple components from one of the mapped components.

Figure 3 shows two exemplary inconsistencies that were reported for the
Frag [30] example. The first inconsistency is an error reporting that one or
more source code elements where added to more than one component in the ar-
chitectural abstraction specification. Using the already mentioned traceability
links, the consistency checks found that the class Interp is contained in the ar-
chitecture abstraction specifications of the components Shell and Interpreter.
This inconsistency is reported with a marker on every abstraction specification
the conflicting class is part of. In Figure 3 you can also see a proposed solution
for this problem: The exclusion of the class Interp either from the component
Shell or the component Interpreter.

The other inconsistency reported in Figure 3 is a warning that shows the lists
of elements from the source code that are not part in any of the defined com-
ponents. This features provides valuable information to the software architect
as it provides information about possible starting points for the next iteration
in the architecture recovery process. While source code elements that are used
in multiple components are reported as errors, unused source code elements are
only implemented as a warning as there might be cases where the software ar-
chitect does not want to include some source code elements in the architecture
abstraction specification.
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Figure 3: Exemplary reports of inconsistencies

15



5. Evaluation

To evaluate our approach with regard to the required effort in creating and
maintaining architectural abstractions we conducted five case studies. We have
performed these case studies as replications of the same research steps (ex-
plained below) for five open source projects of different size and in different
application areas. The case studies illustrate how the features of the approach
like consistency checks and traceability links are used during an architecture
recovery.

As approaches like the one introduced in this paper can potentially require
a lot of computational effort, we measured the performance of our tool-suite
while creating and maintaining the architectural abstraction specifications for
our cases and present the results from this evaluation in Section 5.2.

5.1. Detailed cases of architectural abstraction evolution

In this Section we discuss the five open source projects Apache CXF [31],
Frag [30], Hibernate [32], Cobertura [33], and Freecol [34] that we have used
in our evaluation. During the incremental refinement of our DSL design, we
started with scenarios from these projects and extended the set of scenarios
step-by-step to cover all changes observed in multiple versions of the five cases
studied in this section. The lessons learned from this examples are discussed in
Section 6.

We have performed the five case studies as replications of the same research
steps: First, we automatically generated a UML class model from the source
code using our parser. Then we tried to gain an initial understanding of the
program. In order to ease this task we imported the source code in an Eclipse
IDE. After an initial study of the source code, we created a first, incomplete
architecture abstraction specification. The time that was required to create
this initial specification heavily depended on the size and the previously ex-
isting architectural knowledge about the example cases. Then we utilized the
consistency checks to further improve the abstraction specification by removing
the reported inconsistencies step-by-step. The inconsistency at this point usu-
ally were source code elements that had not been considered in the abstraction
specification.

When we were satisfied with the resulting architecture abstraction specifi-
cation, we updated the source model to a newer version. After that we checked
the architecture specification and the new source model for inconsistencies. Any
reported inconsistencies were fixed before we continued with the next version of
the program.

For all of the examples, we report the following data points:

• The estimated lines of source code give an impression of the projects size2.

2We used the tool SLOCCount [35] to estimate the lines of source code.
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• The number of changes in the source code between different versions to-
gether with the number of changes in our architecture abstraction specifi-
cation necessary to account for the changes in the source code indicate how
stable our abstractions are3. This is directly related to answering RQ1 and
indirectly to answering RQ2 and RQ3 as the number of changes between
different versions of the examples is related to the number of reported
inconsistencies and therefore also to the number of used traceability links.

• The number of components in the architecture abstraction specification
as well as the average, standard deviation, and median for the number of
classifiers per component provide measures for the abstraction level of our
architecture abstraction specification and show that the resulting compo-
nents are roughly of similar size. This is important, as a single component
holding all classes would not have been representative for finding the nec-
essary changes to the architecture abstractions. Therefore this data is
related to answering RQ1.

• The time to create and to update the architecture abstraction specifica-
tions helps to find an answer to RQ4 as it indicates the amount of effort
that is necessary for creating and maintaining architectural abstraction
specifications.

• The estimated time required to gather the architectural knowledge indi-
cates the necessary effort if this approached is used for software architec-
ture reconstruction and not from the beginning of a software project.

• The execution time of our prototype for all example cases, which indicates
an answer to RQ5, is reported and discussed in Section 5.2.

In the following section we report the data for each example case and discuss
the lessons learned in Section 6.1.

5.1.1. Case 1: Apache CXF

Apache CXF is an open source services framework that helps developers
build and develop various kinds of Web services. In the Apache CXF case, we
used the architecture overview that is available from the CXF web-site4 as a
basis for our source code study which required about 2 hours. After this, the
first architectural abstraction specification took 15 minutes to create. However
it was not complete and the consistency checks reported a relevant number of
source code elements that were not considered in the specification. We then
spent another two and half hours studying the source code while incrementally
improving our architectural abstraction specification and all the time reducing
the number of missing source elements that our consistency checks reported.

3We used the Linux command line tool diff [36] to estimate the changes between the
different versions of the cases.

4http://cxf.apache.org/docs/cxf-architecture.html
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Figure 4: Apache CXF (v2.4.3) architecture overview [31]

We continued to the point where the consistency checks did not report any
inconsistencies.

Next, we updated the source model to a newer version and adapted our
architecture abstraction specification to the changed source model. We repeated
the last step until for all versions of Apache CXF. We estimate the total time
required for updating the specification to accommodate the changes in the source
models with 45 minutes.

To show the ability to provide different views for a system we created a
detail view for the “Transport” component in the CXF architecture overview
(see Figure 5.).

The results in Table 2 show that in order to keep the Apache CXF abstraction
up-to-date hardly any changes were necessary. In the course of the evolution of
Apache CXF from version 2.0.10 to version 2.4.3 more than 5000 changes were
implemented but only ten changes to the architectural abstraction specification
were necessary. These modifications constitute eight new and two removed
packages that were introduced between the different versions. This result might
be caused by the fact that we only compared minor revisions (no older version
than Apache CXF 2.0.10 is available) during which no major changes to the
architecture were made.

