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Abstract

In this design study, we present an analysis and abstraction of the data and tasks related to the domain of epige-
nomics, and the design and implementation of an interactive tool to facilitate data analysis and visualization in
this domain. Epigenomic data can be grouped into subsets either by k-means clustering or by querying for com-
binations of presence or absence of signal (on/off) in different epigenomic experiments. These steps can easily be
interleaved and the comparison of different workflows is explicitly supported. We took special care to contain the
exponential expansion of possible on/off combinations by creating a novel querying interface. An interactive heat
map facilitates the exploration and comparison of different clusters. We validated our iterative design by working
closely with two groups of biologists on different biological problems. Both groups quickly found new insight into
their data as well as claimed that our tool would save them several hours or days of work over using existing tools.

Categories and Subject Descriptors (according to ACM CCS): H.5.m [Information Systems]: Information Interfaces
and Presentation—Miscellaneous; I.3.8 [Computing Methodologies]: Computer Graphics—Applications

1. Introduction
Most cells in an organism share the same underlying DNA
sequence (genome) and yet they display a great diversity
of physical properties and functions. This diversity largely
comes from differences in which genes are active (ex-
pressed) or silent (repressed) in each cell type. Changes in
gene expression caused by mechanisms other than changes
in the underlying DNA sequence are broadly referred to as
epigenetic changes, where “epi” indicates a change “above”
the genome. Examples of such mechanisms include chemi-
cal modifications to the DNA itself or to its associated pro-
teins. We will refer to these chemical modifications as “epi-
genetic marks”.

Techniques such as ChIP (chromatin immunoprecipita-
tion) coupled with innovative DNA sequencing technology
(ChIP-seq) have revolutionized our ability to measure the
abundance of epigenetic marks across the genome, giving
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rise to so called “epigenomic data”. Many large consor-
tia such as ENCODE [The12] and the NIH Epigenomics
Roadmap Project [BSC∗10] have convened to exploit these
technologies and perform hundreds of ChIP-seq experiments
involving diverse cell types. The key challenge for new bio-
logical insight lies in integrative analysis, in which different
data are combined and interpreted together, for example as
patterns of epigenetic marks across different cell types.

While computational methods to interpret these data con-
tinue to evolve and improve, there is great value in data ex-
ploration and many questions remain too ill-defined to be
addressed in an automated fashion. Visualization is thus a
valuable tool in this domain. In addition, the rapidly chang-
ing computational tool set for data analysis often requires
significant computational expertise to use. Many of the bi-
ologists who possess the detailed knowledge needed to in-
terpret these data must rely on programming experts. As a
result, interactive visualization holds great promise in being
able to lower the computational barrier to analysis and en-
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gage biology experts more directly in data processing and
interpretation.

In this paper, we address the need for visual analysis
tools and present an interactive tool for visual exploration
and analysis of epigenomic data. Our first contribution is a
characterization of the data (see Section 2) and a discussion
and abstraction of the related domain tasks (see Section 3).
Second, we provide our design including an interactive heat
map explorer and approaches for querying combinations and
subsets (see Section 5). Third, we validate our approach by
presenting two detailed case studies with two groups of do-
main experts working on different biological problems, and
reporting their insights (see Section 6). We also comment on
lessons learned in our design process and provide sugges-
tions for other researchers working in this domain.

2. Biological Background and Data
2.1. Epigenetic Marks
Due to noise introduced at various stages of the ChIP-seq
procedure, the resulting measurements of epigenetic marks
are not binary values corresponding to the presence/absence
of a given chemical modification at each position in the
genome. Rather, ChIP-seq provides measurements of epige-
netic mark enrichment across the genome and filtering meth-
ods are used to distinguish signal “peaks” from background
noise. Each peak has a chromosome start and an end posi-
tion and enrichment values across the interval. A commonly
used format to store such peaks is the Wiggle (WIG) for-
mat [WIG]. Researchers may refer to peak data as wig files,
track data, samples, or experiments, but we refer to them as
“epigenetic marks” or simply “marks” throughout the paper.

2.2. Region Sets
In order to make sense of epigenetic marks across the
genome, researchers often focus on genomic regions de-
fined by features of biological interest. One common exam-
ple is the set of start positions of known genes referred to
as transcription start sites (TSS). A region set is a collec-
tion of genomic intervals and is usually described in GFF
(General Feature Format) [Ste10] or BED (Browser Exten-
sible Data) [BED] file formats. These formats capture the
genomic locations of the regions and support inclusion of
additional information, such as external database identifiers
for each feature. The number of regions within the region
set depends on the type of the analysis, but it usually varies
between a few hundred to tens of thousands.

