
Enforcing Entailment Constraints in Offline Editing
Scenarios for Real-time Collaborative Web Documents

Patrick Gaubatz1, Waldemar Hummer2, Uwe Zdun1 and Mark Strembeck3

1Faculty of Computer Science
University of Vienna

{first.last}@univie.ac.at

2Distributed Systems Group
Vienna University of Technology
hummer@infosys.tuwien.ac.at

3Institute for Information Systems
WU Vienna

mark.strembeck@wu.ac.at

ABSTRACT
Real-time collaborative Web applications allow a multitude
of users to concurrently work on a shared document. Es-
pecially in business contexts it is often necessary to be able
to precisely define and restrict who is allowed to edit which
data field of such a shared document. Existing solutions for
enforcing such access control restrictions typically rely on a
central service, the policy decision point. However, for use
cases with unreliable or limited connectivity, such as mobile
devices, a permanent connection to this centralized policy
decision point can not be guaranteed. To address this prob-
lem, we present a novel approach that includes methods for
client-side enforcement of access control constraints for of-
fline users, and merging of offline changes, that enables users
to edit such access constrained shared documents offline. We
propose a generic conflict detection and resolution approach
that attempts to resolve merge conflicts that are inherent
to access constrained documents automatically while prior-
itizing online users and maximizing the number of filled out
data fields in a document. In addition, we discuss and eval-
uate our approach via a prototype implementation.

Categories and Subject Descriptors
H.4 [Information Systems Applications]: Web Appli-
cations; D.2.2 [Software Engineering]: Design Tools and
Techniques

Keywords
Document Merge, Conflict Detection, Conflict Resolution,
Authorization, Access Control Enforcement

1. INTRODUCTION
Real-time collaborative Web applications such as Google

Docs or Etherpad aim to efficiently support the joint work
of team members, allowing them to collaboratively work on
the same Web document at the same time. While such text
based applications are probably the most popular example

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SAC’14 March 24-28, 2014, Gyeongju, Korea.
Copyright 2014 ACM 978-1-4503-2469-4/14/03 ...$15.00.

of collaborative Web applications today, their use in typical
business contexts is limited as many business applications
usually deal with strict, standardized forms with precisely
specified text fields (see, e.g., [11]). Another crucial aspect
of business applications is access control. The general goal
of our work is to address this combination of form-based
collaborative Web applications with access control; in this
paper, we specifically focus on offline editing of real-time col-
laborative Web forms which have access control constraints.

Role-based access control (RBAC) [17] is the de-facto
standard for access control in software systems. In RBAC,
roles are used to model different job positions and scopes
of duty within a system. These roles are equipped with
permissions to perform tasks. Human users (subjects)
are assigned to roles according to their work profile. For
example, in a real-time collaborative Web document for
the e-health domain only subjects assigned to the role
physician shall be allowed to prescribe medications by
filling in the corresponding text field of a document. To
enforce a four-eyes principle, a second physician shall
check and sign these prescriptions. In this example the
role physician is equipped with both permissions, i.e.,
prescribing and signing medications. To prevent a single
subject from performing both tasks and undermining
the four-eyes principle we have to constrain these two
tasks. Entailment constraints (see, e.g., [6, 20, 22]) provide
means for placing such restrictions on the subjects who
can perform a task x given that a certain subject has
performed another task y. Mutual exclusion and binding
constraints are typical examples for entailment constraints.
For instance, a dynamic mutual exclusion constraint can
be used to realize the four-eyes principle. In particular, it
defines that two subjects must not perform two mutually
exclusive tasks of the same Web document.

The decision if a specific subject should be granted the
permission to perform a task (e.g, filling in a field) is called
authorization decision. In the context of Web-based en-
vironments, authorization decisions are typically delegated
to a central service, the Policy Decision Point (PDP) (see,
e.g., [14]). As a consequence, using a Web application that
is subject to access control usually requires a user’s device to
have reliable network connectivity (to be able to access the
PDP). However, the increasing importance of mobile com-
puting and mobile devices in the context of business applica-
tions demands solutions that enable users to continue editing
(entailment constrained) collaborative Web documents even
if a reliable network connection can not be guaranteed. Such
unreliable network connections frequently occur if the user

is on an airplane, in a train, in a basement, or in a rural
area. To the best of our knowledge, existing literature does
neither consider the enforcement of entailment constraints
for offline editing of collaborative Web documents, nor does
it provide a systematic approach for merging actions that
have been performed offline on a shared collaborative Web
document that is subject to entailment constraints.

In this paper, we therefore propose a novel approach to
support access control enforcement for offline users. In our
approach, the offline changes on a Web document are autho-
rized and recorded at the client-side. After re-establishing a
network connection the corresponding changes are merged
with the online, collaborative Web document. To handle po-
tential violations of entailment constraints that may result
from merging changes that were performed offline, our ap-
proach includes automated conflict detection and resolution
procedures. In addition, our approach allows for prioritizing
online performed changes (over changes that were performed
offline) and maximizes the number of filled out data fields
in a Web document.

The main contributions of this paper are as follows:

• We propose a system architecture that enables users
of real-time collaborative Web applications to edit en-
tailment constrained Web documents offline.

• We discuss how merge conflicts are inherent to editing
such constrained Web documents offline and present
a merge approach capable of detecting and resolving
these conflicts automatically.

