
An Approach for Pattern Mining through Grounded Theory
Techniques and its Applications to Process-Driven SOA

Patterns

CARSTEN HENTRICH, PricewaterhouseCoopers AG WPG
UWE ZDUN, University of Vienna

VLATKA HLUPIC, University of Westminster

FEFIE DOTSIKA, University of Westminster

Pattern mining is a term used in the pattern community to describe the process of identifying or discovering patterns. To identify new
patterns, usually an informal or ad hoc process of finding patterns (e.g., in existing software systems) is used. This paper reflects on
lessons learned and methods used regarding the integration of software pattern mining with qualitative research methods during our
work on a pattern language for process-driven and service-oriented architectures (SOAs). This pattern language aims at closing the
conceptual gap between business architecture and software architecture with a focus on process-driven solutions. In this paper we
emphasize the notion of understanding patterns as sociological phenomena of problem solving behavior. We further introduce a
systematic approach for pattern mining based Glaserian Grounded Theory techniques. This approach has been applied for mining the
pattern language for process-driven SOAs. This work may also contribute to a better empirical grounding of software pattern mining.
We will illustrate our approach using the pattern language for process-driven SOAs as a pattern mining case study.

1 INTRODUCTION

A software pattern is a technology independent conceptual solution to a generic software design problem
(Buschmann et al., 2007; Gamma et al., 1994). The basic idea of patterns is that problems arise due to
conflicting forces in a given context, and solutions resolve these conflicting forces (Alexander, 1977).
Pattern mining is a term used in the pattern community to describe the process of identifying or discovering
patterns in existing software systems. That is, as patterns describe established knowledge rather than
original solutions, each software pattern is associated with a number of known uses where the pattern is
used in an existing software system (Coplien, 1996). To identify new patterns, usually an informal or ad
hoc process of finding patterns in software systems is used by the pattern author. In particular, often the
pattern author identifies one or more patterns from his own experiences, and then broadens the scope by
searching for the identified patterns in other contexts (e.g., other related software systems) and looking for
related other patterns in the contexts or systems under consideration.

Because patterns are sociological phenomena of human problem solving behavior, we introduce a
pattern mining approach based on Glaserian Grounded Theory (Glaser, 1992). Grounded Theory is a
systematic scientific method for the discovery of theory through the analysis of data, originally coming from
the social sciences. It is mainly used in qualitative research, but is also applicable for quantitative data. We
discuss how Grounded Theory can help to systematize the process of software pattern mining and base it
on (qualitative) empirical evidence. In addition, we have applied the typical community-based review
process of the pattern community for pattern validation.

In this paper, we use our process-driven SOA pattern language as a pattern mining and validation case
study. This paper reflects on lessons learned and methods used regarding the integration of software
pattern mining with qualitative research methods during our work on that pattern language. This pattern
language aims at closing the conceptual gap between business architecture and software architecture

Author's address: Carsten Hentrich, PricewaterhouseCoopers AG WPG, Friedrich-Ebert-Anlage 35-37, 60327 Frankfurt am Main,
Germany, carsten.hentrich@de.pwc.com. Uwe Zdun, Software Architecture Group, University of Vienna, Vienna, Austria,
uwe.zdun@univie.ac.at. Vlatka Hlupic, University of Westminster, Westminster Business School, 35 Marylebone Road, London NW1
5LS, United Kingdom, hlupicv@wmin.ac.uk. Fefie Dotsika, University of Westminster, Westminster Business School, 35 Marylebone
Road, London NW1 5LS, United Kingdom, f.e.dotsika@westminster.ac.uk.
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first
page. To copy otherwise, to republish, to post on servers or to redistribute to lists, requires prior specific permission. A preliminary
version of this papers was presented in a writers' workshop at the 18th European Conference on Pattern Languages of Programs
July 10-14, 2013, Kloster Irsee, Bavaria, Germany. Copyright 2013 is held by the author(s). ACM 978-1-4503-0107-7

An Approach for Supporting Pattern Mining through Grounded Theory: Page - 2

model building following business process-driven and service-oriented principles (see Hentrich and Zdun,
2012). During the work on this pattern language we followed an inductive empirical approach based on
software patterns grounded in empirical data to understand how organizational and software architecture
structures can be integrated and how this integration enables organizational flexibility of information
systems (IS).

This paper is structured as follows: In Section 2 we first introduce the pattern language for process-
driven SOAs as a case study for pattern mining. In Section 3 we describe background on Grounded
Theory. Next, in Section 4 we introduce our approach for pattern mining based on Grounded Theory, and
in Section 5 we present the details of the approach. Section 6 provides a pattern mining example including
an extract from the interviews we conducted and an example for the Grounded Theory based interview
analysis. In Section 7, we revisit the case study and discuss the results mined from the empirical data in
terms of patterns. Finally, in Section 8 we conclude.

2 PATTERN MINING CASE SYNOPSIS: PROCESS-DRIVEN SOA PATTERN LANGUAGE

In our previous work, we have performed empirical research to investigate software patterns that integrate
business processes and Service-Oriented Architectures (SOAs). The resulting integrated systems are
called process-driven SOAs. The pattern language resulting from this work is reported in various PLoP and
EuroPLoP papers and a textbook (Hentrich and Zdun, 2012). In this paper, we will discuss the empirical
methods used during the pattern mining efforts for this pattern language. Before that, in this section, we will
give a synopsis on the area of process-driven SOAs, i.e. the case in which we have performed pattern
mining and validation. In Section 7 we will discuss the results of this pattern mining and validation case
study.

2.1 Process-aware Information Systems

The latest definitions of the term Business Process Management (BPM) illustrate that workflow technology
has become an important conceptual artifact that brings formerly separate worlds of organizational and
technical design into an interdependent context (Prior 2003). Conceptually, BPM implies, on a technical
level, the usage of technologies that allow organizational flexibility (Dumas et al., 2005). For this reason,
BPM has technical consequences and requires corresponding architecture design concepts.

The promise of BPM to enable organizational flexibility leads in many industries to a strong demand for
BPM platforms, as the time to react on organizational change requirements is becoming shorter and
shorter. Organizationally inflexible technology implies higher efforts in implementing the changes and thus
higher costs are involved than using IT architecture concepts that consider organizational flexibility (Sauer
and Willcocks, 2003). As many organizations are shifting towards process-oriented organizations, IT
platforms have to consider this process approach conceptually.

In the resulting process-aware information systems (Dumas et al., 2005), the notion of process
represents a linking element between IT, organizational, and social issues, as business processes are
strongly involved in the definition of an organizational structure and its culture on the one hand, and its
technology on the other hand. Process-aware information systems depict organizational structure more or
less directly with technology. For this reason, the corresponding process technology is very important for
the future of businesses because this technology conceptually supports the interdependence between IT
and organizational structures and provides organizational flexibility by technically decoupling business
process logic.