When looking at the detail view for the transport component in Table 2,
three changes were necessary. The package “http osgi” was added in version 2.2
and removed in version 2.4, and the package “jaxws http spi” that was added
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Apache CXF version Files
added

Files
removed

Files
changed

Total
changes

DSL changes

Overview 2.0.10 ⇒
2.2.12

299 83 1040 1422 4 new packages; 2
removed packages

Overview 2.2.12 ⇒
2.3.7

133 19 923 1075 3 new packages

Overview 2.3.7 ⇒
2.4.3

115 62 739 916 1 new package

Transport 2.0.10 ⇒
2.2.12

29 4 90 123 1 new component

Transport 2.2.12 ⇒
2.3.7

17 3 117 137 1 new component

Transport 2.3.7 ⇒
2.4.3

20 23 120 163 1 component re-
moved

Table 2: Necessary changes to the architectural abstraction specification (DSL code) compared
to source changes in Apache CXF
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CXF
Version

sLoC # of
Com-

ponents

Avg. # of
classifiers

per
component

σ for the
# of

classifiers

Median
for the #

of
classifiers

Overview
2.0

198k 11 123.64 93.04 98,00

Overview
2.2

342k 11 180.18 150.15 159,00

Overview
2.3

370k 11 194.23 154.11 185.00

Overview
2.4

390k 11 212.73 174.22 193.00

Transport
2.0

1196 5 26.40 14.69 25.00

Transport
2.2

1399 5 31.40 16.89 25.00

Transport
2.3

1715 5 38.20 20.10 30.00

Transport
2.4

1229 5 38.00 22.03 30.00

Table 3: Apache CXF: Average, median, and standard deviation (σ) for the number of classes
per component

in version 2.3.
Table 3 contains additional data for this case study. It shows the average

number of classifiers per component, the standard deviation for the number of
classifiers per component, the median number of classifiers per component, and
the lines of source code (in thousands) for the specific version of the program.
The standard deviation indicates that the components in the CXF case vary
significantly in size (number of classifiers). While in CXF 2.4 the smallest
component has only 36 realizing classifiers, the largest component is realized
by 534 classifiers. However as the median indicates, the size of the different
components is dispersed between these extremes.

The details for the Transport view are also summarized in Table 3. As can be
seen 5 components with an average of 26.4-38 classifiers have been introduced,
again with substantial deviations between different components.

5.1.2. Case 2: Frag

Frag is a dynamic programming language implemented in Java, specifically
designed for supporting building DSLs and supporting MDD. The high-level
architecture of Frag in Version 0.91 was shown already in Figure 2.

One of the authors of the paper is also the author of Frag and thus could
provide a UML component diagram within half an hour. Using this architectural
information as a starting point, the effort required to create an architecture
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Frag version Files
added

Files
removed

Files
changed

Total
changes

DSL changes

0.6 ⇒ 0.7 48 44 32 124 2 new components,
2 minor changes

0.7 ⇒ 0.8 9 1 148 158 2 new components,
6 minor changes

0.8 ⇒ 0.91 7 40 36 83 no changes

Table 4: Necessary changes to the architectural abstraction specification (DSL code) compared
to source changes in Frag

Frag
Version

sLoC # of
Com-

ponents

Avg. # of
classifiers

per
component

σ for the
# of

classifiers

Median
for the #

of
classifiers

0.6 10k 7 21,57 25,20 6,00
0.7 12k 10 16,00 23,83 6,00
0.8 14k 11 18,73 23,93 10,00
0.9.1 13k 11 14,18 11,29 11,00

Table 5: Frag: Average, median, and standard deviation (σ) for the number of classes per
component

abstraction specification for Frag took about 15 minutes while updating the
specification to the newer versions took about 40 minutes.

During this evolution of Frag’s architecture, we identified a number of dif-
ferences when comparing the architecture of Version 0.91 to the architecture of
Version 0.6, which is missing the components DSL, FCL, FMF, and Templa-
teEngine. Figure 2 highlights these differences. Components that were part of
Frag 0.6 have a white background, while components that where introduced in
the newer versions have a grey background.

The architectural abstraction specification for Frag 0.6 has less than fifty
lines of DSL code and shows a very straightforward architecture. The changes
necessary to conform to Frag 0.7 are shown in Listing 3. They constitute a
substantial modification to the architectural abstraction specification. This was
expected, since in this revision the architecture of Frag had been reworked to
use the Java Reflection API for dynamic dispatching of Frag method calls. Also
a number of new features were introduced that led to new components. These
components were grouped in a new package called mdsd.

Prior to these changes, our consistency checks reported 3 missing packages
and 85 classes that were not considered in the architectural abstraction specifi-
cation for Frag.

Component Parser

consists of {

Package(root.frag.parser)

- and not

- Package(root.frag.parser.predefinedObjs)
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}

Component CommandObjects

consists of {

+ Package(root.frag.objs)

- Package(root.frag.parser.predefinedObjs)

- or Package(root.frag.predefinedObjects)

}

+Component DSL

+ consists of {

+ Package(root.mdsd.dsl) or {

+ Package(root.mdsd) and Class(".*DSL.*")

+ }

+ }

+Component FCL

+ consists of {

+ Package(root.mdsd.fcl) or {

+ Package(root.mdsd) and Class(".*FCL.*")

+ }

+ }

+Component FMF

+ consists of

+ Package(root.mdsd) and Class(".*FMF.*")

Listing 3: Architectural abstraction specification modifications for the changes in Frag 0.7

For the following version of Frag (0.8) 7 inconsistencies were reported by our
prototype. Another new component (TemplateEngine) was introduced which
required twelve lines of DSL code and the top-level package mdsd was renamed
to mdd, which required updates to the architectural abstraction specification
at six places that were automatically highlighted by the consistency checks.
The integration of partial support for such automatic architectural abstraction
specification updates are a topic for future research.

Another change was that the code for the FMF component was moved into
a package of its own, with only one class remaining outside this package. These
changes account for 5 new lines of DSL code.

For the following release (Frag 0.91) the number of changes halved and no
changes to the architecture were made. Because of this, no inconsistencies
are reported and no updates to the architectural abstraction specification are
required. A summary of all the changes that occurred during the evolution of
Frag is shown in Table 4.

The data on how classifiers are distributed to components in this case can be
found in Table 5. As the average and standard deviation suggest, the number
of classes per component varies. However as the median is close to the average,
the size of the components is evenly distributed between the minimum and
maximum.

5.1.3. Case 3: Cobertura

Cobertura is a Java code coverage analysis tool that can be used to determine
what percentage of your source code is exercised by a unit test suite. For
Cobertura, we created an initial architectural abstraction specification on the
basis of Version 1.0 through source code study.
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With no prior architectural knowledge available, the effort to conduct the
source code study and create an initial architectural abstraction specification
was roughly 40 minutes and another 15 minutes of improving this specification.
The total required time to adapt the architecture abstraction specification from
Cobertura 1.0 step by step until Cobertura 1.9.4.1 was about 70 minutes.

A simplified version of the architecture of Cobertura is depicted in Figure 6.
Table 6 summarizes the evolution of architectural abstraction specification

until the most recent Version 1.9.4.1. While initial versions only contained
about 4000 lines of source code, Version 1.9.4, the last available version, has
about 50000 lines of source code.

As Table 7 shows, the last version only has three more components than the
initial version. All three introduced components were predated by an reported
inconsistency that listed newly introduced classes and the only other reported
inconsistency was a package that was removed in version 1.3 and thus could no
longer be used in the architecture abstraction specification.