• We explain how the approach can be mapped to al-
ready existing Web browser technologies and APIs.

• We discuss performance and scalability measurements
of the implemented prototype and evaluate the degree
of automation of the proposed merge approaches.

The structure of this paper is as follows: Section 2 mo-
tivates our approach using an example scenario. Section 3
presents the conceptual details of our approach. We discuss
our prototype implementation in Section 4 and evaluate the
approach in Section 5. After a discussion of related work in
Section 6, we conclude in Section 7.

2. MOTIVATING SCENARIO
For illustration, we consider a collaborative Web app-

lication for maintaining patient health records. Figure 1a
shows a simplified form with two text fields (T and M) and
a button (S). A physician is supposed to enter a therapy
plan into text field T. Text field M is used to prescribe a
specific medication. The hospital requires that only the
physician who originally proposed a therapy plan is allowed
to prescribe the medication. Entailment constraints (see,
e.g., [6,20,22]) provide means for defining such restrictions.
In this particular example, a subject-binding (SBind) con-
straint defines that the subject entering text field M must be
the same that has filled in text field T. Moreover, to enforce
a four-eyes principle, the hospital also requires prescriptions
to be confirmed (button S) by a different physician. Hence,
a dynamic mutual exclusion (DME) constraint is used to
define that the subject filling in text field M must not be
allowed to click button S.

We now consider subjects A, B and C who are concur-
rently editing this form. Figure 1b shows that Subject A,

T:

M:

S:

S
B
in

d

DME DME

(a) Constraints

A
enters
'foo'

fooT:

M:

S:

…online
device

(b) Enforce-
ment

fooT:

M:

S:

✔

✘ A

offline
device

…

(c) Offline
Enf.

fooT:

M:

S:

C

clicks

B

(d) Con-
flicts

Figure 1: Exemplary Collaborative Web Application

whose device is currently online, fills in field T. As a result,
the system must disable text field S for Subject A (indi-
cated by a gray background) in order to prevent violation of
the DME constraint. Now, suppose that Subject A loses its
network connection. Ideally, the Web application should al-
low Subject A to continue working offline, while continuing
to enforce the entailment constraints (i.e., by allowing A to
edit text field M and preventing A from editing text field S,
see Figure 1c) even without a connection to the central PDP.
In such a scenario, authorization decisions are (temporarily)
made at the client side.

After Subject A has filled out T, both Subject B and C can
potentially click S. Assume in Figure 1d that Subject C also
(temporarily) loses network connectivity, while B confirms
the prescribed medication by clicking S. Since C is offline and
can not be informed of this action, C is also (locally) per-
mitted to click the same button. Eventually, as Subject C
re-establishes its network connection, the Web application
is confronted with conflicting actions, because only a single
confirmation can be stored in the document. The naive ap-
proach would be to enforce a first-come-first-serve principle
by blocking C’s action. However, this approach may be sub-
optimal if the global goal is to fill out as many form fields as
possible. Moreover, it may result in violations of potentially
defined entailment constraints. Thus, if we consider that C
submits an entire set of actions performed offline, it may
for instance be advantageous to revert B’s changes and give
precedence to C’s.

In summary, we identify two main challenges:

• If a client loses connectivity, both the authorization de-
cision making and the enforcement of entailment con-
straints have to be conducted at the client side instead
of relying on the central server-side PDP.

• Offline editing of entailment constrained real-time col-
laborative Web documents may lead to conflicts that
must be detected and resolved automatically.

3. OFFLINE EDITING APPROACH
Figure 2 provides an architectural overview of the compo-

nents and interactions used to support offline editing for an
entailment constrained collaborative Web document.

The left-hand column of the figure depicts the core com-
ponents of a real-time collaborative Web application. A Col-
laboration Service allows users to concurrently work on the
same collaborative Web document by constantly keeping the
server-side Shared Model (i.e., the data model/content of a
concrete Web document) in sync with all client-side Local
Models (i.e., exact copies of the Shared Model).

Online Enforcement
Components

Collaboration
Components

Shared
Model

Local
Model

Central
PDP

synchro-
nizes

observes

observes changes

C
li

en
t(

s)
S

er
ve

r

Collaboration
Service

Offline Enforcement
Components

Merge Service
+

Central PEP

Local
PDP

uses

changes

Change Tracker
+

Local PEP

uses

Access Control
Model Repository

requests model

submits sets
of changes

C
o

ll
ab

o
ra

ti
ve

 W
eb

 A
p

p
li

ca
ti

o
n

requests model

Figure 2: Architectural Overview

To prevent a user from unauthorized manipulation of pro-
tected parts of this Shared Model, our approach requires all
model changes (i.e., changes of data fields within a Web doc-
ument) to be routed through a Merge Service which acts as
the central Policy Enforcement Point (Central PEP). This
service enforces the authorization decision of the Central
PDP. More specifically, the Merge Service only applies a
change if the Central PDP confirms that the user actually
has the permission to perform that change.

Supporting offline editing builds upon three basic ideas:

1. We persist the Local Model and duplicate the function-
ality of the Central PDP to the clients, allowing them to
make authorization decisions locally (see Section 3.1).

2. The tracked changes of the Local Model on the clients
are submitted to the central Merge Service as soon as
the network connectivity is regained (see Section 3.2).