2.2 Process-driven SOAs

In the context of process-aware information systems, Service-Oriented Architectures (SOAs) play an
important role. In particular, recent trends towards SOA indicate that paradigms are required that
conceptually support organizational flexibility and that support the interdependence between IT and
organizational issues (Cherbakov et al., 2005; Dumas et al., 2005; Scheer et al., 2007).

SOA is an architectural concept in which all functions, or services, are defined using a description
language and have invokable, platform-independent interfaces that are called to perform business
processes (Channabasavaiah et al., 2003; Barry, 2003). Each service is the endpoint of a connection,
which can be used to access the service, and each interaction is independent of each and every other
interaction. Communication among services can involve simple invocations and data passing, or complex
activities of two or more services. Though built on similar principles, SOA is not the same as Web Services,

An Approach for Supporting Pattern Mining through Grounded Theory: Page - 3

which is a collection of technologies, such as SOAP and XML. SOA is an architectural paradigm, and
hence it is independent of any specific technologies.

A SOA is typically organized as a layered architecture (see Figure 1), both on client and server side
(Zdun et al., 2006). At the lowest Communication Layer, low-level communication issues are handled. On
top of this layer, a Remoting Layer is responsible for all aspects of sending and receiving of remote service
invocations. The Remoting Layer consists of several sub-layers that handle request creation, request
transport, and marshaling in a Request Handling Layer, request adaptation in an Adaptation Layer, and
request invocation in an Invocation Layer. Above the Remoting Layer is a Client Application/Service
Provider Layer of service clients on the client side and a layer of service providers on server side. The top-
level layer is the Service Composition Layer in which the service clients and providers from the layer below
are used to implement higher-level tasks, such as service orchestration, coordination, federation, and
business processes based on services.

Figure 1: Overview of typical layers of a Service-Oriented Architecture

In this layered architecture, we can see a decoupling of process logic by introducing a dedicated
Service Composition Layer. The process approach is a junction between organizational design/change and
technical flexibility. This Service Composition Layer is technically represented by process engines that
enact long running business processes (macroflows) and also short running integration flows (microflows)
(Zdun et al., 2006; Hentrich and Zdun, 2012).

We have investigated the integration between business processes and SOA to foster higher business
agility, following an interdisciplinary approach based on software patterns. In the following sections, we
discuss the empirical methods applied in this context and the lessons learned.

3 BACKGROUND: GROUNDED THEORY

Grounded Theory (Glaser and Strauss, 1967) is a systematic research methodology in the social sciences
following the discovery of theory through the analysis of empirical data. It is considered very useful in
qualitative research. As a result, it is a research method in which one begins with data collection methods
rather than developing a hypothesis first. In that sense it operates almost in reverse order compared to
traditional research methods. From the collected data, the key issues are identified and marked as codes
with a series of coding procedures. The codes are grouped into concepts and categories are shaped from
the concepts. These concepts and categories are the foundation for the emergence of a theory, i.e. a
reverse engineered hypothesis. Grounded Theory (Glaser, 1992) basically deals with four analytical
elements that also refer to stages of coding:

 Codes are key points extracted from empirical data

 Concepts are groupings of codes of similar content that allows the codes to be grouped

 Categories are groups of similar concepts

S
e

rv
ic

e
 D

e
s

c
ri

p
ti

o
n

Communication Layer

R
e

m
o

ti
n

g
 L

a
y

e
r

Adaptation Layer

Inv ocation Layer

Client Application/Serv ice Prov ider Layer

Serv ice Composition Layer
(Orchestration/Coordination/Federation/BPM)

S
e

c
u

ri
ty

M
a

n
a

g
in

g

Orthogonal Aspects Layers

Request Handling Layer

An Approach for Supporting Pattern Mining through Grounded Theory: Page - 4

 A theory is a collection of categories, concepts, and codes that explain the subject under
investigation

Validity in Grounded Theory is judged by the characteristics of fit, relevance, workability, and

modifiability (Glaser and Strauss 1967):

 Fit means to evaluate how closely concepts fit with the observations they represent. It shows
how well constant comparison was conducted. Constant comparison in this context means to
constantly compare the codes, concepts, and categories as they emerge.

 Relevance means to evaluate whether one deals with a real concern of participants.

 Workability is satisfied if the theory explains how the problem is being solved with much
variation.

 Modifiability means that a theory can be altered when new relevant data is compared to existing
data. An elaborated theory is not right or wrong, it rather has more or less fit, relevance,
workability and modifiability.

Theoretical memoing is "the core stage of grounded theory methodology" (Glaser, 1998a). "Memos are

the theorizing write-up of ideas about substantive codes and their theoretically coded relationships as they
emerge during coding, collecting and analyzing data, and during memoing" (Glaser, 1998a). Memos are
important to refine and to keep track of ideas that develop in an emerging theory. In memos you develop
ideas about naming concepts and setting them in relation to other concepts.

Grounded Theory is based on inductive principles and anchored in empirical data. This idea maps to
the concept of emergent software patterns forming a theory of conceptualizations of problems with
corresponding solutions. For this reason, we consider Grounded Theory as a suitable approach for pattern
mining.

4 AN APPROACH BASED ON GROUNDED SOFTWARE PATTERNS

A software pattern describes an abstraction or conceptualization of a concrete, complex, and reoccurring
problem that software designers have faced in the context of real software development projects and a
successful solution they have implemented multiple times to resolve this problem (Gamma et al., 1994). A
software pattern may thus resolve many different influential forces that constitute a complex problem, i.e. it
is not just technical issues that a software pattern may deal with. The original concept of a design pattern
has been invented by Alexander (1977) in the context of civil architecture and has been successfully
applied in software development projects for many years (Buschmann et al., 2007; Coplien, 1996).

As a software pattern basically tells “how to” solve a (design) problem instead of prescribing exactly
“what” to do, it abstracts away from the very specific situation one might be facing. It captures a general
rule that is not dependent on the actor and/or the specifics of a certain situation. In addition, patterns
capture the rationale behind a solution, i.e. “why” a problem is solved in the way described by the pattern.
A software pattern language consists of a set of related software patterns (Alexander, 1977).

In this section we explain how to apply Glaserian Grounded Theory (Glaser, 1992) as a research
method for pattern mining and the grounding of the mined patterns in empirical data by presenting the
linkages between software patterns and Grounded Theory. We do not intend to explain concepts of
Grounded Theory in detail, as this would go beyond the scope of this paper. We would refer the interested
reader to existing Grounded Theory publications on Glaserian Grounded Theory itself (Glaser, 1992;
Glaser, 1998a; Glaser, 1998b; Urquhart, 2001).