Often, the genomic intervals are of a fixed length centred
on features of interest, for example, ±1,000 nucleotides (nt)
around a TSS. It is also quite possible for them to be of
different lengths, for example, the boundaries of annotated
genes. Our users all asked for a fixed length interval and re-
quested that variable length regions either be extended or
truncated to this fixed length.

2.3. Data Abstraction
Many analysis tasks involve investigation of multiple epi-
genetic marks across a single region set. This allows us to

consider only the subset of epigenetic mark values that fall
within the target regions. Since the epigenetic marks and
the region set use a common reference genome coordinate
system, the mapping is straightforward. The result is a set
of high-dimensional vectors, where each vector contains the
values of a given epigenetic mark across a single region. If
we define m as the number of epigenetic marks under con-
sideration, r as the number of regions in the set, and l as
the region length (same for all regions in the set), then this
process will produce m× r vectors of length l.

In order to perform computationally efficient analysis on
these vectors and to reduce artifacts such as signal spikes,
it is common practice to accumulate multiple positions of
each vector into a single bin. Our users typically used bin
sizes of 50 to a few hundred, which have biological mean-
ing in terms of nucleotide length. So, for example, regions
of size 2,000 nt and a bin size of 50 nt, will result in vec-
tors containing only 40 values. The binned values are nor-
malized with methods such as the sigmoid function used by
ChromaSig [HRW08] to enable comparison between multi-
ple epigenetic marks.

3. Task Analysis
Data peaks are a very common starting substrate for analysis
(see Section 2.1) and there are a great number of different
questions biologists might wish to ask that can help reveal
the functional role of the epigenetic marks. Common ones
include “are there genes nearby and what are they?” or “do
these peaks lie in regions with characteristic patterns?”.

Through our discussions with several biologists, we have
identified several tasks that are not well served by current
tools. While solutions exist, they are awkward, do not im-
mediately produce an interactive visual, or do not capture all
the requested functionality. Here we categorize these tasks
and highlight important considerations gleaned from discus-
sion with analysts.

3.1. Task 1 - Signal Query
Considerations: (1) It remains open for debate whether the
signal height from an epigenetic mark has biological signif-
icance. Given that they are acquired through an enrichment
process, height is important for distinguishing signal from
noise; however it is unclear whether more subtle height dif-
ferences are meaningful. Biologists therefore tend to reason
about peaks as being either present or absent. (2) An individ-
ual epigenetic mark is almost never considered in isolation.
Part of the power of the ChIP-seq technology is to profile
the positions of several modifications in the same cell or tis-
sue type in parallel and integrate the results into a meaning-
ful picture of the larger system. (3) While many analyses
are exploratory, biologists very often have a particular signal
pattern in mind. A common workflow is to query for regions
with a pattern of interest and then explore from this starting
point.

Example Question: “Show me the regions where there are
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peaks in marks A and B, but not in C or D. I don’t care about
the peak status in E through G.”

3.2. Task 2 - Cluster
Considerations: (1) Clustering is a powerful exploration tool
and is best used in cases where no precise query can be for-
mulated. (2) It is also used in categorizing differences in sig-
nal position or distribution. (3) Researcher often want to ex-
plore the output of Task 1 through clustering.

Example Question: “In my target region set, what are the
classes of data patterns in marks E through G?”

3.3. Task 3 - Quality Control
Considerations: (1) k-means clustering is widespread and
well-known in the biology community. It has the well-known
drawback that it requires the number of clusters as input
(which requires informed guess work). k-means is also us-
ing random seeds, creating different clusters each time it is
run. (2) Datasets “in the wild”, including sequencing data,
often do not have an obvious cluster structure, i.e. clusters
often overlap. (3) Biologists desire to visually inspect the
clusters to either assure the reliability of the clusters, try a
different cluster number or do further downstream analysis
of the found clusters.

Example Question: “Do most regions in the first cluster
follow the trend of signal presence in mark A and absence in
mark C?”

3.4. Task 4 - Comparison
Considerations: (1) Biologists very often want to find the in-
tersection of sets. For example, clusters of interest could be
obtained through iterations of Task 1 and 2. A biologist may
then want to compare the clusters from different workflows
to determine whether they contain the same or different re-
gions. (2) Generation of many different intersections can be
laborious and comparison of the output in visualization mod-
ules is cumbersome.