3. We strive to detect and automatically resolve conflicts
that result from merging offline performed changes
with the Shared Model (see Section 3.3).

3.1 Supporting Client-side Enforcement
Figure 3a depicts the steps that are triggered whenever a

user makes changes to their Local Model.
The Change Tracker component observes such changes. If

the user is online, the change is directly submitted to the
Merge Service, where it is checked for violations of entailment
constraints and eventually applied to the Shared Model. In
case of violations, the change is discarded and the corre-
sponding data field in the client’s Local Model is reverted
to its previous state. Otherwise, if the user’s device is of-
fline, the Change Tracker requests an authorization decision
from the Local PDP to determine if the change violates any
constraints, in which case it gets reverted. Otherwise, the
change is tracked and stored by the client until a merge with
the Shared Model is possible.

The Central PDP and the Local PDP require the same
entailment constraint models, which reside on a central Ac-
cess Control Model Repository service. To guarantee that the
user can continue working offline, the Local PDP requests
and persists the current model state on client side. Ideally
this is done as soon as a specific Web document is accessed
for the first time.

observe
local

model
change

[else]

[device
online]

submit
model

change

check for
access
control

violations

track
model

change

check for
access
control

violations

apply
model

change to
shared
model

revert
model

change

[else]

[else]

[vio-
 lations]

Client Server

[vio-
 lations]

create
model

snapshot

(a) Steps that are triggered
when a user changes a
data field

observe
regained

connectivity

submit
tracked
model

changes

check for
tracked
model

changes

restore
model

snapshot

merge
changes

with
shared
model

revert
model

change

[violations]

[tracked
changes]

[else]

apply
changes to

model
snapshot

check for
access
control

violations
in resulting

model

[else]

Client Server

(b) Steps that are triggered
when a user regains
network connectivity

Figure 3: Client-side Enforcement and Merging

3.2 Merging Offline Performed Changes
The Change Tracker tracks and stores model changes per-

formed offline. Figure 3b shows the steps that are triggered
as soon as a user regains network connectivity. First, the
Change Tracker checks if (newly) tracked model changes ex-
ist. If no model changes were tracked the process ends. Oth-
erwise, it submits the set of changes to the Merge Service.

Before merging the changes with the Shared Model, the
Merge Service must first ensure that all offline changes were
legitimate. This additional step is crucial to avoid illegiti-
mate model changes (e.g., in case the Local PDP has been
tampered with). Checking the legitimacy of changes in a
document requires the Central PDP to be aware of who (e.g.,
Subject x using Role y) has performed which changes on a
document. Therefore we propose a snapshot-and-replay ap-
proach where the Shared Model is versioned, such that a
snapshot of the current state is created for every change.
For each incoming merge request the Merge Service restores
the corresponding snapshot of the Shared Model that a set
of offline changes is based on. Finally, the Merge Service
applies (“replays”) these offline changes to the snapshot and
checks the validity of the resulting model. Thereby, the in-
tegrity of the client-side Local PDP can be verified and only
legitimate changes are merged with the Shared Model.

The actual merge procedure involves the Shared Model and
a single client’s set of offline changes. In essence, we apply
each change to the corresponding data field of the Shared
Model. To avoid data inconsistencies (if two clients simulta-

Conflict Description

Duplicate Field The same field is filled out twice.

Subject-binding
(SBind) Violation

SBind constrained fields are filled
out by different subjects.

Role-binding
(RBind) Violation

RBind constrained fields are filled
out using different roles.

Dynamic Mutual Exclusion
(DME) Violation

DME constrained fields are filled
out by the same subject.

Static Mutual Exclusion
(SME) Violation

SME constrained fields are filled
out by the same subject or using
the same role.

Table 1: Potential Merge Conflicts

neously submit their changes), the Merge Service acquires a
lock on the Shared Model. Simultaneously submitted merges
are therefore serialized, i.e., processed sequentially.

For illustration, consider the exemplary merge situation
depicted in Figure 4a (Figure 4b is discussed in Section 3.3).
By filling out text field T, Subject A increases the Shared
Model’s version counter from V0 (i.e., the empty document)
to V1. At the same time Subject B, which is offline and still
working with V0, clicks button S. Afterwards, Subject B sub-
mits this offline change and eventually (i.e., after restoring
V0, applying the change and validity checking the result-
ing model) text field T is merged with the current Shared
Model’s version V1, resulting in the new merged version V2.

+

A Benters clicks submits
B

V
1

V
0'

V
2

fooT:

M:

S:

T:

M:

S:

fooT:

M:

S:

(a) Non-conflicting Merge

+

A Benters

V
1

V
0''

fooT:

M:

S:

T:

barM:

S:

enters

(b) Conflicting Merge

Figure 4: Exemplary Merge Situations

3.3 Detecting and Resolving Merge Conflicts
Offline editing for real-time collaborative Web documents

may inevitably lead to merge conflicts. Let us reconsider the
exemplary merge situation described above (see Figure 4). If
we suppose that Subject B fills out text field M while working
offline, we are confronted with a merge conflict situation that
is depicted in Figure 4b. More specifically, Subject B’s offline
completed text field M can not be merged without violating
the defined subject-binding constraint (see Figure 1a).