In the pattern mining problem, in focus of this paper, the concrete process used for pattern mining is
largely up to the pattern author and rarely evidence beyond references to known uses and experiences of
the pattern author is given in pattern texts. That is, today pattern mining is a rather informal or ad hoc
process of finding patterns in software systems. In particular, often the pattern author identifies one or
more patterns in his own experiences, and then broadens the scope by searching for the identified patterns
in related systems and/or looking for related other patterns in the systems under consideration.

Our approach is based on the observation that software patterns are sociological phenomena. As a
consequence, they can be discovered following a Grounded Theory (Glaser, 1992) approach. One
important aspect which is well accepted in the practical software pattern community, but so far not in focus
of many research approaches about patterns, is that software patterns have a significant evolutionary and
human aspect in them (Seaman, 1999). They represent successful problem solving behavior, which
corresponds to the concept that a pattern describes “how to” and “why” to solve a problem rather than

An Approach for Supporting Pattern Mining through Grounded Theory: Page - 5

concretely dealing with “what” to solve. Thus, they deal with people’s behavior to solve complex design
problems, and they describe how and why conflicting forces arise and how and why these forces are
resolved by a (human) software designer. For this reason, patterns are (also) a sociological phenomenon.
From a sociological perspective, software patterns are successful ways of thinking that have emerged in an
evolutionary context and that capture the generic problem solving behavior of people.

Patterns thus represent a conceptualization of problem solving behavior achieved by abstracting from
implementations and the explicit decisions software designers have made in software development
projects when dealing with many influential forces that constitute complex problems. That is, software
patterns to be newly discovered are successful mental design constructs, which have not yet been
discovered as such, but are rather represented as unexplored and unconscious knowledge of expert
software designers that is hidden in the software implementations. A pattern represents a rule that is
applicable to explain a broad variety of instantiations.

Grounded Theory deals with theory development based on inductive principles following concepts of
abstraction and conceptualization (Glaser, 1992).The discovery (or mining) of a software pattern language
corresponds to the theory building process in Grounded Theory. In Grounded Theory, the primary method
of data analysis is continuous coding of data. That is, the existing empirical data is examined, data item by
data item, to find interesting categories of e.g. elements, actions, or events in the data. Then, it is tried to
make conceptual connections between a category and its subcategories and between different categories.
Codes and categories will be sorted, compared, and contrasted until all the data is accounted for. After
each coding step, new data is added, e.g. by looking at additional systems or performing more interviews
with developers. Through recurring coding steps, a theory is developed in a process of constant
comparison. In Grounded Theory coding means to create a theoretical model for the observed data. This
model is not created beforehand, but it emerges during the comparative process of Grounded Theory.

The pattern language is thus discovered by constant comparison of grounded data to work out the
patterns and their relationships in conjunction with Glaserian coding procedures. Open coding procedures
are applied during the initial stage of constant comparison in order to discover software pattern categories
and their properties. Theoretical coding is applied to develop conceptual linkages between (software)
categories and their properties as they emerge (Glaser, 1992). The concept of writing memos in Grounded
Theory can be represented by the process of writing the actual patterns in several iterative stages.
Developing a pattern language represents a theory building process that is elaborated by abstraction and
conceptualization from empirically grounded qualitative data. In summary, Grounded Theory can be used
as a systematic method for pattern mining that bases the mined patterns on empirical data.

As Grounded Theory thus provides a suitable method to address software patterns from a social
perspective in terms of inductive analysis of human problem solving behavior, our approach has been to
systematically investigate successful SOA implementations following a Grounded Theory approach and
discover the patterns being used to form a grounded pattern language for this class of architectures from
the empirical data being collected. SOA has been an unexplored domain as far as software patterns are
concerned and no substantial and coherent software pattern language has been available. An initial survey
of available patterns in this domain has led to this conclusion (Zdun et al., 2006). This served as the
primary motivation to develop a software pattern language for this class of software architectures.

5 GROUNDED PATTERN MINING AND VALIDATION

Based on the approach discussed in the previous section, our research has been conducted in various
professional software engineering projects that have taken place in various industries, such as
telecommunications, automotive, transportation, insurance, and banking. The investigations have included
project documentations, design specifications, analysis of existing running systems and applications, as
well as discussions and interviews with the people involved in design and programming activities. We have
conducted 43 semi-structured interviews in ten projects. Five of these projects were large projects and the
other five were medium sized and small projects. The average duration of an interview was approx. 2
hours. The research described in this article has been conducted between 2003 and 2007 with the aim to
discover a software pattern language for SOA. We have focused on emerging patterns that address the
integration between software and business architecture to allow easy implementing of changes to the
business and thus to achieve higher business agility.

Using the approach discussed in the previous section we have developed a procedure for systematic
pattern mining based on principles of Grounded Theory. The general procedure for grounded pattern
mining and validation consists of three phases:

An Approach for Supporting Pattern Mining through Grounded Theory: Page - 6

 Phase A: Fieldwork preparation

 Phase B: Pattern mining (fieldwork)

 Phase C: Refinement and validation

The ordering of the phases and the steps in the phases map to the coding procedures of Grounded
Theory as introduced in the previous section. The phases will be explained in more detail in the following.

5.1 Phase A: Fieldwork Preparation

First, a general conceptual approach must be developed to frame the investigation based on the domain in
which the patterns are mined. For instance, in our process-driven SOA case study we have developed a
conceptual approach based on theoretical foundations on enterprise agility (Hentrich, 2006). The
conceptual approach forms an equivalent to Glaser’s (1992) coding families for the specific requirements of
pattern mining and validation. That means the conceptual approach guides what areas of interest to
investigate in terms of patterns and the potential relationships between them.

5.2 Phase B: Pattern Mining

In the next step, (software development) projects need to be selected that cover a broad range of expertize
in the domain in which the patterns are to be mined. For instance, in our process-driven SOA case study
we have selected process-driven SOA projects that span across different industries and different sizes.
Internal company networks have been used to identify the projects. For each identified project the following
steps are executed:

 Step 1: Relevant representatives are identified for interviews. The following roles are considered as
most relevant: business analysts, designers, programmers, architects, and project managers.

 Step 2: First of all, available documentation is scanned as to draw first conclusions and to scope the
first areas of work. The documentation is mapped to the conceptual areas of the guiding framework for
the investigation (see Phase A).

 Step 3: A defined pattern format is used as a documentation framework. Based on the available
documentation, assumptions about relevant pattern contexts are made and interview partners are
selected in a prioritized order according to the identified contexts. Interviews are scheduled and
prepared to address the identified contexts.

