
Coordination in Service Oriented Architectures Using
Transaction Processing Concepts

Peter Hrastnik
EC3 – Electronic Commerce Competence Center
Donau–City–Strasse 1, A–1220 Vienna, Austria

peter.hrastnik@ec3.at

Werner Winiwarter
University of Vienna

Department of Scientific Computing
Universitätsstrasse 5, A–1010 Vienna, Austria

werner.winiwarter@univie.ac.at

Abstract

Service oriented architectures (SOAs) provide an archi-
tectural paradigm to develop and evolve enterprise infor-
mation systems. A key feature of SOAs is compensability of
services. Such service assemblies require high coordination
efforts to reliably produce a valid result. Transactional pro-
cessing concepts are widely used to tackle coordination re-
quirements in tightly-coupled distributed systems like J2EE
or CORBA. However, in loosely-coupled systems like SOAs,
the use of transaction processing systems is uncommon, al-
though proposals for doing transaction processing in Web
services systems (an implementation option for SOAs) exist.
In this paper, general aspects of a transaction processing
system are introduced that can be reasonably used for the
coordination of services in SOAs. We present an approach
and a corresponding implementation of a transaction pro-
cessing system for service oriented architectures that ad-
heres to the above-mentioned characteristics.

1. Introduction

Service oriented architecture (SOA) is a paradigm for or-
ganizing and utilizing distributed capabilities that may be
under the control of different ownership domains [12]. By
making resources in a distributed system available as inde-
pendent composable services, SOAs reduce complexity and
increase flexibility. Composability of services allows or-
ganizations to create (new) applications within their enter-
prise information systems just by aligning existing services.
Please note that the SOA paradigm does not mandate an
implementation platform. However, characteristics of Web
services (loose coupling, statelessness, etc.) match the SOA
nature to a high degree and may be a reasonable option to
implement an SOA.

According to [7], services in an SOA follow the follow-

ing essential key principles:

• Loose coupling: Services maintain a relationship that
minimizes dependencies and only requires that they
maintain an awareness of each other.

• Composability: Collections of services can be as-
sembled and coordinated to form composite services.
There is no technology dictated to implement the (pro-
cess) logic of such service assemblies in SOAs. Web
service orchestration technologies like BPEL4WS are
possible as well as simple Perl scripts or Java pro-
grams.

• Service contract: Services adhere to a communications
agreement.

• Autonomy: Services should stay as far as possible in
control over the logic they implement, i.e. nothing else
than the service should be able to influence its logic.

Moreover, services in an SOA tend to have a “coarse
grained” nature. That is, a service often encapsulates a
set of related business functions and consumes considerable
computing resources. Its interface accepts and returns com-
plex data in a single invocation [13].

Using a service assembly requires major efforts in order
to deliver a coordinated collective result. Such coordina-
tion efforts may be addressed solely in the process logic
that assembles the services. However, according to [10],
transaction processing concepts are a superior option. By
managing a group of services, transaction processing con-
cepts guarantee that the group of services achieves a coor-
dinated common, consistent, and mutually agreed outcome.
For tightly-coupled systems, such an approach for tackling
coordination is common and ubiquitous.

The characteristics an outcome (which is common, con-
sistent, and mutually agreed) must have are defined by some
kind of transaction logic. For example, the most commonly



known type of transaction logic is called ACID [9]. In case
the ACID attributes atomicity, consistency, isolation, and
durability are honored, a common, consistent, and mutually
agreed outcome is guaranteed.

Transaction processing concepts are preferably used in
transaction processing systems, where the system takes care
of managing transaction specific tasks and achieving an out-
come as described above. Thus, the coordination of a ser-
vice assembly may be achieved by choosing a particular
kind of transaction logic and enacting it by using a transac-
tion processing system that manages the involved services
as demanded by the transaction logic.

In this paper, we introduce requirements of a transaction
processing system that can be reasonably used in SOAs, re-
gardless of the SOA’s implementation technique. Moreover,
we present an implementation of such an SOA transaction
processing system.

The paper is organized as follows. Section 2 presents rel-
evant related work. The basic requirements an SOA trans-
action processing system should have are described in Sect.
3. Section 4 outlines the approach to achieve the basic re-
quirements and Sect. 5 shortly discusses a realization of this
approach.