In general, a merge conflict happens either when the same
field is filled in twice (i.e., online and offline) or when a merge
results in a model that violates entailment constraints. We
systematically analyzed the respective entailment constraint
models (see, e.g., [6,20,22]) to compile a list of conflict types
that may arise when merging data fields that are subject to
such constraints. Table 1 depicts this set of conflict types.

Detecting merge conflicts is straightforward. However, re-
solving them (semi-)automatically is not. First of all, there
is not a single “one-size-fits-all” resolution strategy (see, e.g.,
[18]). For instance, to resolve a Duplicate Field conflict we
could choose between the following resolution strategies: (1)
concatenate both (field) values, (2) try to merge both val-

Name Return Value

getConstraints Set of constraints a field is subject to.

getConstrainedField Returns the field that is bound to the same
constraint as field.

getSubject Subject that has filled out field.

getRole Role that has filled out field.

violates true if field and anotherField violate con-
straint.

Table 2: Helper Procedures for Algorithm 2 and 3

ues into a single value, (3) move one value to an attachment
and let a human person manually resolve the conflict, or
(4) discard one value. However, Strategies 1 and 2 are not
always sensible (e.g., if a subject-binding exists), and since
Strategy 3 does not resolve conflicts instantaneously we will
focus on Strategy 4 for the rest of this paper.

The main challenge of this strategy is to decide which val-
ues to discard. For instance, in Figure 4b we could discard
Subject B’s value for field M and leave the Shared Model un-
changed. Alternatively, we could revert Subject A’s field T
and merge Subject B’s field M instead. However, by revert-
ing and ultimately deleting Subject A’s field partially sacri-
fice the main idea of the real-time collaboration approach:
keeping a document in sync for online users that are par-
ticipating in an online collaborative session. Therefore, we
allow that changes performed by online users can be priori-
tized over ones that have been performed by offline users.

Algorithm 1 Basic Merge Algorithm

1: procedure BasicMerge(model, offChanges, offWeight)
2: fieldsToDelete← FieldsToDelete(model, offChanges)
3: if |fieldsToDelete| ≤ |offChanges| × offWeight then
4: for each fieldToDelete in fieldsToDelete do
5: model← model \ fieldToDelete
6: end for
7: for each fieldToMerge in offChanges do
8: model← model ∪ fieldToMerge
9: end for

10: end if
11: end procedure

To devise a generic merging approach based on the
assumption that prioritization of online changes is crucial
in the context of real-time collaboration, we introduce a
decision criterion that determines whether a set of online
changes should be deleted in order to be able to merge
another set of offline changes. This decision is reflected
in Algorithm 1. Note, that all required helper procedures
are listed in Table 2. In our approach, a set of offline
changes (offChanges) gets merged only if the set of fields
that needs to be deleted (fieldsToBeDeleted) is smaller
than the former. This approach ensures that a merge—if
performed—never decreases the number of completed data
fields in the Shared Model. To support prioritization of
online completed fields we introduce a weighting factor
(offWeight) that is used to discriminate the set of offline
changes (as seen in line 3 of Algorithm 1). For instance, a
factor of 0.5 means that removing one online completed field
is equally bad as discarding two offline completed fields.
Applying this to Figure 4b (i.e., fieldsToDelete = {T} and
offChanges = {M}) we get 1 ≤ 1 × 0.5, decide against
merging and discard the given set of offline changes.

Algorithm 1 relies on Algorithm 2 to determine the set
of fields that would have to be deleted in order to merge

Algorithm 2 Fields-to-Delete Algorithm

1: procedure FieldsToDelete(model, offChanges)
2: fieldsToDelete← ∅
3: for each field in offChanges do
4: if field ∈ model then
5: fieldsToDelete← fieldsToDelete ∪ field
6: end if
7: for each constraint in getConstraints(field) do
8: otherField← getConstrainedField(constraint, field)
9: if otherField ∈ model

and violates(field, otherField, constraint) then
10: fieldsToDelete← fieldsToDelete ∪ otherField
11: end if
12: end for
13: end for
14: return fieldsToDelete
15: end procedure

the set of offChanges with the Shared Model. To account
for Duplicate Field conflicts (see Table 1), Algorithm 2 first
adds all fields (contained in offChanges) that have already
been completed in the Shared Model to the fieldsToDelete
list. The remainder of the algorithm (i.e., lines 7–13) deals
with conflicts that may occur due to violations of entailment
constraints (see Table 1). For instance, regarding Figure 4b
this means that merging Subject B’s field M, requires delet-
ing Subject A’s field T. Otherwise, the subject-binding con-
straint that is associated with fields T and M (see Figure 1a)
would be violated. In general, Algorithm 2 adds all fields to
fieldsToDelete that must necessarily be deleted from the
Shared Model in order to allow offChanges to be merged
without violating any defined entailment constraints.