 Step 4: Each interview is conducted in a semi-structured format using a defined pattern specification
format (addressing pattern context, problem, solution, consequences, examples, and known uses) as a
documentation framework. The interview structure is as follows:

 An introduction to the pattern mining work is given. Interview partners are informed in advance
via e-mail. First interviews are scheduled for 2 hours. Further interviews with the same partner
are scheduled according to topics that need to be addressed as a result of previous interviews.

 From the implementations the person has been involved with, abstract solutions are
conceptualized to abstract away from the implementation and to capture the generic solution.
The abstract solution is briefly documented during the session and agreed with the
interviewee, e.g. by drawing some conceptual pictures on a white board with some
annotations.

 Possible problems that have been addressed by the solution are identified with the interview
partner, questioning the key issues (depending on the person’s role this might vary). This
discussion is led by identifying the conflicting forces that a solution resolves and which form
the actual problem. Thus problems are identified documenting the conflicting forces that have
led to the conceptual solution. The problem-solution relation thus evolves.

 The pattern is discovered giving a unique name to the problem-solution relation (open and
theoretical coding).

 Consequences that result from the solution are discussed, both positive and negative
consequences.

 Relationships to other patterns are identified and discussed. Patterns that have already been
elaborated in other interviews are briefly introduced and relationships are discussed.

 The results are documented in a first draft of a pattern specification. Note that it is possible to
elaborate several pattern candidates in a single session. The procedure needs to be

An Approach for Supporting Pattern Mining through Grounded Theory: Page - 7

performed for each pattern. This is an iterative process of exploration, and usually more than
one session is expected to be necessary.

 After the interview, the examples are documented for the patterns based on the project’s
implementation that has been discussed and known uses are identified. Thus, a version of the
pattern specification is created. The pattern specification is communicated via e-mail to the
interviewee and if further issues for discussion are identified (from the interviewer or the
interviewee) then a new interview is scheduled.

 Step 5: Through the concept of constant comparison with evolving patterns from different interviews
the pattern specifications and relationships are refined (theoretical coding). Pattern categories emerge
through logically related patterns in logical domains. The pattern relationships evolve using concepts
from Stream Analysis (Porras, 1987). New contexts that point to unaddressed areas emerge and the
whole process is repeated for these new contexts starting with Step 1. From interviews in different
projects the same patterns might emerge and new known uses for a pattern may evolve. In this case
the discussion is based on the existing pattern documentation to investigate whether the existing
pattern specification is sufficient, needs to be improved, and new known uses and examples can be
added.

5.3 Phase C: Refinement and Validation

For refinement and validation of the mined patterns we suggest following the established process of the
pattern community. Of course, this community-driven process can be replaced by an equivalent review
process with internal reviewers e.g. in the context of a company. For our process-driven SOA, the pattern
specifications and relationships between patterns that have evolved to a satisfactory degree have been
submitted to pattern conferences for further refinement and validation. The process goes as follows:

 Step 1: The paper is submitted to a pattern conference. The PLoP
1
 and EuroPLoP

2
 conferences have

been used for paper submission.

 Step 2: The paper is accepted or rejected. If the paper is rejected the reviewer’s comments are used to
refine the paper. Possibly another interview is scheduled to discuss the review comments with the
original interviewees. The paper is re-submitted until it is accepted. If the paper is accepted the
process moves on as follows.

 Step 3: The paper moves through a so-called “shepherding” process, where the paper is improved to
achieve a conference ready version. Shepherding is a process of giving and receiving feedback on the
paper and incorporating the feedback in the paper. A “shepherd” i.e. a reviewer, is assigned by the
conference committee. The reviewer is an experienced pattern author and usually has expertise in the
area the paper addresses. This phase lasts about three months and three iterations to improve the
paper are planned.

 Step 4: After the shepherding process is finished the reviewer speaks out a recommendation whether
the paper is accepted for the conference. If the paper is rejected, the process as described above will
be repeated, i.e. improvement of the paper using the reviewer’s comments with interviewees and re-
submission. If the paper is accepted for the conference, the paper will go into a conference workshop
and is published in the pre-conference proceedings.

 Step 5: In the conference workshop, four to five experts (not having been involved in the process
before) discuss the paper giving comments for improvements. The author is listening and takes notes
on the comments. The idea is that a pattern paper needs to speak for itself and should be
understandable simply by reading the paper. For this reason, the author is not allowed to justify the
statements in the workshop. The workshops follow a structured format.

 Step 6: After the conference, the paper is either accepted for publication or needs to be improved,
based on the comments (same procedure via re-submission).

 Step 7: If the paper is accepted for publication it can be considered as validated and is published.
Comments from the workshop are incorporated before publication. There is a span of about six months
between the conference and the publication to improve the paper based on the workshop comments.

1
 http://www.hillside.net/plop/

2
 http://www.hillside.net/europlop/

An Approach for Supporting Pattern Mining through Grounded Theory: Page - 8

All elaborated patterns have run through this process of publication to allow an acceptable degree of
validity.

All patterns have been mined, refined, and validated via this procedure. The results of this research
have been published with detailed pattern descriptions including examples in our prior work; this work has
been reported in various PLoP and EuroPLoP papers and a textbook (Hentrich and Zdun, 2012). In the
next section we summarize the main outcomes of this research.

6 PATTERN MINING EXAMPLE

In this section we provide an example of the software patterns analysis based on grounded data from an
interview. The original analysis procedure for mining patterns has been described in the previous section.
The following example demonstrates how this analysis procedure has been applied to mine SOA patterns.

This example essentially is an excerpt of a transcript from an interview that has been conducted with an
IT architect that has been responsible for parts of an SOA solution. This architect has been specialized on
the business modeling methods and techniques to be used to model the business architecture that had to
be implemented on an SOA platform. The interviewee has been informed in advance about the questions
that are going to be addressed during the interview. The questions ask for the specific solution, the
problem the solution addresses, the conflicting forces that constitute the problem, and the context where
the problem occurs. During the interview these questions are first focused on the very specific situation and
implementation scenario of the project. This serves first to gather grounded data and then to abstract away
towards codes using conceptualization based on that grounded data.

The flow of the interview questions isolate and discuss a specific solution the architect has designed,
the problem he has solved, the specific forces that constitute this problem, and the specific implementation
context where the problem occurs. The example mainly illustrates how significant elements of the context-
problem-solution relation of the MACRO-MICROFLOW (Hentrich and Zdun, 2012) pattern evolve (in reverse
order). Aspects of other patterns like the MACROFLOW ENGINE and MICROFLOW EINGINE (Hentrich and Zdun,
2012) pattern are also touched. The following text illustrates an excerpt from the original transcript of the
interview. The text has been changed slightly to make the data anonymous and to make a few corrections
on the Grammar. Some irrelevant details have been left out. A tape recorder was used to record the
interview.

