Distributed and Parallel Databases manuscript No.
(will be inserted by the editor)

Enhancing Traceability of Persistent Data Access Flows in
Process-Driven SOAs

Christine Mayr - Uwe Zdun - Schahram Dustdar

Abstract In process-driven, service-oriented architectures (SOAs), process activities can
perform service operations, data transformations, or human tasks. Unfortunately, the process
activities are usually tightly coupled. Thus, when the number of activities in the process
grows, focusing on particular activities of the flow such as the service operations reading or
writing persistent data is a time-consuming task. In particular, in order to solve structural
problems concerning persistent data access such as deadlocks in data-intensive business
processes, stakeholders need to understand the underlying persistent data access details of
the activities i.e. physical storage schemes, and database connections.

With our view-based model-driven approach, we provide a solution to generate flows
of persistent data access activities (which we refer to as persistent data access flows). To
the best of our knowledge these persistent data access flows are not used to solve structural
problems in process-driven SOAs, yet. Moreover, our persistent data access flows can be
flattened by diverse filer criteria e.g. by filtering all activities reading or writing from a spe-
cific database or table. Using our approach, we can enhance traceability and documentation
of persistent data access in business processes. In a series of motivating scenarios from an
industrial case study we present how our persistent data access flow concept can contribute
to enhance productivity in service-oriented, process-driven environments. We qualitatively
evaluate our concepts and prototypes, and finally, discuss the correctness and the complexity
of the underlying algorithms.

C. Mayr

Distributed Systems Group,
Information Systems Institute,
Vienna University of Technology,
E-mail: christine.mayr@inode.at

U. Zdun

Research Group Software Architecture,
Faculty of Computer Science,
University of Vienna,

E-mail: uwe.zdun@univie.ac.at

S. Dustdar

Distributed Systems Group,
Information Systems Institute,
Vienna University of Technology,
E-mail: dustdar@tuwien.ac.at

2 Christine Mayr et al.

1 Introduction

In process-driven, service-oriented architectures (SOAs), process activities can invoke ser-
vice operations [31], transformations such as string manipulations, business logic, or human
tasks to perform a certain activity. Decision nodes are used to define the possible paths
through the flow. Often the process activities perform I/O operations on a persistent storage,
typically an RDBMS. We refer to this special type of process activities reading or writing
from a persistent storage as data access activities. Nowadays, this data access is often done
by so-called data access services (DAS). DAS are variations of the ordinary service concept:
They are more data-intensive and are designed to expose data as a service [44]. Like a com-
mon service consists of service operations, a DAS consists of DAS operations. The DAS can
use data access objects (DAOs) that abstract and encapsulate all access to the data source
and provide an interface independent of the underlying database technology [30]. The DAO
manages the connection with the data source to obtain and store data. Our approach uses
DAS and DAO:s in our prototypical implementation.

The decision which alternative path to run in the business process often depends on per-
sistent data. Thus, there is a tight coupling between persistent data access and business logic
within a business process. This tight coupling is necessary to enable stakeholders to get a
basic understanding of the overall process. However, it can hinder stakeholders to analyze,
develop, and test persistent data access in a business process. In Figure 1, we use a UML
[33] activity diagram to illustrate these dependencies. In UML terminology, the figure shows
a main process with two activities (also called microflows in [17]). Each activity contains
basic actions, the fundamental behavior units of an activity [33]. The business process con-
sists of different types of actions, namely service operations, data access service operations,
transformations, and human actions. This business process is part of our case study, which
we describe in detail in Section 4.

A common problem in business process modeling is the detection of structural errors
[38]. Current business process modeling systems (BPMS) [48] lack support for verification
of structural problems concerning persistent data access. However, in many BPMS, such as
IBM Websphere MQ Workflow, the process activities cannot request persistent data directly
[37]. Therefore, these systems cannot trace persistent data access without the help of ex-
ternal dependencies. In other BPMS, such as Webmethods [40], the process activities are
able to invoke persistent data access directly. However, they lack tool support for detecting
structural persistent data access problems at modeling time. While collaborating on several
service-oriented software development projects in a large enterprise, we identified a series
of structural problems in business processes concerning persistent data access. During this
collaboration, we identified three groups of stakeholders which are faced with these prob-
lems: the data analysts, DAS developers, and the database testers. In this article we discuss
the drawbacks from the stakeholder perspectives and propose appropriate solutions.

In this article we provide the following contributions: We use a view-based model-driven
approach to specify persistent data access in process-driven SOA. In particular, we specify
persistent data access activities to better integrate persistent data access into processes. With
these well-structured persistent data access activities, and our new view integration paths
concept, presented in this article, we can generate persistent data access flows from busi-
ness processes. We show how these persistent data access flows can enhance documentation
and solve structural errors concerning persistent data access in processes. As a result, data
analysts, DAS developers, and database testers can increase their understanding of persis-
tent data access activities in the process flow. By exploiting our model-driven approach we
can filter the persistent data access flows by diverse search criteria such as they solely con-

Enhancing Traceability of Persistent Data Access Flows in Process-Driven SOAs

ReceiveApplication

ValidateApplication

storeApplication

transformDelivery

Service

Action

>t >y
U8

Data Access Service

Action

Transformation

% Action

Human

>0
8 0O

handleDelivery

EditDelivery

ValidateDeliveryList

PersonDAS.
selectPerson

| exists ’ / not exists

PersonDAS.
insertPerson

DeliveryDAS.
updateDelivery,
SendDelivery

PersonDAS.
updatePerson

—

Table
Delivery

Fig. 1: Persistent Data Access in a Process-Driven SOA

4 Christine Mayr et al.

tain only those activities reading or writing from specific database tables or certain ORM
frameworks. Hence, development and deployment efforts can be reduced. Our model-driven
solution is based on the View-based Modeling Framework (VbMF) introduced in our earlier
work [43]. This framework aims at separating different concerns in a business process into
different views. The main idea in our VbMF approach is to enable stakeholders to under-
stand each view on its own, without having to look at other concerns, and thereby reduce the
development complexity. The data-related extension of VbMF, the View-based Data Mod-
eling Framework (VbDMF) [27,28], introduces a layered data model for accessing data in
process-driven SOAsS.

This article is organized as follows: First, in Section 2 we discuss related work. Next,
Section 3 provides some background information to better understand our approach. Sec-
tion 4 presents a motivation case study which we will refer to throughout this article. In
Section 5 we present an overview of our approach. Next, in Section 6 we illustrate how
our persistent data access flow concept can solve structural problems in business processes
by presenting selected use cases. Section 7 describes the details necessary to realize our
approach within a model-driven generator environment: the model-driven specification, in-
tegration, and extraction of persistent data access flows. Next, in Section 8 we show the
applicability of our implementation solution and present a suitable tooling. In Section 9 we
show the correctness and complexity of the underlying algorithms. We discuss the limi-
tations of our approach in Section 10. Finally, Section 11 summarizes and concludes this
article.

2 Related Work

In this section we present related work from the existing literature and related standards. We
also emphasize the contribution of our work by explaining how our work compares to these
related works. Finally, Table 1 summarize this comparison.

2.1 Integrating Persistent Data Access into SOAs

Many work focus on better integrating data into the overall SOA [5,49,50,46]. In the fol-
lowing we relate each of these works to our approach.

At this point we want to clearly differentiate our approach from other works such as
BPELDT [14] which focuses on the data flows transporting data from one process activity to
the next process activity. Habich et al. introduce BPEL data transitions to efficiently model
’data-grey-box web services’ [14]. In contrast, in our approach, we focus on tracing the
persistent data access activities themselves instead of the transitions between two process
activities.

2.1.1 Modeling Data Access Services

In the literature, various related works propose using data access services for better data
integration.

Carey et al. [5] examined how the AquaLogic Data Services Platform (ALDSP) supports
data modeling and design. They describe the ALDSP 3.0 data service model and assert that
the modeling extensions in ALDSP 3.0 provide a rich basis for modeling data services for
SOA applications.

Enhancing Traceability of Persistent Data Access Flows in Process-Driven SOAs 5

Wang et al. [46] propose a dynamic data integration model architecture based on SOA.
On the basis of XML technology and web service, their architecture model enables data
sharing and integration over all business systems. Thus data resource and information inter-
operability is realized in a cross-platform manner.

As our approach, both ALDSP [5] and the dynamic data integration model [46] use data
access services to read and write data. However, they focus on separate modeling of data
access services for use in external environments. In these two approaches, data integration
overall business systems is established by using DAS as interface to the data. In contrast, we
propose a continuous integration approach to be able to exploit the structured nature of the
data access service models in business processes.

2.1.2 Modeling the Relationships between Persistent Data Access, Services and Processes

Zhang et al. [49] propose a new process data relationship model (PDRM) to specify the
complex relationships among process models, data models, and persistent data access flows.
In our approach, we define the activities incorporating data access as DAS activities. Like-
wise, Zhang et al. define these activities as data access nodes (DAN). Like our approach,
they understand data access flows as persistent data access flows rather than data flows rep-
resenting transient and persistent data. However, as opposed to our approach, they focus on
automatic data access component generation to cluster similar data access components into
larger components. In contrast, we concentrate both on the applicability and the feasibility
of generating data access flows. Furthermore, unlike our model-driven solution, they solely
focus on simple activities and cannot model structured process activities.

Zhang et al. [50] introduce a unique information liquidity meta-model (ILM) to sepa-
rate persistent data integration logics from business services and application services. Like
our approach their architecture uses a data service layer to access the data. In addition, as
our approach, they use views to relate processes to new and existing services, or new and
existing data definition. Whereas our approach focuses on modeling new view models and
extracting new view models from existing view models, they solely concentrate on creating
new models. In our approach we also focus on solving data analysis problems by creating
flattened persistent data access flows from the whole process flow.

2.1.3 Business Process Modeling Systems

Our work is closely related to common commercial and open-source business process mod-
eling systems (BPMS) [48]. Representatives of common commercial BPMS are IBM Web-
sphere MQ Workflow [18], Webmethods [40], and TIBCO [42]. In addition, there are com-
mon representatives of open-source systems i.e. JBOSS [22] and Intalio [19].
Russel et al. [37] define a specific data interaction pattern for how BPMS access persistent
data. Their main focus is to determine data patterns in business processes. On top of this data
integration pattern, our conceptual approach focuses more on solving structural problems in
business processes by using persistent data access flows. Unfortunately, many BPMS do not
explicitly support this pattern by a direct integration of persistent data access into the process
activities. In example, IBM Websphere MQ Workflow [18] and Intalio BPMS Designer [19]
do not provide an explicit mechanism to invoke persistent data access from the process ac-
tivities within the BPMS. In these BPMS, the persistent data is rather accessed e.g. through
underlying services incorporating the persistent data access implementation.

Other BPMS such as Webmethods [40], JBOSS Messaging [21] and TIBCO [42] sup-
port integration of persistent data access into the process activities. In these BPMS, process

6 Christine Mayr et al.

activities can directly request persistent data within the BPMS environment. However, as
opposed to our persistent data access flow concept, these BPMS do not provide comparable
support to adequately overview persistent data access in data-intensive business processes.
In Webmethods [40], stakeholders can configure adapter services used to read or write data
from the database, in example the InsertSQL, UpdateSQL and DeleteSQL services. As our
approach, the services can configure SQL statements in a structured way. For example, state-
ments can contain structured elements such as database connection properties, database ta-
bles, and database table columns. Furthermore, Webmethods provides filtering mechanisms
to limit the adapter services by structured elements such as catalogs, schemes, and tables.
JBOSS Messaging [21] supports configuration of relational database connections by the
JDBC Persistent Manager. A channel mapper is used to configure SQL statements such as
Create and Select. However, as opposed to our approach, JBOSS Messaging does not sup-
port structured modeling of persistent data access. In TIBCO [42], it is possible to establish
the link between a process activity and structured process data models with business objects,
e.g. specified in UML [23], designed with TIBCO Business Studio. TIBCO provides tooling
support to read/write access from the business objects.

2.2 Solving Structural Problems in Business Processes

There are several approaches concerning solving structural problems in business processes
[38,2]. Sadiq et al. [38] identify structural conflicts in process models by applying graph
reduction rules. Awad et al. [2] use business process queries to detect structural problems
in business processes. In contrast to these works, in our approach, besides solving structural
problems in business processes, we aim at enhancing traceability and documentation of
persistent data access. Moreover, we provide a model-driven solution to reduce business
process complexity as we can flatten business processes by certain filter criteria.

2.2.1 Static Analyzing Techniques

There are a number of frameworks for performing static analysis to extract common data
flows from the whole program. An example of these static analysis approaches is the demand-
driven flow analysis as proposed by Duesterwald et al. [8]. The goal of demand-driven
analysis is to reduce the time and space overhead of conventional exhaustive analysis by
avoiding the collection of information that is not needed’ [25]. As our approach, Duester-
wald et al. focus on extracting sub flows from process flows on-demand. However, they aim
at extracting common data flows instead of persistent data access flows. Moreover, we pro-
vide a model-driven, view-based approach to analyze and document persistent data access
flows in process-driven SOAsS.

In Section 4 we present how our approach can be in particular applied to testing and
to deadlock detection and prevention. In the following we relate other testing and deadlock
detection and prevention techniques to our solution.

2.2.2 Testing

There are a number of approaches in the literature that elaborate on test case creation and
selection.