Algorithm 3 Two-step Merge Algorithm

1: procedure TwoStepMerge(model, offChanges, offWeight)
2: constrained← ∅
3: for each field in offChanges do
4: if getConstraints(field) 6= ∅ then
5: constrained← constrained ∪ field
6: end if
7: end for
8: unconstrained← offChanges \ constrained
9: BasicMerge(model, unconstrained, offWeight)

10: BasicMerge(model, constrained, offWeight)
11: end procedure

Our merge algorithm (i.e., Algorithm 1) realizes an “all
or nothing” approach, i.e., the set of offline changes is either
completely merged or discarded. For instance, the algorithm
might discard a complete set of offline performed changes
just because the set contains a single constrained data field
that required lots of the Shared Model’s data fields to be re-
verted. Consequently, a key to improving this basic merge
approach is to split the set of offline changes up into smaller
subsets and merge these subsets with the Shared Model one
after another. To this end, we propose a two-step approach
(see Algorithm 3) that first tries to merge the distinct set
of unconstrained data fields exclusively. Afterwards, the re-
maining set of constrained data fields is merged. As we show
in Section 5 the two-step merge approach exhibits a signif-
icantly higher chance that a set of offline changes can be
merged than basic merge. However, for large numbers of
fields the basic merge approach yields a better performance.

4. IMPLEMENTATION
This section discusses a prototype implementation that

has been developed to prove the feasibility of our approach.

It is founded on CoCoForm, a Web application framework
for real-time collaboration, supporting access control [10,11].

Our approach is completely decoupled from the collabora-
tive aspects of the application. Thus, it is complementary to
currently available frameworks for the development of real-
time collaborative Web applications, such as ShareJS1 or the
Open Cooperative Web Framework2 (OpenCoweb). In fact,
our prototype extends OpenCoweb, which consists of both,
a Collaboration Service (as in Figure 2) and a JavaScript
API that allows us to keep the Shared Model in sync with
all client-side Local Models. Both, the Change Tracker and
the Local PDP issue simple XMLHttpRequests to submit lo-
cal model changes to the central Merge Service and to re-
quest entailment constraint models from the Access Control
Model Repository. In case of failed requests (i.e., timeout

or error events are emitted) the Change Tracker uses the
Local PDP to determine if a change should be tracked or
not. We implemented the Local PDP (i.e., in JavaScript) in
such a way that it exhibits a runtime behavior that is iden-
tical to the Central PDP’s (which has originally been imple-
mented in Java). The Change Tracker and the Local PDP
leverage the Web Storage API3. More specifically, the win-

dow.localStorage JavaScript object provided by this API
is used to permanently persist tracked model changes, the
required entailment constraint model as well as the Local
Model in the user’s browser. The Change Tracker uses the
window.navigator.onLine attribute as well as the emitted
online event to react to regained network connectivity. The
Application Cache4 feature of HTML5 permanently caches
all required assets (e.g., JavaScript or CSS files) upon ac-
cessing the Web application for the first time. This allows
it to be accessed and executed in offline mode.

All server-side components are implemented in Java.
More specifically, the Merge Service and the Access Control
Model Repository are implemented as plain HTTP Services
using the JAX-RS API. Internally we work with Ecore5

model instances that are marshalled into JSON for the
client-side application code. We use a model-driven ap-
proach for defining forms and documents and securing them
using entailment constraints.

5. EVALUATION
In this section we first evaluate the merge algorithms’ pos-

sible degree of automation as well as the runtime perfor-
mance and scalability of a prototype implementation. Then,
we evaluate the performance and scalability of our prototype
Merge Service. Finally, we contrast two implementation vari-
ants of our proposed snapshotting approach.

5.1 Evaluation of the Merge Algorithms
A crucial part of our approach both in terms of the pos-

sible degree of automation and the overall performance are
the merge algorithms, which we evaluate in this section.

We evaluate the merge algorithms’ possible degree of au-
tomation by analyzing and comparing the percentage of ac-
tually performed merges and of overwritten fields. The eval-
uations have been performed using an exemplary, typical

1http://sharejs.org
2http://opencoweb.org
3http://www.w3.org/TR/webstorage
4http://www.w3.org/TR/html5/browsers.html#offline
5http://www.eclipse.org/modeling/emf

 0

 20

 40

 60

 80

 100

 0 0.2 0.4 0.6 0.8 1

 0

 20

 40

 60

 80

 100P
e

rf
o

rm
e

d
 M

e
rg

e
s

 (
%

)

O
v
e

rw
ri
tt

e
n

 F
ie

ld
s
 (

%
)

Offline Weight

Basic TwoStep

(a) Varied Offline Weights

 0

 20

 40

 60

 80

 100

 0 20 40 60

 0

 20

 40

 60

 80

 100P
e

rf
o

rm
e

d
 M

e
rg

e
s

 (
%

)

O
v
e

rw
ri
tt

e
n

 F
ie

ld
s
 (

%
)

Unconstrained Fields (%)

Basic TwoStep

(b) Constrained vs. Uncon-
strained Fields

Figure 5: Evaluation of Two Merge Algorithms

document and entailment constraint model with two sub-
jects, one role and four data fields. Three of the data fields
are constrained by subject-binding constraints and the re-
maining field is unconstrained. For this model, we have
calculated all permutations of possible merge combinations.
For these combinations, first, we contrast the basic (i.e.,
Algorithm 1) and two-step merge algorithms (i.e., Algo-
rithm 3), the actually performed merges, and overwritten
fields for different values of the offline weight parameter.
Second, we contrast the performed merges and overwritten
fields for different portions of unconstrained fields to ana-
lyze the impact of changes in the document and entailment
constraint model.