6.1 Interview Extract

Interviewer: Thank you very much for taking the time to do this interview today, it is very much

appreciated. So [...] thanks a lot!

Interviewee: You’re welcome. Hope I can help you a bit with my answers?

Interviewer: I am pretty sure you can [...] as you have already been informed about the whole idea of

this research I would like not to waste too much of your valuable time and go into the details quickly. Hope
you don’t mind if we do so?

[...]

Interviewee: No, not at all – please go ahead.

Interviewer: So [...] you know the questions already - I understand you are an IT architect and sort of

take the role of a business architect. Could you explain your role in this project?

Interviewee: Yes, sure [...] I am an IT architect that’s correct. In this project I have been responsible for

the modeling conventions to model the business architecture. The team then had to follow these
conventions when they did their modeling in ARIS. ARIS is the design tool we are using, by the way.

[...]

Interviewer: OK, that’s interesting. Let’s say you could pick one aspect of modelling business

architecture, which is the most important one, which one would you pick? I mean is there some key issue

An Approach for Supporting Pattern Mining through Grounded Theory: Page - 9

or key solution you have incorporated in your modelling conventions or the techniques you have defined for
the design tool.

Interviewee: Well, we have been using ARIS mainly to model the business processes [...] so if we talk

about business architecture I more or less mean business process architecture or simply business
processes. I did a lot of conventions on modelling the business processes as those are not really obvious
[...] or, better to say, we found some issues that are not obvious. Getting the processes right is possibly the
most important issue, here.

Interviewer: That’s interesting [...] what do you mean, when you say “getting the processes right is

possibly the most important issue”? Why is it so important and what are these key issues about it. Please
try to describe the solutions you have implemented that are so important to you.

Interviewee: First of all it’s the business processes [... or rather] modelling the business processes.

ARIS has a notation, [...] it actually offers quite a lot of notations but we have used the EPC models, which
is pretty much standard in ARIS. I think the problem was that the EPC notation is just a notation, not more,
but it does not tell you enough about the content of the models. Hard to explain maybe [...] we made some
first attempts with the business analysts and identified that they modelled processes in an insufficient way
[...] some knew a bit about the SOA stuff so they also modelled some technical things and others modelled
very detailed issues which we rather saw as being part of use cases.

Interviewer: You say people have modelled in an “insufficient way” and you mention technical things

and use cases. What was the insufficient part about modelling technical things and use cases? I
understand you consider this as some core element of your solution [...] maybe the modelling conventions
you defined?

Interviewee: Yes [...] I think the most important conventions we defined were about how to model the

business processes. It was not the notation; [...] you get all that from the EPC but how you model the EPC
is quite a challenge. We have defined some conventions that give guidance on how an EPC should look
like, what should be in it and what not. These conventions are about separating the technical concerns
from the business processes and also the things that we want to put in the use cases. So I think it is about
the granularity of the models [...] we want to them to model the right information that we can then later use
to refine the business processes in more technical transactions and into use cases. The use cases make
GUI interactions later on, so this is also application design stuff. The business processes should be
independent of application design and also independent from the technical processes that the IT guys do
model later. They start when the business processes are finished. Nevertheless, they need to understand
each other [...]; that the models link in later on and we can more or less directly map them on the SOA
platform for implementation. If you ask me about that core solution again, it is possibly about providing
them with the conventions to model the EPCs at a level that does not yet consider technical processes, nor
things at a use case level. We use different technologies for implementation of those things – that’s
another reason why to separate this. So the conventions we defined are about what to consider in the
models and what not to consider. They are also about how things will move on from their models ... how
the technical designers refine the business steps in the business processes with their technical,
transactional micro-processes.

Interviewer: Now, here is the challenge: If you had to put everything you have said in you last answer

into a few precise sentences that constitute this solution – some kind of short solution statement – what
would that be? Take your time, you can write it down on the white board or on this sheet of paper if you
like.

Interviewee: Good question [...] the solution is to define modeling conventions, guidelines for the BAs in

this case that strictly separate the business concerns of the business processes from the technical
concerns and the GUI concerns of the application in the use cases. This is to provide that the business
processes remains more stable to changes as they are not depended on the technical details and the
screen-flows in the GUIs – these may change more often. On the other hand those guidelines provide an
understanding for the GUI designers and the technical designer how their models can be directly linked in

An Approach for Supporting Pattern Mining through Grounded Theory: Page - 10

the EPC models. They are linked in by refining the single steps in more fine grained technical micro-
processes and also screen-flow processes in the use cases. I think the solution is probably about
separating the concerns while on the other hand linking the models effectively to not do much rework in the
later design phases. [...] Ah, I forgot that we also did this make the models easily implementable on MQ
Workflow. On [MQ] Workflow we implement the EPCs and they are more or less directly implementable
when the BAs follow the conventions.

[...]

Interviewer: So, let me summarize: we got three levels of process, transactional micro-processes,

screen-flows in use cases and the EPCs which are the actual business processes. All three models link in
and your conventions tell how to model that they can link in. Is that right?

Interviewee: Right.

Interviewer: You mentioned MQ Workflow and that you implement the EPCs on MQ. Your conventions

for EPCs also tell how to model to make implementation on MQ Workflow easy, right?

Interviewee: Right.

Interviewer: Why did you choose to use MQ Workflow and not another tool or why do you need such a

technology?

Interviewee: MQ [Workflow] is good for the long running processes. Those are the EPCs they are

usually long running and we got humans interacting in the business processes [...] so you need an engine
that can do this. It needs to be able to model your organisation and the roles you got in the processes. This
is sort of the long running businesses processes in the macro-world, while the other processes are finer
grained transactional in the micro-world. We called them micro-processes as well. We use the message
broker to implement the transactional micro-processes and not MQ Workflow.

Interviewer: So we got a separation in three levels of processes: GUI screen-flows in use cases, EPC

business processes, and transactional micro-processes. Then, we say that EPCs are long-running and
implemented on MQ Workflow – this is the macro world. Then we got transactional micro-processes, which
are short running implemented on a message broker [...]

Interviewee: Sorry, when I say “message broker” I mean the IBM broker tool.

Interviewer: Ah, OK that’s the [IBM] WebSphere Message Broker I suppose?

Interviewee: Yes.

Interviewer: OK, seems that we got some sense of a solution you designed. I would now like to move to

the question why this is a solution? I mean, what does it actually solve? We have talked about some of this
already but I would like to work this out a little better. What problem does this solution solve?