Example Question: “Do subset 1 and subset 2 contain the
same or different regions?”

3.5. Task 5 - Downstream analysis
Considerations: Biologists will frequently need to generate
visual and text outputs of their results and findings either
to (1) read them into other tools for further analysis, (2) to
communicate them with their peers or (3) to include them in
manuscripts.

Example: “I want to use another tool to check the func-
tional similarities of the regions in this subset.”

4. Related Work
Genome browsers are a popular approach for visualizing
genome-scale data [NCD∗10] and play an important role in
increasing the accessibility of large public data sets, such as
the ENCODE data resource currently hosted by the UCSC
Genome Browser [RDL∗12]. Each epigenetic mark is dis-
played as a separate heat map or histogram plot, often called

a “track”, and then multiple marks can be viewed simultane-
ously by vertically stacking these tracks. Part of the power
of this arrangement is that data from diverse marks are an-
chored to the same horizontal reference coordinate and can
thus be readily compared.

Genome browsers are optimized for viewing one local re-
gion at a time. While this makes them valuable for detailed
data inspection and exploration, it prevents them from aiding
in global pattern analysis. Several techniques have emerged
to facilitate global pattern discovery in epigenomic data.
These include probabilistic methods for the discovery of epi-
genetic signatures de novo, such as ChromaSig [HRW08],
and more recently, Hidden Markov Model approaches
[EK10] and Bayesian network approaches [HBW∗12] to un-
cover recurrent epigenetic states. However, these methods
require significant computational skill to use and in most
cases remain inaccessible to most biologists.

There are a handful of applications that attempt to bridge
this computational gap in epigenomic data analysis. For
example, CisGenome [JJM∗08] contains a graphical inter-
face for running analyses such as peak detection, false dis-
covery rate computation and sequence analysis. Similarly,
seqMINER [YKC∗11] offers a range of data processing
capabilities including an implementation of k-means clus-
tering and a corresponding heat map display. This type
of clustering and heat map view have been widely ac-
cepted for epigenomic data ever since their appearance in
early analysis papers [HSH∗07, HHH∗09]. Most recently,
Cistrome [LOT∗11] provides integrative analysis and visu-
alization tools for ChIP-seq data, taking advantage of the
Galaxy platform [GNTT10]. The strength of these tools lies
in their ability to connect diverse analysis methods in a sin-
gle application. While they provide visualization compo-
nents, the emphasis is on chaining tools into a workflow
rather than on optimizing the visual representation and there
is very little linking between the different visual displays.

Spark [NYO∗12] is a recent tool that provides a visual
workflow to address clustering. While it does a good job in
helping to explore different clusters (Task 2), it doesn’t pro-
vide a way to understand the variance of the clusters (Task
3) nor does it allow the user to query on/off combinations
(Task 1) nor does it facilitate comparisons (Task 4).

Understanding combinatorial combinations (Task 1) has
been hard and does not scale well. Practical implementa-
tions are typically constrained to just very few sets and are
often visualized using Venn- or Euler-diagrams [CR04]. Al-
ternative representations of combinatorial queries use iconic
representations or a Karnaugh map [Huo08].

More recently StratomeX [LSS∗12] provides visual sub-
set comparison using ribbons of varying width drawn be-
tween neighboring columns. While this visual encoding
works for comparison of multiple different cluster results,
we specifically focus on just comparing two different results
here. While we can envision to integrate some of its func-
tionality into a future version of our tool, our focus was the
integration of Tasks 1-5 in one simple tool at this point.
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Figure 1: Interface: (a) Workspace Pane, (b) Method Pane, (c) Heat Map Pane, (d) Plot Pane, (e) Favourites Pane.

Finally, standard visual and interaction concepts such
as Brushing and Linking [BC87] as well as Dynamic
Queries [AWS92] are commonplace in today’s visualization
tools such that they are well understood by our users. Hence,
our tool is making extensive use of these concepts.

5. ChAsE
We now describe our tool, called ChAsE (Chromatin Anal-
ysis and Exploration), and outline how our current approach
addresses the analysis tasks discussed in Section 3.

5.1. Data Input
A graphical user interface allows specifying one or more epi-
genetic marks and one region set of genomic intervals. Pro-
cessing parameters, such as the normalization options, or vi-
sualization parameters, such as heat map colour or ordering,
can be specified per epigenetic mark. A visibility option was
added after we observed that users preferred to load a larger
set of epigenetic marks upfront and then modify it depend-
ing on their immediate analysis goals. The region size and
number of bins need to be specified only once as they will
be identical for preprocessing all epigenetic marks.