While the components are of similar size from Version 1.0 through to Ver-
sion 1.9, in Version 1.9.4 the JavaNCSS component triples in size. This is caused
by the new package net.sourceforge.cobertura.javancss.parser. As a result,
the standard deviation increases from 3.24 to 14.06. This new parser might
be a candidate for a component in its own right. However, as this parser is
only used within JavaNCSS, we decided against interpreting this as an architec-
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Cobertura
version

Files
added

Files
removed

Files
changed

Total
changes

DSL changes

1.0 ⇒ 1.1 18 10 23 51 no changes

1.1 ⇒ 1.2 23 1 2 26 no changes

1.2 ⇒ 1.3 12 5 8 25 1 new component
and 1 minor change

1.3 ⇒ 1.4 25 3 3 31 no changes

1.4 ⇒ 1.5 20 2 0 22 no changes

1.5 ⇒ 1.6 17 3 1 21 no changes

1.6 ⇒ 1.7 18 1 0 19 no changes

1.7 ⇒ 1.8 47 11 1 59 1 new component

1.8 ⇒ 1.9 16 10 1 27 no changes

1.9 ⇒ 1.9.4 26 14 9 49 1 new component

1.9.4 ⇒ 1.9.4.1 1 0 0 1 no changes

Table 6: Necessary changes to the architectural abstraction specification (DSL code) compared
to source changes in Cobertura

tural change, as this parser is an internal implementation detail of the JavaNCSS
component and in our opinion not relevant to the overall architecture of Cober-
tura. This is why we accepted the increased standard deviation and kept the,
compared to the other components, large JavaNCSS component.

5.1.4. Case 4: Hibernate

Hibernate is an open source Java persistence framework that supports
object-relational mapping and querying of databases.

Although we found some information about the Hibernate architecture in
the projects documentation, we still required a substantial amount of time for
the initial source code study, which required about 3 hours. We then required
30 minutes for the creation of the initial architecture abstraction specification,
another 150 minutes for improving the specification, and after that about 75
minutes for updating the specification according to the newer versions of Hiber-
nate.

A simplified version of the architecture of Hibernate is depicted in Figure 7
and Table 8 presents the changes we encountered over the different versions.
Especially interesting are the changes from version 3.6.10 to version 4.0.0alpha1
and from this version to 4.0.0.final, since these two changes constitute the tran-
sition between two major versions. While this version’s changes consisted of a
huge number of modified files and more than 150 new classes, only eight incon-
sistencies were reported which led to eight minor changes (added or removed
packages) in the DSL code but no added or removed component. In our opinion,
a part of the reason for this low level of change is the high level of abstraction
that is used in the architectural component view for this case.

As the standard deviation reported in Table 9 indicates, the components in
this case are of varying size. The smallest component is realized by approx.
40 classifiers while the three largest components have more than 500 realizing
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Cobertura
Version

sLoC # of
Com-

ponents

Avg. # of
classifiers

per
component

σ for the
# of

classifiers

Median
for the #

of
classifiers

1.0 4239 5 11 7,66 10,00
1.1 3491 5 8 5,87 7,00
1.2 3421 5 8 5,81 7,00
1.3 3406 6 5 2,61 4,50
1.4 3556 6 6 2,95 4,50
1.5 4003 6 6 2,77 5,50
1.6 3956 6 7 2,51 6,50
1.7 3997 6 7 2,17 6,50
1.8 17165 7 7,86 2,67 9,00
1.9 18179 7 9,14 3,24 10,00
1.9.4 51343 8 13,25 14,06 10,50
1.9.4.1 51342 8 17 17,10 10,50

Table 7: Cobertura: Average, median, and standard deviation for the number of classes per
component
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Figure 7: Simplified architecture overview of Hibernate 4.1.10
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Hibernate version Files
added

Files
removed

Files
changed

Total
changes

DSL changes

3.6.6 ⇒ 3.6.10 22 0 89 111 no changes

3.6.10 ⇒ 4.0.0.alpha1 20 86 2597 2703 3 removed pack-
ages; 3 new pack-
ages

4.0.0.alpha1 ⇒
4.0.0.final

174 420 1270 1864 2 removed pack-
ages

4.0.0 ⇒ 4.0.1 19 2 70 91 no changes

4.0.1 ⇒ 4.1.0 54 5 221 280 no changes

4.1.0 ⇒ 4.1.1 12 5 192 209 no changes

4.1.1 ⇒ 4.1.2 15 5 720 740 no changes

4.1.2. ⇒ 4.1.3 20 3 391 414 no changes

4.1.3 ⇒ 4.1.4 12 2 87 101 no changes

4.1.4 ⇒ 4.1.5 132 1 92 225 no changes

4.1.5 ⇒ 4.1.6 22 0 87 109 no changes

4.1.6 ⇒ 4.1.7 8 0 54 62 no changes

4.1.7 ⇒ 4.1.8 34 11 147 192 1 new package

4.1.8 ⇒ 4.1.9 16 1 118 135 no changes

4.1.9 ⇒ 4.1.10 42 1 112 155 no changes

Table 8: Necessary changes to the architectural abstraction specification (DSL code) compared
to source changes in Hibernate

classifiers.

5.1.5. Case 5: Freecol

Freecol is an open source game implemented in Java that is based on the
popular game Colonization. While Version 0.4 has only 30.000 lines of code, the
last version we examined has more than 100.000 lines of code.

We found no existing architectural information for FreeCol. This is why the
necessary source code study required about 3,5 hours before we could create a
first architectural abstraction specification. Updating the specification to the
newer versions of FreeCol then required another 60 minutes.

The results for this example are presented in Table 10 and an architecture
overview is shown in Figure 8.

Although the size of this project more than tripled, no inconsistencies were
reported by our prototype and therefore no changes to the architectural abstrac-
tion specification (the DSL code) were necessary. The main cause for this stable
architecture abstraction is that most changes to the game were improvements
to the graphical user interface, improvements to the gameplay, or bug fixes.