2. Related Work

Well-known organizations like SUN, IBM, Microsoft,
OASIS, etc. have published proposals that deal with trans-
actional processing in the Web service world: Business
Transaction Protocol (BTP) [1], WS–Coordination/WS–
AtomicTransaction/WS–BusinessActivity (WS–TX fam-
ily) [11], and WS Composite Framework (WS–CAF) [4].
These proposals are very similar and differ only in details
while the basic building blocks are elementary the same.
They describe components and their roles in a distributed
transaction processing system, and according communica-
tion protocols.

These communication protocols are based on the seman-
tics of advanced transaction models (ATMs) [5]: ATMs ex-
press arbitrary transaction logics, and not only ACID trans-
action logic. Several advanced transaction models were
presented that differ significantly from ACID style trans-
actions. Mostly, ATMs try to relax ACID style transaction
logic because its rigid demands are not appropriate for sev-
eral application areas. Prominent examples for such ATMs
are SAGAs [8] and multilevel transactions [17].

To describe transaction logics, formal models have been
developed: Jim Gray and Andreas Reuter developed such
a formal model in [9]. ACTA [3] is a very comprehensive
model that captures transaction logics formally. ASSET [2],
Bourgogne Transactions [15], and TWSO [10] are based
on ACTA and enable arbitrary transaction logics in differ-
ent environments: Imperative programming languages (AS-

SET), J2EE environments (Bourgogne Transactions), and
Web service orchestrations (TWSO).

3. Fundamental Requirements for an SOA
Transaction Processing System

3.1. Applicability and Reliability in Dis-
tributed Systems

SOAs are distributed systems. According to [6], a dis-
tributed system consists of a collection of autonomous com-
puters, connected through a network and distribution mid-
dleware, which enables computers to coordinate their activ-
ities and to share the resources of the system, so that users
perceive the system as a single, integrated computing facil-
ity.

Thus, a central requirement for an SOA transaction pro-
cessing system is that it is designed to be usable in such
distributed environments. Mainly, a dedicated component
(“transaction monitor”, as described in Sect. 4), which of-
fers transaction related services, manages and communi-
cates transaction related matters, and is able to participate
in the distributed system’s communication, satisfies this de-
mand.

Moreover, since such a central component is essential for
many tasks in the distributed system, it has to be reliable to
a high degree and virtually always working.

3.2. Advanced Transaction Logic

Common transaction systems found in relational
databases or distributed systems platforms like J2EE or
CORBA offer (mostly only) ACID transaction logic. ACID
works well in tightly-coupled systems and is employed
ubiquitously. However, transaction logic that follows ACID
principles may not be practical in SOAs because of their in-
herent loosely-coupled and coarse grained nature. Potts et
al. [14] even assert that “transaction semantics that work in
a tightly-coupled single enterprise cannot be successfully
used in loosely-coupled and/or multi-enterprise networks
...”.

Two aspects of ACID transaction logics are problematic
in SOAs. The atomicity requirement may not be adequate
because it is likely that a service assembly overall succeeds
even in case some of the services fail. The isolation re-
quirement that prevents concurrency problems can be only
realized by using rigid locks. That is, only a single transac-
tion is allowed to access resources that are involved in this
transaction as long as it is active. Other transactions have to
wait until the transaction is finished. Therefore, the longer
a typical transaction takes, the more the performance of the
overall system decreases. Because of the coarse grained na-
ture of services in an SOA, service calls tend to be time-



consuming and locking resources to achieve isolation may
not be feasible.

Thus, common transaction systems are — generally
speaking — inappropriate to handle coordination in SOAs.
However, advanced transaction models are around for years
and many ATMs that relax the rigid demands of ACID
transactions have been proposed. In fact, proposals for Web
service transaction processing (BTP, WS–TX family, and
WS–CAF) make use of SAGAs and multilevel transactions.
Such types of advanced transaction models are also appro-
priate to coordinate service assemblies in an SOA. There-
fore, an SOA transaction processing system must support
ATMs, i.e. it must enable the enactment of more kinds of
transaction logic than just ACID logic.

3.3. Arbitrary Advanced Transaction Logic

In contrast to transaction processing in tightly-coupled
systems, which is “omnipresent”, transaction processing in
loosely-coupled systems is rather uncommon, and transac-
tion proposals for Web services (BTP, WS–TX family, and
WS–CAF) had marginal influence on this situation.