The processing time depends on the size of the input files
but usually takes a few minutes per data file. The results of
the processing are stored in the output directory specified by
the user, so future data loading times will be much faster
(a few seconds). Users can reopen the input dialog during
analysis and modify the input parameters or add or remove
marks without losing the current state of their analysis.

5.2. Interface
The ChAsE interface consists of five linked panes as shown
in Figure 1. Data from a single region set and one or more
epigenetic marks is first loaded into the Workspace Pane
(Figure 1(a)). We will refer to this as the “full set”. It can
then be divided into various subsets, which we will simply
call “set” or “sets”, using functionality within the three al-
ternate Method Panes (Figure 1(b), Figure 3). Once created,
a set can be stored in the Favourites Pane (Figure 1(e)) for
later use. The plots can be inspected in a zoomed view in
the Plot Pane (Figure 1(d)). Closer inspection of data across
individual regions is reserved for the Heat Map Pane (Fig-
ure 1(c)).

5.3. Workspace Pane
The Workspace Pane (Figure 1(a)) shows a snapshot of the
current sets and is organized as a matrix. Each row of this
matrix corresponds to one set and a column corresponds to
a particular epigenetic mark. We chose a data representation
commonly used by biologists in the field, called a “profile
plot". The x-axis captures offsets from the region start (e.g.
position relative to a TSS) and the y-axis is used to express a
summary statistic for all values at these relative positions. A
profile plot summarizes the data for each epigenetic mark in
each set (i.e. for each cell in the matrix) providing the user
with a quick visual summary of the data patterns.

Offset from the main matrix, the leftmost column displays
a summary of all the epigenetic marks in one row as overlaid
profile plots which we call a “summary plot". Comparing
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signal distributions across many columns can be challenging
and the summary plot offers a valuable mechanism for spot-
ting subtle differences in signal distributions between epige-
netic marks. To aid this comparison, the summary plot and
profile plots are linked, such that when a user mouses over
a column, its corresponding curve in the summary plot is
highlighted. The size of each set is shown in square brackets
as a percentage of the full set or the actual number of re-
gions when the size drops below 1%. Each set can also have
a user specified title or descriptive note allowing the users to
keep track of their history. Clicking on either the summary
plot or any individual profile plot automatically displays it in
the Plot Pane (Figure 1(d), lower right) and Heat Map Pane
(Figure 1(c), upper right) for closer inspection.

5.3.1. Profile Plot Views
A user can alternate between different profile plot visual-
izations and their size through a context menu. We provide
four choices of summary statistics for display in the profile
plots (Figure 2): The Mean and standard deviation view (2a)
shows the average signal profile of the region set surrounded
by the +/− standard deviation range. The Continuous box
plot view (2b) shows the median signal surrounded by the
quartile boundaries as an indication of the range and fre-
quency of signal heights. The Mean and signal scatter view
(2c) shows the average signal profile as well as a scatter of all
profiles for the region set accumulated and rendered with a
log scale. The Mean and peak scatter view (2d) accumulates
only the max peak value per region for each epigenetic mark
rather than the entire profile, addressing users’ expressed in-
terest in the distribution of the peaks in a set in terms of their
height and location.

Figure 2: Profile plot views: (a) mean +/- standard devia-
tion, (b) continuous box plot, (c) mean and signal scatter, (d)
mean and peak scatter, and (e) summary plot.

5.4. Method Panes
There are three Method Panes (Figure 3) to address Tasks
1, 2, and 4 outlined in Section 3: Signal Query, Cluster, and
Comparison. Only one of these three Method Panes is dis-
played at a time and they always appear at the top of the
Workspace Pane. We found, this minimized confusion and
allowed the user to focus on a single method.

5.4.1. Signal Query Pane
We explored several different data encodings and interaction
schemes to help the user specify a particular signal query.
Displaying all possible on/off (i.e. present/absent) combina-
tions across all epigenetic marks would quickly lead to an
overwhelming number of options and was impractical. So, it
was important to enable our users to limit the combinations

Figure 3: Method Panes: (a) Signal Query (b) Cluster (c)
Comparison.

by specifying whether a signal should be on or off or either
in each epigenetic mark.