Table 11 presents the data about component sizes for this case. The high
averages of classes per component (compared to the medians) indicate that
this architectural abstraction consists of a number of small components and a
very few larger components. In this case the large components are GUI and
Common. While the purpose of the first component is rather self-explanatory,
the component “Common” provides functionality that is used on the client and
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Hibernate
Version

sLoC # of
Com-

ponents

Avg. # of
classifiers

per
component

σ for the
# of

classifiers

Median
for the #

of
classifiers

3.6.6 344k 9 225,89 219,91 174,00
3.6.10 351k 9 226,78 220,60 174,00
4.0.0.alpha1 343k 9 293,33 240,14 210,00
4.0.0.final 387k 9 298,67 261,32 189,00
4.0.1 389k 9 295,00 256,85 184,00
4.1.0 400k 9 296,33 258,13 184,00
4.1.1 402k 9 296,22 257,96 185,00
4.1.2 405k 9 301,11 262,16 191,00
4.1.3 407k 9 297,11 257,24 186,00
4.1.4 409k 9 297,22 257,48 186,00
4.1.5 410k 9 302,44 263,30 192,00
4.1.6 413k 9 298,11 258,78 187,00
4.1.7 416k 9 298,11 258,78 187,00
4.1.8 421k 9 306,22 249,67 189,00
4.1.9 423k 9 306,33 249,63 189,00
4.1.10 426k 9 308,22 252,77 190,00

Table 9: Hibernate: Average, median, and standard deviation (σ) for the number of classes
per component
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Figure 8: Simplified architecture overview of FreeCol 0.10.7
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Freecol version Files
added

Files
removed

Files
changed

Total
changes

DSL changes

0.4 ⇒ 0.5.0 190 55 0 245 no changes

0.5.0 ⇒ 0.5.3 155 9 1 165 no changes

0.5.3 ⇒ 0.6.0 185 72 1 258 no changes

0.6.0 ⇒ 0.6.1 60 6 0 66 no changes

0.6.1 ⇒ 0.7.0 217 31 0 248 no changes

0.7.0 ⇒ 0.7.4 356 31 1 388 no changes

0.7.4 ⇒ 0.8.0 284 86 18 388 no changes

0.8.0 ⇒ 0.8.4 117 10 0 127 no changes

0.8.4 ⇒ 0.9.0 280 72 14 366 no changes

0.9.0 ⇒ 0.9.5 370 18 18 406 no changes

0.9.5 ⇒ 0.10.0 468 95 71 634 no changes

0.10.0 ⇒ 0.10.7 542 88 22 652 no changes

Table 10: Necessary changes to the architectural abstraction specification (DSL code) com-
pared to source changes in Freecol

on the server. That is, it provides functions that the client and server have
in common. We focused our architectural abstraction on the “big picture”
architecture of the system to convey an understanding for the whole system.

5.2. Performance evaluation

To validate our approach, we realized architectural abstraction specifications
for the five open source projects explained in the previous section (see Table 12).
As approaches like the one introduced in this paper can potentially require a
lot of computational effort, we measured the performance of our prototype tool-
suite for the transformations in the five open source projects. Performance
problems can be introduced for instance through the exponential growth of the
execution time of the analysis according to the size of the model and the archi-
tectural abstraction specification. However, for regular usage of the approach
an execution time below two minutes is acceptable. We measured the time it
takes to execute the constraint checks and the transformations. Table 12 shows
the execution times for the most recent version of each of the five open source
cases which we obtained on a developer notebook (Intel i7 L620, 4 Gb RAM).
We measured each execution time 100 times and calculated the average value.
We also measured the minimum and maximum values, but as we observed only
small deviations around the average values, so we only report the averages here.

The results from Table 12 suggest that the execution time increases with
the number of clauses in the architectural abstraction specification and with
the number of classes in the source code. The results also suggest that the
approach is well applicable for even larger projects like Hibernate in the normal
flow of software development. Thus we can state that for the example cases it is
possible to generate an architectural component view with traceability links and
check all artifacts for consistency within an acceptable amount of time (RQ5).
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Freecol
Version

sLoC # of
Com-

ponents

Avg. # of
classifiers

per
component

σ for the
# of

classifiers

Median
for the #

of
classifiers

0.4 31k 9 25,44 40,51 9,00
0.5 42k 9 28,00 44,00 9,00
0.5.3 47k 9 28,22 44,20 9,00
0.6 52k 9 33,67 57,08 9,00
0.6.1 54k 9 37,56 61,42 9,00
0.7.0 60k 9 41,44 67,81 9,00
0.7.4 63k 9 42,56 70,48 9,00
0.8.0 74k 9 51,22 83,90 9,00
0.8.4 76k 9 52,00 84,83 9,00
0.9.0 84k 9 57,89 94,07 10,00
0.9.5 82k 9 56,89 91,57 10,00
0.10.0 92k 9 64,44 103,43 11,00
0.10.7 101k 9 73,44 119,64 12,00

Table 11: Freecol: Lines of java source code (in thousands), average, median, and standard
deviation (σ) for the number of classes per component

Project #Clauses Avg. Exec.
Time

(in ms)

σ (in ms) Median
Exec.
Time

(in ms)

Cobertura 1.9.4.1 19 176 257 116

Frag 0.9.1 41 283 281 219

FreeCol 0.9.5 21 704 647 455

Apache CXF 2.4 35 3010 1534 2353

Hibernate 3.6.6 96 3117 956 2757

Table 12: Execution times, standard deviation (σ) and other key data for implemented cases
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Please note that we did not report the time that is needed for extracting
the class model from the source code, since this algorithm converts every class
in the source code into an instance in the model. That is, this algorithm has a
time requirement of O(n), where n is the number of classes in the project.

6. Discussion

In this section we discuss the lessons learned from the five example cases
from the case study as well as the results of the performance evaluation of our
prototype. Furthermore we discuss the limitations of the approach and open
issues in Section 6.2.

6.1. Lessons learned

The cases discussed in Section 5.1 confirm that it is possible to create ab-
stractions based on the generic filters defined in our DSL (RQ1). In all cases,
from version to version a large number of changes have been applied, often in
many different files. Still only small changes to the DSL were necessary, even
for major architectural changes in the projects.

The times required to create an initial architectural abstraction specification
differ between the systems where architectural knowledge was already available
in other forms (Apache CXF, Frag) and the systems where we had no or only
very limited architectural knowledge about the system prior to our case study
(Cobertura, Hibernate, FreeCol). In our opinion, the time that was necessary to
come from the initial specification to a satisfactory one depends on factors like
the quality of existing architectural information and system size. For instance,
while we could create an initial specification for Apache CXF based on an exist-
ing box diagram within 15 minutes, it took us long to create a specification that
we were satisfied with. For Frag, on the other hand, we had first hand archi-
tectural knowledge as one of the authors is also involved in the development of
Frag. Thus the creation of a satisfactory architecture abstraction specification
took only 20 minutes before we could start comparing the different versions of
Frag. Regarding RQ4 we can conclude that the effort of creating a suitable
architectural abstraction specification varies heavily depending on the existing
knowledge of the source code and architecture. If it exists, a small architectural
abstraction specification can be created in about 15-20 minutes.

The consistency checking rules are an important means to automatically in-
dicate that changes to the DSL might be necessary. In our finalized version, all
necessary changes between different versions of the examples were automatically
detected by the consistency checking. This reduced the necessity for manually
searching for changes or the use of other tools like diff. In addition the inconsis-
tencies are reported directly for the violating parts of the specification and thus
direct the software architect to the origin of the problem at hand. The incon-
sistency that was reported the most while creating the example cases, and thus
was the most helpful, were source code elements that were not considered in the
architectural abstraction specification. In summary, in the example cases the
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consistency checks were very helpful in creating and maintaining architectural
abstraction specifications (RQ3).