A common shortcoming of these proposals is that they
offer de facto only a fixed set of ATMs: Actually, the usage
of arbitrary advanced transaction models is considered by
the WS–TX family and WS–CAF. However, to do so it is
necessary to introduce a new communication protocol and
how this is done is omitted. Moreover, such an approach
seems to be unwieldy because, most likely, a large amount
of the components participating in the transaction system
have to be updated in a non-standardized way in order to be
aware of such new communication protocols. Huge efforts
would have to be undertaken and would discourage users
from using arbitrary transaction semantics.

According to [16], no out-of-the-box set of advanced
transaction models can satisfy all requirements of all do-
mains that want to do transactional (Web) service process-
ing. According to this statement, service coordination us-
ing transaction processing concepts in SOAs would need the
possibility to employ arbitrary transaction logic. We believe
that this is reasonable and that arbitrary advanced transac-
tion logic should be inherently supported by SOA transac-
tion processing systems: As well as it is pointless to offer a
fixed set of process logics in the assembly, it is ineffective
to offer a fixed set of transaction logics.

4. Approach

To realize a transaction processing system that satisfies
the requirements stated in Sect. 3, we use an approach based
on ACTA [3] and inspired mainly by [10] as follows.

Basically, transaction logic is constructed from several
(small-scale) transactions, where each transaction manages

one ore more service–activities (see below for details on
synchronization issues). In this paper, the term service–
activity comprises the actions that happen when a service
is invoked.

Such transactions are controlled by transaction primi-
tives, which are special commands that are used for direct-
ing transactions. We use the following set of transaction
primitives, which should be sufficient for SOA transaction
processing systems. begin starts a transaction. In case the
outcome of the associated service–activities of a transaction
is considered to be successful, the transaction is terminated
with a commit. Changes that happened in the commit-
ted transaction’s scope are made permanent. When the out-
come of the service–activities is considered to be erroneous,
abort cancels a transaction. All changes made so far by
the service–activities are revoked without any traces and
the transaction is terminated. For ACID transaction logic,
these three types of transaction primitives would be suffi-
cient. However, advanced transaction logics for SOAs re-
quire an additional compensate transaction primitive that
enables compensation of an operation: In case the changes
of the service–activities of an already committed transac-
tion should be undone, compensation is used to perform
some forward actions that neutralize the already persisted
changes. In contrast to an abort, compensation needs no
locks on the corresponding resource. Thus, undoing the
outcome of an operation will be generally feasible also in
loosely-coupled systems by using compensation. However,
after compensation, it is visible that the original service–
activities took place. Moreover, it should be noted that there
may be service–activities that cannot be compensated at all
because their outcome is not compensatable by nature. In
business terms, compensation resembles the “cancellation”
concept.

Because a transaction manages service–activities, trans-
action primitives indirectly influence the logic of services.
For example, let t1 be a transaction that manages the
service–activity a1 of a service s. An abort on t1 would stop
the execution of sa1 and all changes that were made in the
course of sa1 would have to be removed without any trace.
It should be noted that this violates the autonomy principle
of SOAs to some degree. However — as described below
— the services decide how to react on transaction primitives
and therefore keep autonomy to a high degree.

To orchestrate transactions efficiently, transaction de-
pendencies are used. Such a transaction dependency con-
sists of a source state and an effect. The source state is
defined by a particular state of one or more transactions
in the transaction processing system. The effect comprises
the issuing of transaction primitives. The effect is executed
when a particular state emerges. For example, a transaction
dependency could state that when transaction t1 has been
committed and transaction t2 has been aborted, transaction



t3 should be compensated.
It should be stressed that — in contrast to the existing

Web service transaction proposals — a transaction process-
ing system that supports the concepts of transaction primi-
tives and transaction dependencies as described above sup-
ports arbitrary transaction logic inherently. No system up-
date is necessary to incorporate new transaction logic.

To realize an approach as described above in an SOA
environment, we use an architecture as shown in Fig. 1.

Service

Transaction
Monitor

Service
Assembly

service-activity invocation transaction-related matters

Service
Service

Figure 1. Architecture of an SOA transaction
processing system.