We initially tried providing constraints that allowed the
user to express multiple combinations at once. For example,
a user could specify both the on and off state for mark A and
just the on state for mark B. This would give rise to three
sets: A-on and B-on, A-off and B-on, and the rest. However,
this approach of expressing combinations was not intuitive
to our users. Instead, during our discussions, they would of-
ten simply draw out the combinations of interest, one at a
time. The number of combinations our users wished to gen-
erate tended to be small compared to the space of possibil-
ities. The process could be thought of as querying for indi-
vidual signal sets and we therefore decided to support this
one-at-a-time querying more directly.

Figure 3a shows our final Signal Query Pane design. A
user opens this pane by selecting a target set and choos-
ing "Signal Query" from the top “Methods” menu. A pair
of check boxes appears above each column and allows the
user to specify on (top box checked), or off (bottom box
checked), or indifference (neither checked). As the user
modifies the query, a preview of the resulting set is shown
at the bottom of the pane as a row of profile plots as well as
on the heat map to the right of the pane. In cases where the
resulting set is empty no plot or heat map will be shown. The
resulting set is only imported into the Workspace once the
user clicks the "Add" button. This allows the user to accumu-
late sets in their Workspace Pane when there are multiple de-
sired combinations, as well as to make the sets available for
further analysis (i.e. clustering or comparison). Annotations
are shown above the created sets in the workspace showing
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the query used to create the subset (an example shown at the
bottom of the Workspace Pane in Figure 1(a)).
5.4.2. Cluster Pane
A user initiates clustering by selecting the target set and se-
lecting “k-means clustering” from the “Methods” menu. In
addition to the number of clusters, the Cluster Pane allows
specifying the epigenetic marks to be included in the cluster-
ing step using the check boxes above each mark (Figure 3b).
Clicking the "Run" button commences the clustering run.
Once the process is complete, the resulting clusters appear in
the Workspace Pane as the children of the input set in a tree
structure. The heat map view shows the clusters separated
by horizontal lines with a thicker stroke used to indicate the
marks included in the clustering.

Because clusters can be subsequently subclustered, we
needed to manage potentially large tree structures. Leaf
nodes (i.e. clusters with no sub-clusters) are represented with
solid circles, whereas parent nodes (i.e. clusters with sub-
clusters) are represented by either a 	 sign, to indicate an ex-
panded node, or with a ⊕ sign, to indicate a collapsed node.
Allowing the user to toggle between expanded and collapsed
states by clicking on the parent nodes made the tree structure
manageable.

The user can explore the newly created clusters or choose
to rerun k-means clustering with the same or different pa-
rameters. It is a known fact that the result of k-means will
depend not just on the value k, but also on the initial seeding
consisting of k randomly selected members of the input set.
Thus each run of k-means can result in a different clustering.
We chose not to fix this seeding to artificially hide this draw-
back of the k-means algorithm. Our users were aware of this
fact and tended to run k-means until an interesting clustering
is observed or until they could assess the reproducibility of
a cluster (part of Task 3).
5.4.3. Comparison Pane
Comparisons can be formulated as queries for the inter-
section across multiple sets (Task 4). A comparison is ini-
tiated by selecting two or more sets from the Workspace
Pane while pressing the Shift key and then selecting “Cluster
Comparison” from the “Methods” menu. As shown in Fig-
ure 3c, the Comparison Pane displays the input sets and a
preview of the intersection using the same profile plot dis-
play found in the Workspace Pane. The check boxes on the
left of the summary plots allows the user to specify either in-
clusion (checked) or exclusion (unchecked) of the set and a
label is shown for clarification of the set operation. Initially
all check boxes are checked, thus the result is the intersection
of all sets.

5.5. Heat Map Pane
Heat maps are one of the most widely used visual encod-
ings for biological data [WF09]. They encode the values of
a data matrix as shades of colour. Heat maps are used in
different stages of the research from data analysis to pre-
sentation, but despite their popularity, there are valid ar-
guments against their use [Won10]. It is much harder to

compare signal variations and the overall signal shape from
colour variations alone, so other encodings such as profile
curves [MWS∗10, MMDP10], are used alternatively. In ad-
dition, the resolution of the data is usually higher than the
resolution of the heat map, and therefore the pixels represent
an average and can hide certain data characteristics such as
local peaks. We partially address these concerns with our in-
teractive heat map.