Fischer et al. [10] focus on improving test case quality for declarative programs by
introducing a novel notion of data flow coverage. In their opinion, a visual representation of

Enhancing Traceability of Persistent Data Access Flows in Process-Driven SOAs 7

the control- and/or data flow would help the users to better understand program execution.
We share the opinion that a visual view increases the understandability of the data flows.
However, our views are not restricted to the viewing of these data flows. Accordingly, our
persistent DAS Flow View can be integrated with other views in order to form richer views,
in example with the DAO View, the ORM View, and the Physical Data View.

There are several works using data flows for selecting test cases as presented in [35].
Rapps et al. apply data flow analysis techniques to examine test data selection criteria. The
procedure presented associates each definition of a variable with each of its usages within
a flow. The data flow criteria that they have defined can be used to traverse each path. Like
our approach, each persistent data access activity in the process flow can be associated with
corresponding definitions. In contrast to this formal approach, we use a visual approach for
selecting our test cases.

2.2.3 Deadlock Detection and Prevention

In the following we relate our solution to various static and dynamic deadlock detection
techniques.

There are many runtime approaches (such as [20] and [36]) that aim at deadlock-free
sharing of resources in distributed database systems. Isloor et al. [20] distinguish between
deadlock detection, deadlock prevention and deadlock avoidance techniques. Krishna et al.
[36] present a graph-based deadlock prevention algorithm that reduces processing delays
within the distributed environment. However, with our persistent data access flow approach
we provide a visual solution in order to discover errors at the earliest stage of development
— at the modeling level.

There are a number of static deadlock detection algorithms (e.g. [29]). Naik et al’s [29]
deadlock detection algorithm uses static analyses to approximate necessary conditions for
deadlocks to occur. Their effective algorithm concentrates on detecting deadlocks between
two threads and two locks.

Dedene et al. [7] present a formal approach to detect deadlocks at the conceptual level.
In their work, they present a formal process algebra to verify conceptual schemes for dead-
locks based on the object-oriented analysis (OOA) method M.E.R.O.DE. As our approach,
Dedene et al. can check the models for deadlocks at the earliest stage in the development
process.

An interesting approach is presented by Zhou et al. [51]. Like our approach, the authors
use a static approach to analyze deadlocks in data flows. They in particular concentrate
on analyzing deadlocks in loops. In order to determine deadlocks, they define a causality
interface that abstractly represents causality of data flow actors.

In contrast to these formal deadlock analysis approaches, again, our approach is a visual
solution for detecting deadlocks. Furthermore, on top of our approach, common deadlock
detection and prevention techniques as described before can be performed. Furthermore our
persistent data access flow concept aims at documenting the persistent data access flows
within the control flow. Thus, with our approach we do not solely focus on detecting dead-
locks in process flows, we rather enable a more general analysis of a series of development
and testing problems.

2.2.4 Business Process Modeling Systems

In order to solve structural problems in business processes, common BPMS such as IBM
Websphere MQ Workflow [18], JBOSS [22], and Intalio [19] support transaction handling.

8 Christine Mayr et al.

Thus, in case of failures, the transactions can be rolled back or compensated. Whenever some
actions cannot be rolled back e.g. due to external dependencies, a compensation handler can
be invoked to perform an *undo action’. In contrast, our persistent data access flow approach
focuses on the underlying structural problem. Moreover, we solve the cause of the failed
transactions instead of solely handle the problem. In example, if a database table is locked,
due to a structural problem in the business process, our persistent data access flow approach
will contribute to solve the problem more quickly. In addition, our model-driven provides
up-to-date documentation of persistent data access in business processes.

3 Background

Before we go deeper into the contributions of our approach, we give some background
knowledge to better understand our concepts.

3.1 Data Flow vs. Control Flow

Common graphical process modeling languages and business process management systems
(BPMS) [48] can differentiate between the control flow and the data flow of a process.
Examples of graphical modeling languages are the Business Process Model and Notation
(BPMN) [32] and the Unified Modeling Langage (UML) [33] activity diagrams. An example
of a BPMS is the IBM Websphere MQ Workflow [18] Whereas the control flow describes the
sequence of activities of the process flow, the data flow describes incoming and outcoming
data to and from process activities. An example of a control flow is depicted in Figure 1.

In BPMN, data is transferred in data objects that can be associated with activities. The
data flow is modeled by associations from data objects to activities or vice versa. Accord-
ingly, data objects written by one activity can be read be the subsequent activity. In IBM
Websphere MQ Workflow, a data flow is modeled by connecting the activity’s input and
output container. Special data flow connectors define the mapping of the activity’s input and
output container. In UML 2.0, the data flow is specified by pin elements representing the
inputs and outputs of activities. Whereas input pins provide the activities with data, output
pins get the data from the activities. Figure 2 depicts a data flow in UML notation.

Lang defines that data flows between processes may represent either attributes of ob-
jects, transient data or persistent data [24]. In contrast to these data flows, in this article,
we concentrate on persistent data access flows. Our persistent data access flows are control
flows that solely consist of data access activities reading or writing from a persistent data
storage. In contrast, whenever we refer to data flows, we outline the common data flows,
representing transient and persistent data respectively, as defined by Lang [24].

3.2 Microflow and Macroflow Pattern

Our work is in particular based on the so-called Macro-Microflow pattern [17,16]. The
Macro-Microflow pattern is a pattern designed for process-oriented integration in service
oriented architectures. According to this Macro-Microflow pattern, a microflow represents
a sub-process that runs within a macroflow activity [17,16]. Macroflows are considered to
be high-level conceptual business processes whereas microflows are technical information
processes [17,16,11]

Enhancing Traceability of Persistent Data Access Flows in Process-Driven SOAs

smoyy
$59008 BIRp JUASISIAd

AINA9A £q ‘sok ou ou ou ou ou aqissod orqrssod ou ou Jo uoneuawndoq
sworqoid > vIep
SMIIA 1081 Jusisiad Sunsay
-X3 pue juayur ‘deId pue juswdo[aasp jo
- 01 Anpiqe s souas e Jo sisk[eue
pue JINAQA £q ‘sok ou ou ou ou ou JUBAS[AI JOU JUBAR[AI JOU JUBAS[QT JOU JuBAQ[RI JOU [esouad suoddng
[oA9] Sut udwdofoaop
-[opou Ay} J& PaIdA0d Jo a8es 1sarped Yy
-SIP 9 ULD SIOLI ‘SaK ou ou ou ou JUBAD[AI JOU JUBAD[AI JOU JUBA[RI JOU JuBAd[RI JOU Ju SIOLID SI9A0DSI]
sk JUBAD[AT 10U ou ou oM 1nyng ‘ou ou JUBAD[I 10U JUBAD[DI 10U JUBA[AT 10U JUBAD[OI 10U UONN[OS [BNSIA
SISK[PUT UoALIp wonoen
AINGQA £q ‘sok ou ou ou ou | -puewop £q ‘sok ou ou ou ou | -xo mom suoddng
uon
saniAnoe -tugap Surpuodsar
ssa001d ssoursnq o) -100 S (IM - MOfY (Waad) repow digs SINIATIOR $53008
s[opour ejep ssasoxd eep oy ur Aanoe -uone[ar eyep ssaooxd ®Ep 0] Ssuonmuydp
uon SuneiSawur £q ‘[zp] §50008 EIRp (OB [opowEIaUW 1A oyl Aq papepowr are MITA MITA eep Juopuodsar
wxfoin mota Kq ok | ODEIL W 30 ‘sok ou | owwosse Koy ‘sok ou ou | -oswwpow Aq ok | soouarojor oy ok | TNX ow Aq ‘sok | uSisop oy £q ‘sok | -100 SORI0SSY
uon
-ugap Surpuodsar
sas59001d ssoursnq 100 S (IM MOY
owr sppow eep vIEp oY) ur ANIANOR
ssaooxd oeigaur ued $S200® ®IRP OB uoneld
AINAAA £q ‘sok [zt] 0O4IL 30 sk ou aeroosse Loy ‘sak ou ou ou ou ou ou -our matA - suoddng
SINIATOE §530
-o1d Jo aouanbas pue MIIA BIRp pUB
sjopowr eep Ay jo JA'TI ‘UONIUYap AdTA
ugisop areredas [gp] -I3S ‘UONIUIYaAp $SD
sak 00dIL ur "§9 ‘sak ou ou ou ou -o1d © suoddns ‘sak ou ou ou smata spoddng
(N¥ad)
[epow diysuonefar SMOY BIEp JUdISURL)
SMOJ $$200E BIEp eep Juasisiad gy eep ssaooxd oy Jo pue Smop $$3008
Jualsisiod [apow ued S[OPOW MAIA ADIA (NV() sopou ssadoe eiep Julsisiad uoam)
am JINAGA £q ‘sak ou JUBAD[QT JOU ou ou ou -19s vjep oy ‘sak eep oy Aq sk ou ou -oq saysiunsiq
[e1]
wioned mo-oxorw
-onmu ay) yoddns sassaooid ()
(811 MO[IOM JO sISISU0D [apowt
OW INdI st yons -RJOW QOIAIOS BIEP smoy
ANGA £q ‘sak SINAF uowwod ‘sak JUBAS[AI JOU JUBAD[OX JOU JUBAD[AT 10U JUBAD[OX J0U Ay} Jo ss2001d € sk ou ou ou s50001d Qns S[apojy
(NVQ@
sapou 008 BIEp
[eroads souyap yorym
[opowejow (Naad) [opowt
Q0IAISS BIRp paseq diysuonepar eyep sanIAnoe
ANA9A £q ‘sak ou JueAd[aI JOU JuBAdJRI JOU JuBAS[aI JOU JuBRAdJI JOU WL B Aq ‘saf ssaooid ayy Aq ‘sak ou ou $S3008 BIEP S[OPOJA!

ANAIA £q sk

sa01AI3s 1o)depe
Jo uonem3yuod oy
suoddns [of] spo
-yRwgapy S ‘sak

JUBAS[AI J0U

JuBAQ[OI J0U

JUBAD[AI JOU

JUBAD[I JOU

[opowrejouw
QIAIS EJEp paseq
-(NTD) 19PON
Aypmbry uonew
sojup v Aq sok

SOIA
-19S $S9008 EIep Ay
oAUt (NV() Sopou
$5300B ®IBp A} Sk

swaIsAs ssoursnq
e 10r0 uonesd
-oui pue Suueys
©IEp J[QRUD 0) Sk

dSATY Aq ‘sof

SIOIAIOS
$59008 BIRp Say10adg

yoeoxdde anQ

[61°TT TH 0P 811
SINdd ~ uowwo)

sisk[eue Yoo[pea(
‘T1s] & 19 noyz
‘Izl 1e 19 duspaq
‘ezl & » SpeN
‘I9€] “e 1o euystry
‘ozl ‘12 12 a00jsy

UONII[AS BIR(18T,
10§ sonbruyoag, sts
-Areuy morg ereq
‘[s€] “1e 1 sddey

sweidoxd aane
-Ie[o3p JO Sunsd)
mog-eie@ “[oT]
e 1 JyIsy

SIOA\ PaIe[ey Jo uosuredwo))] dqeL,

sisA[euy
MOLL UAALIT
-puewaq ‘(8] T
1 presmsang

(NTD
[opowreIdpy Aipim
-br1 woneuwojup
‘[0s] ‘e 12 Sueyz

uoneIouan
Juouodwo) $5990y
BIRQ UDALI(§S9901d
‘lev] “re 30 Suvyz

QmpAYIR
[PPON uonrI3Nu]
elRQ orureu (g
‘loplte 1 Buem

(dsav)
wiofeld SIS
eeq oSoenby
‘Is] e 1 Kaae)

Juowarmbay
yuondudsaq Woys
aanpjudsaidoy

Christine Mayr et al.

ReceiveApplication

{JValidateApplication
XMLApplication

X

Service

A

Data Access Service

| D

Transformation

D

Human

AccountFees

Application
{1
handleDelivery

Delivery

'
EditDelivery

m,
Delivery
Delivery

0
ValidateDelivery

Person

PersonDAS.
selectPerson

;
Person

/ exists ‘ / not exists

i
DeliveryDAS.
updateDelive

Fig. 2: Data Flow of a Business Process specified with UML pin elements

Enhancing Traceability of Persistent Data Access Flows in Process-Driven SOAs 11

There are two types of microflows. Firstly, a short-running technical process that runs
automatically and secondly, a flow of activities that can contain interrupting process activ-
ities such as human tasks and events. The first alternative, the technical microflows are not
interruptible and are running in a transaction [17,16]. A flow is not interruptible if it con-
tains no interrupting process activities such as human tasks and events. The interruptible
microflows in turn can contain automatically short-running microflows. When analyzing,
developing, and maintaining persistent data access, stakeholders have to focus on these mi-
croflows. When analyzing, developing, and maintaining persistent data access, stakeholders
have to focus on these microflows. In Figure 1, we depict two technical microflows as tech-
nical sub processes of the whole business macroflow.

3.3 View-based Data Modeling Framework

In the following we shortly recapitulate the View-based Data Modeling Framework (Vb-
DMEF) which we apply to implement our solution. VbDMF is an extension of the basic
View-based Modeling Framework (VbMF). VbMF is specified to define processes in a
process-driven SOA. In contrast, VbDMF is focused on modeling persistent data access
within processes.