Interviewee: Ok now – the solution is the conventions or guidelines that tell you how to model the

business processes in EPCs. [...] We have discussed why we did it this way. The problem [... thinks]? As
indicated in the beginning already, we need to separate the concerns of these different models on the one
hand but we also see relationships between them. So, this is about [...] the problem to separate concerns,
while at the same time linking different models done by different people to deal with the relationships. It’s
an integration issue. You need to understand that this was quite a big project and there were quite a few
people modeling at the same time. People had to know how to use the models and to be on the same
page. Kind of a common paradigm we had to establish.

Interviewer: Sounds to me that this resolves a kind of conflict. You say on the one hand it has to do this

and on the other hand it also has to do that at the same time. Is it a conflict that we see here and which is
resolved by your modeling conventions?

An Approach for Supporting Pattern Mining through Grounded Theory: Page - 11

Interviewee: Yeah [...] it is some kind of conflict; because this is actually separate things but not really

separate. It is completely different people doing those different kinds of models with different skill-sets.
Nevertheless they build on each other and need to integrate, so we can’t treat them as completely
separate. The separate models need to be treated as separate but need to form a greater whole, fit
together at some point in the development stage. They also need to be implementable on the technologies
we use, like MQ [Workflow] and the [IBM] message broker. That’s why we need conventions and
guidelines to make things fit together in the end. Ah yes, important thing: the separation is necessary to
encapsulate change requirements later on. You can’t change the whole thing. If you mix things you got a
problem. When you separate [the concerns] you got more reuse and limit the changes. You can’t manage
the models any more when you mix it all up and your architecture is too inflexible. SOA is about easier
change though, but it’s not just the technologies it’s about how you design your business architecture. It’s
more about business architecture than about technical architecture.

Interviewer: OK, that’s great [...] I think we got an idea of the problem as well – also the conflict that this

problem addresses. For now, I would finally like to talk about context. What do you think is the context this
problem occurs?

Interviewee: The context is probably quite simply when you model your business processes for SOA

implementation using workflow systems – that’s when you run into this.
[...]

Interviewer: Thanks a lot. It has been a great pleasure talking to you. I think I got enough material to

come up with a draft document. There are probably several aspects on quite a few patterns involved in this
discussion. I’ll return to you as soon as I got a draft, so we can further discuss this.

6.2 Grounded Theory Based Interview Analysis Example

We now illustrate how codes have been analyzed from this data according to Grounded Theory (Glaser,
1992). Those codes are grouped into a grounded concept that constitutes the frame of a software pattern
by capturing a context-problem-solution relation. The concept represents a first draft of a pattern
specification, which is later on refined in several iterative stages. In this example, a first initial draft of the
MACRO-MICROFLOW pattern evolves from the data. Table 1 shows the data captured from the interview and
the codes developed from that data to frame the concept of the MACRO-MICROFLOW pattern.

Table 1: Coding example of codes and concept

Concept (pattern): MACRO-MICROFLOW

Examples of grounded data Developed code

“strictly separate the business concerns of the business
processes from the technical concerns and the GUI concerns of
the application in the use cases. This is to provide that the
business processes remains more stable to changes as they
are not depended on the technical details and the screen-flows
in the GUIs – these may change more often. On the other hand
those guidelines provide an understanding for the GUI
designers and the technical designer how their models can be
directly linked in the EPC models. They are linked in by refining
the single steps in more fine grained technical micro-processes
and also screen-flow processes in the use cases. I think the
solution is probably about separating the concerns while on the
other hand linking the models effectively to not do much rework
in the later design phases.”

Solution: Structure a process model into two kinds of
processes, macroflow and microflow. Strictly separate the
macroflow from the microflow, and use the microflow only for
refinements of the macroflow activities. The macroflow
represents the long-running, interruptible process flow which
depicts the business-oriented process perspective. The
microflow represents the short-running transactional flow which
depicts the IT-oriented process perspective.

“As indicated in the beginning already, we need to separate the
concerns of these different models on the one hand but we also
see relationships between them. So, this is about [...] the
problem to separate concerns, while at the same time linking
different models done by different people to deal with the
relationships. It’s an integration issue. You need to understand
that this was quite a big project and there were quite a few
people modelling at the same time. People had to know how to

Problem: Models of business processes must be developed
considering the relationships and interdependencies to
technical concerns. If technical concerns are tangled in the
business process models, however, business analysts are
forced to understand the technical details, and the technical
experts must cope with the business issues when they are
realising technical solutions. This should be avoided. On the
other hand, to create executable process models, somehow the

An Approach for Supporting Pattern Mining through Grounded Theory: Page - 12

use the models and to be on the same page. Kind of a common
paradigm we had to establish.”

“it is some kind of conflict; because this is actually separate
things but not really separate. It is completely different people
doing those different kinds of models with different skill-sets.
Nevertheless they build on each other and need to integrate, so
we can’t treat them as completely separate. The separate
models need to be treated as separate but need to form a
greater whole, fit together at some point in the development
stage.”

two independent views need to be integrated into a coherent
system.

“The context is probably quite simply when you model your
business processes for SOA implementation using workflow
systems – that’s when you run into this.”

Context: Business processes shall be implemented using
process (workflow) technology.

7 CASE STUDY RESULTS: PROCESS-DRIVEN SOA PATTERNS

In this section, we summarize the results of our pattern mining effort for the process-driven SOA pattern
language, to illustrate in the context of this case the potential outcomes of our approach. The general
pattern relationship overview diagram in Figure 2 provides a consolidated overview on the actual
relationships of the patterns in the process-driven SOA pattern language (Hentrich and Zdun, 2012)
resulting from our pattern mining effort. The grey areas in Figure 2 show the pattern categories with the
patterns associated to a category inside them. This figure does actually not display all possible
relationships but only outlines the major relationships between the pattern categories in the pattern
language. The annotations on the arrows in Figure 2 between the single patterns and the pattern
categories indicate how to navigate between the different contexts associated to the patterns and pattern
categories.

The identified patterns in this pattern language resolve interdisciplinary conflicting forces that influence
architecture design. The empirical data coded in the patterns shows that in SOA sociological, business,
and technical perspectives are integrated in a common design paradigm. People are an integral part of a
larger organizational system and interact with IT systems. The systemic perspective reflected by SOA
works at a higher level of abstraction than other recent architectural paradigms. The pattern language has
evolved around the concern how this integration and convergence of technical, human, and business
aspects is reflected by problem solving behavior.

As previously mentioned, in the SOA context, the notion of business process has become a linking
element between work practices, business drivers, and technical aspects in problem solving behavior. Data
design is linked to process design, as well as designing functions (services) that fulfill tasks within
processes. The human perspective is integrated by people playing an essential and active part in the
business processes when fulfilling tasks in processes and interacting with each other. The business
processes reflect the interaction principles of an organization’s working culture. When following the pattern
language, business processes are directly implemented using special technologies that allow configuring
process models rather than implementing the processes in program code written by software developers.
As a result, process-orientation has become a leading problem solving paradigm in SOAs that follow the
process-driven SOA approach. The patterns thus deal with designing software architectures from a
business-process-centric perspective.