Our approach introduces the notion of an offline weight
as a means of discriminating offline changes (see Sec-
tion 3.3). Figure 5a depicts how the offline weight affects
the automatability, i.e., the chance that a merge can be
performed automatically. For instance, in our exemplary
scenario and an offline weight of 0.4 nearly 16.5% of all
possible merge combinations could be merged using the
basic merge algorithm, while 33% could be merged using
the two-step merge algorithm.

On the other hand, a growing offline weight value leads for
both algorithms to more deleted and eventually overwritten
fields of the Shared Model. Figure 5a provides evidence that
– at least in our exemplary scenario – the two-step merge
algorithm always performs better than the basic merge al-
gorithm, both in terms of a higher number of performed
merges and a lower number of overwritten fields.

While the exact progression of the graphs is specific to our
exemplary model, similar tradeoff graphs can be calculated
for other models. That is, on the one hand, a higher of-
fline weight increases the automatability, and, on the other
hand, it also increases the number of situations where on-
line data fields have to be overwritten. Consequently, there
is no universally optimal offline weight, but it has to be de-
termined empirically for a specific document and entailment
constraint model.

To illustrate and analyze the impact of changes in the doc-
ument and entailment constraint model, we set the offline
weight parameter to 0.5 and change the number of uncon-
strained fields in the document. In Figure 5b we can see the
effects of changing the ratio of constrained vs. unconstrained
fields in our exemplary scenario. Obviously, for a model that
has no constrained fields at all, the results are identical for
both algorithms. If half of all fields in our exemplary model
are unconstrained, the two-step merge algorithm manages to

 0.01

 0.1

 1

 10

 0 2 4 6 8 10

A
v
g

.
E

x
e

c
u

ti
o

n
 T

im
e

 (
m

s
)

Number of Fields x 100

Basic TwoStep

(a) Algorithms

 0

 20

 40

 60

 80

 100

 120

 0 100 200 300 400 500A
v
g

.
R

e
s
p

o
n

s
e

 T
im

e
 (

m
s
)

Concurrent Merge Requests

Service Baseline

(b) Merge Service

Figure 6: Performance Evaluations

merge nearly twice (i.e., 62%) as often and exhibits nearly a
seven times lower chance of overwritten fields compared to
the basic merge algorithm. The gap between the two algo-
rithms gets even wider with a growing ratio of unconstrained
fields. In summary, we observed that in both scenarios (i.e.,
with changing offline weights and especially with a grow-
ing number of unconstrained fields in a model) the two-step
merge algorithm exhibits significantly better characteristics
than the basic merge algorithm.

Algorithm 2 has a worst-case runtime complexity of
O (N ×M), i.e., in simplified form we can write O

(
N2

)
.

As a consequence, both merge algorithms (i.e., Algorithm 1
and 3) also have a runtime complexity of O (N ×M).

Because of the quadratic complexity and because Algo-
rithm 3 invokes Algorithm 1 two times, we further stud-
ied the performance impact of both approaches. The pre-
sented measurements are based on our prototype implemen-
tation (see Section 4) and have been conducted on a machine
equipped with a 2.4 GHz dual core CPU, 8 GB RAM, run-
ning Ubuntu GNU/Linux 13.04. The performance is mainly
dependent on the number of fields in a document. Figure 6a
visualizes the average execution time of a merge operation
for various field counts. Note that the y-axis is scaled log-
arithmically. Although the measurements exhibit a signifi-
cantly higher average execution time for the two-step merge
algorithm, the performance penalty should be negligible for
“reasonable” field counts. We consider the execution times
for both approaches to be acceptable, especially when keep-
ing in mind that merges typically happen only occasionally.

5.2 Evaluation of the Merge Service’s Perfor-
mance and Scalability

In addition to the performance evaluations for the merge
algorithms, we analyzed the performance of our prototype
Merge Service. In particular, we analyzed how well our Merge
Service handles merge requests that are issued simultane-
ously by a potentially large number of users.

Figure 6b compares the average response times of the
Merge Service (using the two-step merge algorithm) and a
“Baseline Service” (i.e., no computation at all), for a given
number of simultaneous requests. For instance, in the case
of 250 requests, the average response time for all clients
is roughly 40ms and 20ms for the Baseline Service. This
means, that in this case it takes roughly 20ms to perform
the actual merge operation, while the remaining 20ms ac-
count for the underlying communication and Web Service
stack. Our results indicate linear scalability and even in

 0.0001

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 1 2 3 4 5 6 7 8 9 10

M
e
m

o
ry

 U
s
a
g
e
 (

M
B

)

Number of Fields x 100

Copy
Log

(a) Memory Consumption

 0
 5

 10
 15
 20
 25
 30
 35
 40
 45
 50

 1 2 3 4 5 6 7 8 9 10

A
v
g
.
R

u
n
ti
m

e
 (

m
s
)

Number of Fields x 100

Copy Snapshot
Log Restore

(b) Execution Time

Figure 7: Evaluation of Snapshotting Approaches

the case of 500 users simultaneously submitting their offline
changes, the average response time remains below a tenth of
a second. As the Baseline Service represents the theoretical
minimum that is possible for the given Web Service frame-
work, we consider the performance overhead of our Merge
Service to be acceptable in most scenarios.

Note that we used the same machine and environment as
for the measurements of the merge algorithms. Additionally,
both the services and the testing tool, i.e., Apache’s ab tool6

ran on the same machine. Hence, the measurements are free
from network-induced effects such as latency or jitter.