VbMF consists of modeling elements such as (view) models, and views. A view or
model instance is specified using an appropriate view model. Each model is a (semi) for-
malized representation of a particular business process concern. The models, in turn, are
defined on top of the meta-model. We use the Eclipse Modeling Framework (EMF) meta-
model to define our models. Accordingly, the VbMF core model is derived from the EMF
[9] *.ecore meta-model. All views (model instances) depicted in this article are based on the
XML Metadata Interchange (XMI) standard [13].

In Figure 3, the rectangles depict models of VbMF and the ellipses denote the additional
models of VbDMEF. In VbMF new architectural models can be designed, existing models can
be extended by adding new features, views can be integrated in order to produce a richer
view, and using transformations platform-specific code can be generated. As displayed by
the dashed lines in Figure 3 view models of VbDMF extend basic VbMF view models
namely the Information View model, the Collaboration View model, and the Flow View
model. The dashed lines in Figure 3 indicate view integration, e.g., the Collaboration View
integrates the Information View to produce a combined view.

In the following we shortly describe basic views of VbMF and VbDMF:

VbMF views:

— The VbMF Collaboration View model basically describes services and service opera-
tions.

— The VbMF Information View model specifies the service operations in more detail by
defining data types and messages.

— The VbMF Flow View model describes the control-flow of a process.

VbDMF views:

— The VbDMF Collaboration DAO Mapping View model is an optional view model that
maps DAS operations to DAO operations

— The VbDMF Information Data Object Mapping View model is an optional view model
that maps DAS data types to DAO data types.

12 Christine Mayr et al.

— The VbDMF DAO View model describes the DAO operations in detail.

— The VbDMEF Data Object View model specifies data object types and data object mem-
ber variables used to store values in object-oriented environments.

— The VbDMF ORM View model maps physical data to data object types

— The VbDMF Physical Data View model specifies the data storages such as database
tables and columns accessed from the DAOs.

— The VbDMF Database Connection View model comprises a list of arbitrary, user-defined
connection properties.

To summarize, whereas VbMF focuses on reducing the development complexity of busi-
ness processes and services, VbDMF introduces tailored views for integrating persistent data
access into the services of business processes.

4 Case Study

In this section we present our motivation case study which we will refer to throughout this
article. This case study deals with a real workflow of a specific e-government application
modeling the jurisdictional provisions in the context of a district court. However, the appli-
cability of the persistent data access flows is not limited to this type of applications. The
persistent data access flow concept can reasonably be applied to all applications, based on a
process-driven SOA, where data is accessed from a persistent storage. In the course of this
section, we also describe selected problems which we identified while collaborating in sev-
eral projects for developing e-government applications. All these problems have in common
that data is accessed from persistent storage. These problems reoccur in many use cases for
data analysts, DAS developers, and database testers. For each problem, we illustrate how the
persistent data access flows can contribute to problem solving.

First of all, let us explain the business process flow at the land registry court illustrated
in Figure 1 of Section 1. As governmental processes are typically very complex [34], for
reasons of simplicity, we use a flattened workflow for demonstration. We use a UML [33]
activity diagram to model the process flow. Each process activity contains basic actions, the
fundamental behavior units of an activity [33]. The business process consists of different
types of actions, namely service operations, data access service operations, transformations,

I:I Viewbased Modeling Framework Core View
model
O Viewbased Data Modeling Framework *
[1

I " . Collaboration .
- inherits] Information View l— — — View l— — — — Flchnmé;/;?w

-« — — integrates | model modl
A A

Collaboration
DAO Mapping
View Model

ORM View
model

Data Object

-7

|
DAO
View model
|

Database
Connection
View model

Physical
Data View
model

Object View
model

Fig. 3: VDMF and VbDMF — Overview

Enhancing Traceability of Persistent Data Access Flows in Process-Driven SOAs 13

and human actions. The process starts when a new jurisdictional application is received.
Then, the ValidateApplication activity invokes a service that checks the incoming jurisdic-
tional application for correct syntax and semantic. Successfully validated applications are
saved by a flow of alternate transformation activities and persistent data access activities.
In case the validation fails, neither data is stored nor the delivery is sent to the applicant.
In order to store data into the database by object relational mapping (ORM) mechanisms,
the process data need to be transformed into data objects. The activities transformDelivery
and transformPerson transform delivery and applicants process data respectively into associ-
ated data objects. After executing each of these transformation activities, the persistent data
access activities insertDelivery and insertPerson respectively are invoked in order to persis-
tently store the resulting data objects. Stored applications can be executed by the registrar
within the human process activity ExecuteApplication. If the registrar approves the applica-
tion, the service-based activity AccountFees will be invoked. As a dismissed application is
free of charge, the service operation AccountFees is never invoked in case of dismissal. Af-
ter accounting the fees, the registrar has to select whether the approval or dismissal shall be
delivered by the system. Dependent from the registrar’s decision, the approval or dismissal
is delivered to the applicant. For this purpose, the process activity ValidateDelivery checks
the recipient information for correctness and completeness before sending the delivery to
the applicant. In case of successful validation, the two DAS operations updatePerson and
updateDelivery are invoked in order to store the recipient information persistently. If the
validation fails, the persistent data access activity selectPerson will return zero rows. In this
case, instead of updating the person, a new person has to be inserted by invoking the persis-
tent data access activity insertPerson. Finally, the service operation SendDelivery sends the
delivery to the recipient by invoking an external service.

5 Our Approach

In this section we present the basic idea of our persistent data access flow concept. For this,
we reuse the business process presented in the precedent case study Section 4.

On the left and on the right of Figure 4, the resulting persistent data access flows from
the business process in the middle are shown. We define persistent data access flows as
control flows containing the persistent data access activities of the whole business process
flow. We differentiate simple persistent data access flows from filtered persistent data access
flows.

— Simple persistent data access flows are control flows containing all and only the persis-
tent data access activities of a business process

— Filtered persistent data access flows are control flows containing only those persistent
data access activities of a business process that match certain persistent data access filter
criteria

On the left of Figure 4, a simple persistent data access flow is depicted. On the right of
the figure, a filtered persistent data access flow is shown. The filtered persistent data access
flow in this example contains only those persistent data access activities reading or writing
data from table Person.

In this article we use DAS with underlying DAOs as example implementation. However,
our approach can be easily applied for other types of persistent data access implementations.
In the following we show how our persistent data access flows depicted on the left and on
the right of Figure 4 can be applied to enhance traceability and documentation of persistent

Christine Mayr et al.

Simple

Persistent Data Access Flow

Process Flow

ReceiveApplication

*

storeApplication

DeliveryDAS.
insertDelivery,
PersonDAS.
insertPerson,

®
L

ValidateApplication

storeApplication

transformDelivery

DeliveryDAS. ‘
insertDelivery, Oy

transformPerson

PersonDAS.
insertPerson,

handleDelivery

PersonDAS.
selectPerson,

| exists . not exists
PersonDAS.
updatePerson
DeliveryDAS.
updateDelivery,

®

ExcecuteApplication

/ approval

dismissal (XSITHIZIN

handleDelivery

PersonDAS.
insertPerson

@

PersonDAS. PersonDAS.
updatePerson, insertPerson,

EditDelivery

ValidateDeliveryList

PersonDAS.
selectPerson,

N,

1 exists . / not exists

DeliveryDAS.
updateDelivery,

SendDelivery

—=

Filtered

Persistent Data Access Flow

(Table Person)

0y

Is extracted from
Y

.,
Is extracted from
.

b

storeApplication

PersonDAS.
insertPerson

'.

.
Is extracted from
S

Fig. 4: Two Persistent Data Access Flows Extracted from a Business Process flow

data access in process-driven SOAs. For this purpose, in the following Section 4, we present
selected problems and solutions from different stakeholders’ point of view, in particular
from the perspective of data analysts, DAS developers, and database testers.

6 Solving Structural Problems in Business Processes

In this section we illustrate how our persistent data access flow concept can be generalized to
solve various data analysis problems. For this, we refer to the selected problems introduced
in Section 1. These problems reoccur in many cases for data analysts, DAS developers, and
database testers when analyzing, developing, and testing persistent data access in business

Enhancing Traceability of Persistent Data Access Flows in Process-Driven SOAs 15

processes. For each selected problem, we describe how stakeholders can apply our persistent
data access flow concept to solve it.

1. At first, we have a look at a typical data analysis problem. We show how our persistent
data access flow concept can ease the manual and automated data analysis in process-
driven SOAs. Our goal is not to reinvent deadlock detection, but instead show how both
manual and automatic deadlock detection in a complex process model can be eased by
applying the persistent data access flows. On top of our approach existing data analysis
solutions such as deadlock detection techniques can be applied.

2. Secondly, we show how DAS developers can benefit from our view-based approach. The
persistent data access flows can be applied to document the persistent data access flows
in a process. Furthermore, we illustrate how to detect design weaknesses concerning
persistent data access at the earliest possible state of the development process [7] — in
the modeling phase.

3. Thirdly, we describe how our approach provides database testers with appropriate in-
put/output data needed for test case generation and execution. Moreover, we explain
how the persistent data access flow concept can improve the database testers’ docu-
mentation. Finally, we illustrate how our persistent data access flows support testers in
locating errors more quickly.

6.1 Problem & Solution: Deadlock Detection

In process-driven SOAs usually a large number of process instances run in parallel in a
process-engine. These process instances often require access to competing data resources
such as data from an RDBMS. Deadlocks arise when process instances hold resources re-
quired from each other. When none of these process instances will lose control over its
resources, a classic deadlock situation occurs [20]. There are various deadlocks detection
techniques in order to discover and resolve deadlocks. One common method to resolve
deadlocks are database transaction timeouts as used by common database drivers such as
the Java Database Connectivity (JDBC) driver [6]. Accordingly, after the timeout expired,
process instances lose control over the held resources.

A process can perform some transformations, invoke service operations, and access the
database. In order to prevent, detect, and solve deadlocks, data analysts need to focus on the
persistent data access activities of a process. Moreover, stakeholders have to make sure that
the DAS operations of different process flow instances always have to be processed in the
same order such that no two DAS operations have to wait for competing resources.

manual deadlock detection with persistent data access flows In the following we present
how our approach can contribute to detect deadlocks in business processes by using our
persistent data access flow approach. Figure 5 displays the two persistent data access flows
of our business process. In order to identify the persistent data access activities they are
consecutively numbered.

The persistent data access flow on the left hand side simply consists of two DAS op-
erations. The first DAS operation DeliveryDAS.insertDelivery (1) inserts delivery data into
table Delivery. Afterwards the DAS operation PersonDAS.insertPerson (2) inserts person
data into table Person. The persistent data access flow on the right hand side of the figure
consists of a DAS operation PersonDAS.selectPerson (3) that selects a row from table Per-
son using certain filter criteria. If the result set is empty, a new row will be inserted into table

16 Christine Mayr et al.

Persistent Data Access Flow

Persistent Data Access Flow %
l

storeApplication @
puary
@ Table selectPerson
’
{nsertDelivery S~ // \\ / exists ’ / not exists @

Database
7~ —— RO
@) ~ Table N
PersonDAS._ ~~ Delvery | PersonDAS. PersonDAS.
insertPerson ~ updatePerson insertPerson
DeliveryDAS. @
updateDelivery,

Fig. 5: Motivating Example for Manually Detecting Potential Deadlock Risks

Person by the DAS operation PersonDAS.insertPerson (5). Otherwise the retrieved row in
table Person is updated by the DAS operation PersonDAS.updatePerson (4). Finally a row
in table Delivery is updated by the DAS operation DeliveryDAS.updateDelivery (6).

All activities in a process flow instance are running in a transaction [39]. Consider
two process instances p/ and p2 running through the main process. PI inserts a new row
into table Delivery by performing the DAS operation DeliveryDAS.insertDelivery (1). At
the same time p2 updates a row into table Person by performing the DAS operation Per-
sonDAS.updatePerson (4). Thus DAS operation DeliveryDAS.insertDelivery (1) holds table
Delivery and DAS operation PersonDAS.updatePerson (4) holds table Person. As a result,
the DAS operation DeliveryDAS.updateDelivery (6) cannot be executed because DAS op-
eration DeliveryDAS.insertDelivery (1) holds table Delivery. Likewise, the DAS operation
PersonDAS.insertPerson (2) cannot be executed because PersonDAS.updatePerson (4) holds
table Person. This is the classic deadlock situation. In the figure, this deadlock situation
is displayed by the intersecting arrows on the left hand side and, concomitantly, the non-
intersecting arrows on the right hand side.

Without our persistent data access flow concept, analysts cannot solely focus on the per-
sistent data access activities of the process, but must consider many other concerns at the
same time. Therefore, especially if a large number of different types of activities is used in
a flow model, manual deadlock detection will be an exhaustive and time-consuming task.
Our approach is to provide a specific persistent data access flow that enables data analysts
to focus only on the relevant information helpful for detecting deadlocks. In particular, our
approach supports a visual solution to already eliminate potential deadlock risks at the mod-
eling level. The same can be assessed for any other manual data analysis task in process-
driven SOAs. Furthermore, on top of our approach, common deadlock detection techniques
(such as [29,7,51]) can be performed.