Traceability links are an important aid to find and understand the links
between components and realizing classifiers between two version quickly. That
is, without support through consistency checking and traceability links, in our 5
cases, the same low number of updates would have been necessary in our DSL,
but the amount of manual searching and understanding of change impacts would
have been substantially higher. We used them throughout all the examples to
navigate between the architectural abstraction specification and the source code
elements whenever an inconsistency was reported. The traceability links provide
the foundation for all consistency checks and are especially helpful when source
code elements are not considered in the architecture abstraction specification.
So with respect to RQ2 we can state that: For these five examplary cases we
are able to generate traceability links that were useful during the definition of
architectural abstractions.

Once the architectural abstraction specification is defined, we are able to au-
tomatically create abstraction models from the source code. We noticed many
of our component definitions are based on one to five Package rules. Packages
are a major way of grouping multiple Java classes (besides Tagging interfaces
and so on). The advantage of component definitions based on existing groupings
like packages is that the architectural abstraction specifications can cope with
many kinds of changes, as in an established software project the coarse grained
(package) structure usually is stable. For this reason, only major changes re-
quire a change of the architectural abstraction specification. For example, the
introduction of a new subpackage or a new class do not require any changes.
Only the introduction of new major packages or new components requires ar-
chitectural abstraction specification updates. However, while in our use cases
the grouping based on Package rules was beneficial, this might not be always
the case.

Our approach supports the creation of architectural abstraction specifica-
tions on different levels of abstraction. The data in Table 12 supports this
claim. While we needed 41 clauses to map the 13k lines of code from Frag,
we only needed 21 clauses to map the 103k lines of code from FreeCol and 35
clauses for mapping the 386k lines of code of Apache CXF to components. This
indicates that the Apache CXF architectural abstraction specification is on a
higher abstraction level than the one for Frag.

The five cases indicate that creating and maintaining architectural abstrac-
tions is easier for high-level abstractions and that generic filters like package-
based or name-based filters are less likely to be changed. For example, name-
based filters are unaffected by changes as long as the regular expression for
matching the name is not affected. A Package rule that uses a regular expres-
sion like “.*model.*” only is affected if this exact part of the name is modified,
while a Package-rule based on the fully qualified name of the package needs to
be updated as soon as one of the packages on its path is modified.

However, it is not always possible to define architectural abstraction specifi-
cations solely using name-based filters like Package name filters and the union
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of their results (or). One example is the Shell component in Listing 2 that
consists of all the classes that contain the name “Shell” and all elements in the
root.frag.core package that are used by root.frag.Shell. The definitions
based on the relationships between classes have two disadvantages: Firstly, they
are hard to read because it is unclear which classes match the specified filter.
Secondly, relationship-based filters can have side-effects. A related class can
reside within a package that is also targeted by a package-based or a name-
based filter. This can be avoided by defining an exception in one of the filters.
The evolution of relationship-based filters is similar to the already mentioned
Package-filters that is based on fully qualified names. They need to be updated
only if the class that is defined in the filter is moved, renamed, or deleted.

In our future work, we will evaluate different options for extending our DSL.
That is, by adding support for constants that allow the reuse of Strings in archi-
tecture abstraction specifications as well as ways to allow the manual definition
of component interfaces. This would allow us to define constraints that test
whether a component’s implementation exposes or uses other interfaces than
the ones defined in the architecture abstraction specification.

When we compare the statistical data for the different versions of the cases to
the corresponding number of lines of source code, one can see that they develop
in a similar manner. As the lines of code grow, the average size of classifiers and
the median for the number of classifiers per component also grow. Because of
this, we think that the added source code gets distributed among the different
components. This negates the potential threat to validity that in our cases, all
classes could be aggregated in a single component. In this case obviously no
changes to the architectural abstraction would ever be necessary. As already
mentioned, this is not the case in any of the presented cases.

6.2. Limitations and Open Issues

Our approach has limitations when being applied to architectural knowledge
recovery and no prior knowledge about a software project exists. Under these
circumstances our approach is only applicable after initial architectural knowl-
edge has been acquired, since it does not provide an automated abstraction that
can be used for refinement. This limitation does not reduce the applicability in
a software development project where the focus lies on preserving architectural
knowledge. In such cases, the required knowledge usually is created in an early
stage of a software development project (i.e. this problem will not arise in the
first place).

While we demonstrated our approach in this paper on cases that use pro-
gramming languages supporting the structuring of source code (e.g., via pack-
ages in Java), our approach is also applicable for other languages that do not
offer such features. The limitation that arises from the missing structuring
of source code features is that the Package filter cannot be used. All other
rules are still available and can be used instead. However, this limitation often
increases the number of rules necessary to define an architectural abstraction
specification, though.
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In our five case studies, we documented the architectures on a high abstrac-
tion level. It is likely that a more detailed architectural descriptions of the same
example cases lead to more changes during the evolution of the systems. This
is partly reflected in the Apache CXF Transport case. However the main goal
of our approach is to support the understanding of the “big picture”. This is
the reason why we chose a high abstraction level for our case studies. We would
like to investigate in future research in how far our approach is applicable for
detailed design as well.

Furthermore, while our approach is designed to be independent of the source
programming language by using UML as the respresentation of the source model
and a number of tools exist for different programming languages that transform
from source code into UML2 model elements, we currently use examples that
are implemented in Java. The reason for this is that we currently only have
implemented a transformation from Java to our input representation in EMF
UML2.

7. Related Work

In this section we compare to related approaches that either use similar
techniques or try to solve similar problems. Figure 9 gives an overview of the
approaches that we briefly present in this section. We have split the related
work into different groups: In Subsection 7.1 we present a number of selected
articles that apply different approaches making use of automatic clustering.
Subsection 7.2 discusses articles that propose different kinds of model-based
approaches that create abstractions or views from source code. Subsection 7.3
presents works that focus on model evolution and consistency checking of mod-
els. The next Subsection 7.4 compares to approaches that focus on traceability
and/or change impact analysis. Finally, Subsection 7.5 presents selected ap-
proaches that are either hybrid approaches or other approaches that do not fit
into one of the other sections but are nonetheless relevant for our work.

Many of the approaches discussed in this section are related to the field of
software architecture reconstruction. Ducasse and Pollet [37] presented a survey
on the state-of-the-art in the field of software architecture reconstruction. They
analyzed and categorized the existing approaches with respect to their goals,
inputs, process, techniques, and outputs.