Figure 1(c) depicts the Heat Map Pane. Each column cor-
responds to a single epigenetic mark and the rows corre-
spond to genomic regions. To render the heat map, the values
of the data matrix are mapped to the colour specified by the
user. Users tend to use different colors for marks with dif-
ferent biological nature. We provide a set of six sequential
colour schemes with the same perceived intensity as well as
two diverging colour schemes which we picked using Color-
Brewer [Bre12]. Regions can be sorted by the signal in one
mark at a time. All columns are coordinated such that the
row order is the same across columns. An arrow above a col-
umn indicates the mark currently dictating the sorting. The
direction of the arrowhead indicates the sort order and can
be flipped when clicked. Underneath the heat map, a legend
provides the total number of the regions, the display density
(regions/pixel row), and the current sorting criteria.

Regions are initially sorted by their order in the input re-
gions file, but different sorting criteria, such as signal aver-
age, signal max, or signal peak offset, can be chosen by the
user through a context menu or the top “Heatmap” menu.
Sorting is commonly used to get an overview of the distribu-
tion of the signal value and shape across regions of an epi-
genetic mark, comparing the correlations between multiple
epigenetic marks, as well as visually assessing the quality
and variations within the clusters (Task 3). Regions belong-
ing to a collapsed parent, will all be sorted together. For an
expanded parent, regions belonging to different children will
be sorted separately.

As stated above, heat maps suffer from at least two major
short comings. First, detecting the shape of the signal from
the colour variation is not straightforward. To address this, as
the user drags the mouse pointer on the heat map we show
a profile plot of the regions underneath the heat map over
the legend information. Second, when too many regions are
overlapped and averaged within one row of pixels, we allow
users to interactively zoom and pan through the heat map.
This is realized by a resizable scrollbar on the right side of
the heat map.

5.6. Plot Pane
The plot pane (Figure 1(d)) shows a zoomed version of the
selected profile plot and includes additional legends and axis
labels. One of our users showed most interest in a zoomed
summary plot where the profiles for all epigenetic marks for
a region set are overlaid together. Hence, the user can ad-
just the horizontal and vertical view range through resizable
scrollbars. A small view of the entire plot is shown on the
top right corner with the invisible view range shaded.
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5.7. Favorites Pane
We were often asked by the users to be able to save the cur-
rent results of their analysis or partial hypothetical findings
before performing different tasks. Although it is possible to
have all of them in the workspace view and save them to
file, this would have cluttered the workspace view in the
long run competing with the goal of quick and easy access
to the current working sets. We thus provided a favourite
pane (Figure 1(e)), where region sets within the workspace
could be added for future reference and brought back to
the workspace as needed. Regions in the favourite pane are
shown with a summary plot and their size.

5.8. Common Functionality
In addition to the functionality specific to each view spec-
ified above, most views share some common functionality,
which are available through contextual menus. This func-
tionality includes operations such as annotation, removal,
and export of region sets. Further, the user can save images
of the heat map or profile plots as high resolution PDF files
(Task 5).

6. Case Studies
Our design process had three phases: (1) iterations of inter-
face sketches based on feedback we received from domain
experts, (2) implementation of an initial prototype interface
based on these refined sketches, and (3) an iterative refine-
ment of the prototype based on feedback from biologists af-
ter using the prototype. During this last phase, we first gave
the users a tutorial on the use of the prototype. We then
loaded their data and observed them using our tool. During
this session, the users offered out loud descriptions of their
thoughts while using the tool. We then collected more reflec-
tive feedback after deployment of ChAsE for several weeks.
Here we present illustrated walkthroughs of two case studies
with two groups of collaborators.

6.1. Case Study 1: Signal Querying and Clustering
Our first group of collaborators were two biologists who
were researching the co-localization of patterns across four
marks in human liver cells under two conditions C1 and C2.

6.1.1. Analysis 1: Filtering Using the Signal Query
Using a set of regions centred on peaks collected from four
marks, labelled HNF4a_C1, HNF4a_C2, FoxA2_C1 and
FoxA2_C2, our collaborators’ first step was to filter for re-
gions containing signal from two or more of the four marks.
This corresponds to 11 out of the possible 16 combinations
of presence or absence of signal in four marks. Using the
Signal Query Pane, they first identified the four sets in which
signal is present for only one of the four marks (4(a)). Next,
they used the Comparison Pane to exclude these sets from
the full set by intersecting their complements (Figure 4(b)).
While this took less than a minute, a similar workflow with
their previous tools would have required them to extract each
of the 11 combinations, taking them tens of minutes.