5.3 Evaluation of Snapshotting Approaches
In Section 3.2 we motivated the need for a versionized

Shared Model and proposed a snapshot-and-replay ap-
proach. A document with n data fields potentially requires
n snapshots (i.e., if the fields are filled out one after the
other). Hence, we measured the consumption of computing
resources with a growing n. More specifically, we contrast
two implementation variants. First, the Copy approach
stores a clone of the complete document for each snapshot.
Second, the Log approach merely stores a log entry (i.e.,
who changed which fields). Figure 7a illustrates the amount
of memory that is required to hold n snapshots of a
document of n data fields in memory for both approaches
using our prototype implementation. Obviously, the Copy
approach requires approximately four orders of magnitude
more memory than the Log approach.

The corresponding (average) time that is needed to create
a single snapshot (i.e., to clone a document) using the Copy
approach is depicted in Figure 7b. As creating a snapshot
using the Log approach has a runtime complexity of O(1) we
can neglect it. On the other hand, using the Log approach
it takes significantly longer to restore a snapshot (i.e., the
Shared Model has to be cloned and all changes that have been
performed after the snapshot version to-be-restored have to
be reverted in the cloned model) than for the Copy approach
(which is O(1)). In summary, we conclude that the Log
approach is considerably more resource efficient than the
Copy approach.

6. RELATED WORK
In this section we discuss existing work in the related areas

of Web collaboration platforms, access control enforcement,
and (Web) document consistency.

6http://httpd.apache.org/docs/2.4/programs/ab.html

Web Collaboration Platforms. Systematic de-
velopment of Web collaboration platforms has received
considerable attention. Heinrich et al. [13] propose a col-
laboration infrastructure aimed at transforming single-user
Web applications into collaborative multi-user applications
by synchronizing DOM trees. Farwick et al. [8] discuss an
architecture for Web-based collaborative meta-modeling.
Their framework allows multiple users to work on graph-
ical meta-models collaboratively. Modifications of the
(meta-)models are secured by basic access control measures,
but in contrast to our work, they do not explicitly address
dynamic updates resulting from merging offline actions
under RBAC entailment constraints. Our work builds on
frameworks and libraries that facilitate the development
of collaborative Web applications. For instance, the Open
Cooperative Web Framework (see Section 4) consists of
a set of JavaScript libraries and a generic Java servlet.
MobWrite7 is another approach for enabling real-time
collaboration. However, it is restricted to synchronizing
HTML forms, and the re-usability and applicability is thus
somewhat limited.

Security and Access Control Enforcement.
Throughout the last years, a plethora of approaches have
been presented for integrating security and access control in
Web applications. Joshi et al. [15] provide an early study on
generic security models for Web-based applications. In [4],
Belchior et al. model RBAC policies using RDF triples
and N3Logic rules. Tackling security on the client side,
Guarnieri et al. [12] propose the GATEKEEPER framework
for authoring and enforcing policies in JavaScript code.
This complements our approach of having a local PDP
component on the client devices. Ahn et al. [1] present
an approach for injecting RBAC into an already existing
Web-based workflow system. They propose a special reverse
proxy for enforcing RBAC rules transparently to the actual
Web application. Sohr et al. [19] and Hummer et al. [14]
propose a similar approach in the context of Web services,
using interceptors that are able to prevent the actual
invocation in case of a policy violation. Several works on
distributed security enforcement, particularly in mobile
networks, complement and have influenced our approach.
For instance, Alicherry et al. [2] support offline nodes by
early distribution of policy tokens among network nodes.
Similarly, Gasmi et al. [9] partition networks into trusted
virtual domains which can operate and manage access
rights independently. Finally, while we focus on access
control, various other issues and threats also need to be
taken into account, as studied by Almorsy et al. [3]. Their
approach utilizes Object Constraint Language to define
vulnerability signatures for threats like SQL injections
or cross site scripting. Based on the signatures, different
mitigation actions are proposed.

Document Consistency. The seminal work of Sun et al.
[21] proposes the transparent adaptation (TA) approach to
develop collaborative multi-user applications. The corner-
stone of TA is operational transformation (OT) [7]. Given
two concurrent operations o1 and o2 resulting in states s1
and s2, the core idea of OT is to transform the parameters
of the operations to execute them on the current state while
maintaining document consistency. Our approach is orthog-
onal to OT: the RBAC policies and entailment constraints

7https://code.google.com/p/google-mobwrite

provide an application workflow with well defined responsi-
bilities, and we maintain document consistency by allowing
only sequences of operations that comply with this work-
flow. The problem of consistency with concurrent modifica-
tions has also been a core issue in database research. The
general approach of allowing concurrent work, followed by
merging and resolving conflicts is denoted optimistic concur-
rency control [5] in databases. In this sense, the sequence
of offline actions in our approach relates to a transaction in
databases, and during merging the action sequences “com-
pete” with the online changes that have happened in the
meantime. A consistent merging strategy that could be ap-
plied to this problem is discussed and formally verified by
Lin and Mendelzon in [16].