7.1. Automatic clustering approaches

subsec:hybrid Abreu et al. introduce a reengineering approach using cluster
analysis [6]. This approach uses six different affinity schemes and seven clus-
tering methods to produce a series of clustering proposals to verify which one
produces the best results. In contrast to our approach, the clustering leads to
solutions similar to those proposed by human experts only if the average number
of classes per module is not too high.

Another approach for recovering architecture information is introduced by
von Detten and Becker [8]. The authors combine clustering and (anti-)pattern
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Approach Focus Method Input

Level of 

automation

Evolution 

support

Abreu et al. Reengineering Cluster analysis Source code only Automatic No

von Detten and Becker Architecture Recovery Cluster analysis Anti pattern information Automatic No

Corazza et al. Architecture Recovery Cluster analysis Lexical information Automatic No

Maletic and Marcus Architecture Recovery Cluster analysis

Latent semantic indexing, minimal 

spanning tree Automatic No

Dietrich et al. Architecture Recovery Cluster analysis Dependency graphs Automatic No
De Lucia et al. Tracelink recovery Cluster analysis Latent semantic indexing Automatic No

Scanielleo et al. Layers detection Graph-based model ER graph, architecture patten graph Semi-automatic No

Ivkovic and Kontogiannis Model synchronization Graph-based model Transformation model Automatic No

Egyed Model abstraction UML model

Traceability information, abstraction 

rules Automatic No

Brosig et al.

Component model 

extraction Palladio component model EJBs and their runtime control flows Automatic No

Murphy et al.

Mapping source models to 

high-level models Model transformation

Low-level model, high-level model, 

mapping Automatic Yes

Hassan and Holt

Software Architecture 

Reconstruction Model transformation

Same as Murphy et al., version control 

modification records Automatic Yes

Mens et al. Source code views Logic programming rules Logic programming rules Semi-automatic No

Pinzger et al. Architecture analysis Graph-based model Problem reports, change logs Automatic No

Richner and Ducasse Reverse Engineering Logic facts Prolog queries Manual No

Riva and Rodriguez

Software Architecture 

Reconstruction Graph-based model Static and dynamic information Manual No

Sabetzadeh et al.

Global consistency 

checking Model merge

Multiple models, consistency 

constraints Semi-automatic Yes

Ajila and Alam Model evolution

Checks model 

modifications for 

consistency Constraints Semi-automatic Yes

Sangal et al. Conformance checking

Dependency-structure 

matrices Source code only Automatic Yes

Moor et al. (.QL) Conformance checking Source code queries Source code queries Manual Yes

Feilkas et al.

Measuring the loss of 

architectural knowledge XML

Mapping (based on regular 

expressions) Semi-automatic Yes

Steyart et al. Conformance checking Reuse contracts

Interface definitions annotated with 

reuse information Semi-automatic Yes

Our approach

Architecture 

documentation & 

evolution EMF / Xtext Architecture abstraction specification Semi-automatic Yes
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Figure 9: Overview of selected related work

information to extract components from existing source code. This work has a
different focus than our approach: While both approaches abstract from low-
level model representations of a software project, we introduce an extra step of
defining the architectural abstraction specification in the DSL, which removes
the uncertainty of using automatic clustering approaches and provides the soft-
ware designer with more control.

Corazza et al. [9] introduce a clustering approach that uses lexical informa-
tion. It uses a probabilistic model and the Expectation Maximization algorithm
to weigh this information and customizes the K-Medoids algorithm in order to
group classes. In their case study they compare their approach with other auto-
matic clustering approaches previously compared by Bittencourt and Guerrero
[38]. As already mentioned in Section 1, the case study by Corazza et al. [9]
states that the authoritativness values are close to 0.5 in 5 of 7 cases. This
means that in five cases, it is necessary to execute move or join operations for
about half the entities. Our approach removes the necessity to correct the auto-
mated clustering but requires the effort to maintain the architectural abstraction
specifications.

Maletic and Marcus [39] used an automatic clustering approach that uti-
lized latent semantic indexing for the data-retrieval and a minimal spanning
tree for partitioning the data. This approach shares the same problem with
aforementioned clustering approaches: The results it produces need to be man-
ually corrected. We believe that our approach creates less maintenance effort
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because no manual corrections are necessary. This is based on the fact that
manual corrections are needed after every execution of a clustering algorithm,
while our architectural abstraction specification does not create additional effort
for multiple applications of the approach.

Dietrich et al. [7] describe an approach for analyzing Java dependency graphs
with clustering. However this approach still needs the configuration of the sepa-
ration level (the number of iterations of removing the edges with the maximum
betweenness level). While our approach does not work fully automatically, it
allows several versions of a model that can be incrementally fine-tuned by the
user. Our approach also provides stable results when changes in the code are
made.

De Lucia et al. [40] integrate a latent semantic indexing approach [41] into
a software artifact management system in order to recover traceability links.
However they also state that one of the limitations in using information re-
trieval techniques is that in order to find all traceability links, it is necessary to
manually discard a big amount of false positives.

All approaches discussed so far deal with automatic recovery of design knowl-
edge. More clustering approaches and clustering measures are reviewed and
compared by Maqbool and Babri [42]. They define a number of groups of
clustering algorithms and compare the performance of the different groups for
different open source software projects. While Maqbool and Babri conclude
which approach works best for each of the applications, they do not draw any
conclusions regarding the overall effort necessary to correct the automatic clus-
tering. A lot of clustering approaches assume that no architectural knowledge
about a system exists. In contrast to all these approaches, our approach is
semi-automatic, enables the checking of design constraints during the abstrac-
tion process, and provides traceability between source code and models.

7.2. Model-based Abstraction and Views

Various approaches have been proposed for creating abstractions or
views from source code. Scaniello et al. [43] propose an approach for semi-
automatically detecting layers in software systems based on the algorithm
introduced by Kleinberg [44]. The authors implemented a prototype and
provide a case study for JHotDraw5. While their approach is focused on
semi-automatically detecting layers without prior knowledge, our approach is
focused on supporting the evolution of the program and its architecture by
providing abstractions on different levels.

Sartipi describes a pattern-based approach for recovering software archi-
tecture [45]. It models the process as a graph pattern matching problem be-
tween an entity relationship graph and an architecture pattern graph. While
this approach uses the two models as input, we use the source code and the
architectural abstraction specification in the DSL as input and the resulting
architectural component views are only used for consistency checks.

5http://www.jhotdraw.org/
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Ivkovic and Kontogiannis [46] provide an approach for keeping models syn-
chronized. However, they base their approach on an additional graph-based
meta-model and a transformation model for synchronization. In contrast, our
approach makes it easier to trace the corresponding low-level objects in the
source code, since no intermediary models are needed.

Egyed [17] describes an approach for model abstraction by using existing
traceability information and abstraction rules. However, the author identified
120 abstraction rules for the example of UML class models, which need to be
extended with a probability value because the rules may not always be valid.
Our approach uses architectural abstraction specifications that are harder to
reuse but easier to define and allow the definition of architectural abstraction
specifications on different levels of abstraction.