Figure 4: Analysis 1: Comparison Pane is used to exclude
regions in which only one mark out of four showed a signal.

6.1.2. Analysis 2: Finding Patterns Using the Signal
Query

Our collaborators then wanted to identify those regions with
signal in HNF4a_C1 and FoxA2_C1, but not in HNF4a_C2
and FoxA2_C2. This would have been frustrating, if not im-
possible, to achieve with k-means clustering alone, but it was
readily performed using the Signal Query Pane (Figure 5).

Our collaborators then scanned across the resulting pro-
file plots and inspected the data patterns for seven additional
marks not used in the query step. Several observations re-
sulted that confirmed their predictions for the regions in the
set created using signal query:
1. H3K4me3_C1 and H3K4me3_C2 are only weakly asso-

ciated with these regions. This is consistent with previous
observations [HRZ∗10, HSH∗07]

2. H3K4me1_C1 and H3K4me1_C2 differ in their distribu-
tions across the regions; H3K4me1_C1 displays a distinct
bimodal (two peaks) distribution, whereas H3K4me1_C2
appears unimodal (single peak). This observation is also
consistent with previous reports [HRZ∗10].

3. These regions have very low levels of H3K27me3_C1
and H3K9me3_C1, which is expected for transcription-
ally active sites.

4. H4ac_C1 mimics the bimodal distribution pattern of
H3K4me1_C1, also reported previously [HSH∗07].
Identification of such subsets based on data presence or

absence can otherwise be done using an intersection tool,
such as that provided in Galaxy [GNTT10] or written in cus-
tom code. Each intersection must be performed separately
and stored for subsequent loading into different tools that
provide profile plot or heat map views. This makes the gener-
ation of multiple sets laborious and the comparison of profile
plots from other marks difficult. Our tool markedly short-
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ened the time our collaborators needed to generate filtered
sets of interest and also provided instant feedback regarding
the corresponding data patterns in other marks.

Figure 5: Signal Query Pane used in Case Study 1. Numbers
correspond to the observations in Analysis 2.

6.1.3. Analysis 3: Chaining Querying and Clustering
A more detailed inspection of the heat map and brief ex-
ploratory sorting of the columns revealed a small set of
H3K4me1_C1 with a unimodal rather than a bimodal dis-
tribution. Subsequent k-means clustering on that mark iso-
lated the unimodal set (highlighted in Figure 6). While uni-
modal profiles for H3K4me1 have been observed previously
in other conditions [HRZ∗10], the unimodal pattern for H4ac
is undocumented and warrants further investigation.

Figure 6: k-means clustering of the set shown in Figure 5.
The unimodal distribution of H3K4me1_C1 and H4ac_C1
is highlighted with a border.

This analysis illustrated the value of enabling users to in-
terleave their steps of analysis while providing them with
visualizations to support quality control in the process.

6.2. Case Study 2: Exploration with the Interactive
Heat Map

Our second group of collaborators were a biologist and
a bioinformatician who were studying the relationship be-
tween several different marks in mouse embryonic stem
cells. For this analysis, the region set consisting of about
30,000 regions in the neighbourhood of characterized genes
(TSS +/- 1,000 base pairs) and a total of six different marks
were loaded into the tool and labelled CpG, 5-mC, 5-hmC,
H3K4me3, HeK27me3, and TET1.

6.2.1. Analysis 1: Initial Exploration using the Heat
Map

Unlike in Case Study 1, this group of collaborators wanted
to use their original unfiltered data, which was guaranteed
to have some low and noisy signals in most regions. This
prevented them from taking advantage of the Signal Query
or the Comparison Panes effectively and they only employed
the clustering and heat map browsing in their analysis. To
further support this task, we introduced a divergent colour
scheme to make it easier to judge whether the data values are
low, medium or high (blue, yellow, and red, respectively).

Initial browsing of the data in the Heat Map Pane while
sorting the regions by the average value of different marks,
showed co-localization of CpG and H4K4me3, but an anti-
correlation with 5-mC and 5-hmC. This is shown in Fig-
ure 7 and is consistent with the previous published stud-
ies [BHE∗02].

Figure 7: Heat map sorted by CpG. This figure is a direct
PDF export from the tool.