7. CONCLUSION AND FUTURE WORK
In this paper we have shown that offline editing for entail-

ment constrained, real-time collaborative Web documents
can effectively be realized using a combination of client-
side access control enforcement and a document merging
approach. We highlighted that merging such documents is
inherently prone to conflicts and motivated the need for a
merge approach that is capable of detecting and resolving
conflicts automatically. We provided evidence that many
possible conflicts can be resolved automatically and that
both the merge algorithms and the prototype Merge Service
work with acceptable runtime performance and scalability
even for lots of simultaneous merge requests and documents
with lots of data fields. In addition, we demonstrated that
modern Web browsers as well as HTML5 and some of its
accompanying APIs provide a platform that can be used to
implement our novel approach.

Future work will address limitations inherited from
HTML5 and Web browser implementations, such as the
limited client-side storage capacity which be problematic if
we have to deal with huge document and entailment con-
straint models (i.e., tens of thousands of model elements).
Although we have shown that our basic merge approach
works quite well, the characteristics of the two-step merge
approach leads us to believe that there is still room left
for improvements in that area. Another interesting topic
would be to devise an approach for estimating (i.e., instead
of determining it empirically) the optimal offline weight
for a given document and the corresponding entailment
constraint model. Furthermore, we will apply our approach
to other types of collaborative processes. In particular
with regard to dynamic processes (e.g., free text editing or
modeling) we will have to deal with completely dynamic
document and access control and constraint models (i.e.,
models that change at runtime).

8. REFERENCES
[1] G.-J. Ahn, R. Sandhu, M. Kang, and J. Park. Injecting

RBAC to secure a Web-based workflow system. In 5th
ACM workshop on RBAC, pages 1–10, 2000.

[2] M. Alicherry, A. Keromytis, and A. Stavrou. Deny-by-
default distributed security policy enforcement in
mobile ad hoc networks. In 5th SecureComm, 2009.

[3] M. Almorsy, J. Grundy, and A. S. Ibrahim. VAM-aaS:
Online Cloud Services Security Vulnerability Analysis
and Mitigation-as-a-Service. In 13th WISE, 2012.

[4] M. Belchior, D. Schwabe, and F. Silva Parreiras.
Role-based access control for model-driven web
applications. In 12th ICWE, pages 106–120, 2012.

[5] P. A. Bernstein, V. Hadzilacos, and N. Goodman.
Concurrency Control and Recovery in Database
Systems. Addison-Wesley, 1987.

[6] E. Bertino, E. Ferraria, and V. Atluri. The specifica-
tion and enforcement of authorization constraints in
workflow management systems. TISSEC, 2(1), 1999.

[7] C. Ellis and S. Gibbs. Concurrency control in group-
ware systems. SIGMOD Record, 18(2):399–407, 1989.

[8] M. Farwick, B. Agreiter, J. White, et al. A web-based
collaborative metamodeling environment with secure
remote model access. In 10th ICWE, 2010.

[9] Y. Gasmi, A.-R. Sadeghi, et al. Flexible and secure
enterprise rights management based on trusted virtual
domains. In 3rd ACM STC workshop, 2008.

[10] P. Gaubatz, W. Hummer, U. Zdun, and
M. Strembeck. Supporting customized views for
enforcing access control constraints in real-time
collaborative web applications. In 13th ICWE, 2013.

[11] P. Gaubatz and U. Zdun. Supporting entailment
constraints in the context of collaborative web
applications. In 28th Symposium On Applied
Computing, 2013.

[12] S. Guarnieri and B. Livshits. GATEKEEPER: mostly
static enforcement of security and reliability policies
for javascript code. In USENIX Security’09, 2009.

[13] M. Heinrich, F. Lehmann, T. Springer, and
M. Gaedke. Exploiting single-user web applications for
shared editing: a generic transformation approach. In
21st Int. Conf. on WWW, pages 1057–1066, 2012.

[14] W. Hummer, P. Gaubatz, M. Strembeck, U. Zdun,
and S. Dustdar. An integrated approach for identity
and access management in a SOA context. In 16th
ACM SACMAT Symposium, pages 21–30, 2011.

[15] J. Joshi, W. Aref, A. Ghafoor, and E. Spafford.
Security models for web-based applications.
Communications of the ACM, 44(2):38–44, 2001.

[16] J. Lin and A. O. Mendelzon. Merging databases under
constraints. Int. J. of Coop. Inf. Systems, 07(01), 1998.

[17] R. Sandhu, E. Coyne, H. Feinstein, and C. Youman.
Role-based access control models. Computer, 1996.

[18] S. Schefer, M. Strembeck, J. Mendling, and
A. Baumgrass. Detecting and resolving conflicts of
mutual-exclusion and binding constraints in a business
process context. In 19th CoopIS, 2011.

[19] K. Sohr, T. Mustafa, X. Bao, and G.-J. Ahn.
Enforcing Role-Based Access Control Policies in Web
Services with UML and OCL. In 24th ACSAC, 2008.

[20] M. Strembeck and J. Mendling. Generic algorithms for
consistency checking of mutual-exclusion and binding
constraints in a business process context. In 18th
CoopIS, pages 204–221, 2010.

[21] C. Sun, S. Xia, et al. Transparent adaptation of
single-user applications for multi-user real-time
collaboration. ACM TOCHI, 13(4):531–582, 2006.

[22] J. Wainer, P. Barthelmes, and A. Kumar. W-RBAC -
A workflow security model incorporating controlled
overriding of constraints. Coop. Inf. Syst., 12(4), 2003.