Brosig et al. [47] describe how they extract a Palladio component model
from Enterprise Java Beans. However, their approach is based on EJBs and the
runtime control flow while our approach is not limited to EJBs and based on
statically analyzing the existing source code.

Another approach for mapping source code models to high-level models is
introduced by Murphy et al. [16]. They use software reflexion models which they
compute from a mapping between source model and high-level model. However,
while their approach is similar, it requires a substantial amount of effort, since
it requires to define both: the high-level model and the mapping, while our
approach requires source code and architectural abstraction specification and
the architecture abstraction is generated automatically.

An interesting software architecture recovery approach is introduced by Has-
san and Hol [48]. It uses modification records from source code versioning sys-
tems. While the approach provides additional information to the developers, it
basic workings do not differ from the already discussed approach from Murphy
et al. [49].

Mens et al. [15] propose intentional source code views that allow grouping
of source code by concerns. These views are defined in a logic programming
language. Their approach provides generic source views on a low abstraction
level while we focus on the architectural aspects and provide an easy way to
define our domain specific views.

An approach that integrates source code with information found in problem
reports and changelogs to do architecture analysis is presented by Pinzger et
al. [50]. The analysis produces specific directed attributed graphs which then
are integrated into a FAMIX [51] model and compute architectural views using
binary relational algebra based on an approach introduced by Holt et al. [52].
These views then show intended and unintended couplings between architecture
elements. While our approach also allows the abstraction of higher level views
on a system, it does not make use of an intermediate graph representation which
allows us to support traceability between abstraction specification and source
model.

Richner and Ducasse [53] introduce an approach for reverse engineering that
models the static and dynamic aspect of an object oriented application as logic
facts. Then an engineer creates abstractions based on these facts and Prolog
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queries using these abstractions generate high-level views. These are generated
using clustering rules in Prolog. While this approach has similarities with our
presented approach, we designed our approach specifically with the evolution of
a software system in mind. Furthermore, our approach defines architecture ab-
straction directly on a source model which allows us to use consistency checking
and supports traceability between the abstraction and the source model.

Another graph-based approach for architecture reconstruction is introduced
by Riva and Vidal Rodriguez [54]. They create architectural abstraction using
static and dynamic information about a software system using a Prolog system.
Like most of the architecture reconstruction however, it does not take the evo-
lution of a software artifact into account, while our approach specifically targets
this evolution and tries to prevent architectural knowledge evaporation.

7.3. Model Evolution and Consistency

In this subsection, we present different existing approaches that focus on
model evolution and consistency checking of models. Sabetzadeh et al. [55]
describe an approach for consistency checking through model merge. While
consistency checking is a part of our work, we mainly focus on the architectural
abstraction specification and providing additional value for projects that do not
use model driven development per se. Furthermore, we focus on models that
provide different levels of abstraction while the model merge approach is better
applicable to models on the same abstraction level.

Ajila and Alam describe a formal approach for model evolution by extend-
ing OMGs Object Constraint Language [56] with “Constraint with Action Lan-
guage” [57]. It uses annotated directed acyclic graphs as model representations
and works directly on the single model and its modifications. However, our
approach is targeted at creating an abstraction in the form of an architectural
component view from source code and keeping track of the changes is done
implicitly by only comparing the different versions of the abstract model.

Passos et al. [58] give a illustrative overview on static architecture-
conformance checking. They compare three approaches: The Lattix Depen-
dency Manager (LDM) [59], which is based on Dependency-Structure Matrices,
.QL [60], which is a source code query languages (SCQL) [61, 62], and the
reflexion models (RM) introduced by Murphy et al. [16]. As Passos et al.
summarize, all of these approaches have drawbacks. While the LDM tool
has very limited capabilities of expressing constraints, .QL has only a low
abstraction level, and RMs have only limited support for architecture reasoning
and discovery. Our approach features an expressive DSL that can provide
abstraction on different levels and is capable of automatically generating
abstractions from the architectural abstraction specifications.

Feilkas et al. [63] perform an industrial case study on the loss of architectural
knowledge during system evolution. To measure the loss of architectural knowl-
edge, they use an approach based on machine readable component descriptions
and policies in XML. Their approach offers only limited ways to describe map-
pings between components and source code. Their mappings are solely based on
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regular-expressions that map package-names to components. As our case stud-
ies show this is not always sufficient to describe components and our approach
provides more flexible ways to describe architectural abstraction specifications.

Steyaert et al. [64] introduce Reuse Contracts which are interface descrip-
tions, created in addition to a software artifact, that describe additional design
information. The authors introduce their approach exemplary for inner-class
relationships but claim that it is easily adaptable for inter-class relationships.
However, our approach has a different focus. While Steyaert et al. mainly focus
on reuse, we aim to support the evolution of a software product by providing a
simple way to create up-to-date views on different abstraction levels.

Knodel et al. [65] give an overview on how and when static architecture eval-
uations can contribute to architecture development and show how architecture
development is influenced by architecture evaluations in the area of software
product lines. While our approach targets the maintenance and recovery of ar-
chitecture information in general, the approach introduced by Knodel et al. [65]
focuses on evaluating a system’s architecture regarding software product lines.
While they use a source model and a high level model and require a mapping
created by a human to compare these two models, our approach uses the source
model and the mapping is a starting point, while the high level abstraction
model is generated automatically.

7.4. Approaches that focus on traceability and/or change impact analysis

Feng and Maletic [66] present an approach to analyze the impact of changing
components at runtime based on slicing on component interaction traces. Their
dynamic component composition model is based on a static model and a set of
UML sequence diagrams. While their approach focuses on the analyis of the
impact of dynamic changes during runtime, our approach primarily focuses on
providing architectural abstractions from source code to architectural compo-
nent views during software evolution and thus focuses on changes at compile
time between different evolution steps of a software system.

Another approach that focuses on change impact analysis is presented by
Zhao et al. [67]. They present an automated approach that uses architectural
slicing and chopping to analyze formal architectural specifications based on
WRIGHT [68]. While this approach uses an architectural specification as an
input, our approach is focused on semi-automatically providing this architecture
abstraction. Thus it might be interesting to integrate both approaches in order
to provide change impact analysis on an architectural level that is able to also
provide knowledge about the changes effects on the source code of the system.

A wide variety of work has been done in the field of traceability: i.e. trace-
ability of concerns between architectural views [69], to linking design decisions to
design models [70]. Winkler and Pilgrim [71] present a survey on the state of the
art of traceability in requirements engineering and model-driven development
who base their work amongst others on the works by Spanoudakis and Zisman
[72] who, based on extensive literature study, define eight different kinds of
traceability links, discuss a number of approaches for the generation and main-
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tenance of traceability links, and present a number of ways how traceability
relations can be used in software development.