6.2.2. Analysis 2: Coupling clustering with the
Interactive Heat Map

Our collaborators then added a fifth mark H3K27me3 and
experimented with different clusterings using the Cluster
Pane. Their initial hypothesis was that when 5-hmC and
H3K4me3 are present, H3K27me3 should be absent. In bi-
ological terms, this would indicate that 5-hmC is present at
transcriptionally active genes, where H3K4me3 is high and
H3K27me3 is low. By clustering on 5-hmC and H3K4me3
only, our collaborators noticed that the cluster with both
5-hmC and H3K4me3 also unexpectedly showed some
H3K27me3 signal (top cluster in Figure 8).

This observation led them to explore the pattern using
a different clustering based on H3K4me3 and H3K27me3
alone. As shown in Figure 9, they were able to iden-
tify regions where 5-hmC and H3K4me3 are present and
H3K27me3 is absent (top), as originally predicted, but also
uncovered another class of regions in which all three are
present at high/moderate levels (middle), which enabled
them to rule out their original hypothesis. This observation
was later confirmed to be consistent with recently published
results [YHS∗12].
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Figure 8: Clustering by H3K4me3 and 5-hmC into four clus-
ters. A cluster with a high level of H3K4me3 and 5-hmC, but
low level of 5-mC is highlighted with a border (top cluster).

To investigate the possible biological reasons for these
patterns, our collaborators added a sixth mark, TET1. They
observed that the top cluster despite having medium to low
values of 5-mC and 5-hmC had a high value of TET1. In bi-
ological terms, TET1 is a protein that facilitates a chemical
change from 5-mC to 5-hmC. Thus our collaborators were
able to conclude that any 5-hmC produced from 5-mC in the
presence of TET1 is present only transiently and is presum-
ably rapidly further processed. This was a valuable insight.

Figure 9: k-means clustering by H3K4me3 and H3K27me3
into three clusters. A cluster with low levels of both 5-mC
and 5-hmC is highlighted with a border (top cluster).

The Cluster Pane facilitated these analyses by providing
a simple interface to specify the number of clusters and
the marks to be included in the clustering. Once the clus-
tering was complete, a preview of the result was immedi-
ately shown as a tree view of profile plots in the Workspace
Pane and as sub-clusters sorted individually in the Heat Map
Pane. This allowed our users to quickly observe the variation
within the clusters and check for existence of interesting pat-
terns, and to rerun the clustering to test if it was stable.

This study showed the value of supporting gradual explo-
ration. In the past, our collaborators had used scripting and
Matlab for analysis and similar steps had taken them much
more effort to accomplish. This use case provides an exam-
ple of how clustering is best used for pattern discovery at the
point when the researcher wishes to perform an exploratory
analysis or wants to isolate a set of regions based on data
distribution and not pure presence/absence of signal.

This study also showed the usefulness of the heat map
view to reveal variation and spatial patterns within clusters.
For instance, in Figure 9 the difference between top and mid-
dle clusters is much more visible from the heat map com-
pared to just the profile plots.

7. Lessons Learned
Perhaps one of the most difficult aspects to get right was the
ability to deal with a quickly expanding set of possible com-
binations. In several previous iterations of our design, our
signal querying pane enabled the user to create combinato-
rial combinations of on/off behaviours. This often resulted
in too many combinations being displayed of which the user
was simply interested in a subset. Only after restricting this
interface to query exactly one of these combinations at a time
did we resolve the usability issues. This was possible after
realizing that our users really only needed to analyze a very
few and very specific combinations and hence, it was best to
have them query them one-by-one. Although some of these
tasks could be done in other tools, these tools were suffi-
ciently complicated to use that the effort was not in balance
with the payoff.

Further, besides assuring flexible output formats enabling
a proper downstream-analysis, all of our users were very
keen on functionality that would let them produce high-
resolution figures for their publications and communication
of their results to peers. There is perhaps a key set of func-
tions that should be provided with most tools, including,
but not limited to the export of high-resolution images in
standard formats, annotation of features of interest, and cus-
tomization of colour maps, labels and fonts. It is important
to note, that the image resolutions for publications should
often be higher than the typical screen resolution.

8. Future Work
Through discussions with our users, we have identified a
number of possible extensions to ChAsE. These include pro-
viding improved guidance to the user on the choice of k used
during the clustering step, in addition to providing metrics of
cluster stability. Being able to reproduce a particular cluster-
ing would also be desirable (current clustering is sensitive to
initial cluster seeds). There is also potential to provide visual
feedback on some of the upstream processing steps such as
peak-calling, not addressed here. For example, many peak-
calling tools remove peaks with a max height below some
threshold. Being able to interactively tune that threshold and
visualize the results would be of great value.
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