The service assembly combines a group of services using
some process logic. Thus, it invokes service–activities in
well-defined sequences and/or concurrencies. To coordinate
these services, the assembly employs transaction process-
ing concepts as follows: It sets up transaction dependencies
and controls transactions by issuing transaction primitives
on transactions. By using these tools, an arbitrary transac-
tion logic is defined.

All these transaction-related matters are carried out by
the transaction monitor, a central highly-available com-
ponent that manages all transaction-related matters in the
SOA transaction processing system. First and foremost, the
transaction monitor receives transaction primitives and for-
wards them — if necessary and valid — to affected services.
When a transaction involves more than one service–activity,
the transaction monitor executes synchronization protocols
in order to assure a consistent outcome. We use the two
phase commit protocol [9] to ensure a consistent atomic
outcome. It should be noted that in our system coordinat-
ing a group of service–activities by associating them to a
single transaction is only possible if an atomic outcome is
desired. Otherwise, transaction dependencies and/or trans-
action primitives have to be used as described above to de-
cide what a consistent outcome is. In addition, not only the
commit primitive but also others, like compensate, may
be synchronized using the two phase commit protocol for
achieving an atomic outcome. Finally, the transaction mon-

itor keeps track of transaction dependencies and executes
dependency effects when a corresponding state emerges.
For example, let dependency da state that when transac-
tion t1 is in state aborted, transactions t2 and t3 should
be compensated. As soon as a commit on t1 finishes, the
transaction monitor will issue compensate primitives to
t2 and t3.

The service assembly states transaction-related mat-
ters. According to these matters, the transaction moni-
tor sends appropriate transaction primitives to affected ser-
vices. These services have to fulfill certain requirements in
order to participate reasonably in the transaction processing
systems. In order to honor the service contract demand in
Sect. 1 entirely, the service contract is augmented by trans-
action specific service capabilities. Thus, the whole system
is aware of the transaction primitives and synchronization
protocols a service can handle. Consequently, a service has
to implement the transaction primitives and synchronization
protocols that are stated in the service contract. By leav-
ing the responsibility for the implementation of transaction-
related matters to the services, the autonomy principle of
SOAs is honored to a high degree.

Often, when a service is invocated, it must be aware
whether a transaction is involved and — if so — which
particular transaction is to be considered. For example, a
service that supports abort and commit primitives will
probably store temporary results and lock resources when a
transaction is involved — measures that are not necessary
when no transaction is involved. We use a transaction con-
text to propagate transaction-related information in the dis-
tributed system. Every communication action in the SOA
that is related to a transaction must be supplemented by this
transaction context. Thus, components are aware if a trans-
action is involved and which particular transaction is to be
considered.

5. Prototype

We have implemented the approach described in Sect.
4 using Java technology for SOAs based on Web services.
SOAP handles communication in the entire system, includ-
ing transaction-related matters like transaction primitives or
synchronization protocol commands. The transaction con-
text is propagated in the SOAP headers of the SOAP mes-
sages. We used Apache AXIS running in a Tomcat Servlet
container for all participants in the distributed system to
carry out the SOAP communication.

Service assemblies are expressed using Java. A library
encapsulates transaction-related SOAP communication for
the assembly. That is, setting up transaction dependen-
cies and issuing transaction primitives is a matter of us-
ing API calls. The transaction monitor is implemented as
a SOAP Web service. Common techniques for achieving



Web service high-availability may be used to keep the trans-
action monitor virtually always working. Services are im-
plemented as SOAP Web services and receive transaction
primitives and synchronization protocol commands through
an extra SOAP interface. Transaction-related capabilities of
services are expressed using WSDL and may be obtained
through an API by concerned components like the assem-
bly or the transaction monitor. This API uses WSDL4J to
efficiently explore WSDL descriptions.

The implementation is prototypical and succeeds in en-
abling experiments with a working SOA transaction pro-
cessing system. For example, we realized a scenario from
the tourism domain as described in [10] in our implementa-
tion. However, in the current state, the implementation can-
not fulfill all necessary requirements of a production quality
SOA transaction processing system like high-availability,
comprehensive input verification, and error handling. Nev-
ertheless, since code quality and extensibility is high, the
implementation constitutes a base for a production grade
transaction processing system for Web service SOAs.