7.5. Hybrid and other approaches

Harris et al. [73] propose a style library and use a recognition engine to
detect instances of these abstractions in the source code. Guo et al. [74] present
an approach for architecture recovery and conformance checking called “ARM”.
This approach automatically searches for instances of patterns in a source model
using query tools in Dali [75]. As all automatic approaches, these approaches
require manual correction of false positives and cannot guarantee a hundred
percent detection rate.

Lungu et al. [76] propose a visual architecture recovery approach that ex-
ploits the package structure of a software system. For this purpose, they in-
troduce package patterns which they automatically detect based on heuristics.
While our approach also exploits the package structure of a software system, it is
not limited to package information and also supports other options for creating
architecture abstractions.

Qingshan et al. [77] describe an architecture recovery approach that focuses
on extracting the Process Structure Graph (PSG) of a system. While this
approach works fully automatic, it does not allow to create views on different
levels of abstraction but is limited to the PSG while our approach allows to define
different levels of abstraction while requiring the manual creation of architecture
abstraction specifications.

8. Conclusion

In this paper, we presented a semi-automatic approach for supporting archi-
tectural abstractions of source code into architectural component views. Our
approach, supported through a DSL and MDD tooling, can automatically gen-
erate architectural component views from source code and supports traceability
between the mapped artifacts. By creating architectural abstraction specifica-
tions with the DSL on different levels of abstraction, we are able to generate
different abstracted views for one project. A major feature of our approach is its
ability to cope with change. Only major changes, like newly introduced compo-
nents, require an update of the architectural abstraction specification. Overall,
our evaluations and experience show that architectural abstraction specifica-
tions can be created and maintained with low effort. This is due in part to the
traceability links and inconsistency checking support. That is, we can check
for inconsistencies between abstraction and code and identify the participating
source code and architectural components in case constraints are violated.

Our approach has limitations when used for reengineering as knowledge
about the source code and the design of a project are needed to create the archi-
tectural abstraction specification; in many reengineering approaches the main
assumption is that such knowledge does not yet exist. Hence, our approach can
be used together with these approaches: The reengineering approaches can be
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used for acquiring an understanding of a project, and our approach can be used
to maintain and evolve an architectural view on the system once it has been
sufficiently understood. We plan to investigate this relation in our future work.

In our future work we also plan to increase the usability of the presented
approach by implementing support for other popular programming languages
by providing the necessary transformations from source code to the UML2 class
model. For this purpose we will focus on languages that are already supported
in the Eclipse IDE like C++.

Furthermore we plan to extend this approach towards the architectural pat-
tern discovery and documentation. For this purpose we will allow the developer
to annotate components and connectors from the architecture abstraction spec-
ification with architectural primitives [78] and then search pattern candidates
that are built of these architectural primitives.
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Appendix A. Xtext grammar of the architecture abstraction DSL

The source code for our proof-of-concept implementation can be found at
https://git.swa.univie.ac.at/component-model/component-model-source

(only for registered users). It is available under the MIT license. Listing 4
shows the complete Xtext grammar of our architectural abstraction DSL.

grammar at.ac.univie.cs.swa.component.architectureabstraction.

ArchitectureAbstractionDSL

with org.eclipse.xtext.common.Terminals

generate architectureAbstractionDSL

"http ://www.univie.ac.at/cs/swa/component/architectureabstraction/

ArchitectureAbstractionDSL"

import "http ://www.eclipse.org/uml2 /4.0.0/ UML" as umlMM

import "http ://www.eclipse.org/emf /2002/ Ecore" as ecore

Transformation:

name=STRING

components +=( ComponentDef)+;

QUALIFIED_NAME returns ecore:: EString:

ID ("." ID)*;

ComponentDef returns ComponentDef:

’Component ’ name=ID

’consists of’ (expr=OrComposition)

connectors += ConnectorAnnotation *;

ConnectorAnnotation:

{ConnectorAnnotation}

’connector to’ targets +=[ ComponentDef] (’,’ targets +=[

ComponentDef ])*

(’implemented by’ (implementingExpression += OrComposition)?

(’relation: ’ implementingRelations +=[ umlMM :: Dependency|

QUALIFIED_NAME]

(’,’ implementingRelations +=[ umlMM:: Dependency|QUALIFIED_NAME ])*)

?)?;

OrComposition returns Expression:

ExcludeComposition ({ OrComposition.left=current} ’or’ right=

ExcludeComposition)*;

ExcludeComposition returns Expression:

AndComposition ({ ExcludeComposition.left=current} ’and not’ right

=Primary)*;

AndComposition returns Expression:

Primary ({ AndComposition.left=current} ’and’ right=Primary)*;

Primary returns Expression:

NameFilter | RelationFilter | ExtensionFilter | ’{’ OrComposition

’}’;
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NameFilter: PackageNameFilter | ClassNameFilter;

RelationFilter: ContainedInPackage | UsesFilter | UsedByFilter |

ChildOfFilter | Supertype | InstanceOf | IsClass |

SpecificInterface;

PackageNameFilter: ’Package ’ ’(’ regEx=STRING ’)’;

ClassNameFilter: ’Class’ ’(’ regEx=STRING ’)’;

UsesFilter:

’Uses’ ’(’ relatedTo =[umlMM:: Classifier|QUALIFIED_NAME] ’)’;

UsedByFilter:

’UsedBy ’ ’(’ relatedTo =[umlMM :: Classifier|QUALIFIED_NAME] ’)’;

ChildOfFilter:

’ChildOf ’ ’(’ relatedTo =[ umlMM::Class|QUALIFIED_NAME] ’)’;

Supertype:

’Supertype ’ ’(’ relatedTo =[umlMM:: Class|QUALIFIED_NAME] ’)’;

ContainedInPackage:

’Package ’ ’(’ relatedTo =[ umlMM:: Package|QUALIFIED_NAME] (’,’

excludeChildren ?=’excludeChildren ’)? ’)’;

IsClass:

’Class’ ’(’ relatedTo =[umlMM :: Class|QUALIFIED_NAME] ’)’;

InstanceOf:

’InstanceOf ’ ’(’ relatedTo =[umlMM :: Interface|QUALIFIED_NAME] (’,’

excludeInterface ?=’excludeInterface ’)? ’)’;

SpecificInterface:

’Interface ’ ’(’ relatedTo =[umlMM:: Interface|QUALIFIED_NAME] ’)’;

ExtensionFilter:

JavaExtensionFilter | XtendExtensionFilter;

JavaExtensionFilter:

’Java’ ’(’ staticMethod=STRING ’)’;

XtendExtensionFilter:

’Xtend’ ’(’ function=STRING ’)’;

Listing 4: Complete Xtext grammar of our architectural abstraction DSL
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