Automatic deadlock detection with persistent data access flows In some cases, we want to
go beyond manual data analysis in process-driven SOAs. The persistent data access flows
enable us to easier implement algorithms for static deadlock detection in distributed database
systems: As explained in the example above (see Figure 5), a deadlock can occur, when data
resources in different persistent data access flows are accessed in a different order. Thus in
order to detect possible deadlocks, we need to check the order in which database tables are

Enhancing Traceability of Persistent Data Access Flows in Process-Driven SOAs 17

Persistent Data Access Flow (Before) Persistent Data Access Flow (After)

handleDelivery handleDelivery

PersonDAS. PersonDAS.
selectPerson updatePerson

/ exists / not exists / not exists

PersonDAS. PersonDAS. PersonDAS.
updatePerson insertPerson insertPerson
DeliveryDAS. DeliveryDAS.
updateDelivery

updateDelivery,

/ exists

Fig. 6: Motivating Example for Detecting Inefficient Persistent Data Access Flows

accessed in each of these persistent data access flows. For this, we need to consider the paths
of all persistent data access flows of the process. Accordingly, a possible deadlock algorithm
compares the order in which database tables are accessed in one path p/ with the order in
which tables are accessed in another path p2. This pair-wise comparison needs to be done
for each possible path of the persistent data access flows of a process.

6.2 Problem & Solution: Design Weakness Detection

In process-driven SOAs, at first, DAS developers have to become acquainted with the pro-
cess flows including business logic activities, transformation activities, and persistent data
access activities. In particular, they need a general overview of the persistent data access
flows of the process e.g. they need to know which tables are accessed by a certain DAS
operation. These persistent data access flows are in particular important for developers who
need to review the developed database transactions in case of troubleshooting or analysis of
performance leaks.

Secondly, in integrated development environments (IDE) such as Eclipse [41], it is pos-
sible to search for modules that invoke a certain DAS operation. However, in a process
flow of different types of activities, to search for specific DAS operations can be a time-
consuming task. Accordingly, in contrast to our approach, in common IDEs it is not possi-
ble to extract a list of DAS operations accessing a specific database table or database table
column.

Thirdly, the persistent data access flow enables DAS developers to easily discover ineffi-
cient persistent data access flow. Figure 6 shows an example of such an inefficient persistent
data access flow before and after redesigning it. When we look at the flow on the left hand
side of the figure, we can easily recognize that eliminating the DAS operation DASI.select
could reduce the number of statements during process execution. The reason for this is that
the update operation DASI.update anyway returns the number of updated data sets. After
redesign, we can see the resulting flow on the right hand side of Figure 6. There are various
performance measuring tools used to discover performance leaks at runtime. However we
provide a visual approach to detect inefficient source code at the earliest possible state of the

18 Christine Mayr et al.

Path 1: Path 1: Path 2: Path 2:
Process Flow Persistent Data Access Flow Process Flow Persistent Data Access Flow
handleDelivery handleDelivery) handleDelivery) handleDelivery

EditDelivery
ValidateDeliveryList

PersonDAS.
selectPerson,

EditDelivery
ValidateDeliveryList

PersonDAS.
selectPerson,

PersonDAS.
selectPerson,

PersonDAS.
selectPerson,
PersonDAS.
updatePerson

DeliveryDAS.
updateDelivery,

PersonDAS.

insertPerson,

PersonDAS.
updateDelivery,

®

1 exists’ . / not exists

PersonDAS. PersonDAS.
updatePerson insertPerson,

DeliveryDAS.
updateDelivery,

SendDelivery

DeliveryDAS.
updateDelivery,

SendDelivery

Fig. 7: Motivating Example for Testing Persistent Data Access of a Process Flow

development process [7]. Our approach is not limited to the example above. It rather can be
applied to solve many other types of structural problems in business processes.

6.3 Problem & Solution: Test Case Generation

One major task during testing a process is to check whether data is correctly stored and
retrieved from a central storage. For this purpose, test cases have to be created, tested, and
executed, and finally, the results need to be examined [15]. In the following, we concentrate
on creating test cases at two different levels:

1. Test cases for single persistent data access activities: Each persistent data access activity
will have to be checked whether data is correctly stored and accessed. Each persistent
data access activity can be tested independently from the whole process. In order to
create, test, and execute these test cases respectively, testers require necessary input
and output data for each path of the process [35] (see Figure 7). In order to provide
appropriate input and output data, they need the information which tables are accessed
by a specific DAS operation. Our approach enables extracting persistent data access
flows by different filter criteria, such as extracting persistent data access flows containing
only those activities accessing a specific column of a database table.

2. Test cases for transactions: All persistent data access activities of a process are running
within a transaction. For each possible path in this transaction, a test case has to be
created, tested, and executed in order to verify the correctness of each path. Figure 7 ex-
emplifies these different paths both of the process flow and of the associated persistent
data access flow. The bold arrows mark a specific path within the process flow. In order
to create, test, and execute cases for transactions, testers have to overview the overall
persistent data access flows of a process. For this purpose, data test developers need a
documentation of these modeled persistent data access flows. However, from our expe-
rience, in industry, persistent data access flows are not documented. Furthermore, even
if such kind of documentation existed, the problem of updating this documentation in a

Enhancing Traceability of Persistent Data Access Flows in Process-Driven SOAs 19

timely manner would remain. *The only notable exception is documentation types that
are highly structured and easy to maintain, such as test cases and inline comments’ [26].
As our persistent data access flows follow the MDD [45] paradigm, there is no gap be-
tween specification and development. In particular, the effort to update the specification
to be synchronized with the newly implemented data access activities is not necessary.
The persistent data access flow concept provides such kind of documentation implicitly
and thus enables testers to gain a better understanding of the persistent data access flows
of a process. As shown in Figure 7, with our persistent data access flows, database testers
can easily overview the persistent data access activity paths of a process. Finally, due
to the improved persistent data access documentation, we argue that using the persis-
tent data access flow concept can decrease the participation of the different stakeholders
during test case design.

Moreover, our persistent data access flow concept enables testers to locate errors more
quickly when a specific test case asserting persistent data access fails [10]. Accordingly,
testers will be able to verify the particular path of the flow and thus will more efficiently
determine the failure reason e.g. if the failure is due to an error within the process, the
test case or the provided input data. During the run, a log handler can log each persistent
data access activity performed during the process. With this information, the error causing
persistent data access activities can be easily retrieved by reconstructing the entire path of
the persistent data access flow.

7 Solution: Model-driven Specification, Integration, Extraction

In this section we prove the technical feasibility of our approach. Our model-driven solu-
tion is based on the View-based Data Modeling Framework (see Section 3.3). Our highly
structured models are used as the modeling basis for extracting our flattened persistent data
access flows. In the following we present the necessary steps to be taken in order to imple-
ment our persistent data access flow concept.

— Specification of persistent data access activities

— Integration of persistent data Access activities with persistent data access implementa-
tion details

— Extraction of persistent data access flows from whole process flows

7.1 Specification

In Section 3.3 we already provided a general overview of our View-based Modeling Frame-
work (VbMF) and View-based Data Modeling Framework (VbDMF). Now, we present our
VbDMF Flow View model that is used to define the data access activities of a process flow.
As shown in Figure 8, our VbDMF Flow View model is extended from the basic VbMF
Flow View model.

The VbDMEF Flow View consists of a separate persistent data access task AtomicDAS-
Task extended from the basic AtomicTask of the VbMF Flow View. The VbMF AromicTask
class is a specialization of the VbMF Task class. The new AtomicDASTask allows stakehold-
ers to structurally modeling persistent data access in business processes. On the basis of this
new simple model, we can link a business process activity with persistent data access imple-
mentation details. In the following Section 7.2, we describe how stakeholders can associate

20 Christine Mayr et al.

VbMF
flow::AtomicTask flow::Task core::Element
4[> 4[>-name : String
— VbDMF
flow::AtomicDASTask|

Fig. 8: VbDMF Flow View model

each AtomicDASTask of the VbDMF Flow View with the definition of a corresponding DAO
operation of the VbDMF DAO View.

7.2 Integration

As explained in Section 3.3 views can be enriched by the mechanism of view integration.
In this article we enhance the concept of view integration by introducing view integration
paths, which we use to trace implementation details of process activities among different
views.

In Figure 3, we have basically outlined the (directed) view integration dependencies be-
tween the different VbMF/ VbDMF views. By the mechanism of view integration, persistent
data access activities of a business process can be integrated with their persistent data access
implementation details. In example, the Collaboration DAO Mapping View integrates the
Collaboration View and the DAO View. The DAO View, in turn can integrate two views,
namely the ORM View and the Data Object Type View. Finally, the ORM View can inte-
grate the Physical Data View and the Data Object View views. In order to check if a process
activity reads or writes from a certain database table, the Flow View needs to be integrated
with the Physical Data View. However, as depicted in Figure 3, these two views are not
connected directly. Thus, we have to establish an integration path between these two views.

In order to establish such an integration path from the source view i.e. the Flow View to
the target view i.e. the Physical Data View, many views need to connected. When integrating
views to establish an integration path, the target view of the last view integration always
becomes the source view of the next view integration. Within a view integration, we define
the connection point in the source view as start integration point and the connection point in
the target view as end integration point. In order to illustrate the concept of view integration
paths, Figure 9 shows an integration path of four view integrations. The views are depicted
in XMI notation.

— The first view integration combines the Flow View with the Collaboration DAO Map-
ping View. In this view integration, the entity AtomicDASTask DASDelivery.insertDelivery
of the Flow View acts as start integration point S; and the entity AfomicDASTask DAS-
Delivery.insertDelivery of the Collaboration DAO Mapping View acts as end integration
point E;) The Collaboration DAO Mapping View maps DAS operations to DAO oper-
ations e.g. it maps the DAS operation DeliveryDAS.insertDelivery of the Flow View
to the DAO operation DeliveryDAQO.insert of the DAO View. Instead of using the Col-
laboration DAO Mapping View, the Flow View can also be integrated with the DAO
View directly by using the VbMF/VbDMF’s mechanism of view integration. However,

Enhancing Traceability of Persistent Data Access Flows in Process-Driven SOAs 21

4 FlowViewxmi 32
%] file:/F:/sample/casestudy/FlowView.xmi
<4 Flow View exampleFlowView
4 Sequence businessProcess
4 Atomic Task receiveApplication
4 Sequence storeApplication

@ CollaborationDAOMappingView.smi &1
|X] file:/Fi/sample/casestudy/CollaborationDAOMappingViewxmi
4 Collaboration DAO Mapping View
4 DAS PersonDAS
< Mapping insertPerson
i . < Dao Operation PersonDAQ.insertPerson
& Atomic Task transformDelivery < Operation PersonDAS.insertPersen
| < Atomic DAS Task DehveryDAS.lnsertDehveryl-@— 4 Mapping updatePerson
< Dao Operation PersonDAQ.updatePerson
< Operation PersonDAS.insertPerson
4 Mapping selectPerson
< Dao Operation PersonDAO.selectPerson

4 Atomnic Task transformPerson

< Atomic DAS Task PersonDAS.insertPerson
4 Atomic Task executeApplication
4 Exclusive executeApplication

% Branch approval < Operation PersonDAS selectPerson

<4 DAS DeliveryDAS

. 4 Mapping insertDelivel
M Seq:ence. h_ar"dlED;“;EF Dac Operation DeliveryDAQ. insertDelivery
R 1 B L orm peron ey |
Mapping updateDelives
4 Atomic DAS Task PersonDAS.selectPerson + PPINg up . .ry .
Exclusi < Dao Operation DeliveryDAO updateDelivery
+ brclusive <4 Operation DeliveryDAS.updateDelivery

4 Atomic Task accountFees
< Branch dismissal

< Branch exdsts

< Atomic DAS Task PersonDAS.updatePerson
< Branch not exists

< Atomic DAS Task PersonDAS.insertPerson

4 Atomic DAS Task DeliveryDAS.updateDelivery] file:/Fifsamplefcasestudy/DaoView xmi
< Dao View

I

I

I

I

I

4l DaoViewxmi &2 |
I

< Dao PersonDAQ I
I

I

I

I

I

I

I

I

4 Atomic Task sendDelivery

< Dao Operations
< Dao Operation insertPerson
% Input Parameter PersonDO
< Dao Operation updatePerson
% Input Parameter PersonDO
4 Complex Qutput Parameter PersonDO

& ORMView.umi 52

[¥] file:/F:/sample/casestudy/ORMView.xmi

4 ORM View < Dao Operation selectPerson
<> Mapping Container Table To Data Object % Input Parameter PersonDO
< Table TablePersen 4 Complex Output Parameter PersonDO
4 Data Object Type PersenDO <4 Dao DeliveryDAQ
<> Mapping Container Table To Data Object Delivery < Dao Operations

r 4 Table DeliveryTable < Dao Operation insertDelivery |_< :;H—
| 4 Data Object Type DeliveryDO _—— e - — —‘ ::;Ho Input Parameter DeliveryDO
4 Mapping Container Column To Mem ariable firstName < Dao Operation updateDelivery
| 4 Column firstName 4 Input Parameter DeliveryDO
| 4 Member Variable firstName 4 Complex Qutput Parameter DeliveryDO
I 4 Mapping Container Column To Member Variable lastName
4 Column lastMName
| 4 Member Variable lastName
I 4 Mapping Centainer Column Te Member Variable dateCfBirth
4 Column dateQfBirth
I < Member Vanable dateOfBirth
I 4 Mapping Container Column To Member Yariable path
I 4 Column path
<4 Member Variable path
| 4 Mapping Container Column To Member Variable sendDelivery & Colurnn dateOfBirth
| 4 Column sendDelivery
I

. . 4 Celumn idPerson
4 Member Variable sendDelivery

4 Connection Properties dbConnectionPropertiesl
—————————————————— @ 4 Table DeliveryTable

4 Column sendDelivery

<4 Column idDelivery

4 Column idPerson

4 Column path

< Connection Properties dbConnectionPropertiesl

L& PhysicalDataViewami 5%

a ¥ file:/F/sample/casestudy/PhysicalDataViewxmi
a < Physical Data View
4 4 TablePersonTable
< Column firstName
< Column lastMame

Fig. 9: VODMF Integration Path

in this case, as we use a name-based matching algorithm for view integration, the DAO
operations and the DAS operations would have to be named identically.