An Approach for Supporting Pattern Mining through Grounded Theory: Page - 13

Figure 2: Pattern overview diagram for the process-driven SOA pattern language

Interestingly, in the investigated domain of SOA implementations, where process-orientation in
business IS is strategically important to enable flexibility (see Section 2.1), it emerged during the mining of
the pattern language that the guiding design concept captured by the pattern language is a business
process focused approach to software architecture design and not primarily a service-centric (i.e. function-
centric) approach. This is interesting as one might actually not expect this in an architectural paradigm

Business Process Modelling

design generic

object references

Process SynchronisationService Integration

Business Object Model Integration

Process-Oriented Integration

in SOA

BUSINESS

OBJECT POOL

DATA TRANSFORMATION

FLOW

used to automatically map

between synthesized models

alternative: if application-specific

evolution fails or is infeasible

alternative: when loosely coupled services fail

because of data integration issues

WRAP SERVICE AS

ACTIVITY

RESTRUCTURE SPECIFIC

BUSINESS OBJECT MODEL

SYNTHESIZE BUSINESS

OBJECT MODELS

INTEGRATED BUSINESS

OBJECT MODEL

used as basic refactoring

used as basic refactoring

used as basic refactoring

used for depicting

process interdependencies used to map application-

specific object models

SYNCHRONOUS

SERVICE ACTIVITY

FIRE AND FORGET

SERVICE ACTIVITY

ASYNCHRONOUS

REPLY SERVICE

MULTIPLE ASYNCHRONOUS

REPLIES SERVICE

FIRE EVENT

ACTIVITY

ASYNCHRONOUS SUB-

PROCESS SERVICE

TERMINABLE

DELIVERY SERVICE

 waiting

for result

not desired

one reply

but asynchronous

multiple

asynchronous

replies

reply should be

captured

asynchronously

synchronous

acknowledgement

multiple replies

but asynchronous

synchronous

invocations

for request

and results

instantiate

sub-process

synchronously

instantiate

sub-process

with fire and forget

fire event

and forget

fire event

synchronously

invoke as

synchronous service
synchronous

invocations

for request

and result

manages events for

manages events for

handles timeouts of
EVENT-BASED

ACTIVITY

TIMEOUT

HANDLER

EVENT-BASED PROCESS

INSTANTIATOR

PRIVATE-PUBLIC

BUSINESS OBJECT

EVENT

DISPATCHER

WAITING ACTIVITY

timeout generated

by external event

state change generates

event for dispatcher

GENERIC PROCESS

CONTROL STRUCTURE

PROCESS INTERRUPT

TRANSITION

ACTIVITY

INTERRUPT

PROCESS-BASED ERROR

MANAGEMENT

EVENT-BASED PROCESS

INSTANCE

BUSINESS OBJECT

REFERENCE

enables generic

process interrupt handling

enables

generic error management

enables generic

activity interrupt handling

design a reusable

process identifier attribute

provides a

conceptual basis

PROCESS-BASED INTEGRATION ARCHITECTURE

CONFIGURABLE ADAPTER

REPOSITORY

PROCES INTEGRATION

ADAPTER

manages

MACROFLOW

INTEGRATION SERVICE

RULE-BASED

DISPATCHER

is realized with

forwards

requests

delegates requests

offers

is composed of

MICROFLOW ENGINE

BUSINESS-DRIVEN

SERVICE

CONFIGURABLE

ADAPTER

is realized with

manages

MACRO-MICROFLOW

conceptual foundation

is specialization of

MACROFLOW ENGINE

sends requests for

activity execution

interdependent design

is realized with

MICROFLOW EXECUTION

SERVICE

same

service interface

Modelling business processes as

macroflows and microflowsBusiness object handling in

business processes

Design and implemenation

of referenced business objects

Modelling

service invocations

Handling synchronisation

issues in business processes

Pattern category SOFTWARE PATTERN

Symbols used in diagram

directed

relationship

An Approach for Supporting Pattern Mining through Grounded Theory: Page - 14

named “service-oriented” architecture. One would rather expect that a primary service-centric design
paradigm is followed. This is not the case according to our observations in our empirical pattern research.
This can be concluded from the real world examples and case studies of the patterns we have found.
Examples and case studies can be found in our published pattern documentation (Hentrich and Zdun,
2012).

A service is basically a functional interface to some system, and service-oriented means that all
systems are flexibly accessible by functional interfaces (services) no matter who or what wants to call that
interface. The services aim to hide the internal complexity of a system being integrated in a business
process focusing on offering functionality in a standard way. The idea is that functionality can be flexibly
assembled using those services. The term “SOA” actually indicates that all design activities might be driven
by the concept of service, but our empirical data shows that this is actually not the case from a problem
solving point of view. Rather the problem solving behavior is business-driven, following a business-
process-centric problem solving approach.

In particular, the central pattern in the pattern language is the MACRO-MICROFLOW pattern. This pattern
helps in structuring and modeling business processes that later on invoke services. According to this
pattern, the designer distinguishes between business and IT concerns when modeling business processes
by putting these different concerns in different conceptual process layers. Macroflows reflect the process
layer for the business concerns, and microflows represent the layer for the IT concerns. As a consequence
of following the MACRO-MICROFLOW pattern, the overall architecture design activity is driven by a business-
process-centric approach. That is, all design constructs are related to business processes, which need to
be modeled and implemented.

Our research has shown that the business-process-centric design paradigm is the leading principle for
all problem solving activities in the pattern language, as all patterns basically relate to business processes.
Consequently, the core architecture design, represented by the PROCESS-BASED INTEGRATION ARCHITECTURE
pattern, is also driven by this process-centric approach. The problems are created out of this process-
based approach and the solutions at higher design abstraction levels create more detailed problems that
are solved at more detailed design levels. Figure 3 shows a typical layered design following the PROCESS-
BASED INTEGRATION ARCHITECTURE pattern.

Consequently, the more detailed patterns in the pattern language address more specific issues for
dealing with data issues, designing services being invoked from processes, or synchronizing and
coordinating the business processes. Processes are understood as reusable components that can be
flexibly assembled. The processes themselves represent functionality that can be offered as services. The
activities in the processes coordinate more fine grained service invocations as to flexibly assemble more
fine grained functionality (Zdun et al., 2006).