6. Conclusion

In this paper we have described requirements for a trans-
action processing system in service oriented architectures
and have presented an approach that satisfies these require-
ments. In contrast to prominent proposals for Web service
transactions like BTP, WS–TX family, and WS–CAF, which
may be used in SOAs based on Web services, the presented
approach inherently supports the use of arbitrary advanced
transaction logic. With this approach, service assemblies in
SOAs can be coordinated efficiently using transaction pro-
cessing principles, not least because arbitrary transaction
logic can be employed.

We implemented the approach prototypically for Web
service based SOAs. This working implementation can
be used for experimenting with transaction processing in
SOAs. Moreover, it can serve as a base for a production-
grade SOA transaction processing system.

Future work will focus mainly on the improvement of
the prototype to achieve production quality in order to em-
ploy it in real life SOAs. Furthermore, it is likely that the
experiments and the use of the approach in real life SOAs
will provide new insights on the topic. These insights will
be considered in the approach as well as in the implementa-
tion.

References

[1] Alex Ceponkus et al. Business Transaction Protocol.
http://www.oasis-open.org/committees/
download.php/1184/2002-06-03.BTP_cttee_
spec_1.0.pdf, 2002. cited on 2007-05-14.

[2] Alexandros Biliris et al. ASSET: A System for Support-
ing Extended Transactions. In Proceedings of the 1994
ACM SIGMOD International Conference on Management
of Data, pages 44–54, Minneapolis, Minnesota, 1994.

[3] P. K. Chrysanthis and K. Ramamritham. Synthesis of Ex-
tended Transaction Models Using ACTA. ACM Transac-
tions on Database Systems, 19(3):450–491, 1994.

[4] Doug Bunting et al. Web Services Specifi-
cations to Coordinate Business Applications.
http://developers.sun.com/techtopics/
webservices/wscaf/primer.pdf, 2003. cited on
2007-02-26.

[5] A. K. Elmagarmid. Database Transaction Models for Ad-
vanced Applications. Morgan Kaufmann Publishers, San
Mateo, California, 1992.

[6] W. Emmerich. Engineering Distributed Objects. Wiley &
Sons, 2000.

[7] T. Erl. Service-Oriented Architecture: Concepts, Tech-
nolody, and Design. Prentice Hall International, 2005.

[8] H. Garcia-Molina and K. Salem. Sagas. In Proceedings of
the 1987 ACM SIGMOD International Conference on Man-
agement of Data, pages 249–259, New York, USA, 1987.
ACM Press.

[9] J. Gray and A. Reuter. Transaction Processing: Concepts
and Techniques. Morgan Kaufmann Publishers, San Fran-
cisco, California, 9th edition, 2002.

[10] P. Hrastnik and W. Winiwarter. TWSO - Transactional Web
Service Orchestrations. In Proceedings of the 2005 Interna-
tional Conference on Next Generation Web Services Prac-
tices, pages 45–50, Los Alamitos, California, 2005. IEEE
Computer Society.

[11] Luis Felipe Carbrera et al. Web Services Coor-
dination, Web Services Business Activity Frame-
work, Web Services Atomic Transaction. http:
//www.ibm.com/developerworks/library/
specification/ws-tx/, 2005. cited on 2007-05-14.

[12] Matthew C. MacKenzie et al. Reference Model
for Service Oriented Architecture 1.0. http:
//www.oasis-open.org/committees/
download.php/19679/soa-rm-cs.pdf, 2006.
cited on 2007-05-14.

[13] E. Newcomer and G. Lomow. Understanding SOA with Web
Services. Independent Technology Guides, 2005.

[14] M. Potts, B. Cox, and B. Pope. Business Transac-
tion Protocol Primer. http://www.oasis-open.
org/committees/business-transactions/
documents/primer/, 2002. cited on 2005-01-28.

[15] M. Prochazka. Advanced Transactions in Component-Based
Software Architectures. PhD thesis, Charles University, Fac-
ulty of Mathematics and Physics, Department of Software
Engineering, Malostranske namest i 25, 118 00 Prague 1,
Czech Republic, 2002.

[16] J. Roberts and K. Srinivasan. Tentative Hold Protocol
Part 1: White Paper. http://www.w3.org/TR/2001/
NOTE-tenthold-1-20011128/, 2001. cited on 2007-
05-14.

[17] G. Weikum and H. J. Schek. Multi–Level Transactions and
Open Nested Transactions. In Data Engineering, volume 14,
pages 60–64, Los Alamitos, California, March 1991. IEEE
Computer Society.