— The second view integration pair (S2,E>) combines the AtomicDASTask DeliveryDAO-
.insertDelivery entity of the Collaboration DAO Mapping View with the DAO operation
DeliveyDAO.insertDelivery entity of the DAO View.

22 Christine Mayr et al.

— The third view integration combines the DAO View with the ORM View in order to
get information about the associated database tables. Each DAO Operation of the DAO
View contains DAO Input Parameter Types and DAO Output Parameter Types. Each
parameter type can be mapped to corresponding Data Object Types of the ORM View.
In our example, the input parameter type DeliveryDO of the DAO View can be mapped
to the correspondent entity DeliveryDO of the ORM View. In this view integration, the
entity DeliveryDO of the DAO View acts as start integration point S3 and the entity
DeliveryDO of the ORM View acts as end integration point E3.

— The fourth view integration pair (S4,E4) combines the DeliveryTable entity of the ORM
View with the DeliveryTable entity of the Physical Data View. This is possible, because
the ORM View maps Tables and Table Columns of the Physical Data View to Data
Object Types and Data Object Member Variables of the Data Object Type View.

After illustrating the concept of view integration paths, we provide general definitions
of the underlying terms.

Definition 1 Let V| and V; be two views. If entity S € V| matches entity E € V and entity
E €V, matches entity S € V|, then S is defined as the start integration point and E is defined
as the integration end point. Then, V) is defined as the source view and V, is defined as the
target view of this view integration.

Definition 2 Let V| be a view, and M| be the model of V\, such as Vi = instanceOf(M,). A
start integration point S1 € V| corresponds to an integration end point E| € V| when one of
the following conditions is true:

- Sl = El
— Ej is a super element of Sy
— Let MC| be a mapping container entity € M,
with S| instanceO f(MC) and EyinstanceOf(MC).

Definition 3 Let V;, i € 1..n be n views. A view integration path is a tuple of entity pairs
P(Si,Eili = 1.n—1,8; € V,,E; € Viy1) that meets the following conditions: For each i €
1.n—13S; € V; that matches an integration end point E; € Vi1, each integration end point
E; € Vi1 corresponds to a new start integration point Si11 € Vii1.

Algorithm 1: MatchFilterCriteria()

Input: Entity integrationStartPoint € FlowView
Input: View searchView
Input: Entity searchEntity
sourceView=FlowView;
if (NOT (searchView == NULL)) then
while (NOT sourceView.equals(searchView)) do

targetView = getNextView(sourceView,searchView);

integrationEndPoint = getIntegrationEndPoint (integrationStart Point ,targetView);

if (NOT (searchView.equals(targetView))) then

\ZztegmtionStartPoim =

R Y N R

ecursiveGetIntegrationStart Point (integrationEndPoint ,targetView);
8 isourceView = targetView;
9 return (RecursiveMatchEntity(integrationEndPoint ,searchEntity));

Enhancing Traceability of Persistent Data Access Flows in Process-Driven SOAs 23

Next, we present our algorithms used to implement the definitions above. The MatchFilter-
Criteria algorithm (see Algorithm 1) is the heart of our implementation solution. It checks if
a certain process activity matches given filter criteria by implementing the concept of view
integration paths. Algorithm 1 is a sub-algorithm of our recursive elimination algorithm Re-
cursiveClean (Algorithm 4), which we will present in Section 7.3. Algorithm 1 consists of
three basic functions:

— getNextView(View sourceView, View targetView) The function getNextView simply re-
turns the next related view based on the sourceView and the targetView. The function
returns the next view based on the view integration dependencies depicted in Figure 3.
This function NextEntity is comparably simple and is not further illustrated.

— getlntegrationEndPoint(Entity startEntity, View targetView) In order to connect a source
view with a target view, the start integration point of the source view need to be inte-
grated with an end integration point of the target view. In our prototype implementation,
the algorithm finds the corresponding integration end point in the target view based on
name-matching [43]. As the name-matching algorithm is sufficient for our prototype
implementation, we do not provide further implementations to find matching entities in
the target view in this article.

— RecursiveGetIntegrationStartPoint(Entity oldEntity, View sourceView) Based on the end
integration point of the previous view integration, this Algorithm 2 can calculate the
start integration point of the next view integration. The target view of the last view
integration becomes the source view of the next view integration. Thus, the old end
integration point is in the same view as the new start integration point. Algorithm 2,
the heart of our integration path calculation, requires the simple recursive sub-algorithm
RecursiveMatchEntity (Algorithm 3) to check if the integration end point of the target
view contains or matches given search criteria.

Three parameters are passed to Algorithm 1: A parameter integrationStartPoint of the
Flow View, which initially is the persistent data access activity, and the filter criteria to be
checked represented by the view searchView containing the entity searchEntity. As defined
above, a view integration path consists of pairs of a start integration entity and end integra-
tion entity. Each start integration entity belongs to the source view and each end integration
entity belongs to the target view. Accordingly, at first, a variable sourceView is initialized
within the Flow View. As long as the current sourceView does not equal the searchEntity
entity of the searchView, the functions getNextView and getlntegrationEndPoint, and Recur-
siveGetlntegrationStartPoint are invoked. The function RecursiveGetIntegrationStartPoint
is invoked as long as the variable targetView does not equal the variable searchView.

In the following we describe the algorithm RecursiveGetintegrationStartPoint (Algo-
rithm 2) used to get the start integration point of the current view integration. The input
parameters currentEntity and targetView are passed to Algorithm 2. According to Definition
2, there are three possibilities how to find a start integration point for the next view, the
new start integration point either is the last end integration node, or the new start integration
point is part of a Matching Container, or the new start integration point is a child of the last
end integration node. According to the first possibility, the function GetlntegrationEndPoint
checks if the current start integration point of the currentView matches a corresponding end
integration point in the target view. If the start integration point matches a corresponding end
integration point, a new start integration point is found. Otherwise, the new start integration
point is either part of a Matching Container or it becomes a child entity of the current entity.
In both cases, the RecursiveGetlntegrationStartPoint algorithm invokes itself recursively to
check if the new start integration point matches an end integration point.

24 Christine Mayr et al.

Algorithm 2: RecursiveGetlntegrationStartPoint()

Input: Entity currentEntity

Input: View rargetView

1 integrationEndPoint=GetIntegrationEndPoint (current Entity,targetView);
2 if NOT(integrationEndPoint == NULL) then
3 |return integrationEndPoint;

4 else

s [if (hasChildren(currentEntity)) then

6

7

8

9

foreach (Entity childEntity € entity.children()) do
‘return RecursiveGetlIntegrationStart Point (childEntity,targetView);

else
Entity parent = getParent (currentEntity);
10 if (parent instanceof MappingContainer) then
11 oreach (Entity childEntity € parent.children()) do
12 if (NOT (childEntity.equals(currentEntity))) then
13 Ireturn childEntity;

14 return NULL;

Algorithm 3: RecursiveMatchEntity()

Input: Entity currentEntity € ViewcurrentView
Input: Entity searchEntity € ViewcurrentView
if (currentEntity.equals(searchEntity)) then
freturn TRUE;
if (hasChildren(currentEntity)) then
foreach Entity childEntity € entity.children() do
LRecursiveM atchEntity(childEntity);
return FALSE;

- N7 I O R

Finally, the simple recursive algorithm RecursiveMatchEntity (Algorithm 3) is invoked
in order to check if the integration point in the target view matches the given search criteria.
For this purpose, two parameters are passed to Algorithm 1. Firstly, the entity currentEn-
tity is to be checked against certain filter search criteria. Secondly, the entity searchEntity
specifies this filter criteria. The algorithm firstly checks if the entity searchEntity equals
currentEntity by name-based matching. If this is true, the business process activity matches
the filter criteria. If currentEntity has children, for each child, the algorithm invokes itself
recursively.

An unsolved problem still is how to extract the persistent data access flows from the
whole Flow View. In the following we present an algorithm calculating a flattened Flow
View, defined as the DAS Flow View.

7.3 Extraction

In the following we present our algorithm used to extract the DAS Flow View from the
whole Flow View. Due to our model-driven view-based approach we can filter data access
activities by specific search criteria, such as tables, columns, DAOs, data objects etc. As a
result our extracted persistent data access flows can contain only those activities accessing a
specific table of a database.

Before we define the algorithm to extract persistent data access flows from the whole
process flow, in the context of VbDMEF, we provide the following definition:

Enhancing Traceability of Persistent Data Access Flows in Process-Driven SOAs 25

Definition 4: The VbDMF view incorporating the persistent data access flow is a VbDMF
DAS Flow View. This VbDMF DAS Flow View is an extraction of the Flow View. This DAS
Flow View only contains the AtomicDASTasks of the process flows. Each AtomicDASTask
matches an associated DAO Operation of the DAO View.

Algorithms for global data flow analysis fall into two major classes: iterative algorithms
and elimination algorithms [8]. In iterative algorithms, the equations are repeatedly eval-
uated until the evaluation converges to a fixed point. Elimination algorithms compute the
fixed point by decomposition and reduction of the flow graph to obtain subsequently smaller
systems of equations. We settled for a recursive elimination algorithm and present our sim-
ple recursive elimination algorithm RecursiveClean (Algorithm 4) to extract the DAS Flow
View from the Flow View. Algorithm 4 contains the sub-algorithm Algorithm 1 which is the
heart of our recursive elimination algorithm RecursiveClean.

Algorithm 4: RecursiveClean()

Input: Task task € FlowView

Input: View searchView

Input: Entity searchEntity
1 if (hasChildren(task)) then
2 [foreach Task childTask € task.children() do
/* only process non-data-related tasks */
if (/(childTask instanceof AtomicDASTask)) then

recursiveClean(childTask);

if (NOT hasChildren(childTask)) then

kask.removeChild(childTask);

/* only process data-related tasks */
7 else if (MatchFilterCriteria(childTask,searchView, searchEntity)) then
s }taskAremoveChild(childTask);
9 else if (/(task instanceof AtomicDASTask)) then
10 |ask=NULL;
1 else if (MatchFilterCriteria(childTask, searchView, searchEntity)) then
12 \task =NULL;

=Y T O

In the following we explain our recursive elimination algorithm RecursiveClean (Algo-
rithm 4). The start Tasks of the Flow View are passed as mandatory input parameters to the
algorithm. In addition, the optional input parameters searchView and searchEntity are passed
to the algorithm in order to filter DAS operations by certain search criteria. After executing
the algorithm, the persistent data access flow contains only those DAS operations matching
the entity searchEntity of the view searchView. In order to filter persistent data access flows
by more than one search criteria the algorithm can be performed repeatedly. If the input
task Task has children, for all non-data-related entities, our recursive algorithm recursively
steps into the different paths of the tree view. A task Task can have children if its type is
of Sequence, Parallel, Exclusive or Branch. For each non-data-related childTask of the cur-
rent task, the algorithm calls itself recursively. As explained before, a task is data-related
if it is of type AtomicDASTask. When stepping through a certain path, only the non-data-
related leaf-tasks are removed by recursion from the Flow View. Per default, tasks of type
AtomicDASTask must not removed, because they are part of our resulting DAS Flow View.
Likewise, tasks such as Sequence, Parallel, Exclusive and Branch containing data-related
entities must not removed as well, because they are also part of the resulting DAS Flow

26 Christine Mayr et al.

View. The algorithm MatchFilterCriteria (Algorithm 1) filters all data-related leaf-tasks of
type AtomicDASTask provided that they do not match the search criteria. In order to check
if the current leaf-tasks match the search criteria, the algorithm MatchFilterCriteria tries to
establish a view integration path to the entity searchEntity of the searchView. Hereby the
current leaf-tasks act as integration points. If a view integration path is found, Algorithm 1
returns true. The algorithm MatchFilterCriteria (Algorithm 1) has been described in detail
before in Section 7.2.

This recursive elimination algorithm can be reused for extracting other views such as
for extracting all service operations from the Flow View.

8 Applicability of the Algorithms & Tooling

In this section we show the applicability of the algorithms above and present a suitable
tooling.