The patterns address that service design, i.e. the reusable functional assets to compose the overall
business functionality, is driven by business processes and the problem solving behavior for designing the
business and corresponding software architecture is aligned with that. This approach actually allows
identifying the relevant functionality for the business. Adaptability is achieved by directly mapping
organizational structures of business processes on the technology platform represented by process
engines. Changes to processes result in changed process models on the process engines where
functionality in terms of services can be reused and only those parts of the functionality need to be newly
developed that are not available yet.

An Approach for Supporting Pattern Mining through Grounded Theory: Page - 15

Figure 3: Layers and boundaries of a Process-Based Integration Architecture

8 CONCLUSION

In this paper we have emphasized the notion of understanding patterns as sociological phenomena of
problem solving behavior. That is, a strong focus of patterns is on the notion that software design is a
creative human problem solving activity (Seaman, 1999). This notion allows better understanding that
patterns are successful social concepts of thinking being tacitly present until they are discovered as
patterns. Researching software patterns means to make these tacit thought models (Nonaka and
Takeuchi, 1995) transparent and to point out the complex relationships between them.

We have introduced a systematic approach for pattern mining using Glaserian Grounded Theory
(Glaser, 1992) and pattern validation through the pattern community’s review process, and we have
illustrated this approach using a pattern mining and validation case in the SOA domain. That is, by
adapting a method from the social sciences we have demonstrated that software design research benefits
from interdisciplinary approaches following different and complementary methodologies. The patterns are
explicitly captured in an instructive writing style to make this design knowledge accessible for
inexperienced people. These people may apply the patterns in their daily work and thus significantly
speed-up their learning curve. As a result, the pattern language serves as a way of transferring expert
design knowledge. Having provided a scientific approach for mining software patterns, this work may
contribute (1) to a better empirical grounding of software patterns and (2) to better understanding the
sociological aspects of software design.

REFERENCES

Alexander, C. (1977). A pattern language – Towns, buildings, construction. Oxford University Press, Oxford.
Buschmann, F. & Henney, K. & Schmidt, D.C. (2007). Pattern-Oriented Software Architecture Volume 5: On Patterns and Pattern
Languages. Wiley & Sons. Chichester, UK.
Barry, D.K. (2003). Web Services and Service-oriented Architectures. Morgan Kaufmann Publishers. San Francisco, CA
Channabasavaiah, K. & Holley, K. & Tuggle, E.M. (2003). Migrating to Service-oriented architecture – part 1. IBM Developer Works,
from http://www-106.ibm.com/developerworks/webservices/library/ws-migratesoa/.
Cherbakov, L. & Galambos, G. & Harishankar, R. & Kalyana, S. & Rackham, G. (2005). Impact of service-orientation at the business
level. IBM Systems Journal, Vol. 44 No. 4, pp. 653—668.
Coplien, J. (1996). Software Patterns. New York. SIGS Books.
Dumas, M. & van der Aalst, W.M. & ter Hofstede, A.M. (2005). Process-Aware Information Systems: Bridging People and Software
Through Process Technology. Wiley. Hoboken, New Jersey.
Gamma, E. & Helm, R. & Johnson, R. & Vlissides, J. (1994). Design patterns – elements of reusable object oriented software.
Addison Wesley, New Jersey.
Glaser, B.G. & Strauss, A. L. (1967). The discovery of grounded theory: strategies for qualitative research. Chicago.: Aldine.
Glaser, B.G. (1992). Emergence vs. Forcing: Basics of Grounded Theory Analysis, Mill Valley, Ca.: Sociology Press.
Glaser, B.G. (1998a). Doing Grounded Theory. Issues and Discussions. Mill Valley, Ca.: Sociology Press, from
http://www.groundedtheory.com/soc13.html.
Glaser, B.G. (1998b). Gerund Grounded Theory: The Basic Social Process Dissertation. Mill Valley, Ca.: Sociology Press, from
http://www.groundedtheory.com/soc8.html

Process Integration Architecture

Process Integration

Adapter Repository

Rule-Based

Dispatcher

Microflow Execution Business Application

Adapter Repository

Process

Integration

Adapter A

Process

Integration

Adapter B

Process

Integration

Adapter C

Microflow Engine A
Business

Application

Adapter A

Business

Application

Adapter B

Business Application A

Business Application B

Macroflow Engine A

Macroflow Engine B

Macroflow Engine C

Microflow Engine B

S
e

rv
ic

e
 1

S
e

rv
ic

e
 2

S
e

rv
ic

e
 3

S
e

rv
ic

e
 4

S
e

rv
ic

e
 1

S
e

rv
ic

e
 2

S
e

rv
ic

e
 3

S
e

rv
ic

e
 4

S
e

rv
ic

e
 1

S
e

rv
ic

e
 2

S
e

rv
ic

e
 3

S
e

rv
ic

e
 1

S
e

rv
ic

e
 2

S
e

rv
ic

e
 3

Macroflow Composition

Layer

Macroflow Integration

Layer

Dispatching

Layer

Microflow Execution

Layer
Business Application Services Layer

An Approach for Supporting Pattern Mining through Grounded Theory: Page - 16

Hentrich, C. (2006). A Language of Analytical Patterns for the Agile Enterprise. International Journal of Agile Systems and
Management. Inderscience, Vol. 1 No. 2, pp. 146—165.
Hentrich, C. & Zdun, U. (2012). Process-Driven SOA - Proven Patterns for Business-IT Alignment. CRC Press, Taylor and Francis,
Boca Raton.
Nonaka, I. and Takeuchi, H. (1995). The knowledge-creating company. Oxford, UK: University Press.
Porras, J. I. (1987). Stream analysis – a powerful way to diagnose and manage organizational change. Prentice Hall.
Prior, C. (2003). Workflow and Process Management, Maestro BPE Pty Ltd, Australia.
Sauer, C., & Willcocks, L. (2003). Establishing the Business of the Future: The Role of Organizational Architecture and Information
Technologies, European Management Journal, Vol. 21 No. 4, pp. 497—508.
Scheer, A. W. and Kruppke, H. and Jost, W. (2007). Agility by ARIS business process management. Yearbook Business Process
Excellence 2006/2007. Springer, Berlin.
Seaman, B. C. (1999). Qualitative Methods in Empirical Studies of Software Engineering. IEEE Transactions on Software
Engineering. Volume 25 , No. 4. ISSN:0098-5589, pp. 557 – 572.
Urquhart, C. (2001). An Enounter with Grounded Theory: Tackling the Practical and Philosophical Issues. in Trauth, E. M. Qualitative
Research in IS: Issues and Trends, Idea Group Publishing, London, pp. 104 – 140.
Zdun, U. & Hentrich, C. & van der Aalst, W.M.P. (2006). A Survey of Patterns for Service-Oriented Architectures. International Journal
of Internet Protocol Technology. Inderscience, Vol 1 No.3, pp. 132—143.