Firstly, we apply our algorithms to our process flow described in case study Section 4. We
extract both a simple and a filtered persistent data access flow:

— Extract simple persistent data access flows: When stakeholders want to test persistent
data access in process driven SOAs, they need a documentation about the persistent
data access activities in the business process. Our simple persistent data access flow
provides such a documentation. In the following we apply our algorithms to extract the
DAS Flow View from the whole process flow. For this purpose, we invoke the recursive
elimination algorithm RecursiveClean (Algorithm 4) with the start Task of the Flow
View in Figure 4. The resulting Flow View of this algorithm is a DAS Flow View that
only contains data access activities. We invoke the algorithm with the NULL value for
the input parameters searchView and searchEntity. Figure 10a shows the XMI notation
of the extracted DAS Flow View after invoking the algorithm.

— Extract filtered persistent data access flows: In case a deadlock occurs, data analysts
want to check the business process for structural errors. For this purpose, they can ex-
tract all the data access activities that read or write from a specific database table. In
our example the function MatchFilterCriteria of Algorithm 4 filters all data access ac-
tivities that do not access a specific table DeliveryTable. To establish this, we set the
input parameters searchView and searchEntity to the values Physical Data View and Ta-
ble respectively. In addition, we set the attribute Table.name to DeliveryTable. By view
integration, we can filter those data access activities not accessing the specific table De-
liveryTable. For this purpose, the algorithm RecursiveMatchEntity (Algorithm 3) checks
the searchEntity input parameter against the DeliveryTable entity. If the entity Delivery-
Table matches the current Table entity, the concerned persistent data access activity is
part of the resulting persistent data access flow. Otherwise the persistent data access ac-
tivity is filtered from the Flow View. The resulting extracted DAS Flow View is shown
in Figure 10b. As a result, only those data access activities accessing table DeliveryTable
are part of the DAS Flow View.

Use Cases In the following, we give a few more use case examples fulfilled by stakehold-
ers developing and maintaining applications in large-scale enterprises. If a certain use case
occurs depends e.g. on the quality of the underlying business process and non-functional
requirements e.g. the availability of external dependencies such as service providers and

Enhancing Traceability of Persistent Data Access Flows in Process-Driven SOAs 27

< DAS Flow View
4+ Sequence businessProcess

4 Sequence storefpplication
< Atornic DAS Task DeliveryDAS.insertDelivery
<4 Atornic DAS Task PersonDAS.insertPerson

4 Sequence handleDelivery
4 Atomic DAS Task PersonDAS.selectPerson
4 Exclusive

< DAS Flow View

4 Branch exists 4 <4 Sequence businessProcess

4 Atomic DAS Task PersonDAS.updatePerson 4 < Sequence storeApplication

4 Branch not exists <4 Atomic DAS Task DeliveryDAS.insertDelivery
4+ Atomic DAS Task PersonDAS.insertPerson 4 4 Sequence handleDelivery
< Atomic DAS Task DeliveryDAS.updateDelivery 4 Atomic DAS Task DeliveryDAS.updateDelivery
(a) DAS Flow View (b) DAS Flow View (Table Delivery)

Fig. 10: Case Study: XMI notation of a simple and filtered persistent DAS Flow View

databases. These use cases mainly result from our study of analyzing data access in service-
oriented environments in a large enterprise and secondly from analyzing literature in this
field. They demonstrate how our persistent data access flows can be applied to specific anal-
ysis problems. Each of these use cases extracts a persistent data access flow from the whole
process flow by different search criteria.

— In case a deadlock occurs, in addition to selecting all persistent data access activities
accessing a specific database table, data analysts can further flatten the resulting persis-
tent data access flow. In example, they can extract all the data access activities from the
business process that read or write from a specific column of a database table.

— In case a specific database fails, stakeholders such as DAS developers need a documenta-
tion of which business process activities access a specific database. For this purpose, they
need to extract all the data access activities that read or write from a specific database
connection. In order to establish this, in addition to the previous four view integrations,
the Physical Data View needs to be integrated with the Database Connection View.

— Let us consider the case that a certain service provider is shut down for any reason.
Then, stakeholders such as system architects need to determine the business process ac-
tivities invoking a service of the failed service provider. For this purpose, stakeholders
can extract only those data access activities from the whole process flow which run on a
certain URI Service. Uri.name. In order to establish this, the algorithm MatchFilterCri-
teria integrates the DAS Flow View with the Collaboration View.

Tooling In order to demonstrate applicability of our model-driven solution, we have inte-
grated our persistent data access flow algorithms into the Eclipse-based [41] BPMS Intalio.
Due to this tool integration, stakeholders can view the persistent data access flows and trace
persistent data access details of a business process. In particular, we provide the following
functionalities:

1. Add data access service views to the process flow. Figure 11 shows a new menu item
in the process flow’s context menu for adding relevant data access service views. After
clicking this item, developers can select the VbDMF views, specifying the data access
services of the business process, in a file chooser. Afterwards, a new directory (vb-
dmf_diagram_name) with the selected views is created in the project folder. As a result,
stakeholders can inspect the VbDMF views which are shown bottom right of Figure 12.
By these views, stakeholders can view persistent data access details of persistent data

28

Christine Mayr et al.

2.

access activities such as physical storage tables, database connections, object-relational
mappings, and data access object types. In Figure 12, a character is displayed top right
of each view, which refers to a description below.

(a) The Collaboration View specifies the service operation definitions of the DAS oper-
ations.

(b) The DAO Collaboration Mapping View maps data access service (DAS) to underly-
ing data access object (DAO) definitions.

(c) The DAO View models the underlying DAO operations of the DAS operations.

(d) The ORM View maps data object types of the Data Object Type View to physical
database tables of the Physical Data View.

(e) The Data Object Type View specifies the data object types of the input and output
parameters of the DAO View.

(f) The Physical Data View defines the tables and columns of an RDBMS and integrates
the Database Connection View.

rocess Explorer &3 .7 Palette = 0|/[d] *modeler.bpmn_diagram 52

I SendApplication
5 |

TransformDel H: liveryDAS inserDel Hr formp H DAS insert F.()
onessicoten| (@) ransformDelivery [-+DelenyDAS insertDelivenf— TranstormPerson [—+PersonDAS insetPerson (—({) JalisateDeliveryLid

! Hl i i

i = ; |

i | i i
Import Data Access Service Views — y !
Validate T i
Run A: » i i i exists i
. I i i 2 AccountFees [~ I
Debug As , i ! i \ |
Profle A= ’ @ [1 x not exists EditDelivery ()
Team »

» |

Compare With
Restore from Local History.

Fig. 11: Tooling: Import Data Access Service Views

Generate persistent data access flows Based on the selected views, developers can gen-
erate simple and filtered persistent data access flows of a process flow. In both cases,
they use the filter view displayed in Figure 12. The Persistent Data Access Flow Filter
View generates persistent data access flows for the selected process flow in the process
explorer. In order to generate a simple persistent data access flow, stakeholders select
the check box *No Filter Criteria’ and simply press the Generate button within the filter
view. In order to produce a filtered persistent data access flow, stakeholders select filter
criteria from the list. After pressing the button ’Generate’, the recursive elimination algo-
rithm RecursiveClean (Algorithm 4) is invoked with or without filter criteria arguments.
In the example we set the filter criteria to PhysicalDataView.table.name=DeliveryTable
to filter all persistent data access activities from the flow that do not match table De-
liveryTable. As soon as the button ’Generate’ is pressed, Algorithm 4 is invoked with
the input parameter values Physical Data View, Table, and DeliveryTable. Top right of
Figure 12 the resulting filtered persistent data access flow is shown that solely consists
of the persistent data access activities reading or writing from table DeliveryTable.

29

Enhancing Traceability of Persistent Data Access Flows in Process-Driven SOAs

SMO[SSQ00Y BIB(] JUDISISIO 9IBIAUID)

‘Surjooy, g1 514

I Tr F

] T

Tserpado) uompauuo)ap sasmdod uomauLoY 4

yied uwnjoy 4 -
uosidpt uwnjo) 4
ARnpgp uwnjo) 4
ARMpQPUIs ULINOY 4

2192 LeNRA3IeRL +

awepse|

UosIBgp! UWNIOY)
YHIB0IRP Ui 4
awepse) uwnje)

swepgsiy uwnjo) 4 E

3qejuosiad 3qel 4

Swepse| uwney 4

3|qeuen ;aquiajy 0] uwinjoy sauizua) Buiddeyy ¢
swepsiy 3|qeURA SRqUERY 4
BwenIsIpUWINEY 4

Swesiy3|geuen ;AqUIAKY 0] UwN|o BuRe) Buiddely 4

Oakmnpg adi| palag eeq
s1e L Aimnaq 21ge L 4

Aanpa P40 ©1eq 0] 2(qe) BurR0) Buiddeyy 4
0Quosiag adi| palaQ eeq
s|geLuosiag geL 4

12040 23eq 01 3(qe | auieIod Buiddely 4

2103272 i . 0 @

MO|3 55300y B12(JURIR] 390RUID

d d B
franpgEEpdn sygiEnag uonerdg 4
AanpguasusyalEnag uanerRdp 4
depRUSYQABARE 3R] 4
SyafisnRg mRs ¢
uosiagaepdisyquosiag uonerdo 4
uosIEgRIPsSYQUesId uaneRdp 4
uosigIsUrsy quosiag uoeRdy 4
sdepEgyquOsiag eI 4
SYQUasId 3RS 4

a1qe L Asmpq =auseuaiger mannereQeaish d

" unAsy
faifas 190431 ULIN|0 423 Qe

maip ejeq jeaishyg 4 NI WHD 4 ma1p voneiageloy 4 i T
- waneeg - 4w |- 1 5 1 o & iyt
(@ T (@ 57 WRMBIAANO B 55 wcwayuonziogeod || x. ,Hn unwﬁ»wmehmwﬁ
< T i Tr 1 W Tr|[= Anpguasu BuRle) Buiddepy 4 e o o]
1033731 d ® |- ovakenRg g 4 SvaABuRgSYa 4
a0 d ® OQuosig mRwEIRg INdIND @IdWwoD 4 uosiagpaps SyQuosig uonerdo 4 MOl 55800V BJB(JUB)SISId 8)BIBUSY)
d ® OQuosiag AR Indu] 4 UosR @RS OYQUosIad uanedg oeg 4
tped 3jqeuen quiay 4 uosiagpaps uonerdg oeq 4+ uosagpaps Bueuo) buiddepy 4 = I MR 13 oy 5530y eeq ustsind [
frsnypgpuss siqeuen quapy 4 OQuosig mRweIRg NdIG B(dwo) 4 uossa guesursyQuosiag UoneRdg 4
Oquosmd 30 E1eq 4 0Quosiag mEWEIR 1ndu] 4 uosiagaiepdn‘OyQUOsId Uonesdp 08q 4
0QARARa 2dA) P2Ia0 g 4 Uosia gayepdn uonersdq oeq 4 Uosiageiepdn autejue? Buiddepy 4 P —
igiosIep Agenen BW 4 0Quosiag 12pRwEIg adu] 4 uos3guRsUrSyQUosg Uonendg 4 s, il |
awepse] Aigeuen Bl 4 L uosia quasur uonessdp oeq 4 UosiaquEsUrOYQUosad uoneradp oeq 4 e
SUlENIEIS BIGELEA JBqWI 4 3 suoneizdo oeq 4 oS uBsul BUIEIeS Buiddely 4 A TPREL 1zl L)
0Quosgadk 3fg0 g 4 Ovauosg oeg 4 SyQuosdsva 4 s Hn,um,uii M
w3y 3dA) 3l ereg 4 maip orq 4 maip Buiddey Oy uoneiagelo) 4 ,E%s%%bﬂwm @
waipadApalaoereq) ¥ o Aoeq, ¥ ¥ o ova X d D
@ | q g 1unemainBuiddeovquonewojur B
5 scmaedfppalaoeeg # @ 53 macmaoeq (q) 52 o OV QuoneIogeio) orwatuorsauoaq
. [i D nuemaipdAipafgoeeg #
= wcwaoeq &
1l IUBMBIAUORRIOGE0) B
s BuiddepOyquoneiogeoy B
wesbeipaduses™juipqn <)
INQVIYMomawey [
molppiom =)
jepduwsy)
[ppow &
=
E =] =] =]
promswey <)
Brs wiesbergaiduwes X
12Q3iePdn SYkEAR: T:mnzwms.m(namaa @ T
psmusshs iy - weibeiga|duwes &7
Brs gpassywesbeigaiduwes X
65 TPy weibeigaidwes (X
ping 91
v ajduwes
= 3 wdg Tpasy weiBaIGdweE | [_ . & 5 | o Tﬁ_mn 212 ioibg 5520014

30 Christine Mayr et al.

Implementation details In the following we describe the implementation details of integrat-
ing the persistent data access flows into the Intalio BPMS. Figure 13 illustrates the necessary
implementation steps. Each of the three implementation steps requires some input and gen-
erates output files. In the figure, the gray-labeled boxes depict the generated output files
whereas the white-labeled boxes denote existing input (files).

BPEL BPEL PEL

Flow View

BPEL
DAS
FlowView

Collaboration Information
View View

A

& Transform Execute Transform
BPEL BPEL to Algorithm VbDMF to
VbMF RecursiveClean() BPMN

A

VbDMF VbDMF
Database ;’/r:)[;?gl bata VODMP VoDMP Collgl?(l:_:rl;tion InfoB:nEa%ion
Connection Dalg View Object |ORM View| DAO View Filter View View
View Type View Criteria

Fig. 13: Tool Integration

— Transform BPEL to VbMF: In order to being able to apply our algorithm to persis-
tent data access flow, we need to transform the Intalio-generated BPEL flow into VbMF
views. Whenever saving a BPMN diagram, the concerning BPEL source code is gen-
erated into the build folder of the project (shown top left of Figure 12). On top of this
Intalio-generated BPEL code, we have implemented a java-based transformation that
translates a BPEL file into VbMF views, namely the BPEL Flow View, BPEL Collab-
oration View, and BPEL Information View. After generating the views, they are also
saved in folder vbdmf_diagram_name.

— Execute Algorithm RecursiveClean(): The generated VbMF views BPEL Flow View,
BPEL Collaboration View, and BPEL Information View as well as other data-related
VbDMF views from the folder vbdmf_diagram_name are read by our recursive elim-
ination algorithm RecursiveClean. In addition, the algorithm is fed with filter criteria
specified in the Persistent Data Access Flow Filter View. The result of the algorithm is
the BPEL DAS Flow View.

— Transform VbDMF to BPMN: Finally, we have to generate the BPMN code from the
BPEL DAS Flow View. Besides the DAS Flow View, the transformation engine reads
the BPEL Collaboration View and the BPEL Information View in order to transform
BPEL messages and partner links to BPMN notation. In literature, there are very few
approaches to map BPEL to BPMN. Weidlich et al. [47] discuss the limitations and
pitfalls of such a BPEL-to-BPMN-mapping. However, in our prototype implementation
we concentrate on mapping simple BPEL processes.

Enhancing Traceability of Persistent Data Access Flows in Process-Driven SOAs 31

9 Evaluation

In this section we want to discuss both the correctness and complexity of the presented
algorithms.

Correctness Here, we discuss the correctness of the algorithm MatchFilterCriteria (Algo-
rithm 1) using induction. The MatchFilterCriteria algorithm is the heart of our recursive
elimination algorithm that is used to implement our view integration path concept.

Hypothesis: Let VT; be the ith target view and VSi11 be the (i+1)th source view of a view
integration path. The algorithm is correct if the target view V T; equals the source view V S; 11
V2<i<n.

Algorithm 5 illustrates a reduced MatchFilterCriteria algorithm that contains the relevant
lines of the while loop necessary to prove the hypothesis. In this reduced MatchFilterCri-
teria algorithm we use the following variables: VS; denotes the ith source view of a view
integration path, V7; denotes the ith target view of a view integration path. Accordingly,
S; € VS; denotes the start integration point of a view integration and E; € VT; denotes a end
integration point of a view integration.

Algorithm 5: Reduced MatchFilterCriteria Algorithm

1 while (NOTVS;.equals(searchView)) do

2 |targetView = getNextView(VS;, searchView);
3 ; = getIntegrationEndPoint (S;,targetView);
4 [if (NOT (searchView.equals(VT;))) then
5
6

‘SH] = RecursiveGetIntegrationStartPoint (E;,VT;);
VSit1 =VT;

Let i be the number of while loop cycles of Algorithm 1. The number of while loop
cycles equates the number of views in the view integration path. V0 < i < 2 the hypothesis
is false, because a view integration path must have at least two views in order to fulfill the
hypothesis:

1.i=1:85€VS,, T =NULL
2.i=2:81€VS, T eVTy

Base Case: i=3:8,€VS,, T e VT, $inVS, VS, =VT,, T, VT

Inductive Step: LetVS; =VT,_1 be trueV?2 <i<n:
S1evs, eVl .., Sy—1€VS,_, T,-1 €VT,_y, S,inVS,, VS, =VT,_1, T, € VT,.

Now, we show that the hypothesis is true V2 < i < n—+1:

S1eVSL eV, .., Su—1 €VSy—1, Tnm1 €VTy, $pinVS,, VS, =VT,_1, T, € VT,
Sn) € VSy, Tn) € VT, Sps1inVSui1, VSuy1 = VT, Tyy1 € VT
From this it follows that V2 <i<n+1: VS;y1 = VT - = VT;. Hereby we have proven
that our hypothesis is true.

32 Christine Mayr et al.

Complexity: In the following we quantitatively measure the complexity of the presented
algorithms using the Big O notation. We evaluate each of our algorithms separately before
we will derive the overall performance from the parts.

Formally, the algorithm f(n) is equivalent to O(g(n)) for all n > 0, if there exists a
constant ¢ > 0, such that f(n) = c¢xg(n). Table 2, Table 3, Table 4, and Table 4 summarize the
complexity of the presented algorithms. The complexity of each algorithm is presented in a
separate table. In each table, the line number, the complexity of each line, and the maximum
number of invocations are displayed. First, in Table 2 and Table 3 the complexity of the
algorithms RecursiveGetIntegrationStartPoint and RecursiveMatchEntity are illustrated. As
these two algorithms are invoked by algorithm MatchFilterCriteria, next, Table 4 shows the
complexity of the algorithm MatchFilterCriteria. Finally, Table 5 displays the complexity of
the algorithm RecursiveClean which invokes the algorithm MatchFilterCriteria. In the sub
tables, we use the following literals: v to refer to the number of views in a view integration
path, n to denote the number of elements within a view, and the constant k to denote the
number of child elements within an integration element within a view. For example, The
input parameter DeliveryDO of the DAOView is a child entity of the DeliveryDAO.insert
integration point. The number of persistent data access activities within the Flow View is
denoted by d.

Table 2: Complexity of Algorithm RecursiveGetIntegrationStartPoint (Algorithm 1)

Line Line of Algorithm Complexity — Max. # of

of Line Invocations

1 integrationEnd Point=GetIntegrationEndPoint O(n) k
(currentEntity,targetView)

2 If(NOT (integrationEndPoint == NULL)) o(1) k

3 RETURN (integrationEndPoint) o) k

4 Else

5 If (hasChildren(currentEntity)) o(1) k

6 ForEach(Entity childEntity € entity.children()) o(1) k

7 RETURN (RecursiveGetIntegrationStart Point o(1) k
(childEntity,targetView))

8 Else

9 Entity parent = getParent (currentEntity) o) k

10 If(parent instanceof MappingContainer) o) k

11 ForEach(Entity childEntity € parent.children()) O(1) k

12 If(NOT (childEntity.equals(currentEntity))) o(l) k

13 RETURN childEntity O(1) k

14 RETURN NULL O(1) k

Table 2 depicts the complexity of the recursive algorithm RecursiveGetIntegrationStart-
Point (Algorithm 2). The algorithm RecursiveGetIntegrationStartPoint checks each entity
of the view if if matches the current entity currentEntity. Thus, the function RecursiveGet-
IntegrationStartPoint is of linear complexity O(n) and is invoked at most m times, whereas
m corresponds to the number of child elements of entity currentEntity. However, the number
of child elements m is not dependent on the number of process elements, because it is a
constant factor. Therefore, the next statements are also of constant complexity. As a result,
the overall performance of the algorithm RecursiveGetlntegrationStartPoint is linear.

Enhancing Traceability of Persistent Data Access Flows in Process-Driven SOAs 33

Table 3: Complexity of Algorithm RecursiveMatchEntity (Algorithm 2)

Line Line of Algorithm Complexity Max. # of
of Line Invocations
1 If (currentEntity.equals(searchEntity)) o(1) k

2 RETURN TRUE o(1) 1

3 If (hasChildren(currentEntity)) O(1) k

4 Else

5 ForEach(Entity childEntity € entity.children()) — O(1) k

6 RecursiveMatchEntity(childEntity) o(1) k

7 RETURN FALSE o(1) 1

Table 4: Complexity of Algorithm MatchFilterCriteria (Algorithm 4)

Line Line of Algorithm Complexity — Max. # of

of Line Invocations

1 sourceView = FlowView o(1) 1

2 if (NOT searchView == NULL) o(1) 1

3 while (NOT sourceView.equals(searchView)) O(l) v

4 targetView = getNextView(sourceView,searchView) o(1) v-1

5 integrationEndPoint = getIntegrationEndPoint O(n) v-1
(integrationStartPoint ,targetView)

6 if (NOT (searchView.equals(targetView))) then o(1) v-1

7 integrationStartPoint = RecursiveGetIntegrationStartPoint ~ O(1) v-2
(integrationEndPoint ,targetView)

8 sourceView = targetView o(l) v-1

9 RETURN (RecursiveMatchEntity o) 1

(integrationEndPoint , searchEntity))

Table 5: Complexity of Algorithm RecursiveClean (Algorithm 3)

Line Line of Algorithm Complexity = Max. # of

of Line Invocations

1 If ((hasChildren(task))) O(1) n

2 ForEach(Task childTask € task.children()) o(1) n

3 If((!(childTask instanceof AtomicDASTask))) O(1) n

4 recursiveClean(childTask) o(1) n-d

5 If((NOT hasChildren(childTask))) o(1) n-d

6 task.removeChild(childTask) O(l) n-d

7 Elself(MatchFilterCriteria) O(d) d
(childTask, searchView, searchEntity)) o) d

8 task.removeChild(childTask) o(1) d

9 Elself (!(task instanceof AtomicDASTask)) o(l) n-d

10 task = NULL o(1) n-d

11 Elself(MatchFilterCriteria) 0O(d) d
(childTask, searchView, searchEntity))

12 task = NULL O(1) d

Table 3 summarizes the complexity of the algorithm RecursiveMatchEntity (Algorithm 2).
As an entity has a constant number of child entities e.g. the entity Table has a constant num-
ber of Columns. Therefore, the algorithm RecursiveMatchEntity is of constant complexity.

Table 4 illustrates the complexity of Algorithm 4. The function getNextView, that is not
further specified, is of constant complexity, because, according to Figure 3, it simply re-

34 Christine Mayr et al.

turns the next view by the current view. In contrast to the function getNextView, the function
getlntegrationEndPoint is dependent of the number of process elements within a view. The
function getIntegrationEndPoint determines a matching element in the target view, that is
the end integration point. Thus, the response time of this function grows linearly with the
number of view elements. The function RecursiveMatchEntity checks if the current entity
matches the search criteria. This function is also of constant complexity. As a result, Algo-
rithm 4 has an linear overall performance.

Table 5 shows the complexity of the algorithm RecursiveClean. Each line in the algo-
rithm is invoked linearly with the number of process activity in the business process. In
particular, line 7 and 11 are invoked linearly with the number of persistent data access ac-
tivities within the business process. the lines 8 and 12 are only invoked if the persistent data
access activities do not match the filter criteria. Thus, the overall performance of our recur-
sive elimination algorithm RecursiveClean for the number of persistent data access activities
d > 0is O(d?). If the number of persistent data access activities within the business process
d = 0, the worst case response time of the recursive elimination algorithm RecursiveClean
grows solely linear with the number of process activities O(n).

In the following we summarize the resulting complexity of the algorithms.

— RecursiveGetIntegrationStartPoint: k* O(n) + 11 xkxO(1) = O(n)

— RecursiveMatchEntity: 4xk+O(1) +2x0(1) = (2% (2k+1))*O(1) = O(1)

— MatchFilterCriteria: (v—1)*«O(n) +v+O(1) +2x (v—1)«O(1) + (v—2) xO(1) + 3% O(1)
=(Wv—1)=*0(n)+(4v—1)*0(1) =0(n)

— RecursiveClean:
ford =0:3nx0(1)+5%(n—d)xO0(1)+2d*O0(d) +2d* O(1) =3nx O(1) + 5 (n) * O(1) = O(n)

ford =n:3n+x0(1)+5%(n—d)xO(1) +2d* O(d) +2d x« O(1) =3d x O(1) +2d + O(d) +2d « O(1)
=5d%0(1)+2d*0(d) = 0(d?)

for0<d<n3nx0(1)+5x(n—d)*x0(1)+2d+0(d)+2d*0(1) =3x0(n) +5+«0(n—d) + 2 *
0(d)+2%0(d*) = O(n) + 0(d?)

Today, XML is a popular standard data exchange format. Thus, in literature, there is a
variety of more efficient XML structural matching techniques [1,3]. By using these struc-
tural matching techniques, the worst case complexity of our recursive elimination algorithm
O(n) +0(d?) for d > 0 can be reduced. However, the aim of this section is to quantitatively
show the feasibility and applicability of our approach, which has been achieved well.

10 Discussion

Different stakeholders such as business experts, architects, and developers have different
requirements to a software system. According to the pattern of separation of concerns [12],
appropriate views must be provided to the different stakeholders. However, in addition to
these views, read-only sub-views extracted from these rich views can facilitate tasks such
as developing, and testing. Thus, besides view model extension and view integration, we
introduced a further mechanism in order to generate a resulting view: The mechanism to
extract views from existing views. In this connection we need to distinguish between editable
and read-only views. The DAS Flow View is an example of such a read-only view. The DAS
Flow View cannot be specified at modeling time, because usually connections have to be
modeled in the context of the whole business flow. Hence, these extracted views are typically

Enhancing Traceability of Persistent Data Access Flows in Process-Driven SOAs 35

read-only views. Moreover, our DAS Flow View can be generated from the Flow View on
the fly. Thus the DAS Flow View does not have to be stored after adapting the corresponding
Flow View. This concept is comparable to the view concept in database theory: A database
view can output data stored in one more database tables. When data in one of these database
tables changes, the database view can output the updated data by accessing them through
the tables. The disadvantage of this on-the-fly-generation is that the generation procedure
needs to be performed each time when selecting the DAS Flow View.

To the best of our knowledge, up-to-now these persistent persistent data access flows are
not used to solve development, testing and analysis problems, yet. With this article, our goal
is to present a visual solution for a series of persistent data access problems. Accordingly,
the specified use cases in Section 6 are just examples of how our approach can be applied.
Accordingly, in Section 6.1 we discover deadlocks by ensuring whether the DAS opera-
tions are properly designed. However with our approach we do not claim to discover a new
approach for detecting deadlocks. The potential deadlock cause of two process-instances
invoking intersecting DAS operations presented, is just one of several possible causes for a
deadlock. Other mistakes such as an incorrect transaction handling or database configura-
tion can also increase the probability of a deadlock. Instead, our persistent data access flow
shall ease both manual and automatic deadlock detection in a complex process model. On
top of our approach existing data analysis solutions such as deadlock detection techniques
can be applied.

In the following we shortly state how our approach reduces the complexity of the pro-
cess in the context of the three presented use cases. Hereby we use the definitions for process
complexity specified in [4]. Four main metrics can be identified to measure the complexity
of a process: activity complexity, control flow complexity, data-flow complexity, and re-
source complexity. The activity complexity of the process simply calculates the number of
activities a process has. The control flow behavior of a process is affected by process con-
structs such as splits, joins, loops, and ending and starting points. The data-flow and resource
complexity perspectives measure the complexity of data structures and the diversity of re-
sources respectively. With our approach, according to the concept of separation of concerns,
we could reduce the number of activities of a flow. We achieved this by extracting persistent
data access flows consisting of simply data access activities. Thus we reduced the activity
complexity of the process. Furthermore in the database testing use case, we resolved one
complex problem into a number of simpler problems by extracting the data paths from a
whole process flow. In this use case we could also decrease the control flow complexity to
a minimum value. This is because a data path contains no switch constructs. By our filter-
ing mechanism, we could also reduce the data-flow complexity and resource-complexity of
business processes.

11 Conclusion and Future Work

Process flows contain different types of activities such as business logic activities, transfor-
mation activities, and persistent data access activities. When the number of activities grows,
focusing on special types of activities of the process flow such as the persistent data access
activities is a time-consuming task. In this work we presented a view-based, model-driven
solution extracting persistent data access flows from the whole process flow. By using these
persistent data access flows, different stakeholders such as data analysts, DAS developers,
and database testers can focus on the persistent data access activities of the process flows
and to solve structural problems in business processes. We illustrated how our tailored DAS

36 Christine Mayr et al.

Flow View concept can improve data analysis, development, and testing by presenting se-
lected use cases. Each of these use cases is an example of how persistent data access flows
can increase efficiency and decrease the time to solve certain problems at the earliest state
of development. Our DAS Flow View can be further tailored by different filter criteria such
that the flow contains only those persistent data access activities reading or writing data
from a specific database table. We have demonstrated the applicability of our approach by a
suitable tooling. Furthermore, we have evaluated the feasibility by showing the correctness
and complexity of the presented algorithms. Apart from focusing on the persistent data ac-
cess activities, our approach can be generally applied to focus on any particular parts of the
business process in a process-driven SOA.

However, further work is necessary to coping with other important requirements. As the
tools are what gives value to a concept, we continue focusing on developing suitable tooling
for persistent data access flows. Besides modeling data access activities, we will describe
other important activities of the business process in more detail. Accordingly, we concern
ourselves with activity management e.g. specifying general activity description interfaces
and categorizing different types of activities, and developing new views. Furthermore, we
will focus on source code re-engineering in order to being able to exploit our approach when
no view model instances are available.

Acknowledgement This work was supported by the European Union FP7 projects COM-
PAS, grant no. 215175, and INDENICA, grant no. 257483.

References

1. Al-Khalifa, S., Jagadish, H.V., Patel, J.M., Wu, Y., Koudas, N., Srivastava, D.: Structural joins: A primi-
tive for efficient xml query pattern matching. In: Agrawal, R., Dittrich, K.R. (eds.) ICDE. pp. 141-152.
IEEE Computer Society (2002)

2. Awad, A., Puhlmann, F.: Structural detection of deadlocks in business process models. In: BIS. pp. 239-
250 (2008)

3. Bruno, N., Koudas, N., Srivastava, D.: Holistic twig joins: optimal xml pattern matching. In: SIGMOD
Conference. pp. 310-321 (2002)

4. Cardoso, J.: Control-flow Complexity Measurement of Processes and Weyuker’s Properties. In: 6th In-
ternational Enformatika Conference. pp. 213-218. Transactions on Enformatika, Systems Sciences and
Engineering, Vol. 8 (2005)

5. Carey, M.J., Reveliotis, P., Thatte, S., Westmann, T.: Data service modeling in the aqualogic data services
platform. In: SERVICES 1. pp. 78-80 (2008)

6. Database, J.S.T.: The java database connectivity (jdbc). http://java.sun.com/javase/technologies/
database/ (2001)

7. Dedene, G., Snoeck, M.: Formal deadlock elimination in an object oriented conceptual schema. Data
Knowl. Eng. 15(1), 1-30 (1995)

8. Duesterwald, E., Gupta, R., Soffa, M.L.: A practical framework for demand-driven interprocedural data
flow analysis. ACM Trans. Program. Lang. Syst. 19(6), 992-1030 (1997)

9. Eclipse: Eclipse Modeling Framework Project. http://www.eclipse.org/modeling/emf/ (Retrieved Octo-
ber, 2011)

10. Fischer, S., Kuchen, H.: Data-flow testing of declarative programs. In: ICFP. pp. 201-212 (2008)

11. Georgakopoulos, D., Hornick, M.E,, Sheth, A.P.: An overview of workflow management: From pro-
cess modeling to workflow automation infrastructure. Distributed and Parallel Databases 3(2), 119-153
(1995)

12. Ghezzi, C., Jazayeri, M., Mandrioli, D.: Fundamentals of Software Engineering. Prentice Hall, Engle-
wood Cliffs (1991)

13. Group, O.M.: MOF 2.0 / XMI Mapping Specification, v2.1.1. http://www.omg.org/technology/
documents/formal/xmi.htm (January 2010)

14. Habich, D., Richly, S., Preissler, S., Grasselt, M., Lehner, W., Maier, A.: Bpel-dt - data-aware extension
of bpel to support data-intensive service applications. In: WEWST (2007)

Enhancing Traceability of Persistent Data Access Flows in Process-Driven SOAs 37

15.

16.

17.

25.

26.

27.

28.

29.

30.

31.

35.

36.

37.

38.

39.
40.
41.

42.
43.

Harrold, M.J.: Testing: a roadmap. In: ICSE ’00: Proceedings of the Conference on The Future of Soft-
ware Engineering. pp. 61-72. ACM, New York, NY, USA (2000)

Hentrich, C., Zdun, U.: Patterns for business object model integration in process-driven and service-
oriented architectures. In: PLoP ’06: Proceedings of the 2006 conference on Pattern languages of pro-
grams. pp. 1-14. ACM, New York, NY, USA (2006)

Hentrich, C., Zdun, U.: Patterns for process-oriented integration in service-oriented architectures. In:
EuroPLoP. pp. 141-198 (2006)

. IBM: Websphere mq workflow. http://www-01.ibm.com/software/integration/wmqwf{/ (Retrieved Jan-

uary 2012)

. Intalio: Bpm. http://www.intalio.com/bpm (Retrieved January 2012)

. Isloor, S., Marsland, T.: The deadlock problem: An overview. Computer 13(9), 58-78 (1980)

. JBoss Community: Jboss messaging. http://www.jboss.org/jbossmessaging (Retrieved January 2012)

. JBoss Community: jbpm. http://www.jboss.org/jbpm (Retrieved January 2012)

. Kurz, S., Guppenberger, M., Freitag, B.: A uml profile for modeling schema mappings. In: ER (Work-

shops). pp. 53-62 (2006)

. Lang, N.: Schlaer-mellor object-oriented analysis rules. SIGSOFT Softw. Eng. Notes 18(1), 54-58

(1993)

Le, W., Soffa, M.L.: Refining buffer overflow detection via demand-driven path-sensitive analysis. In:
PASTE ’07: Proceedings of the 7th ACM SIGPLAN-SIGSOFT workshop on Program analysis for soft-
ware tools and engineering. pp. 63—68. ACM, New York, NY, USA (2007)

Lethbridge, T.C., Singer, J., Forward, A.: How software engineers use documentation: The state of the
practice. IEEE Softw. 20(6), 35-39 (2003)

Mayr, C., Zdun, U., Dustdar, S.: Model-driven integration and management of data access objects in
process-driven soas. In: ServiceWave ’08: Proceedings of the 1st European Conference on Towards a
Service-Based Internet. pp. 62—73. Springer-Verlag, Berlin, Heidelberg (2008)

Mayr, C., Zdun, U., Dustdar, S.: View-based model-driven architecture for enhancing maintainability of
data access services. Data Knowl. Eng. 70, 794-819 (2011)

Naik, M., Park, C.S., Sen, K., Gay, D.: Effective static deadlock detection. In: ICSE *09: Proceedings of
the 2009 IEEE 31st International Conference on Software Engineering. pp. 386-396. IEEE Computer
Society, Washington, DC, USA (2009)

Network, S.D.: Core J2EE Pattern Catalog. http://java.sun.com/blueprints/corej2eepatterns/Patterns/
DataAccessObject.html (Copyright 1994-2008 Sun Microsystems, Inc)

OASIS Web Services Business Process Execution Language (WSBPEL) TC: Web services business
process execution language version 2.0. http://docs.oasis-open.org/wsbpel/2.0/0OS/wsbpel-v2.0-OS.html
(April 2007)

. Object Management Group (OMG): Business process model and notation (bpmn) version 2.0. http://

www.omg.org/spec/BPMN/2.0 (Release Date January 2011)

. (OMG), O.M.G.: Unified modeling language. http://www.uml.org/ (Retrieved January, 2012)
. Palkovits, S., Wimmer, M.: Processes in e-government - a holistic framework

for modelling electronic public services. In: Traunmiiller, R. (ed.) EGOV. Lec-
ture Notes in Computer Science, vol. 2739, pp. 213-219. Springer (2003),
http://dblp.uni-trier.de/db/conf/egov/egov2003.html#PalkovitsW03

Rapps, S., Weyuker, E.J.: Data flow analysis techniques for test data selection. In: ICSE. pp. 272-278
(1982)

Reddy, PK., Bhalla, S.: Deadlock prevention in a distributed database system. SIGMOD Rec. 22(3),
40-46 (1993)

Russell, N., ter Hofstede, A.H.M., Edmond, D., van der Aalst, W.M.P.: Workflow data patterns: Identifi-
cation, representation and tool support. In: ER. pp. 353-368 (2005)

Sadiq, W., Orlowska, M.E.: Applying graph reduction techniques for identifying structural conflicts in
process models. In: In Proceedings of the 11th Conf on Advanced Information Systems Engineering
(CAISE’99. pp. 195-209. Springer-Verlag (1999)

Schmit, B.A., Dustdar, S.: Model-driven development of web service transactions. In: In Proceedings of
the Second GI-Workshop XML for Business Process Management,Mar. p. 2005 (2005)

Software AG: Webmethods bpms. http://www.softwareag.com/at/products/wm/bpm/default.asp (Re-
trieved January 2012)

The Eclipse Foundation: Eclipse. http://www.eclipse.org/ (2012)

TIBCO: Bpm. http://www.tibco.com/products/bpm/ (Retrieved January 2012)

Tran, H., Zdun, U., Dustdar, S.: View-based and model-driven approach for reducing the develop-
ment complexity in process-driven SOA. In: Abramowicz, W., Maciaszek, L.A. (eds.) Business Process
and Services Computing: 1st International Conference on Business Process and Services Computing
(BPSC’07), September 25-26, 2007, Leipzig, Germany. LNI, vol. 116, pp. 105-124. GI (2007)

38

Christine Mayr et al.

44,
45.

46.

47.

48.
49.

50.
S1.

Turner, M., Budgen, D., Brereton, P.: Turning software into a service. Computer 36, 38—44 (2003)
Volter, M., Stahl, T.: Model-Driven Software Development: Technology, Engineering, Management.
Wiley (2006)

Wang, J., Yu, A., Zhang, X., Qu, L.: A dynamic data integration model based on soa. In: ISECS Inter-
national Colloquium on Computing, Communication, Control, and Management. pp. 196 — 199. IEEE
Computer Society, Washington, DC, USA (2009)

Weidlich, M., Decker, G., GroBkopf, A., Weske, M.: Bpel to bpmn: The myth of a straight-forward
mapping. In: OTM Conferences (1). pp. 265-282 (2008)

Weske, M.: Business Process Management: Concepts, Languages, Architectures. Springer (2007)
Zhang, G., Fu, X., Song, S., Zhu, M., Zhang, M.: Process driven data access component generation. In:
DEECS. pp. 81-89 (2006)

guang Zhang, X.: Model driven data service development. In: ICNSC’08. pp. 1668-1673 (2008)

Zhou, Y., Lee, E.A.: A causality interface for deadlock analysis in dataflow. In: EMSOFT ’06: Proceed-
ings of the 6th ACM & IEEE International conference on Embedded software. pp. 44-52. ACM, New
York, NY, USA (2006)

